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Fig. 7. AGV intersects the guide-path after avoiding an obstacle. 

Fig. 8. AGV aligns its four reading heads on the guide-path and then turns 
90” to reposition itself correctly on the guide-path. 

Once the AGV is correctly repositioned on the guide track, the 
“navigator” authorizes the “guide-path tracking” module to take 
over the vehicle motion control. Despite the inherent positional 
errors occurring during the odometric obstacle avoidance, the “ab- 
solute position measurement” function allows the AGV to immedi- 
ately recover its position on the guide path. The “navigator” 
monitors the AGV current position P and stops the vehicle when it 
reaches the destination position D, previously specified on the 
robot’s keyboard (shown in Fig. 5 )  by the user. 

IV. CONCLUSION 

This paper presents a pseudorandom encoding method that allows 
an AGV to recover its absolute position at any point on its guide-path. 
This is especially significant in situations where the AGV has to 
avoid obstacles that may appear on its path. Beside the obvious 
guide-path, the proposed method requires two additional 1-bit-wide 
tracks, one for the pseudorandom code and one for the synchroniza- 

tion as a stand-alone function to cost-effectively upgrade existent 
optically guided industrial AGV’s. 

REFERENCES 
[l] S .  K. Premi and C. B. Besant, “A review of various vehicle guidance 

techniques that can be used by mobile robots or AGVs,” in Proc. 
2nd Int. Conf. Automated Guided Vehicle Systems, and 16th IPA 
Conf. (Stuttgart, Germany, June 7-9, 1983), pp. 195-209. 

[2] J. Zygmont, “Guided vehicles set manufacturing in motion,” High 
Technology, Dec. 1986, pp. 16-21. 

[3] R. K. Miller, Automated Guided Vehicles and Automated Manu- 
facturing. Dearborn, MI: Soc. of Manufacturing Engineers, 1987. 

[4] T. Hongo et al., “An automatic guidance system of a self-controlled 
vehicle,” IEEE Trans. Ind. Electron., vol. IE-34, no. 1, pp. 5-10, 
Feb. 1987. 
M. R. Kabuka and A. E. Arenas, “Position verification of a mobile 
robot using standard pattern,” IEEE J. Robotics Automat., vol. 
RA-3, no. 6, pp. 505-516, Dec. 1987. 
F. J. Macwilliams and N. J. A. Sloane, “Pseudorandom sequences 
and arrays,” Proc. IEEE, vol. 64, no. 12, pp. 1715-1729, Dec. 
1976. 
E. M. Petriu, “Absolute-type position transducers using a pseudo- 
random encoding,” IEEE Trans. Instrum. Meas., vol. IM-36, no. 
4, pp. 950-955, Feb. 1987. 

[5] 

[6] 

[7] 

Adaptive PD Controller for Robot Manipulators 

Patrizio Tomei 

Abstract-Referring to the point-to-point control problem, this work 
presents a PD control algorithm that is adaptive with respect to the 
gravity parameters of robot manipulators. The proposed controller is 
shown to be globally convergent. Following the same approach, an 
application to the tracking problem is also presented. Simulation tests 
are included, with reference to a robot having three degrees of freedom. 

I. INTRODUCTION 

In this paper, we refer to the so-called point-to-point control of 
robot manipulators. As known [l], control laws based on feedback 
from the positions and velocities of the joints have been shown to be 
globally asymptotically stable, provided that the gravity terms are 
compensated. It also has been shown that PD controllers may be 
used for trajectory tracking, with accuracy related to the velocity 
feedback gains [Z]. Moreover, such control algorithms are robust 
with respect to uncertainties on the inertia parameters; namely, even 
if the inertia parameters are not known, the global asymptotic 
stability is ensured. Conversely, uncertainties on the gravity param- 
eters (such as the payload) may lead to undesired steady-state 
errors. 

To circumvent this problem, Arimoto and Miyazaki [l] proposed 
a PID control algorithm that, however, guarantees only local asymp- 
totic stability [3, pp. 385-3881. Moreover, to ensure the stability, 
the gain matrices must satisfy complicated inequalities, which de- 
pend on the initial conditions. 

