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Analysis of inertial couplings

s Cartesian robot — I M = o ¥ )
— 0 my,
Nk Z"f = (T Tz

= Cartesian “skew” robot — M = my, mzz)

m1,(qz) ms,

(
(
(i man)
(

= PR robot
my4(q;) m12(‘12))

= 2R robot o%j M =
my2(q2) msy»

= 3R articulated robot @ Tn11(CI2;CI3) 0 0
(under simplifying my2(q3) Mmp3(q3)

assumptions on the CoMs) m,3(q3) mgs3
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Analysis of gravity term

= absence of gravity A
= constant Uy (motion on horizontal plane)
= applications in remote space

= static balancing > ‘ g(g) =0

= distribution of masses (including motors)

= mechanical compensation
= articulated system of springs
= closed kinematic chains J
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Bounds on dynamic terms

= for an open-chain (serial) manipulator, there always exist
positive real constants k, to k, such that, for any value of
g and g

ko < IM(Q)|l € ki + kyllgll + k3llgll? inertia matrix

. : factorization matrix of
15Ca, @I < (ks + ksllgll) llgll Coriolis/centrifugal terms

lg(DIl < ke + k7llqll gravity vector
= if the robot has only revolute joints, these simplify to

ko < IM(Il < k1 1IS(q, DIl < kallgll Nlg(@Il < ke

(the same holds true with bounds g; in < ¢; < i max ON prismatic joints)

NOTE: norms are either for vectors or for matrices (induced norms)
Robotics 2



Comau Smart NJ130 MIT Direct Drive Mark II and Mark III
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MIT Direct Drive Mark IV UMinnesota Direct Drive Arm
(planar five-bar linkage) (spatial five-bar linkage)
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Robot with parallelogram structure

(planar) kinematics and dynamics

@ center of mass:
arbitrary [;

parallelogram:

l]_:lg

=1

direct kinematics
_ (1101) + (15 cos(q, — ﬂ)) _ (l1C1) _ (lscz)
PEE = \Uy s, Issin(q, —m)/)  \l35 l5S;
position of center of masses
_ (leacy _ (le2C _ (lzc2 lezcy N CCANNTY
Per = (lc151) Pez = (lczsz) Pes = (1252) " (lc351) Pes = (1151) (lc452)
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Kinetic energy

linear/angular velocities
_ _lc151) : _ (—lessy l2S; _
vcl _ ( lc1C1 ql vCB - ( lC3C1 )ql ( l2C2 )QZ w1

—1l5s5)\ . lis l..s , .
Vc2=(lCZCZ)CI2 vc4=(llcl)q1 ( C42)CI2 W, = Wy = (5
c2C2 1

lcaCy

|
S

w
Il
)

[uny

Note: a (planar) 2D notation is used here!

1 1 . 1 .
Ti T1 — Emllclch + = Icl zzch Tz — EmZIEZQ% + Elcz,zzqg

1 ) . 1 .
T3 = Emg(lqu + 12361% + 215le302-1G1G2) + Elc:’),zzCI%

1 . 1 .
Ty = §m4(l1CI1 + 12495 — 2141eaCr1G1G2) + 5104,2261%
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Robot inertia matrix

4
1,
T = z T; = EqTM(q)q
i=1
(Ierzz F mylEy + g5 + malls + mylf symm
Mlq) = Ll o —mall I 12 4] 12 12
(m3lyles —mylyleg)cp_q c2,zz T Molcy + ey 7z +Mylo, + m3l5

structural condition
in mechanical design

mglyles = myliley | (%)

$

M(q) diagonal and constant = centrifugal and Coriolis terms = 0

mechanically DECOUPLED and LINEAR “ (M11 0 )(éjl) 3 (ul)
dynamic model (up to the gravity term g(q)) 0 My/\Gy) \uz
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Potential energy and gravity terms

from the y-components of vectors p,;

U

i U = m19olc151 U, = mygoles,

Us = m3go(l2sz +1c351) Uy = mugo(lysy — 1csS)

4
U= z Ui
=1 gravity

aU)T _ (90(m1lc1 +mslez + m4l1)C1) _ (91(511) components

9(a) = (E go(myle, +mgly, —mylo,)c, 92(q3) “are aIways"
decoupled

u; are
(non-conservative) torques
performing work on g;

in addition, ‘ my1G1 + 91(q1) = uy
when (*) holds Ma2G2 + 92(q2) = Uy

further structural conditions in the mechanical design lead to g(gq) = 0!!
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Adding dynamic terms ...

