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Dynamic model of robots:
Analysis, properties, extensions, uses



Analysis of inertial couplings

n Cartesian robot

n Cartesian “skew” robot

n PR robot

n 2R robot

n 3R articulated robot

   (under simplifying
     assumptions on the CoMs)
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Analysis of gravity term

n absence of gravity

n constant !! (motion on horizontal plane)
n applications in remote space

n static balancing

n distribution of masses (including motors)
n mechanical compensation

n articulated system of springs
n closed kinematic chains
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! " ≈ 0



Bounds on dynamic terms
n for an open-chain (serial) manipulator, there always exist 

positive real constants !0 to !7 such that, for any value of 

" and "̇
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inertia matrix

factorization matrix of
Coriolis/centrifugal terms

gravity vector

NOTE: norms are either for vectors or for matrices (induced norms)

!! ≤ % " ≤ !" + !# " + !$ " #

' ", "̇ ≤ !% + !& " "̇

) " ≤ !' + !( "

n if the robot has only revolute joints, these simplify to

(the same holds true with bounds %$,&$' ≤ %$ ≤ %$,&() on prismatic joints) 

!! ≤ % " ≤ !" ' ", "̇ ≤ !% "̇ ) " ≤ !'



Robots with closed kinematic chains - 1

Comau Smart NJ130 MIT Direct Drive Mark II and Mark III
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Robots with closed kinematic chains - 2

MIT Direct Drive Mark IV
(planar five-bar linkage)

UMinnesota Direct Drive Arm
(spatial five-bar linkage)
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Robot with parallelogram structure
(planar) kinematics and dynamics

"" − $

1

2

3
4 center of mass:

parallelogram:

arbitrary **$

5 E-E

#

$
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Kinetic energy
linear/angular velocities
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Note: a (planar) 2D notation is used here!
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Robot inertia matrix
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3 = 4
$-!

,

3$ =
1
2
%̇.! % %̇

* + =
-!",$$ + /"0!"% + -!&,$$ + /&0!&% + /'0"% symm

/&0%0!& − /'0"0!' 5%(" -!%,$$ + /%0!%
% + -!',$$ + /'0!'

% + /&0%
%

5(") diagonal and constant ⇒ centrifugal and Coriolis terms ≡ 0

(*)
structural condition

in mechanical design
+$,#,6$ = +%,",6%

mechanically DECOUPLED and LINEAR
dynamic model (up to the gravity term 8(")) 

big advantage for the design of motion control laws!

*"" 0
0 *%%

+̈"
+̈%

=
9"
9%



Potential energy and gravity terms
from the 8-components of vectors +*$

.)

gravity
components
are always

“decoupled”
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!# = 1#8,%(#)# !" = 1"8,%(")"
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;9
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.
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in addition,
when (*) holds 

<$ are
(non-conservative) torques

performing work on %$ 

further structural conditions in the mechanical design lead to 8(") ≡ 0!!

+"""̈" + )" "" = 0"
+##"̈# + )# "# = 0#



Adding dynamic terms ...
1) dissipative phenomena due to friction at the joints/transmissions

n viscous, Coulomb, stiction, Stribeck, LuGre (dynamic)...
n local effects at the joints
n difficult to model in general, except for:
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0:,) = −2:,) "̇) 0<,) = −2<,) sgn "̇)

=) >?@(Ċ)

=*Ċ

=+,-.,-/0

in general:
;-.//
0 "̇ < 0

(component-wise too)



Adding dynamic terms ...
2) inclusion of electrical actuators (as additional rigid bodies)

n motor = mounted on link = − 1 (or before)
n often with its spinning axis aligned with joint axis = 
n (balanced) mass of motor included in total mass of carrying link
n (rotor) inertia is to be added to robot kinetic energy
n transmissions with reduction gears (often, large reduction ratios)
n in some cases, multiple motors cooperate in moving multiple links: 

use a transmission coupling matrix > (with off-diagonal elements)
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Unimation PUMA family

Mitsubishi RV-3S

!"#$% 2
'"%"( 2

'"%"( 3
!"#$% 3

, with very few exceptions

JT2 Motor

JT3 Motor

JT1 Motor



Placement of motors along the chain

RF0 RF1

RFN-1

link 0
(base)

link 1

joint1

link N - 1

link 2 link N 
joint 2

RFW
(world frame)

joint N 

RFN 

motor 1

motor 2

motor N

rotor 1 
frame

rotor N 
frame
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?̇&!