The purpose of this work is to show how an adaptive PD 
controller can be designed. The proposed controller yields the 
global asymptotic stability of the whole system even if the inertia 
and gravity parameters are unknown, provided that upper and lower 
bounds of the inertia matrix are available. The convergence is 
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ensured for any value of the proportional and derivative gain 
matrices, assumed to be symmetric positive definite. The only 
constraint is in the adaptation gain, which has to be greater than a 
lower bound. In the common case in which only the robot payload is 
unknown, one integrator is sufficient to implement this controller, 
while a PID algorithm requires as many integrators as the number of 
the links. 

This paper is organized as follows. In Section 11 we illustrate the 
robot model and some related useful properties. Section III is 
devoted to the derivation of some interesting results on the stability 
of the PD controller. In particular, we show that a PD controller 
with imperfect gravity compensation is still stable, but the equilib- 
rium point is, in general, different from the desired one. The 
derivation of the adaptive PD control law is presented in Section IV. 
The stability proof makes use of a Lyapunov function, similar to 
that introduced in [4], that reveals itself useful also for the design of 
adaptive tracking algorithms, as is shown in Section V. The perfor- 
mances of the proposed control law have been compared with those 
of the PID controller by means of simulation tests referred to a 
three-link robot. The results are reported in Section VI and some 
conclusions are drawn in Section VII. 

11. ROBOT MODEL 

Consider the dynamics of an n-link rigid robot as described by 

where q is the n x 1 vector of the joint coordinates; B ( q )  is the 
inertia matrix, which is symmetric positive definite and bounded for 
any q;  C(q, q)  takes into account the Coriolis and centrifugal 
forces and is linear with respect to q and bounded with respect to 
q ;  F is the diagonal positive semidefinite matrix of the viscous 
friction coefficients; U is the vector of the applied torques; and e( q)  
is the vector of the gravity forces given by 

where U ( q )  is the gravitational energy of the robot that is bounded 
for any q. The vector e ( q )  and its partial derivative with respect to 
q are also bounded. The dynamic model (1) has the following 
important properties. 

Property I :  Given a proper definition of C that is not. unequivo- 
cally defined by the form C(q, q)q,  the matrix B - 2 C  is 
skew-symmetric [l], [ 5 ] ,  [6]. One possible definitjon for the ele- 
ments of C which leads to the skew-symmetry of B - 2C is [5] 

i , j =  1 , . . . ,  n. 
This definition implies that 

b(4) = C(q,  4 )  + C T ( q ,  4 ) .  (3) 

Property 2: The matrices B and C and the vector e are linear in 

Property 3: Since C(q, q )  is bounded in q and linear in q, a 
terms of robot and load parameters [7]. 

positive constant k ,  exists such that 

IIC(q9 411 5 kCIl411' (4) 

III. STABILITY OF THE PD CONTROLLER 

As is known, with reference to the point-to-point control of 
manipulators, a controller consisting of independent local PD feed- 
back at each joint ensures the global asymptotic stability of the 

whole system, provided that the gravity terms are exactly compen- 
sated. This result is stated by the following theorem. 
Theorem 1 [IJ: Consider the control law 

U = e( 4 )  - K P (  4 - 4 0 )  - K D 4  (5) 
where K ,  and KD are symmetric positive definite constant matri- 
ces and qo is the desired position. The equilibrium point q = qo, 

In the following, we show that it is not necessary to compensate 
4 = 0 of ( l ) ,  (5) is globally asymptotically stable. 

e ( q )  for all values of q. Indeed, the simpler control law 

U = 4 q o )  - K , ( q  - Qo)  - KD4 (6) 
suffices, under suitable assumptions, to achieve global asymptotic 
stability. Throughout this paper, we use the notations A,,,,(A) and 
Am( A )  to indicate the largest and the smallest eigenvalues, respec- 
tively, of a symmetric positive definite bounded matrix A ( x ) ,  for 
any x E R". The norm of vector x is defined as 11 x I I  = (E:= , x ? )  f 
and that of matrix A is defined as the corresponding induced norm 
11 A 11 = (maxeigenvdue ATA) i .  This definition implies that if A is 
symmetric positive definite, we have 11 A 11 = A,,,,( A ) .  

