Robotics II

January 7, 2020

Exercise 1

Consider the robot in Fig. 1 with $N=3$ joints, one prismatic and two revolute. Each link of the robot has uniformly distributed mass, center of mass on its physical link axis, and a diagonal barycentric link inertia matrix. We assume that friction at the joints can be neglected. The robot is commanded at the joint level by a generalized vector of forces/torques $\boldsymbol{\tau} \in \mathbb{R}^{3}$.
a) Derive the dynamic model of the robot in the Lagrangian form $\boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{c}(\boldsymbol{q} \cdot \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{\tau}$.
b) Find a linear parametrization $\boldsymbol{Y}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}) \boldsymbol{a}=\boldsymbol{\tau}$ of the robot dynamics in terms of a vector $\boldsymbol{a} \in \mathbb{R}^{p}$ of dynamic coefficients and of a $3 \times p$ regressor matrix \boldsymbol{Y}. Discuss the minimality of p.
c) Determine which of the $10 N=30$ dynamic parameters of the links are irrelevant for the describing the motion of the robot.
d) Given a desired smooth trajectory $\boldsymbol{q}_{d}(t) \in C^{2}$ in the joint space, design for this robot an adaptive control law that globally asymptotically stabilizes the tracking error $\boldsymbol{e}(t)=\boldsymbol{q}_{\boldsymbol{d}}(t)-\boldsymbol{q}(t)$ to zero, without any a priori knowledge of the robot dynamic parameters.

Figure 1: A PRR robot with coordinates $\boldsymbol{q}=\left(\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right)^{T}$ and relevant kinematic/dynamic parameters.

Exercise 2

A number of questions and statements are reported on the Extra Sheet. Fill in your answers and/or comments on the same sheet, providing also a short motivation/explanation for each item. Add your name on the sheet and return it.
[210 minutes, open books
(but no smartphone, no internet, and no communication with others!)]

Robotics II - Extra Sheet

January 7, 2020

Name: \qquad
Answer to the questions or comment the statements, providing also a short motivation/explanation for each of the following 4 items.

1. Write down the calibration equation for a planar 2 R robot in which the only inaccurate values are the link lengths l_{1} and l_{2}. Describe briefly how to set up a kinematic calibration procedure in this caee.
\qquad
\qquad
\qquad
\qquad
2. At a given $\boldsymbol{q} \in \mathbb{R}^{N}$, we have to choose the velocity command $\dot{\boldsymbol{q}} \in \mathbb{R}^{N}$ that minimizes the objective function $H=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{A}^{-1} \dot{\boldsymbol{q}}$, with $\boldsymbol{A}>0$, while satisfying the task $\boldsymbol{J} \dot{\boldsymbol{q}}=\dot{\boldsymbol{x}} \in \mathbb{R}^{M}$, with $M<N$ and $\operatorname{rank}\{\boldsymbol{J}\}=M$. Two commands have been computed as

$$
\dot{\boldsymbol{q}}^{\prime}=\boldsymbol{A}^{-1} \boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{A}^{-1} \boldsymbol{J}^{T}\right)^{-1} \dot{\boldsymbol{x}} \quad \text { and } \quad \dot{\boldsymbol{q}}^{\prime \prime}=\boldsymbol{J}^{\#} \dot{\boldsymbol{x}}-\left(\boldsymbol{I}-\boldsymbol{J}^{\#} \boldsymbol{J}\right)^{-1} \nabla_{\dot{\boldsymbol{q}}} H, \quad \text { with } \nabla_{\dot{\boldsymbol{q}}} H=\boldsymbol{A}^{-1} \dot{\boldsymbol{q}} .
$$

Which command is better? Why?
\qquad
\qquad
\qquad
\qquad
3. Consider an assembly task, in which a peg having an equilateral triangle as section is to be inserted at a slow but constant speed V in a similar hole with reduced clearance. Define a suitable task frame and the natural and artificial constraints for this task.
\qquad
\qquad
\qquad
\qquad
4. For a 2-dof RP robot in the horizontal plane, write the explicit expression of an energy-based scalar residual, able to detect collisions when all the robot joints are in motion. Determine also which type of contact forces in the plane $\boldsymbol{F}_{c} \in \mathbb{R}^{2}$ (i.e., where they are applied on the robot, and in which direction) cannot be detected by this method, even if the robot is not at rest.
\qquad
\qquad
\qquad
\qquad