?̇&"

?̇&0

?̇&$ = @1$?̇$
A$ = @1$A&$



Resulting dynamic model 
n simplifying assumption: in the rotational part of the kinetic 

energy, only the “spinning” rotor velocity is considered
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diagonal, > 0

3&$ =
1
2
B&$?̇&$

" =
1
2
B&$@1$

" %̇$
" =

1
2
C&$%̇$

" 3& =4
$-!

0

3&$ =
1
2
%̇.C& %̇

n including all added terms, the robot dynamics becomes

constant does NOT
contribute to 5

F* > 0, F1 > 0
diagonal

motor torques
(after

reduction gears)

moved to
the left ...

% " + 6G "̈ + 7 ", "̇ + ) " + 2:"̇ + 2< sgn "̇ = 8

-2 + diag
/33(+)
L43
% M̈2 + diag

1
L43

O
56"

7
P*5(+)+̈5 + Q +, +̇ = R2

n scaling by the reduction gears, looking from the motor side
motor torques

(before 
reduction gears)

diagonal

except the terms %!!



Special actuation and associated coordinates
planar 2R robot with remotely driven forearm

n motor 1 moves link 1 by '#
n motor 2 at the base moves the absolute 

angle '" of link 2 
n derive the dynamic model from scratch 

using the = coordinates

98"

98%

%(:) =
<" − <$ <#7#S"
<#7#S" <$

% : :̈ + 7 :, :̇ + ) : = 0T 

5" = cos W" 5% = cos W%
5%(" = cos W% − W" X%(" = sin W% − W"

7(:, :̇) =
−<#=#S" :̇##

<#=#S" :̇"#

)(:) =
<%7"
<&7#

no more
Coriolis forces!
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Including joint elasticity

n in industrial robots, use of motion transmissions based on
n belts
n harmonic drives
n long shafts 

 introduces flexibility between actuating motors (input) and driven 
links (output)

n in research robots, compliance in transmissions is introduced on 
purpose for safety (human collaboration) and/or energy efficiency
n actuator relocation by means of (compliant) cables and pulleys
n harmonic drives and lightweight (but rigid) link design
n redundant (macro-mini or parallel) actuation, with elastic couplings

n in both cases, flexibility is modeled as concentrated at the joints
n in most cases, assuming small joint deformation (elastic domain)
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Robots with joint elasticity

Dexter 
with cable transmissions

DLR LWR-III
with harmonic drives

Stanford DECMMA
with micro-macro actuation

Quanser Flexible Joint
(1-dof linear, educational)

motor load/linkelastic
spring

(stiffness K)
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video



Dynamic model
of robots with elastic joints

n introduce 2> generalized coordinates
n % = D link positions
n ? = D motor positions (after reduction, ?$ = ?&$/@1$)

n add motor kinetic energy 0! to that of the links

n add elastic potential energy !" to that due to gravity !!(")
n F = matrix of joint stiffness (diagonal, > 0)

n apply Euler-Lagrange equations w.r.t. (", @)

diagonal, > 0

no external torques
performing work on &	
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2[ 2nd-order
differential
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% " "̈ + 7 ", "̇ + ) " + > " − ? = 0
6G?̈ + > ? − " = 8



Use of the dynamic model
inverse dynamics

n given a desired trajectory "-(B)
n twice differentiable (∃ %̈3(J))
n possibly obtained from a task/Cartesian trajectory K3(J), by 

(differential) kinematic inversion 
 the input torque needed to execute this motion (in free space) is

n useful also for control (e.g., nominal feedforward)
n however, this way of performing the algebraic computation (∀B) is  

not efficient when using the Lagrangian modeling approach
n symbolic terms grow much longer, quite rapidly for larger D
n in real time, numerical computation is based on Newton-Euler method
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8\ = % "\ +6G "̈\ + 7 "\, "̇\ + ) "\ + 2:"̇\ + 2< sgn "̇\
…− B]^_` "\ 2]^_,\(in contact, with an external wrench) 



State equations
direct dynamics

> differential
2nd order
equations

another choice... ḊE = ... (do it as exercise)