The partial derivatives of e( q)  being bounded, a positive constant 
M I  exists such that 

(7) 

which implies 

Ile(q1) - e(q2>11 5 M,Ilq, - qzI I3  V q , , q * E R " .  (8) 

We now prove a theorem that states that the control law (6) globally 
asymptotically stabilizes the closed-loop system (l), (6) if the 
proportional action is sufficiently strong. For instance, if we take 
K ,  as a diagonal matrix K ,  = diag [ k,,,  . . . , k,,,], it suffices that 
kPi > M I ,  1 5 i 5 n. 
Theorem 2: Consider the system (l), (6) .  If Am(K,) > MI, then 
the equilibrium point q = qo, q = 0 is globally asymptotically 
stable. 

Proof: The system ( l ) ,  (6) has the unique equilibrium point 
q = qo, q = 0. Indeed, the equilibrium positions of ( l ) ,  (6) are the 
solutions of 

' K , ( q  - 4 0 )  = e ( q 0 )  - e ( q ) .  

I(K,(q - 4o)I l  2 Am(K,)IIq - 4011 >MI114 - 4011 

" ( ( e ( q o )  - e ( q ) ( ( ,  

(9) 

The hypothesis Am(K,) > M I  and (8) enable us to write 

v q  * 4 0 .  

The previous chain of inequalities implies that the left-hand side of 
(9) is different from the right-hand side for every q # qo. There- 
fore, q = qo is the unique solution of (9). Consider the function 

p,( 4 )  = U( 4 )  - qTe( qo) + + q T K P q  - qTKpqo.  (10) 

The stationary values of (10) are given by the solutions of 

-- a p l ( q )  - 0, which coincides with (9) and, consequently, has the 
a4 

unique solution q = qo. Moreover, 

( 1 1 )  
a e ( q )  

= K , +  -. a2p, ( 4 ) 
aq2  a4 

Owing to (7) and to the assumption hm(K,)  > M I ,  the matrix (11) 
is positive definite, and we conclude that P , ( q )  has an absolute 
minimum at q = qo. Let us introduce the candidate Lyapunov 
function 

v ( q ,  4 )  = i Q T B ( q ) 4  + p , ( q )  - p,(qo) (12) 
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which is positive definite with respect to q = qo, q = 0. Differen- 
tiating (1 2), we get 

i ( q ,  4 )  = W ( q ) 4  + d T [  4 ) 4  - e ( q )  

-Fd - K P ( q  - q 0 )  - KDq + e(qO)]  

Substituting (2) and (3) into (13), we have V(q, q )  = - q T ( K D  + 
F ) q  and, therefore, 6 is negative semidefinite. A direct application 

W 
Remark: The hypothesis I,( K, )  > M ,  guarantees that q = qo, 

q = 0 is the unique equilibrium point of ( l ) ,  (6) for every value of 
qo, which is a necessary condition for global asymptotic stability. 

If the gravity vector e ( q )  is not perfectly known, it cannot be 
exactly compensated i? (5).  Suppose we have an estimate &(q)  

obtained by 8(q )  = - au(q) , where G(q) is the available estimate 

of the gravitational energy that is assumed bounded for any q. The 
PD control law (5) becomes 

of the Lasalle theorem [8, p. 1081 gives the thesis. 

a q  

= e ( q )  - K p ( q  - 4 0 )  - KDq. 

K , ( q  - 40) + e ( q )  - & ( q )  = 0 .  

(14) 

(15) 

The equilibrium positions of ( l ) ,  (14) are solutions of 

If e ( q o )  - &(qO) # 0, the point q = qo, q = 0 is no longer an 
equilibrium point of ( l ) ,  (14). However, by increasing the propor- 
tional gain matrix K ,  we find that (15) has a unique solution Bo,  
arbitrarily close to qo, and that the associated equilibrium point 
q = Bo,  q = 0 is globally asymptotically stable. Analogous to (8), 
we assume that a positive constant M2 exists such that 

11@(41) - @(4,)11 5 M211Q1 - 4211, vq, ,q ,ER".  (16) 

Theorem 3: Consider the system ( l ) ,  (14). If h,(K,) > M ,  + 
M,,  then (15) has only one solution q = Bo, and the associated 
equilibrium point q = Bo,  q = 0 is globally asymptotically stable. 