1) dissipative phenomena due to friction at the joints/transmissions
= Viscous, Coulomb, stiction, Stribeck, LuGre (dynamic)...
= |ocal effects at the joints
= difficult to model in general, except for:

uyi =—Fiqi| |uc;=—Fc;sgn(q;)

Generic Friction Models
T T T

0.8

l/////
06 /
//

041 l ~

. '.\ e
L] | N .
mT general: £ 7 <—F¢sgn(q)
(component-wise too) 02 — o] 1 Fstiction
04 /’I/ |I| \S/:IS?:UHS
//” combined
08 /// ’
e
08 . ' . . .
-300 -200 -100 0 100 200 300

angular velocity (rad/s)
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Adding dynamic terms ...

2) inclusion of electrical actuators (as additional rigid bodies)
= motor i mounted on link i — 1 (or before), with very few exceptions
= often with its spinning axis aligned with joint axis i
= (balanced) mass of motor included in total mass of carrying link
= (rotor) inertia is to be added to robot kinetic energy
= transmissions with reduction gears (often, large reduction ratios)

= in some cases, multiple motors cooperate in moving multiple links:
use a transmission coupling matrix I' (with off-diagonal elements)

Unimation PUMA family

(@)

Mitsubishi RV-3S

12
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Placement of motors along the chain

O

/\\ rotor N

Z_ | frame  joint 2
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Resulting dynamic model

= simplifying assumption: in the rotational part of the kinetic
energy, only the “spinning” rotor velocity is considered

N
1., 1 ., 1 Lorn
Tmi = 51nibn; =5 qi = 5 Bmiq; Ty = szi =~>q Bnq
2 2 2 i 2 T
l=

diagonal, > 0
= including all added terms, the robot dynamics becomes
/‘\ moved to
~ the left ..
(M(q) + Bn)g +c(q,q) + g(q) + Fyq + Fesgn(q) =7 «1
conitant —» does NOT Fy>0,Fc >0 mOt(Z;fttoerﬂ HES
contribute to ¢ diagonal

reduction gears)

= scaling by the reduction gears, looking from the motor side
diagonal

tor t
\<I + dlag{ Z(Q)DH + dlag{ }(ZM (@dq; + f(q, q)) mo(cl))refg:gues

ri reduction gears)
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Special actuation and associated coordinates (S72
planar 2R robot with remotely driven forearm S W)

= motor 1 moves link 1 by pq

s motor 2 at the base moves the absolute
angle p, of link 2

= derive the dynamic model from scratch
using the p coordinates

M(p)p + c(p,p) + 9(p) = u,

.2
_ [ —4252-1 P2 no more
Coriolis forces!

Cl = COS pl C2 = COS pz

Cr—1 = COS(PZ — P1) Sp—1 = sin(p2 — P1)
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Including joint elasticity

= in industrial robots, use of motion transmissions based on
= belts
= harmonic drives
= long shafts
introduces flexibility between actuating motors (input) and driven
links (output)
= in research robots, compliance in transmissions is introduced on
purpose for safety (human collaboration) and/or energy efficiency
= actuator relocation by means of (compliant) cables and pulleys
= harmonic drives and lightweight (but rigid) link design
= redundant (macro-mini or parallel) actuation, with elastic couplings
= in both cases, flexibility is modeled as concentrated at the joints

= in most cases, assuming small joint deformation (elastic domain)
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DLR LWR-III

' with harmonic drives
Dexter

with cable transmissions

motor &13SUC | 2 4/link

spring
l(stiffness K)l

-

Quanser Flexible Joint video Stanford DECMMA

(1-dof linear, educational) with micro-macro actuation
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Dynamic model
of robots with elastic joints

= introduce 2N generalized coordinates
= g = N link positions
= 0 = N motor positions (after reduction, 0; = 6,,,;/n,;)
= add motor kinetic energy T,, to that of the links T, = EqTM (9)q
N
1 : 1 : 1 : 1. .
Tmi = _Imiegu' = _Iminﬂzﬂiei2 = _Bmigiz I = Z Tmi = 6" Bp6
2 2 2 _ 2 —
=1 diagonal, > 0

= add elastic potential energy U, to that due to gravity U,;(q)
= K = matrix of joint stiffness (diagonal, > 0)