Lagrangian
dynamic model

generalized
momentum
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% " "̈ + ( ", "̇ + ! " = ,

defining the vector of state variables as C =
C"
C# =

"
"̇ ∈ ℝ#a

DE =
"

5(")"̇

state equations

2D × 1 2D × D

2>	differential
1st order

equations

Ċ = Ċ"
Ċ#

=
C#

−%S"(C") 7 C", C# + )(C")
+ 0

%S"(C")
0

= F(C) + G(C)0



Dynamic simulation

0

)(")

!!"(#)

here, a generic 2-dof robot

+

_

_

§ initialization (dynamic coefficients and initial state)
§ calls to (user-defined) Matlab functions for the evaluation of model terms
§ choice of a numerical integration method (and of its parameters)

input torque
command
(open-loop

or in 
feedback)

including “inv(M)”

Simulink
block

scheme

Robotics 2                                  21

7(", "̇)

" "

", "̇

"̇"

"̇#

""

"#

%"(0)

%!(0)%̇!(0)

%̇"(0)

"̈"

"̈#

e.g., 4th-order Runge-Kutta (ode45)



Approximate linearization
n we can derive a linear dynamic model of the robot, which is valid 

locally around a given operative condition
n useful for analysis, design, and gain tuning of linear (or of the 

linear part of) control laws
n approximation by Taylor series expansion, up to the first order
n linearization around a (constant) equilibrium state or along a 

(nominal, time-varying) equilibrium trajectory
n usually, we work with (nonlinear) state equations; for mechanical 

systems, it is more convenient to directly use the 2nd order model
n same result, but easier derivation
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equilibrium trajectory (", "̇) = ("-(B), "̇-(B))	 [	"̈ = "̈-(B)	]

% "\ "̈\ + 7 "\, "̇\ + ) "\ = 0\

equilibrium state (", "̇) = ("2, 0)	[	"̈ = 0	] ) "] = 0]



Linearization at an equilibrium state
n variations around an equilibrium state

n keeping into account the quadratic dependence of % terms 

on velocity (thus, neglected around the zero velocity)

n in state-space format, with ∆C =
∆"
̇∆"  
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" = "2 + Δ" "̇ = "̇2 + ̇Δ" = ̇Δ" "̈ = "̈2 + ̈∆" = ̈∆" ; = ;2 + Δ;

5 "2 ̈∆" + 8 "2 + L
M8
M" 1319

∆" + o ∆" , ̇∆" = ;2 + ∆;

infinitesimal terms
of second or higher order

̇∆C = 0 I
−%S" "] G("]) 0 ∆C + 0

%S"("])
∆0 = J ∆C + 6 ∆0

N("2)



Linearization along a trajectory
n variations around an equilibrium trajectory

n developing to 1st order the terms in the dynamic model ...

(-th row of the
identity matrix

Robotics 2                                  24

" = "- + Δ" "̇ = "̇- + ̇Δ" "̈ = "̈- + ̈∆" ; = ;- + Δ;

5("- + ∆") "̈- + ̈∆" + (("- + ∆", "̇- + ̇∆") + 8 "- + ∆" = ;- + ∆;

5 "- + ∆" ≅ 5 "- +P
.3#

4
L

M5.
M" 131:

Q.0∆"

8 "- + ∆" ≅ 8 "- +N("-)∆"

( "- + ∆", "̇- + ̇∆" ≅ ( "-, "̇- + L
M(
M" 131:

1̇31̇:

∆" + L
M(
M"̇ 131:

1̇31̇:

̇∆"

M"(%3 , %̇3)

M!(%3 , %̇3)



Linearization along a trajectory (cont)

n after simplifications …

 with

n in state-space format

a linear, but time-varying system!!
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%("!) ̈∆" + 0"("! , "̇!) ̇∆" + 1 "! , "̇! , "̈! ∆" = ∆,

K "\, "̇\, "̈\ = G "\ + L" "\, "̇\ +M
)b"

a

N
O%)

O"
cbc#

"̈\P)`

̇∆2 = 0 3
−%#$ "! 1 "! , "̇! , "̈! −%#$ "! 0" "! , "̇! ∆2

+ 0
%#$("!) ∆, = 5(6) ∆2 + 7(6) ∆,



Coordinate transformation

if we wish/need to use a new set of generalized coordinates '