P z ( q )  = u(q) - G(q) + i q T K p q  - qTKpqo. 

Since U(q) ,  U(q)  are bounded and i q T K p q  - qTK,qo is a 
convex function (having minimum equal to - $ q l K p q 0 ) ,  P,(q) 
has an absolute minimum for a finite value of q. This fact implies 

that the equation % = 0, which coincides with (15), has at 

least one solution, corresponding to the absolute minimum of P,(q).  
Let q = Bo be this solution. We can write 

Proof: Consider the function 

aq 

K,(Bo - qo) + e(Bo)  - @ ( B o )  = 0. (17) 

Subtracting (17) from (15), we get 

K , ( q  - B o )  + [ e ( q )  -  GO)] - [ p ( q )  - 6(40)] = 0. (18) 

Since by hypothesis X,(K,) > M I  + M , ,  (8) and (16) imply that 
q = Bo is the only solution of (18). The global asymptotic stability 
of the associated equilibrium point q = Bo, q = 0 can then be 
proved by considering the Lyapunov function u ( q ,  4 )  = P2(q)  - 
P2(qo)  + i q T B ( q ) q ,  and proceeding as in the proof of Theorem 2. 

The previous theorem ensures the stability of the PD controller, 
even with imperfect gravity compensation. Unfortunately, if e( qo) 
- C(qo) # 0 this controller leads to a steady-state error equal to 
qo - Bo. One way to overcome this difficulty has been proposed in 
[l]  and consists of modifying the control law (14) by adding integral 

actions. The resulting PID controller is given by 

However, the stability is ensured if the gain matrices K, ,  K, ,  and 
K ,  are positive definite and are chosen so that complex conditions, 
some of which depend on the initial conditions q(O), are satisfied. 
For a given choice of K, ,  K, ,  and K,,  the asymptotic stability is 
ensured if the initial condition q(0) belongs to a suitable region. In 
that sense, the PID controller guarantees only local stability. 

An alternative way to eliminate the steady-state errors is proposed 
in the following section. The approach is that of incorporating 
suitable parameter adaptation dynamics into the PD controller. This 
approach allows us to obtain a globally convergent controller. The 
choice of the related gain matrices is greatly simplified with respect 
to the PID control law. Moreover, the order of the adaptation 
dynamics is equal to the number of unknown gravitational parame- 
ters. Hence, in the frequent case in which only the mass of the 
payload is unknown, one integrator is needed against the n integra- 
tors required by the PID controller. At last, the adaptive PD 
controller exhibits better performance, as will be shown in Section 
VI. 

IV. ADAPTIVE PD CONTROLLER 

Since the gravity vector e ( q )  is linear in terms of robot parame- 
ters, it can be expressed as e ( q )  = E ( q ) p ,  where p is the m X 1 
unknown parameter vector, which is assumed constant, and E(q)  is 
a known matrix. Even if the inertia matrix is supposed unknown, we 
assume known upper and lower bounds on the magnitude of its 
eigenvalues and known constant k ,  that appears in (4). We also 
assume a known upper bound on the coefficients of friction matrix 
F. Consider the control law 

with the parameter adaptation dynamics 

in which 6 = q - qo is the position error, K ,  and KD are 
symmetric positive definite matrices, /3 is a positive constant, and y 
is such that 

y >  max [ d A l : E : K , , )  'X,(K,) 
1 

Theorem 4: Consider the system ( l ) ,  (19), and (20). If y satisfies 
(21), then 4( t ) ,  q( t )  and $ are bounded for any t L 0. Moreover, 

Proof: As suggested by a work of Koditschek on the adaptive 
control of a rigid body for attitude tracking [4], we select as 
candidate Lyapunov function ( a  = p - $1 

which is positive definite since by hypothesis y > 
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AM( B ,  . The time derivative of (22) is given by 
J A r n ( B ) L ( K p )  

Q'KP4 
U(@, q ,  f i )  = - ~ Q ' ( K ,  + ~ ) q  - 2- 

1 + 24'4 

4'Blj q 'CG + 2- + 2- 
1 + 24'Q 1 + 2Q'ij 

qT( K D  + F )  4" 
1 + 2JTQ 

q T ~ i j 4 T q "  
- 2  - 8  

( 1  + 24T4)2 
Now note that 

which imply that 

Since 

the function i is negative semidefinite and vanishes if and only if 
4 = 0, q = 0. By applying the Lasalle theorem [8, p. 1081 the 