2 N
1 Omi)| 1 B 1
Uei = 5 Ki (%‘ = (nri)> = EKi(CIi - 6))? U, = Zl Ue; = E(q —-6)'K(q—6)
= apply Euler-Lagrange equations w.r.t. (q,8)
2N order (M(Q)G + c(q,4) + g(q) + K(q — ) = 0~ oiming vork on g
differential .
B,,0+KO6—qg)=r1

equations
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Use of the dynamic model
inverse dynamics

= given a desired trajectory q,4(t)
» twice differentiable (3 ¢, (t))

= possibly obtained from a task/Cartesian trajectory r,; (t), by
(differential) kinematic inversion

the input torque needed to execute this motion (in free space) is

Tqg = (M(qq) + Bn)da + c(qa,qq) + 9(qq) + Fyqq + Fc sgn(qqg)

(in contact, with an external wrench) ... — Jox:(qa) Foxt a

= useful also for control (e.g., nominal feedforward)

= however, this way of performing the algebraic computation (Vt) is
not efficient when using the Lagrangian modeling approach

= symbolic terms grow much longer, quite rapidly for larger N
= in real time, numerical computation is based on Newton-Euler method
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State equations
direct dynamics

Lagrangian . ) N differential
et M@+ (@D +g@=u order
equations

. : _ X1 q 2N
defining the vector of state variables as x = X, g eER

state equations ‘v

= (2) B (—M_l(xﬂ[c(;ci X2) + g(xl)]) " (M_lo(xl))u

— x) + G(x)u 2N differential
A () 1st order
2N X1 2N XN equations
another choice... ( M(CZ]) q) hﬁqeonneqreanliczuencql X=.. (do it as exercise)
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Dynamic simulation

Simulink
block
scheme

input torque
command
(open-loop
or in
feedback)

c(q,9)

4,4

u S O— M71(q)

a1

here, a generic 2-dof robot

q:(0)
|

41

q1(0)
!

d>

J

A

9(q)

4 q

A 4

q>

A 4

J

— {1

/
T

q2(0)

= jnitialization (dynamic coefficients and initial state)
= calls to (user-defined) Matlab functions for the evaluation of model terms
= choice of a humerical integration method (and of its parameters)
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J

— (>

T

q2(0)
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Approximate linearization

= We can derive a linear dynamic model of the robot, which is valid
locally around a given operative condition

= useful for analysis, design, and gain tuning of linear (or of the
linear part of) control laws

= approximation by Taylor series expansion, up to the first order

= linearization around a (constant) equilibrium state or along a
(nominal, time-varying) equilibrium trajectory
= usually, we work with (nonlinear) state equations; for mechanical
systems, it is more convenient to directly use the 2" order model
= Same result, but easier derivation

equilibrium state (q,¢) = (¢.,0) [ =0] ™ g(q.) = U,

equilibrium trajectory (g, q) = (qa(t), ga(t)) [ G = Ga(?) ]
) M(qq)ia + c(qa da) + 9(qq) = ug
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Linearization at an equilibrium state

= Variations around an equilibrium state
q =qe +Aq 61=%+A'q=A'q éi=/é;§+A"q=A"q u=u,+Au

= Keeping into account the quadratic dependence of ¢ terms
on velocity (thus, neglected around the zero velocity)

M(q.)Aq + g}xﬂ) + gg Ag + omﬂ\”A\qD /-|- Au
9e

N 1= infinitesimal terms

of second or higher order

G(qe)
Aq
= in state-space format, with Ax = ( Aq)
Ax—( 0 I)Ax+( )Au—AAx+BAu
_M_l(CIe)G(CIe) 0 M_l(CIe)
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Linearization along a trajectory

= Variations around an equilibrium trajectory
q=qa+0q q=qa+Aq G=Gg+Aq u=ug+Au

= developing to 1%t order the terms in the dynamic model ...

M(qq + Aq)(Gq + Aq) + c(qq + Aq, Gq + Aq) + g(qq + Aq) = ug + Au

i i-th row of the

eg‘ A q identity matrix

qd=A4q4
g(qq +Aq) = g(qq) + G(gq)Aq C1(qq,4q)

oM:
M(qq + Aq) = M(qq) +Zc’)_ql

c(qq + A +Aq) = c( )+ac A +ac A

qa +Aq,4q + Aq) = c(qa, qa 9q|a=aa q 34 |a=a4 q

qd=Aq4 d=4q
H_/

C,(494,44)
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Linearization along a trajectory (cont)

= after simplifications ...

