Robotics 2

Dynamic model of robots: Analysis, properties, extensions, uses

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
automatica e Gestionale Antonio Ruberti

UNIVERSITÀ DI ROMA

Analysis of inertial couplings

- Cartesian robot

$$
M=\left(\begin{array}{cc}
m_{11} & 0 \\
0 & m_{22}
\end{array}\right)
$$

- Cartesian "skew" robot

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{12} & m_{22}
\end{array}\right)
$$

- PR robot

$M=\left(\begin{array}{cc}m_{11} & m_{12}\left(q_{2}\right) \\ m_{12}\left(q_{2}\right) & m_{22}\end{array}\right)$
- 2 R robot

$$
M=\left(\begin{array}{cc}
m_{11}\left(q_{2}\right) & m_{12}\left(q_{2}\right) \\
m_{12}\left(q_{2}\right) & m_{22}
\end{array}\right)
$$

- 3R articulated robot (under simplifying assumptions on the CoMs)

$$
M=\left(\begin{array}{ccc}
m_{11}\left(q_{2}, q_{3}\right) & 0 & 0 \\
0 & m_{22}\left(q_{3}\right) & m_{23}\left(q_{3}\right) \\
0 & m_{23}\left(q_{3}\right) & m_{33}
\end{array}\right)
$$

Analysis of gravity term

- absence of gravity
- constant U_{g} (motion on horizontal plane)
- applications in remote space
- static balancing
- distribution of masses (including motors)
- mechanical compensation
- articulated system of springs
- closed kinematic chains

Bounds on dynamic terms

- for an open-chain (serial) manipulator, there always exist positive real constants k_{0} to k_{7} such that, for any value of q and \dot{q}

$$
\begin{array}{rlc}
k_{0} \leq\|M(q)\| & \leq k_{1}+k_{2}\|q\|+k_{3}\|q\|^{2} & \text { inertia matrix } \\
\|S(q, \dot{q})\| & \leq\left(k_{4}+k_{5}\|q\|\right)\|\dot{q}\| & \text { factorization matrix of } \\
\|g(q)\| & \leq k_{6}+k_{7}\|q\| & \text { Coriolis/centrifugal terms }
\end{array}
$$

- if the robot has only revolute joints, these simplify to

$$
k_{0} \leq\|M(q)\| \leq k_{1} \quad\|S(q, \dot{q})\| \leq k_{4}\|\dot{q}\| \quad\|g(q)\| \leq k_{6}
$$

(the same holds true with bounds $q_{i, \min } \leq q_{i} \leq q_{i, \max }$ on prismatic joints)
NOTE: norms are either for vectors or for matrices (induced norms)

Robots with closed kinematic chains - 1

Comau Smart NJ130

MIT Direct Drive Mark II and Mark III

Robots with closed kinematic chains - 2

MIT Direct Drive Mark IV (planar five-bar linkage)

UMinnesota Direct Drive Arm (spatial five-bar linkage)

Robot with parallelogram structure

(planar) kinematics and dynamics

direct kinematics

$$
p_{E E}=\binom{l_{1} c_{1}}{l_{1} s_{1}}+\binom{l_{5} \cos \left(q_{2}-\pi\right)}{l_{5} \sin \left(q_{2}-\pi\right)}=\binom{l_{1} c_{1}}{l_{1} s_{1}}-\binom{l_{5} c_{2}}{l_{5} s_{2}}
$$

position of center of masses

$$
p_{c 1}=\binom{l_{c 1} c_{1}}{l_{c 1} s_{1}} p_{c 2}=\binom{l_{c 2} c_{2}}{l_{c 2} s_{2}} p_{c 3}=\binom{l_{2} c_{2}}{l_{2} s_{2}}+\binom{l_{c 3} c_{1}}{l_{c 3} s_{1}} p_{c 4}=\binom{l_{1} c_{1}}{l_{1} s_{1}}-\binom{l_{c 4} c_{2}}{l_{c 4} s_{2}}
$$