Remark: Since the constants on the right-hand side of (21) are 
thesis is proved. 

bounded, we can always choose y so that (21) is satisfied. 

v. AN APPLICATION TO THE TRACKING PROBLEM 

The Lyapunov function introduced in the proof of Theorem 4 can 
be also useful to derive adaptive tracking algorithms. In the sequel, 
we show how the adaptive control law proposed in [SI can be 
modified to avoid the introduction of the virtual reference trajec- 
tory. Consider the control law 

U = b(q)qd + C ( q ,  q ) q d + @ ( q )  +Fqd - K p 4 -  K , i  (26) 

where K ,  and K ,  are symmetric positive definite matrices; 4 = 
q - qd is the error between the actual and the desired trajectory; 
and B, C, F, and 2 are estimates of the robot matrices whose 
parameters are updated according to a certain parameter adaptation 
law. Since the robot dynamics is linear in terms of robot parame- 
ters, we can write 

( B  - b)qd + ( C  - C ) q d  + ( F  - @)qd 

+ e - 6 = Y ( q ,  4 ,  q d ,  d d ) f i  (27) 

in which j = p - 5 is the difference between the true parameter 
vector p and its estimate 6. It is shown in [SI that the parameter 
adaptation law 

(28) P = - Y T ( q ,  4 , 4 d >  8 d ) i  
along with the control law (26) yield global stability. However, to 
ensure the asymptotic stability, the following modified control and 
adaptation algorithms were proposed [5] 

U = b(q)ii, + C(q9  414, + C ( q )  + Fq, - K,(Q - 4,) 

6 = - Y T ( q ,  4 7  q,, 4 , ) (4  - 4,) 
where q, = qd - d7 (with A being a Hurwitz matrix) is the 
so-called virtual reference trajectory. The use of the virtual refer- 
ence trajectory can be avoided by suitably modifying the adaptation 
algorithm (28), as is shown in the sequel. Assume that q d ( t )  and 
q d ( t )  are bounded and l lqd(f)  11s M. Consider the parameter 
adaptation algorithm 

where fl  is a positive constant and y is such that 

y > max [ J A : t G t ; K , )  ' h,o 
1 

(30) 
Theorem 5: Consider the system ( l ) ,  (26), and (29). If y satisfies 
(30), then 4, 4 and 5 are bounded for any t 2 to .  Moreover 

Proof: Substituting (26) into ( 1 )  and taking (27) into account, we 
obtain 
B(q)q" + C ( q ,  q ) $  + F$ = - K p 4  - K D $  

- Y ( q ,  4 ,  d d ,  i i d ) j .  (31) 
Consider the candidate Lyapunov function 

U(@, i , 3 ,  t )  = y [$PB(q)qL  + +G'K,q'] 

which is positive definite and decrescent [ 8 ,  p. 1951 by virtue of 
(30). Owing to (3) and (29), the time derivative of (32) along (31) is 
given by 

24'KPQ 2 
1 + 2 q  q 1+2q'g ; ( @ , $ , f i , t )  = - y i ' ( K , + F ) i -  -T" + ~ 

[ iTC(q, q ) d  + b T B ( q ) $  - b T ( K ,  + F ) B ]  

8 G'B ( q )  

(1 + 24'r# . 
Recalling (23), (25) and observing that 
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we can write 

From (33), owing to (30), we obtain 

6 5 -4(llQIl9 Ilbll) (34) 
where 4 is positive definite with respect to 11 Q 11, 11 6 11. From (32) 
and (34) we obtain that Q, Q, and f l  are bounded. By hypothesis, 
qd and qd are also bounded. From (31), it follows that 4 is 
bounded and, as a consequence, Q and Q are uniformly continuous. 
The inequality (34) enables us to write 

loa4(l1411, II6II) dt 5 - Srncdt  = u ( t o )  - U(..) < W. (35) 