M(q4)Aq + C,(q4,9a)Aq + D(q4, 4, Ga)Aq = Au
with N
oM,

D(qa,qa,Ga) = G(qq) + C1(qa,q4) + Z p
=1 q qd=dd

= in state-space format

Ax = ( 0 ! )Ax
—M_1%Qd)D(Qd»5ld»éid) —M~1(q4)C2(q4, 94)
+( _ )AuzAtAx+BtAu

a linear, but time-varying system!!
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Coordinate transformation

g €RY M(q)i+c(q.9)+9(@) = M(q)i+n(q,q) =u, | @

if we wish/need to use a new set of generalized coordinates p

peERY |p=Ff(q) |mmp| q=7"(p) by duality

(principle of virtual work)

0
p =a—£c'1 =J(q)q |mmp | G =] (P | ugs =] (Qu, | p=Q)

'\

p=J@d+](@q |mm i=]"1(QB -] (D)

M(q)) ()b — M(Q)) ()] (@)) (@) +n(q,d) =) (@), |

]"T(q) . | pre-multiplying the whole equation...
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Robot dynamic model
after coordinate transformation

" @M@ (@B +1 7" (@) (n(a,d) — M@ (@) @) " @Pp) = up |

1‘ for actual computation, T T
these inner substitutions ) — .
497D arenot strictly necessary (q’ CI) (p’ p)

non-conservative
. . . generalized forces
- MP (p)p T Cp (p’ p) T gp (p) - up performing work on p

symmetric, _T
= J7TMJ~1 positive definite dp=1"9
(out of singularities)

My

quadratic

Cp = ]_T(C —-Mj™! ]]_119) =] "c— ij]_lp dependence on p

(P, P) =Sp(p,P) D M, — 25, skew-symmetric
when p = E-E pose, this is the robot dynamic model in Cartesian coordinates

NOTE: in this case, we have implicitly assumed than M = N (no redundancy!)
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Example of coordinate transformation
planar 2R robot using absolute coordinates

= motor 1 at joint 1, motor 2 at joint 2

= in place of DH angles q, use the absolute
angles p; = q; and p2 = g1 + q2

p=(1 1)9=74 wureion
m=D) =0 )

] » from M(q)G + c(q,q) + g(q) = Uqg
Vel obtained with DH relative coordinates

blue terms are the same found in a direct way in slide #15

o Tar -1 _ (A1 — A3z AdzC a1 (340
M) =Mt = (0% ) g ) =g = (o)
)

N _ =T .. _ [ —Q252-1P2 _ Uq1 — Uq2
cp(p,p) =] "c= ( (2571 D2 ) up =JTug = ( Ug2 )
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Robot dynamic model
in the task/Cartesian space, with redundancy

dynamic model in the joint space q € RN second-order task kinematics
M(q)g +n(q.q) =7 r=f(q) €RY ¥ =J(q)4 +J(q)q
M<N Jis full rank = M

1) isolate the joint acceleration from the dynamics == § = M~1(q) (T —n(q, q))

2) decompose the joint torques in two complementary spaces

=] (q)F + U -] ' (QH(q))7, H is a generalized inverse of JT
e R(J") € N(TH) JTH)=]"
torques coming from .. and joint torques 7, € R(JT)

generalized forces F
in the task space ... =) 7, =]T(CI)F; VF e RM = (1 _]T(CI)H(CI))]T(CI)F =0

3) substitute 1) and 2) in the differential task kinematics
= i =J(@OM™ (@) (" @F + U —J (@QH@)7o —n(q,9)) +/(@)q

|
4) isolate on the right-hand side the generalized forces F in the task space ...
Robotics 2
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Robot dynamic model
in the task/Cartesian space, with redundancy

= (J(OM ()™ (@) #=F +
J@OMYDI™ (@) J@M™(q) (U = JT(@H(@)T0 — n(q, ) +J(@)4)
5) choose as generalized inverse H = JM~YT)~1 M~ = (],#V,)T, i.e., the transpose
of the inertia-weighted pseudoinverse of the task Jacobian (see block of slides #2)

==) in this way, the joint torque component 7, will NOT affect the task acceleration #
@M @I (@) #=F+ @M@ (@) (/@ -1 @M (q) n(q, )

6) the resulting (M —dimensional) task dynamics is then
. : external forces can be added
M, (q)7 + n,-(q,q) = F ...+ F,,t on the rhs of the equations in

with a dynamically consistent way!

