
Robotics 2

October 19, 2021

Exercise #1

The DLR Justin robot in Fig. 1 has a torso with three revolute joints, with joint variables qt 2 R3,
on which two 7R identical left and right arms are mounted, with joint variables ql 2 R7 and
qr 2 R7, respectively. The robot has thus a total of 17 dofs, neglecting those of the end e↵ectors
(two anthropomorphic hands), with a perfectly symmetric body structure. Assume that the robot
is commanded by the joint velocity q̇ = (q̇l, q̇r, q̇t) 2 R17. Consider the following kinematic control
problems and introduce in a symbolic way all kinematic terms (matrices, vectors, etc.) that you
need for the definition of the control laws.

Figure 1: The DLR Justin robot, a torso with bimanual arms.

a) Let the Cartesian motion tasks for the left and right end e↵ectors be specified in an indepen-
dent way in terms of a desired position and orientation trajectory rl,d(t) 2 R6 and rr,d(t) 2 R6,
respectively. A minimal representation is used for the orientations. Both trajectories are ex-
pressed in the base frame of the torso. Define a control strategy q̇ = q̇a(t) for all the robot
joints that is able to execute simultaneously the two tasks, whenever possible, recovering also
from any (initial or later) Cartesian error and keeping the joints close to their midrange. Specify
qualitatively the conditions for the feasibility of these tasks.

b) Is it possible to execute the complete bimanual task as in a), but shaping the solution so that
the motion of the torso joints is largely reduced? And blocking completely the motion of the
torso joints? Provide the associated control laws q̇ = q̇b(t) and q̇ = q̇bb(t), and discuss which
may be the di�culties possibly encountered.

c) Consider the same task rl,d(t) 2 R6 as in a) for the left end e↵ector. The right end e↵ector
should move now in coordination with the left one, as specified by a desired relative position
plr,d(t) and orientation lRr,d(t), both expressed with respect to the frame of the left end e↵ector.
Define a control strategy q̇ = q̇c(t) for all the robot joints that addresses this new composite
task for Justin, recovering also from any error during task execution.

d) What if the command is moved to the acceleration level, with q̈ = (q̈l, q̈r, q̈t) 2 R17? Provide an
extension q̈ = q̈d(t) for the case in a) that prevents also the internal build up of joint velocities.
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Exercise #2

Figure 2: Two masses connected by a visco-elastic spring.

Figure 2 shows a mechanical system made of two masses B and M with a visco-elastic coupling,
viscous friction on the motion of the individual masses, and an input force ⌧ acting on the first
mass. The zero of the two position variables ✓ and q is associated to an undeformed spring. The
spring has sti↵ness K > 0 and its elastic potential energy is quadratic in the deformation q � ✓.
This model represents also a visco-elastic joint of a robot, where B and M are, respectively, the
motor and the link inertia, while ✓ and q are their respective (angular) positions.

a) Derive the dynamic model of this system, including all non-conservative terms due to the viscous
friction a↵ecting the motion of the two masses (with coe�cients F✓ > 0 and Fq > 0) and to the
viscous damping on the deformation velocity of the spring (with coe�cient D � 0).

b) Provide the simplest feedback law that is able to asymptotically stabilize the position of the
second mass to a constant desired value qd. Prove the result using a Lyapunov/LaSalle technique
(or any other preferred method).

c) Set now D = 0. Solve the inverse dynamics problem for a desired, su�ciently smooth trajectory
qd(t). Provide the explicit expression of ⌧d(t) as a function of qd(t) and its (higher order) time
derivatives only.

[150 minutes (2.5 hours); open books]
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