Kinetic energy

linear/angular velocities

$$
\begin{aligned}
& v_{c 1}=\binom{-l_{c 1} s_{1}}{l_{c 1} c_{1}} \dot{q}_{1} \quad v_{c 3}=\binom{-l_{c 3} s_{1}}{l_{c 3} c_{1}} \dot{q}_{1}+\binom{-l_{2} s_{2}}{l_{2} c_{2}} \dot{q}_{2} \quad \omega_{1}=\omega_{3}=\dot{q}_{1} \\
& v_{c 2}=\binom{-l_{c 2} s_{2}}{l_{c 2} c_{2}} \dot{q}_{2} \quad v_{c 4}=\binom{-l_{1} s_{1}}{l_{1} c_{1}} \dot{q}_{1}+\binom{l_{c 4} S_{2}}{-l_{c 4} c_{2}} \dot{q}_{2} \quad \omega_{2}=\omega_{4}=\dot{q}_{2}
\end{aligned}
$$

Note: a (planar) 2D notation is used here!

$$
\begin{gathered}
T_{i} \quad T_{1}=\frac{1}{2} m_{1} l_{c 1}^{2} \dot{q}_{1}^{2}+\frac{1}{2} I_{c 1, z z} \dot{q}_{1}^{2} \quad T_{2}=\frac{1}{2} m_{2} l_{c 2}^{2} \dot{q}_{2}^{2}+\frac{1}{2} I_{c 2, z z} \dot{q}_{2}^{2} \\
T_{3}=\frac{1}{2} m_{3}\left(l_{2}^{2} \dot{q}_{2}^{2}+l_{c 3}^{2} \dot{q}_{1}^{2}+2 l_{2} l_{c 3} c_{2-1} \dot{q}_{1} \dot{q}_{2}\right)+\frac{1}{2} I_{c 3, z z} \dot{q}_{1}^{2} \\
T_{4}=\frac{1}{2} m_{4}\left(l_{1}^{2} \dot{q}_{1}^{2}+l_{c 4}^{2} \dot{q}_{2}^{2}-2 l_{1} l_{c 4} c_{2-1} \dot{q}_{1} \dot{q}_{2}\right)+\frac{1}{2} I_{c 4, z z} \dot{q}_{2}^{2}
\end{gathered}
$$

Robot inertia matrix

$$
T=\sum_{i=1}^{4} T_{i}=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}
$$

$$
M(q)=\left(\begin{array}{cc}
I_{c 1, z z}+m_{1} l_{c 1}^{2}+I_{c 3, z z}+m_{3} l_{c 3}^{2}+m_{4} l_{1}^{2} & \text { symm } \\
\left(m_{3} l_{2} l_{c 3}-m_{4} l_{1} l_{c 4}\right) c_{2-1} & I_{c 2, z z}+m_{2} l_{c 2}^{2}+I_{c 4, z z}+m_{4} l_{c 4}^{2}+m_{3} l_{2}^{2}
\end{array}\right)
$$

structural condition in mechanical design

$$
\begin{equation*}
m_{3} l_{2} l_{c 3}=m_{4} l_{1} l_{c 4} \tag{*}
\end{equation*}
$$

$M(q)$ diagonal and constant \Rightarrow centrifugal and Coriolis terms $\equiv 0$
mechanically DECOUPLED and LINEAR dynamic model (up to the gravity term $g(q)$)

$$
\left(\begin{array}{cc}
M_{11} & 0 \\
0 & M_{22}
\end{array}\right)\binom{\ddot{q}_{1}}{\ddot{q}_{2}}=\binom{u_{1}}{u_{2}}
$$

big advantage for the design of motion control laws!

Potential energy and gravity terms

$$
\begin{array}{ll}
U_{i} \text { from the } y \text {-components of vectors } p_{c i} \\
U_{1}=m_{1} g_{0} l_{c 1} s_{1} & U_{2}=m_{2} g_{0} l_{c 2} s_{2} \\
U_{3}=m_{3} g_{0}\left(l_{2} s_{2}+l_{c 3} s_{1}\right) & U_{4}=m_{4} g_{0}\left(l_{1} s_{1}-l_{c 4} s_{2}\right)
\end{array}
$$

$$
U=\sum_{i=1}^{4} U_{i}
$$

$$
g(q)=\left(\frac{\partial U}{\partial q}\right)^{T}=\binom{g_{0}\left(m_{1} l_{c 1}+m_{3} l_{c 3}+m_{4} l_{1}\right) c_{1}}{g_{0}\left(m_{2} l_{c 2}+m_{3} l_{2}-m_{4} l_{c 4}\right) c_{2}}=\binom{g_{1}\left(q_{1}\right)}{g_{2}\left(q_{2}\right)} \begin{gathered}
\text { components } \\
\text { are always } \\
\text { "decoupled" }
\end{gathered}
$$

