Dynamic model of robots: Newton-Euler approach

Prof. Alessandro De Luca
Approaches to dynamic modeling (reprise)

energy-based approach
(Euler-Lagrange)

- multi-body robot seen as a whole
- constraint (internal) reaction forces between the links are automatically eliminated: in fact, they do not perform work
- closed-form (symbolic) equations are directly obtained
- best suited for study of dynamic properties and analysis of control schemes

Newton-Euler method
(balance of forces/torques)

- dynamic equations written separately for each link/body
- inverse dynamics in real time
 - equations are evaluated in a numeric and recursive way
- best for synthesis (=implementation) of model-based control schemes
- by elimination of reaction forces and back-substitution of expressions, we still get closed-form dynamic equations (identical to those of Euler-Lagrange!)
Derivative of a vector in a moving frame

... from velocity to acceleration

\[0\nu_i = 0R_i^i\nu_i \quad \quad 0\dot{R}_i = S(0\omega_i) 0R_i \]

\[0\dot{v}_i = 0a_i = 0R_i^i a_i = 0R_i^i \dot{v}_i + 0\dot{R}_i^i \nu_i \]

\[= 0R_i^i \dot{v}_i + 0\omega_i \times 0R_i^i \nu_i = 0R_i(\dot{v}_i + \omega_i \times \nu_i) \]

\[i a_i = i \dot{v}_i + i \omega_i \times \nu_i \]

derivative of "unit" vector

\[\frac{de_i}{dt} = \omega_i \times e_i \]
Dynamics of a rigid body

- **Newton** dynamic equation
 - balance: sum of forces = variation of linear momentum
 \[
 \sum f_i = \frac{d}{dt}(mv_c) = m\dot{v}_c
 \]

- **Euler** dynamic equation
 - balance: sum of torques = variation of angular momentum
 \[
 \sum \mu_i = \frac{d}{dt}(I\omega) = I\dot{\omega} + \frac{d}{dt}(R\overline{I}R^T)\omega = I\dot{\omega} + (\dot{R}\overline{I}R^T + R\overline{I}\dot{R}^T)\omega
 \]
 \[
 = I\dot{\omega} + S(\omega)R\overline{I}R^T\omega + R\overline{I}R^TS^T(\omega)\omega = I\dot{\omega} + \omega \times I\omega
 \]

- **principle of action and reaction**
 - forces/torques: applied by body \(i\) to body \(i + 1\)
 \[
 = - \text{ applied by body } i + 1 \text{ to body } i
 \]
Newton-Euler equations - 1

FORCES

- f_i force applied from link $i - 1$ on link i
- f_{i+1} force applied from link i on link $i + 1$
- $m_i g$ gravity force

All vectors expressed in the same RF (better RF$_i$)

Newton equation

$$f_i - f_{i+1} + m_i g = m_i a_{ci}$$

linear acceleration of C_i
Newton-Euler equations - 2

TORQUES

τ_i torque applied from link $(i - 1)$ on link i

τ_{i+1} torque applied from link i on link $(i + 1)$

$f_i \times r_{i-1,ci}$ torque due to f_i w.r.t. C_i

$-f_{i+1} \times r_{i,ci}$ torque due to $-f_{i+1}$ w.r.t. C_i

Euler equation

$$\tau_i - \tau_{i+1} + f_i \times r_{i-1,ci} - f_{i+1} \times r_{i,ci} = I_i \dot{\omega}_i + \omega_i \times (I_i \omega_i)$$

angular acceleration of body i
Forward recursion
Computing velocities and accelerations

- “moving frames” algorithm (as for velocities in Lagrange)
- for simplicity, only revolute joints here
 (see textbook for the more general treatment)

\[
\begin{align*}
\dot{\omega}_i &= i^{-1} R_i^T [i^{-1} \omega_{i-1} + \dot{q}_i i^{-1} z_{i-1}] \\
\dot{\omega}_i &= i^{-1} R_i^T [i^{-1} \dot{\omega}_{i-1} + \ddot{q}_i i^{-1} z_{i-1}] + i^{-1} \dot{R}_i^T [i^{-1} \omega_{i-1} + \dot{q}_i i^{-1} z_{i-1}] \\
\dot{a}_i &= i^{-1} R_i^T \dot{a}_{i-1} + i \dot{\omega}_i \times i r_{i-1,i} + i \omega_i \times (i \omega_i \times i r_{i-1,i}) \\
\dot{a}_{ci} &= \dot{a}_i + \dot{\omega}_i \times i r_{i,ci} + i \omega_i \times (i \omega_i \times i r_{i,ci})
\end{align*}
\]

initializations
\[
\begin{align*}
\omega_0 &= 0 \\
\dot{\omega}_0 &= 0 \\
a_0 &= 0 \mathbf{g}
\end{align*}
\]