1

1
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" ∈ ℝ% % " "̈ + ( ", "̇ + ! " = % " "̈ + : ", "̇ = ,&

; ∈ ℝ% ; = <(") " = <#$(;)

;̇ = =<
=" "̇ = >(")"̇ "̇ = >#$(");̇

;̈ = > " "̈ + ̇>(")"̇ "̈ = >#$(") ;̈ − ̇>(")>#$(");̇

% " >#$ " ;̈ − %(")>#$(") ̇>(")>#$(");̇ + : ", "̇ = >'("),(

pre-multiplying the whole equation...>#'(") ?

by duality
(principle of virtual work)

,& = >'("),(



Robot dynamic model
after coordinate transformation

when ' = E-E pose, this is the robot dynamic model in Cartesian coordinates

non-conservative
generalized forces

performing work on +
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R+0 " 5 " R+# " '̈ + R+0 " S ", "̇ −5(")R+#(") ̇R(")R+#(")'̇ = ;6

for actual computation,
these inner substitutions
are not strictly necessary" → : (", "̇) → (:, :̇)

!# & &̈ + %# &, &̇ + +# & = -#
symmetric,
positive definite 
(out of singularities)

quadratic
dependence on +̇

%T = BS`%BS" )T = BS`)

7T = BS` 7 −%BS" ̇B BS":̇ = BS`7 −%T ̇B BS":̇

7T(:, :̇) = 'T(:, :̇) :̇ %̇T − 2'T skew-symmetric

NOTE: in this case, we have implicitly assumed than ! = D (no redundancy!)



Example of coordinate transformation
planar 2R robot using absolute coordinates

n motor 1 at joint 1, motor 2 at joint 2
n in place of DH angles T, use the absolute 

angles '# = "# and '" = "# + "" 

&"

= &#

: = 1 0
1 1 " = B "

BS" = 1 0
−1 1 BS` = 1 −1

0 1
n from 5 " "̈ + ( ", "̇ + 8 " = ;1 

obtained with DH relative coordinates

56(') = R+05 R+# =
U# − U$ U"("+#
U"("+# U$

(6(', '̇) = R+0( =
−U")"+# '̇""

U")"+# '̇#"

86(') = R+08 =
U%(#
U'("

;6 = R+0;1 =
;1# − ;1"
;1"

<4"
<4!

a linear
transformation
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blue terms are the same found in a direct way in slide #15



Robot dynamic model
in the task/Cartesian space, with redundancy
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" ∈ ℝ4

X = Y " ∈ ℝ7

5 < >

∈ ℛ R0 ∈ [ R0\ N.ON.= N.
O is a generalized inverse of N.  

N is full rank = ! 

5 " "̈ + S ", "̇ = ]
dynamic model in the joint space

Ẍ = R " "̈ + ̇R(")"̇
second-order task kinematics

] = R0 " ^ + 3 − R0 " \(") ],

2) decompose the joint torques in two complementary spaces

"̈ = 5+# " ] − S ", "̇1) isolate the joint acceleration from the dynamics

torques coming from
generalized forces F 
   in the task space …

Ẍ = R " 5+# " R0 " ^ + 3 − R0 " \(") ], − S ", "̇ + ̇R(")"̇
3) substitute 1) and 2) in the differential task kinematics

A/ = N. % P, ∀P ∈ ℝ5 ⇒ B − N. % O % N. % P = 0
… and joint torques R; ∉ ℛ f<

4) isolate on the right-hand side the generalized forces P in the task space …



Robot dynamic model
in the task/Cartesian space, with redundancy
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5) choose as generalized inverse O = N!6!N. 6!N!6! = N5#
.
, i.e., the transpose 

of the inertia-weighted pseudoinverse of the task Jacobian (see block of slides #2)

N % !6! % N. %
6!
K̈ = P +

N % !6! % N. %
6!

N % !6! % B − N. % O(%) A/ − @ %, %̇ + ̇N(%)%̇

N % !6! % N. %
6!
K̈ = P + N % !6! % N. %

6! ̇N % %̇ − N % !6! % @ %, %̇

%g " T̈ + Ug ", "̇ = 2

in this way, the joint torque component R; will NOT affect the task acceleration ḧ 

6) the resulting (! −dimensional) task dynamics is then

…+ 2]^_
external forces can be added 
on the rhs of the equations in 
a dynamically consistent way!