further structural conditions in the mechanical design lead to $g(q) \equiv 0!!$

Adding dynamic terms

1) dissipative phenomena due to friction at the joints/transmissions

- viscous, Coulomb, stiction, Stribeck, LuGre (dynamic)...
- local effects at the joints
- difficult to model in general, except for:

$$
u_{V, i}=-F_{V, i} \dot{q}_{i} \quad u_{C, i}=-F_{C, i} \operatorname{sgn}\left(\dot{q}_{i}\right)
$$

in general:
$u_{\text {diss }}^{T} \dot{q}<0$
(component-wise too)

Adding dynamic terms ...

2) inclusion of electrical actuators (as additional rigid bodies)

- motor i mounted on link $i-1$ (or before), with very few exceptions
- often with its spinning axis aligned with joint axis i
- (balanced) mass of motor included in total mass of carrying link
- (rotor) inertia is to be added to robot kinetic energy
- transmissions with reduction gears (often, large reduction ratios)
- in some cases, multiple motors cooperate in moving multiple links: use a transmission coupling matrix Γ (with off-diagonal elements)

Unimation PUMA family

Mitsubishi RV-3S

Placement of motors along the chain

Resulting dynamic model

- simplifying assumption: in the rotational part of the kinetic energy, only the "spinning" rotor velocity is considered

$$
T_{m i}=\frac{1}{2} I_{m i} \dot{\theta}_{m i}^{2}=\frac{1}{2} I_{m i} n_{r i}^{2} \dot{q}_{i}^{2}=\frac{1}{2} B_{m i} \dot{q}_{i}^{2} \quad T_{m}=\sum_{i=1}^{N} T_{m i}=\frac{1}{2} \dot{q}^{T} B_{m} \dot{q}
$$

$$
\text { diagonal, > } 0
$$

- including all added terms, the robot dynamics becomes

- scaling by the reduction gears, looking from the motor side diagonal

$$
\left.\left.I_{m}+\operatorname{diag}\left\{\frac{m_{i i}(q)}{n_{r i}^{2}}\right\}\right)\right) \ddot{\theta}_{m}+\operatorname{diag}\left\{\frac{1}{n_{r i}}\right\}\left(\sum_{i=1}^{N} \bar{M}_{j}(q) \ddot{q}_{j}+f(q, \dot{q})\right)=\tau_{m} \begin{gathered}
\text { except the terms } m_{j j}
\end{gathered} \begin{gathered}
\text { motor torques } \\
\text { (before } \\
\text { reduction gears) }
\end{gathered}
$$

Special actuation and associated coordinates

planar 2R robot with remotely driven forearm

- motor 1 moves link 1 by p_{1}
- motor 2 at the base moves the absolute angle p_{2} of link 2
- derive the dynamic model from scratch using the \boldsymbol{p} coordinates

$$
\begin{aligned}
& M(p) \ddot{p}+c(p, \dot{p})+g(p)=u_{p} \\
& M(p)=\left(\begin{array}{cc}
a_{1}-a_{3} & a_{2} c_{2-1} \\
a_{2} c_{2-1} & a_{3}
\end{array}\right) \\
& c(p, \dot{p})=\left(\begin{array}{c}
-a_{2} s_{2-1} \dot{p}_{2}^{2} \\
a_{2} s_{2-1}
\end{array} \dot{p}_{1}^{2}\right) \quad \text { no more } \quad \text { Coriolis forces! } \\
& g(p)=\binom{a_{4} c_{1}}{a_{5} c_{2}} \\
& c_{1}=\cos p_{1} \quad c_{2}=\cos p_{2} \\
& c_{2-1}=\cos \left(p_{2}-p_{1}\right) \quad s_{2-1}=\sin \left(p_{2}-p_{1}\right)
\end{aligned}
$$

Including joint elasticity

- in industrial robots, use of motion transmissions based on
- belts
- harmonic drives
- long shafts
introduces flexibility between actuating motors (input) and driven links (output)
- in research robots, compliance in transmissions is introduced on purpose for safety (human collaboration) and/or energy efficiency
- actuator relocation by means of (compliant) cables and pulleys
- harmonic drives and lightweight (but rigid) link design
- redundant (macro-mini or parallel) actuation, with elastic couplings
- in both cases, flexibility is modeled as concentrated at the joints
- in most cases, assuming small joint deformation (elastic domain)