the gravity force term can be skipped in Newton equation, if added here
Backward recursion
Computing forces and torques

from N_i to N_{i-1}

initializations

\[
i f_i = i R_{i+1} i^{+1}_i F_{i+1} + m_i (i a_{ci} - \vec{g}) \quad \leftarrow \quad f_{N+1} \quad \tau_{N+1}
\]

\[
i \tau_i = i R_{i+1} i^{+1}_i \tau_{i+1} + \left(i R_{i+1} i^{+1}_i F_{i+1} \right) \times i r_{i,ci} - i f_i \times \left(i r_{i-1,i} + i r_{i,ci} \right) + i I_i i \dot{\omega}_i + i \omega_i \times i I_i i \omega_i
\]

at each step of this recursion, we have two vector equations ($N_i + E_i$) at the joint providing f_i and τ_i; these contain ALSO the reaction forces/torques at the joint axis ⇒ they should be “projected” next along/around this axis

\[
\begin{aligned}
\text{FP} & \quad \mathbf{u}_i = \begin{cases}
& i f_i^{T} i z_{i-1} + F_{vi} \dot{q}_i \\
& i \tau_i^{T} i z_{i-1} + F_{vi} \dot{q}_i
\end{cases} \\
& \text{for prismatic joint} \\
& \text{for revolute joint}
\end{aligned}
\]

\[
\text{generalized forces (in rhs of Euler-Lagrange eqs)} \quad \text{add any dissipative term (here, viscous friction only)}
\]

\[
\text{N scalar equations at the end}
\]
Comments on Newton-Euler method

- the previous forward/backward recursive formulas can be evaluated in symbolic or numeric form
 - **symbolic**
 - substituting expressions in a recursive way
 - at the end, a closed-form dynamic model is obtained, which is identical to the one obtained using Euler-Lagrange (or any other) method
 - there is no special convenience in using N-E in this way
 - **numeric**
 - substituting numeric values (numbers!) at each step
 - computational complexity of each step remains constant \(\Rightarrow \) grows in a linear fashion with the number of joints \(O(N) \)
 - strongly recommended for real-time use, especially when the number of joints is large
Newton-Euler algorithm
efficient computational scheme for inverse dynamics

\[
\begin{align*}
\dot{q}_1, \quad \ddot{q}_1, \quad \dddot{q}_1, \\
\vdots, \\
\dot{q}_N, \quad \ddot{q}_N, \quad \dddot{q}_N,
\end{align*}
\]

\[
\begin{align*}
q_1, \quad \dot{q}_1, \quad \ddot{q}_1, \\
\vdots, \\
q_N, \quad \dot{q}_N, \quad \ddot{q}_N,
\end{align*}
\]

\[
\begin{align*}
0 \omega_0, \quad 0 \dot{\omega}_0, \quad 0 a_0 - 0 g \quad \text{at robot base}
\end{align*}
\]

\[
\begin{align*}
1 \omega_1, \quad 1 \dot{\omega}_1, \quad 1 a_1, \quad 1 a_{c1}, \\
\vdots, \\
N-1 \omega_{N-1}, \quad N-1 \dot{\omega}_{N-1}, \quad N-1 a_{N-1}, \quad N-1 a_{c,N-1}
\end{align*}
\]

\[
\begin{align*}
1 f_1, \quad 1 \tau_1 \quad \text{FP} \quad u_1
\end{align*}
\]

\[
\begin{align*}
2 f_2, \quad 2 \tau_2 \quad \text{FP} \quad \vdots \\
\vdots
\end{align*}
\]

\[
\begin{align*}
N f_N, \quad N \tau_N \quad \text{FP} \quad u_N
\end{align*}
\]

\[
\begin{align*}
N+1 f_{N+1}, \quad N+1 \tau_{N+1}
\end{align*}
\]

(force/torque exchange environment/E-E)
Matlab (or C) script

general routine $NE_\alpha(arg_1, arg_2, arg_3)$

- data file (of a specific robot)
 - number N and types $\sigma = \{0,1\}^N$ of joints (revolute/prismatic)
 - table of DH kinematic parameters
 - list of ALL dynamic parameters of the links (and of the motors)

- input
 - vector parameter $\alpha = \{^0g, 0\}$ (presence or absence of gravity)
 - three ordered vector arguments
 - typically, samples of joint position, velocity, acceleration taken from a desired trajectory

- output
 - generalized force u for the complete inverse dynamics
 - ... or single terms of the dynamic model
Examples of output

- complete inverse dynamics
 \[u = NE_0g(q, \dot{q}, 0, \ddot{q}) = M(q)\ddot{q} + c(q, \dot{q}) + g(q) = u_d \]

- gravity term
 \[u = NE_0g(q, 0, 0) = g(q) \]