58 " = R " 5+# " R0 "
+#

S8 ", "̇ = 58 " R " 5+# " S ", "̇ − ̇R(")"̇

with

task inertia matrix

7) an additional D − ! -dimensional second-order dynamics is needed to describe 
the full robot! 

for * = [, these terms
are identical to slide #27



Dynamic scaling of trajectories
uniform time scaling of motion
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n given a smooth original trajectory "-(B) of motion for B ∈ [0, 0]
n suppose to rescale time as B → X(B) (a strictly increasing function of J)

B = 0

B = 0

generic B

J30

K

K = J3

K = 0.5J

X(0) = 0

X(B)

X 0

K = 2J
(uniformly)
  slower!

(uniformly)
  faster!

K = K(J)K(3)



Dynamic scaling of trajectories
uniform time scaling of motion
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n in the new time scale, the scaled trajectory "/(X) satisfies

n uniform scaling of the trajectory occurs when X B = `B 

 

 Q: what is the new input torque needed to execute the scaled trajectory?
     (suppose dissipative terms can be neglected)

same path executed
(at different instants of time)

"\ V = "i T(V) "̇\ V =
W"\
WV =

W"i
WT

WT
WV = "ij(T) Ṫ(V)

"̈\ V =
W"̇\
WV =

W"ij

WT
WT
WV Ṫ + "ij

WṪ
WV = "ijj(T)Ṫ#(V) + "ij(T)T̈(V)

"̇\ V = !"ij(!V) "̈\ V = !#"ijj(!V)



n the new torque could be recomputed through the inverse dynamics, for 
every X = `B ∈ 0, 0/ = [0, `0] along the scaled trajectory, as

n however, being the dynamic model linear in the acceleration and 
quadratic in the velocity, it is

n thus, saving separately the total torque ]-(B) and gravity torque 8-(B) 
in the inverse dynamics computation along the original trajectory, the 
new input torque is obtained directly as

Dynamic scaling of trajectories
inverse dynamics under uniform time scaling
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* > 1:  slow down
⇒ reduce torque

* < 1:    speed up
⇒ increase torque

gravity term (only position-dependent): does NOT scale! 

8i !V = % "i "ijj + 7 "i, "ij + )("i)

]- B = 5 "- "̈- + ( "-, "̇- +8 "- = 5 "/ `""/99 + ( "/, `"/9 +8("/)

= `" 5 "/ "/99 + ( "/, "/9 +8 "/ = `" ]/ `B − 8 "/ +8 "/

@) A6 = 1
A" @! 6 − ! "!(6) + ! "!(6)



Dynamic scaling of trajectories
numerical example
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n rest-to-rest motion with cubic polynomials for planar 2R robot under gravity
 (from downward equilibrium to horizontal link 1 & upward vertical link 2)
n original trajectory lasts 3 = 0.5	s (but say, it violates the torque limit at joint 1)

only joint 1 torque is shown

total torque

at equilibrium
= zero gravity

torque

gravity torque
component

torque only due 
to non-zero initial

acceleration

for both joints



Dynamic scaling of trajectories
numerical example
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n scaling with k = 2 (slower) → l= = 1 s
 

original
total

torque

scaled
total

torque

gravity torque
component

does not scale

gravity torque
to sustain the link

at steady state

$ = 0.5 s

$! = 1 s
+ = 1 s+ = 0.5 s

* *
0 Nm

1 = 2

1
4

*

8! 0.1 − = >! 0.1 = 20 Nm

*

8" 2 A 0.1 − = >" 2 A 0.1 = #$
#" = 5 Nm



Optimal point-to-point robot motion
considering the dynamic model
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§ given the initial (⇒ A) and final (⇒ B) robot configurations (at 
rest) and the actuator torque bounds, find
n the minimum-time Tmin motion
n the (global/integral) minimum-energy Emin motion

 and the associated command torques needed to execute them
§ a complex nonlinear optimization problem solved numerically

Tmin= 1.32 s, E = 306 T = 1.60 s, Emin = 6.14 

video video