Robots with joint elasticity

Dexter
with cable transmissions

Quanser Flexible Joint (1-dof linear, educational)

DLR LWR-III with harmonic drives

video

Stanford DECMMA with micro-macro actuation

Dynamic model of robots with elastic joints

- introduce 2 N generalized coordinates
- $q=N$ link positions
- $\theta=N$ motor positions (after reduction, $\theta_{i}=\theta_{m i} / n_{r i}$)
- add motor kinetic energy T_{m} to that of the links $T_{q}=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}$

$$
T_{m i}=\frac{1}{2} I_{m i} \dot{\theta}_{m i}^{2}=\frac{1}{2} I_{m i} n_{r i}^{2} \dot{\theta}_{i}^{2}=\frac{1}{2} B_{m i} \dot{\theta}_{i}^{2} \quad T_{m}=\sum_{i=1}^{N} T_{m i}=\frac{1}{2} \dot{\theta}^{T} B_{m} \dot{\theta}
$$

- add elastic potential energy U_{e} to that due to gravity $U_{g}(q)$
- $K=$ matrix of joint stiffness (diagonal, >0)

$$
U_{e i}=\frac{1}{2} K_{i}\left(q_{i}-\left(\frac{\theta_{m i}}{n_{r i}}\right)\right)^{2}=\frac{1}{2} K_{i}\left(q_{i}-\theta_{i}\right)^{2} \quad U_{e}=\sum_{i=1}^{N} U_{e i}=\frac{1}{2}(q-\theta)^{T} K(q-\theta)
$$

- apply Euler-Lagrange equations w.r.t. (q, θ)

$$
\begin{aligned}
2 N \text { 2nd-order } \\
\text { differential } \\
\text { equations }
\end{aligned}\left\{\begin{aligned}
M(q) \ddot{q}+c(q, \dot{q})+g(q)+K(q-\theta) & =0 \leftarrow \begin{array}{r}
\text { no external torgues } \\
\text { performing work on } q
\end{array} \\
B_{m} \ddot{\theta}+K(\theta-q) & =\tau
\end{aligned}\right.
$$

Use of the dynamic model inverse dynamics

- given a desired trajectory $q_{d}(t)$
- twice differentiable ($\exists \ddot{q}_{d}(t)$)
- possibly obtained from a task/Cartesian trajectory $r_{d}(t)$, by (differential) kinematic inversion
the input torque needed to execute this motion (in free space) is

$$
\tau_{d}=\left(M\left(q_{d}\right)+B_{m}\right) \ddot{q}_{d}+c\left(q_{d}, \dot{q}_{d}\right)+g\left(q_{d}\right)+F_{V} \dot{q}_{d}+F_{C} \operatorname{sgn}\left(\dot{q}_{d}\right)
$$ (in contact, with an external wrench) ... $-J_{\text {ext }}^{T}\left(q_{d}\right) F_{\text {ext, } d}$

- useful also for control (e.g., nominal feedforward)
- however, this way of performing the algebraic computation $(\forall t)$ is not efficient when using the Lagrangian modeling approach
- symbolic terms grow much longer, quite rapidly for larger N
- in real time, numerical computation is based on Newton-Euler method

State equations

direct dynamics

Lagrangian dynamic model
$M(q) \ddot{q}+c(q, \dot{q})+g(q)=u$
N differential $2^{\text {nd }}$ order equations
defining the vector of state variables as $x=\binom{x_{1}}{x_{2}}=\binom{q}{\dot{q}} \in \mathbb{R}^{2 N}$
state equations

$$
\dot{x}=\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{x_{2}}{-M^{-1}\left(x_{1}\right)\left[c\left(x_{1}, x_{2}\right)+g\left(x_{1}\right)\right]}+\binom{0}{M^{-1}\left(x_{1}\right)} u
$$

$2 N$ differential
$1^{\text {st }}$ order
equations
another choice... $\tilde{x}=\binom{q}{M(q) \dot{q}} \begin{gathered}\text { generalized } \\ \text { momentum }\end{gathered} \quad \dot{\tilde{x}}=\ldots$ (do it as exercise)