- centrifugal and Coriolis term
 \[u = NE_0(q, \dot{q}, 0) = c(q, \dot{q}) \]

- \(i \)-th column of the inertia matrix
 \[u = NE_0(q, 0, e_i) = M_i(q) \]

- generalized momentum
 \[u = NE_0(q, 0, \dot{q}) = M(q)\dot{q} = p \]
A further example of output

- factorization of centrifugal and Coriolis term
 \[u = NE_0(q, \dot{q}, 0) = c(q, \dot{q}) = S(q, \dot{q})\dot{q} \]
- for later use, what about a “mixed” velocity term?
 \[
 S(q, \dot{q})\dot{q}_r \iff
 \begin{align*}
 u &= NE_0(q, \dot{q}_r, 0) = S(q, \dot{q}_r)\dot{q}_r \\
 u &= NE_0(q, e_i \dot{q}_{ri}, 0) = S_i(q, e_i \dot{q}_{ri})\dot{q}_{ri}
 \end{align*}
 \]
 no good!
 a) \[S(q, \dot{q})\dot{q}_r = S(q, \dot{q}_r)\dot{q}_r \text{, when using Christoffel symbols} \]
 b) \[S(q, \dot{q} + \dot{q}_r)(\dot{q} + \dot{q}_r) = S(q, \dot{q})\dot{q} + S(q, \dot{q}_r)\dot{q}_r + 2S(q, \dot{q})\dot{q}_r \]
 \[\Rightarrow u = \frac{1}{2} (NE_0(q, \dot{q} + \dot{q}_r, 0) - NE_0(q, \dot{q}, 0) - NE_0(q, \dot{q}_r, 0)) \]
 \[= S(q, \dot{q})\dot{q}_r \text{ (i.e., with 3 calls of standard NE algorithm)} \]

[Kawasaki et al., IEEE T-RA 1996]
Modified NE algorithm

modified routine $\widehat{NE}_\alpha(\text{arg}_1, \text{arg}_2, \text{arg}_3, \text{arg}_4)$ with 4 arguments

\[\widehat{NE}_\alpha(x, y, y, z) = NE_\alpha(x, y, z) \] consistency property

e.g., \[u = \widehat{NE}^0_g(q, 0, 0, 0) = NE^0_g(q, 0, 0) = g(q) \]
\[u = \widehat{NE}^0_0(q, \dot{q}, \dot{q}, 0) = NE^0_0(q, \dot{q}, 0) = c(q, \dot{q}) = S(q, \dot{q}) \dot{q} \]

\Rightarrow \[u = \widehat{NE}^0_0(q, \dot{q}, \dot{q}_r, 0) = S(q, \dot{q}) \dot{q}_r \] with $\dot{M} - 2S$ skew-symmetric
(i.e., with 1 call of modified NE algorithm)

\Rightarrow \[u = \widehat{NE}^0_0(q, \dot{q}, e_i, 0) = S_i(q, \dot{q}) \]
(i.e., the full matrix S with N calls of modified NE algorithm)
Inverse dynamics of a 2R planar robot

desired (smooth) joint motion: quintic polynomials for q_1, q_2 with zero vel/acc boundary conditions from $(90^\circ, -180^\circ)$ to $(0^\circ, 90^\circ)$ in $T = 1$ s
Inverse dynamics of a 2R planar robot

Both links are thin rods of uniform mass $m_1 = 10$ kg, $m_2 = 5$ kg

Motion in vertical plane (under gravity)

Zero initial torques = free equilibrium configuration + zero initial accelerations

Final torques $u_1 \neq 0, u_2 = 0$ balance link weights in final ($0^\circ, 90^\circ$) configuration
Inverse dynamics of a 2R planar robot

torque contributions at the two joints for the desired motion

- = total, \(- - - - \) = inertial
- = Coriolis/centrifugal, = gravitational
Use of NE routine for simulation
direct dynamics

- numerical integration, at current state \((q, \dot{q})\), of
 \[
 \ddot{q} = M^{-1}(q)[u - (c(q, \dot{q}) + g(q))] = M^{-1}(q)[u - n(q, \dot{q})]
 \]
- Coriolis, centrifugal, and gravity terms
 \[
 n = NE_0^g(q, \dot{q}, 0) \quad \text{complexity } O(N)
 \]
- \(i\)-th column of the inertia matrix, for \(i = 1, \ldots, N\)
 \[
 M_i = NE_0(q, 0, e_i) \quad O(N^2)
 \]
- numerical inversion of inertia matrix
 \[
 InvM = \text{inv}(M) \quad O(N^3)
 \]
 but with small coefficient
- given \(u\), integrate acceleration computed as
 \[
 \ddot{q} = InvM \ast [u - n] \quad \text{new state } (q, \dot{q})
 \]
 and repeat over time ...