M.(q) = (](q)M_l(q)]T(q))_1 task inertia matrix | (o 17 = N these terms
n,(q,4) = My (q) J(@M(q)n(q,q) —J(q)q) | areidentical to slide #27

7) an additional (N — M)-dimensional second-order dynamics is needed to describe

the full robot!
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Dynamic scaling of trajectories

uniform time scaling of motion

= given a smooth original trajectory g;(t) of motion for t € [0, T]
= suppose to rescale time as t — r(t) (a strictly increasing function of t)

<>
;. T = 2t
(uniformly)
slower!
L = r(t)
L r=t
r = 0.5t
(uniformly)
g faster!
t
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Dynamic scaling of trajectories

uniform time scaling of motion

= in the new time scale, the scaled trajectory g.(r) satisfies

d‘ld dqs dr
dt d,r dt o qS(r) r(t)

qq(t) = qs(r(t)) => qq(t) =

same path executed
(at different instants of time) l
dqd qu dr df' . / oo
Ga(t) = —= = ( - dt) 7+ qs 2 = qs (NP2 () + qs (i)

= uniform scaling of the trajectory occurs when r(t) = kt

qq(t) = kqg(kt) Gq(t) = k*qy (kt)

Q: what is the new input torque needed to execute the scaled trajectory?
(suppose dissipative terms can be neglected)
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Dynamic scaling of trajectories

inverse dynamics under uniform time scaling

= the new torque could be recomputed through the inverse dynamics, for
every r = kt € [0, T;] = [0, kT] along the scaled trajectory, as

Ts(kt) = M(qs)qs + ¢(qs, qs) + 9(qs)

= however, being the dynamic model linear in the acceleration and
quadratic in the velocity, it is

Tq(t) =M (qd‘+ c(qd‘ +9(qq) = M(qs)k?qs’ + c(qs, kqs) + 9(qs)

= k*(M(qs)qs + c(qs,q8)) + g(qs) = k?(ts(kt) — g(qs)) + 9(gs)

= thus, saving separately the total torque t,4(t) and gravity torque g,(t)

in the inverse dynamics computation along the original trajectory, the
new input torque is obtained directly as

k > 1: slow down

1 = reduce torque
ts(kt) = 7 (Ta(®) = 9(4a()) + 9(@a(®)) | 1. pecauo

= increase torque

gravity term (only position-dependent): does NOT scale!
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Dynamic scaling of trajectories

numerical example

= rest-to-rest motion with cubic polynomials for planar 2R robot under gravity
(from downward equilibrium to horizontal link 1 & upward vertical link 2)
= original trajectory lasts T = 0.5 s (but say, it violates the torque limit at joint 1)

only joint 1 torque is shown

torque only due
S~ to non-zero initial

acceleration

Position
T

40

[rad]

30

-2 1 1 1 1 | 1 | | | J .
0 0.05 0.1 0.15 0.2 025 03 0.35 0.4 0.45 05 total torque graV|ty torque
Velocity 201 component
5 T
T3 e I - -
82} 4 g 10 A
.-
1F 4 .
-
-
0 1 1 1 1 1 1 1 1 ] - -
0 0.05 01 0.15 0.2 0.25 03 0.35 04 0.45 0.5 -

Acceleration
T T T T T T 1

at equilibrium
® 79" = zero gravity
B
2 torque
0.05 0.1 04115 0.2 0.25 03 0.35 04 0.45 0.5 _200 0,;)5 O.‘1 0.15 0.2 0.25 03 0.35 0.4 O.‘45 0.5
time [s] time [s]

for both joints
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Dynamic scaling of trajectories

numerical example

inal total torque at joint 1 and its gravity part

original gravity torque = scaling with k = 2 (slower) > T'=1s
total to sustain the link
torque at Steady state ] ) ) Scalirfg of ineﬂ.li}l + Coriolis. +cenhlugful torque or k=2

=

74(0.1) — g(q4(0.1)) = 20 Nm

20 -

1,(2+0.1) — g(q,(2-0.1)) = g =5 Nm

y 10
2 0.25 03 0.35 04 0.45
time [s] T = 0-5 S

Bomed ol forgue Por bl of et | o B revity ot

gravity torque
component 0

x \j\

does not scale 0 Nm
scaled —
tOta| ® -10} -
torque \ 1

......

(Nm]

-30
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1
time (sl
T=05s k=2 > T=1s
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Optimal point-to-point robot motion

considering the dynamic model

= given the initial (= A) and final (= B) robot configurations (at
rest) and the actuator torque bounds, find

= the minimum-time T, motion
= the (global/integral) minimum-energy E,;, motion
and the associated command torques needed to execute them

= a complex nonlinear optimization problem solved numerically
video

Ton=1.325, E = 306 ~ 1=160s E. =6.14
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