Dynamic simulation

including "inv(M)"

- initialization (dynamic coefficients and initial state)
- calls to (user-defined) Matlab functions for the evaluation of model terms
- choice of a numerical integration method (and of its parameters)

Approximate linearization

- we can derive a linear dynamic model of the robot, which is valid locally around a given operative condition
- useful for analysis, design, and gain tuning of linear (or of the linear part of) control laws
- approximation by Taylor series expansion, up to the first order
- linearization around a (constant) equilibrium state or along a (nominal, time-varying) equilibrium trajectory
- usually, we work with (nonlinear) state equations; for mechanical systems, it is more convenient to directly use the $2^{\text {nd }}$ order model - same result, but easier derivation
equilibrium state $(q, \dot{q})=\left(q_{e}, 0\right)[\ddot{q}=0] \quad g\left(q_{e}\right)=u_{e}$ equilibrium trajectory $(q, \dot{q})=\left(q_{d}(t), \dot{q}_{d}(t)\right)\left[\ddot{q}=\ddot{q}_{d}(t)\right]$

$$
\Longrightarrow \quad M\left(q_{d}\right) \ddot{q}_{d}+c\left(q_{d}, \dot{q}_{d}\right)+g\left(q_{d}\right)=u_{d}
$$

Linearization at an equilibrium state

- variations around an equilibrium state

$$
q=q_{e}+\Delta q \quad \dot{q}=\dot{q}_{e}+\dot{\Delta q}=\dot{\Delta q} \quad \ddot{q}=\ddot{q}_{e}+\ddot{\Delta} q=\ddot{\Delta} q \quad u=u_{e}+\Delta u
$$

- keeping into account the quadratic dependence of c terms on velocity (thus, neglected around the zero velocity)

$$
M\left(q_{e}\right) \ddot{\Delta q}+g\left(q_{e}\right)+\underbrace{\left.\frac{\partial g}{\partial q}\right|_{q=q_{e}}}_{G\left(q_{e}\right)} \Delta q+\begin{array}{c}
\mathrm{o}(\|\Delta q H,\| \dot{d}\| \|)) \\
\text { infinitesimal terms } \\
\text { of second or higher order }
\end{array})=\chi_{e}+\Delta u
$$

- in state-space format, with $\Delta x=\binom{\Delta q}{\dot{\Delta q}}$

$$
\dot{\Delta x}=\left(\begin{array}{cc}
0 & I \\
-M^{-1}\left(q_{e}\right) G\left(q_{e}\right) & 0
\end{array}\right) \Delta x+\binom{0}{M^{-1}\left(q_{e}\right)} \Delta u=A \Delta x+B \Delta u
$$

Linearization along a trajectory

- variations around an equilibrium trajectory

$$
q=q_{d}+\Delta q \quad \dot{q}=\dot{q}_{d}+\dot{\Delta q} \quad \ddot{q}=\ddot{q}_{d}+\ddot{\Delta} q \quad u=u_{d}+\Delta u
$$

- developing to $1^{\text {st }}$ order the terms in the dynamic model ...

$$
M\left(q_{d}+\Delta q\right)\left(\ddot{q}_{d}+\ddot{\Delta} q\right)+c\left(q_{d}+\Delta q, \dot{q}_{d}+\dot{\Delta q}\right)+g\left(q_{d}+\Delta q\right)=u_{d}+\Delta u
$$

$$
M\left(q_{d}+\Delta q\right) \cong M\left(q_{d}\right)+\left.\sum_{i=1}^{N} \frac{\partial M_{i}}{\partial q}\right|_{q=q_{d}} e_{i} \quad \begin{aligned}
& i \text {-th row of the } \\
& \text { identity matrix }
\end{aligned}
$$

$$
g\left(q_{d}+\Delta q\right) \cong g\left(q_{d}\right)+G\left(q_{d}\right) \Delta q \quad \underbrace{C_{1}\left(q_{d}, \dot{q}_{d}\right)}
$$

Linearization along a trajectory (cont)

- after simplifications ...

$$
M\left(q_{d}\right) \ddot{\Delta q}+C_{2}\left(q_{d}, \dot{q}_{d}\right) \dot{\Delta q}+D\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right) \Delta q=\Delta u
$$

$$
\begin{aligned}
& \text { with } \\
& \qquad D\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right)=G\left(q_{d}\right)+C_{1}\left(q_{d}, \dot{q}_{d}\right)+\left.\sum_{i=1}^{N} \frac{\partial M_{i}}{\partial q}\right|_{q=q_{d}} \ddot{q}_{d} e_{i}^{T}
\end{aligned}
$$

- in state-space format

$$
\begin{aligned}
\dot{\Delta x}= & \left(\begin{array}{cc}
0 & I \\
-M^{-1}\left(q_{d}\right) D\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right) & -M^{-1}\left(q_{d}\right) C_{2}\left(q_{d}, \dot{q}_{d}\right)
\end{array}\right) \Delta x \\
& +\binom{0}{M^{-1}\left(q_{d}\right)} \Delta u=A(t) \Delta x+B(t) \Delta u
\end{aligned}
$$

a linear, but time-varying system!!

Coordinate transformation

$$
q \in \mathbb{R}^{N} \quad M(q) \ddot{q}+c(q, \dot{q})+g(q)=M(q) \ddot{q}+n(q, \dot{q})=u_{q}
$$

if we wish/need to use a new set of generalized coordinates p

$p \in \mathbb{R}^{N}$

$$
p=f(q) \Rightarrow q=f^{-1}(p)
$$

by duality

$$
\dot{p}=\frac{\partial f}{\partial q} \dot{q}=J(q) \dot{q} \Rightarrow \dot{q}=J^{-1}(q) \dot{p} \quad u_{q}=J^{T}(q) u_{p}
$$

$$
\ddot{q}=J^{-1}(q)\left(\ddot{p}-\dot{J}(q) J^{-1}(q) \dot{p}\right)
$$

$$
M(q) J^{-1}(q) \ddot{p}-M(q) J^{-1}(q) \dot{J}(q) J^{-1}(q) \dot{p}+n(q, \dot{q})=J^{T}(q) u_{p}
$$

$J^{-T}(q) \cdot$ pre-multiplying the whole equation...

Robot dynamic model after coordinate transformation

$$
J^{-T}(q) M(q) J^{-1}(q) \ddot{p}+J^{-T}(q)\left(n(q, \dot{q})-M(q) J^{-1}(q) \dot{J}(q) J^{-1}(q) \dot{p}\right)=u_{p}
$$

$$
M_{p}(p) \ddot{p}+c_{p}(p, \dot{p})+g_{p}(p)=u_{p}
$$

non-conservative
 performing work on p

$$
\begin{aligned}
& M_{p}=J^{-T} M J^{-1} \begin{array}{c}
\begin{array}{c}
\text { symmetric, } \\
\text { positive definite } \\
\text { (out of singularities) }
\end{array}
\end{array} g_{p}=J^{-T} g \\
& c_{p}=J^{-T}\left(c-M J^{-1} \dot{J} J^{-1} \dot{p}\right)=J^{-T} c-M_{p} \dot{J} J^{-1} \dot{p} \quad \begin{array}{l}
\text { quadratic } \\
\text { dependence on } \dot{p} \\
c_{p}(p, \dot{p})=S_{p}(p, \dot{p}) \dot{p} \quad \dot{M}_{p}-2 S_{p} \text { skew-symmetric }
\end{array} .
\end{aligned}
$$

when $p=\mathrm{E}-\mathrm{E}$ pose, this is the robot dynamic model in Cartesian coordinates
NOTE: in this case, we have implicitly assumed than $M=N$ (no redundancy!)

Example of coordinate transformation

planar 2R robot using absolute coordinates

- motor 1 at joint 1, motor 2 at joint 2

- in place of DH angles \boldsymbol{q}, use the absolute angles $p_{1}=q_{1}$ and $p_{2}=q_{1}+q_{2}$

$$
\left.\begin{array}{rl}
p & =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) q=J q
\end{array} \begin{array}{c}
\text { a linear } \\
\text { transformation }
\end{array}\right)
$$

- from $M(q) \ddot{q}+c(q, \dot{q})+g(q)=u_{q}$ obtained with DH relative coordinates
blue terms are the same found in a direct way in slide \#15

$$
\begin{array}{rlr}
M_{p}(p)=J^{-T} M J^{-1} & =\left(\begin{array}{cc}
a_{1}-a_{3} & a_{2} c_{2-1} \\
a_{2} c_{2-1} & a_{3}
\end{array}\right) & g_{p}(p)=J^{-T} g=\binom{a_{4} c_{1}}{a_{5} c_{2}} \\
c_{p}(p, \dot{p})=J^{-T} c=\binom{-a_{2} s_{2-1} \dot{p}_{2}^{2}}{a_{2} s_{2-1} \dot{p}_{1}^{2}} & u_{p}=J^{-T} u_{q}=\binom{u_{q 1}-u_{q 2}}{u_{q 2}}
\end{array}
$$

Robot dynamic model in the task/Cartesian space, with redundancy

dynamic model in the joint space

$$
M(q) \ddot{q}+n(q, \dot{q})=\tau
$$

$q \in \mathbb{R}^{N}$
$r=f(q) \in \mathbb{R}^{M}$
$M<N$
second-order task kinematics

$$
\ddot{r}=J(q) \ddot{q}+\dot{J}(q) \dot{q}
$$

$$
J \text { is full rank }=M
$$

1) isolate the joint acceleration from the dynamics $\Rightarrow \ddot{q}=M^{-1}(q)(\tau-n(q, \dot{q}))$
2) decompose the joint torques in two complementary spaces

$$
\begin{array}{cc}
\tau=J^{T}(q) F+\left(I-J^{T}(q) H(q)\right) \tau_{0} & H \text { is a generalized inverse of } J^{T} \\
\in \mathcal{R}\left(J^{T}\right) & \in \mathcal{N}\left(J^{T} H\right)
\end{array}
$$

torques coming from generalized forces F in the task space .
... and joint torques $\tau_{0} \notin \mathcal{R}\left(J^{T}\right)$
$\Rightarrow \tau_{0}=J^{T}(q) F, \forall F \in \mathbb{R}^{M} \Rightarrow\left(I-J^{T}(q) H(q)\right) J^{T}(q) F=0$
3) substitute 1) and 2) in the differential task kinematics

$$
\Rightarrow \ddot{r}=J(q) M^{-1}(q)\left(J^{T}(q) F+\left(I-J^{T}(q) H(q)\right) \tau_{0}-n(q, \dot{q})\right)+\dot{J}(q) \dot{q}
$$

4) isolate on the right-hand side the generalized forces F in the task space ...

Robot dynamic model

 in the task/Cartesian space, with redundancy$\Rightarrow\left(J(q) M^{-1}(q) J^{T}(q)\right)^{-1} \ddot{r}=F+$

$$
\left(J(q) M^{-1}(q) J^{T}(q)\right)^{-1}\left(J(q) M^{-1}(q)\left(\left(I-J^{T}(q) H(q)\right) \tau_{0}-n(q, \dot{q})\right)+\dot{J}(q) \dot{q}\right)
$$

5) choose as generalized inverse $H=\left(J M^{-1} J^{T}\right)^{-1} J M^{-1}=\left(J_{M}^{\#}\right)^{T}$, i.e., the transpose of the inertia-weighted pseudoinverse of the task Jacobian (see block of slides \#2)
\longrightarrow in this way, the joint torque component τ_{0} will NOT affect the task acceleration \ddot{r}
$\left(J(q) M^{-1}(q) J^{T}(q)\right)^{-1} \ddot{r}=F+\left(J(q) M^{-1}(q) J^{T}(q)\right)^{-1}\left(\dot{J}(q) \dot{q}-J(q) M^{-1}(q) n(q, \dot{q})\right)$
6) the resulting (M-dimensional) task dynamics is then

$$
M_{r}(q) \ddot{r}+n_{r}(q, \dot{q})=F_{\ldots} \ldots F_{\text {ext }}
$$

external forces can be added
on the rhs of the equations in

$$
\begin{aligned}
& \text { with } \\
& \qquad \begin{array}{ll}
M_{r}(q) & =\left(J(q) M^{-1}(q) J^{T}(q)\right)^{-1} \text { task inertia matrix } \\
n_{r}(q, \dot{q}) & \left.=M_{r}(q)\left(J(q) M^{-1}(q) n(q, \dot{q})-\dot{J}(q) \dot{q}\right) \quad\right] \text { are identical to slide \#27 } M=N \text { these terms }
\end{array}
\end{aligned}
$$

7) an additional ($N-M$)-dimensional second-order dynamics is needed to describe the full robot!

Dynamic scaling of trajectories

uniform time scaling of motion

- given a smooth original trajectory $q_{d}(t)$ of motion for $t \in[0, T]$
- suppose to rescale time as $t \rightarrow r(t)$ (a strictly increasing function of t) ϕ

Dynamic scaling of trajectories

uniform time scaling of motion

- in the new time scale, the scaled trajectory $q_{s}(r)$ satisfies

$$
\underset{\substack{\text { same path executed } \\ \text { t different instants of time) }}}{q_{d}(t)=q_{s}(r(t))} \Rightarrow \quad \dot{q}_{d}(t)=\frac{d q_{d}}{d t}=\frac{d q_{s}}{d r} \frac{d r}{d t}=q_{s}^{\prime}(r) \dot{r}(t)
$$

$$
\ddot{q}_{d}(t)=\frac{d \dot{q}_{d}}{d t}=\left(\frac{d q_{s}^{\prime}}{d r} \frac{d r}{d t}\right) \dot{r}+q_{s}^{\prime} \frac{d \dot{r}}{d t}=q_{s}^{\prime \prime}(r) \dot{r}^{2}(t)+q_{s}^{\prime}(r) \ddot{r}(t)
$$

- uniform scaling of the trajectory occurs when $r(t)=k t$

$$
\dot{q}_{d}(t)=k q_{s}^{\prime}(k t) \quad \ddot{q}_{d}(t)=k^{2} q_{s}^{\prime \prime}(k t)
$$

Q: what is the new input torque needed to execute the scaled trajectory? (suppose dissipative terms can be neglected)

Dynamic scaling of trajectories

inverse dynamics under uniform time scaling

- the new torque could be recomputed through the inverse dynamics, for every $r=k t \in\left[0, T_{s}\right]=[0, k T]$ along the scaled trajectory, as

$$
\tau_{s}(k t)=M\left(q_{s}\right) q_{s}^{\prime \prime}+c\left(q_{s}, q_{s}^{\prime}\right)+g\left(q_{s}\right)
$$

- however, being the dynamic model linear in the acceleration and quadratic in the velocity, it is

$$
\begin{aligned}
\tau_{d}(t) & \left.=M\left(q_{d}\right) \ddot{q}_{d}\right)+c\left(q_{d} \grave{q}_{d}\right)+g\left(q_{d}\right)=M\left(q_{s}\right) k^{2} q_{s}^{\prime \prime}+c\left(q_{s}, k q_{s}^{\prime}\right)+g\left(q_{s}\right) \\
& =k^{2}\left(M\left(q_{s}\right) q_{s}^{\prime \prime}+c\left(q_{s}, q_{s}^{\prime}\right)\right)+g\left(q_{s}\right)=k^{2}\left(\tau_{s}(k t)-g\left(q_{s}\right)\right)+g\left(q_{s}\right)
\end{aligned}
$$

- thus, saving separately the total torque $\tau_{d}(t)$ and gravity torque $g_{d}(t)$ in the inverse dynamics computation along the original trajectory, the new input torque is obtained directly as

$$
\tau_{s}(k t)=\frac{1}{k^{2}}\left(\tau_{d}(t)-g\left(q_{d}(t)\right)\right)+g\left(q_{d}(t)\right)
$$

$k>1$: slow down
\Rightarrow reduce torque
$k<1$: speed up
\Rightarrow increase torque

Dynamic scaling of trajectories

numerical example

- rest-to-rest motion with cubic polynomials for planar 2R robot under gravity (from downward equilibrium to horizontal link $1 \&$ upward vertical link 2)
- original trajectory lasts $T=0.5 \mathrm{~s}$ (but say, it violates the torque limit at joint 1)

for both joints

Dynamic scaling of trajectories

numerical example

Robotics 2

Optimal point-to-point robot motion

 considering the dynamic model- given the initial ($\Rightarrow A$) and final $(\Rightarrow B)$ robot configurations (at rest) and the actuator torque bounds, find
- the minimum-time $T_{\text {min }}$ motion
- the (global/integral) minimum-energy $\mathrm{E}_{\text {min }}$ motion and the associated command torques needed to execute them

- a complex nonlinear optimization problem solved numerically video

$$
T_{\min }=1.32 \mathrm{~s}, \mathrm{E}=306
$$

Robotics 2