Since Q and 6 are uniformly continuous, (35) implies [9, p. 2101 
limr+m4(ll 811, 11 411) = 0 which, in turn, implies 

t0 

VI. CASE STUDY 

The adaptive PD controller presented in Section IV has been 
tested by numerical simulations referred to a three revolute jointed 
robot whose links are 0.5 m long. Frictional forces have been 
neglected. The nonzero entries of the inertia matrix B and of the 
gravity vector e that completely characterize the robot model (1) are 
given by 

B,, = a ,  + a2cos2q2 + a3cos2(q2 + q3) 

+ 0 4  cos 4 2  cos ( 4 2  + 43) 
B22 = U S  + COS 4 3 ,  B23 = B32 = + U, COS 43 (36) 

B3, = a, e2 = b, cos q2 + b2 cos ( q2 + q3) ,  
e3 = b2 cos (42 + 43). 

The values of the parameters ai and bi, referred to payloads mp of 
0 and 5 kg, have been reported in Table I. The aim of the simulation 
tests was to compare the PD and the PID controllers with the 
proposed adaptive PD control law (denoted by APD), assuming a 
nominal payload of 5 kg and actual payloads of 0 and 5 kg. As is 
displayed by (36), vector e is linear in terms of the parameters b, 
and b,. Since 

b, = 189.1708 + 4.9008 mp 

b, = 52.9286 + 4.9008 mp 

we can write the gravity vector in the form e(q) = e,(q) + 
e,(q)m,, where eA and e, are known vectors. Consequently, the 
adaptive PD control law becomes 

U = -Kp(  4 - 4 0 )  - K D ~  + e ~ (  4 )  + e,( 4 )  * p  

The considered problem is that of regulation about a reference 
position. The gain matrices of the three controllers were chosen as 

TABLE I 
ROBOT PARAMETERS 

mp = 0 kg mp = 5 kg 

U, = 23.380 
U, = 10.456 
u3 = 3.7015 

u5 = 84.899 
u6 = 3.8744 

U* = 27.027 
b ,  = 213.67 
b, = 77.432 

U, = 23.380 
U, = 9.2063 
u3 = 2.4515 

u5 = 82.399 
u6 = 2.6274 

ug = 25.779 
b,  = 189.17 
b, = 52.928 

u4 = 5.4000 

U, = 2.7000 

u4 = 7.9000 

u7 = 3.9500 

Fig. 1 .  End effector error: nominal payload = actual payload, initial error 
= 24mm. 

follows (all values are in SI units) 

PD: K, = diag[10000], K, = diag[3000] 
PID: K, = diag[ 100001, K, = diag[3000], 

APD: K, = diag[10000], K, = diag[3000], 
y = 0.1,  p = loo. 

The initial condition fip(0) for the APD controller was set equal to 
the nominal payload. In the first simulation the actual payload 
coincided with the nominal payload (5 kg), e.g., the payload was 
assumed exactly known. In Figs. 1 and 2 are reported the distances 
between the actual and the desired position of the robot end effector, 
expressed in a Cartesian frame, starting by an initial distance of 24 
and 412 mm, respectively. These figures show that, when the 
payload is known, the performances of the PD controller are better 
than those of the PID and APD controllers (the error settles to zero 
much faster). The PID controller has a very long settling time when 
the initial error is quite large (see Fig. 2). The APD controller 
performs worse than the PD does, even though %,(O) is equal to 
the true payload. This is caused by the fact that the dynamics of 
i T ~ ~ ( t )  is driven by the position error q - qo and, therefore, the 
estimate of the gravity term is not exact in the transient. 

In order to check the performance of the controllers when the 
payload is not exactly known, the same tests were repeated by 
adopting an actual payload (0 kg) different from the nominal one. 
The corresponding errors are drawn in Figs. 3 and 4, which show 
that the PD controller has a nonzero steady-state error, due to 
imperfect gravity compensation. With low initial error, the PID 
controller possesses the best performances (Fig. 3), but its dynamic 
behavior considerably deteriorates as the initial error increases (Fig. 
4). In particular, a lot of time is needed to reach with accurate 
precision the desired position. Conversely, the APD controller is . 
scarcely influenced by the initial error (as the PD controller), even if 

K, = diag[ 1001 
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(3) 

Fig. 2. End effector error: nominal payload = actual payload, initial error 
= 412 mm. 

PD 

f L 4 d 

PD 

f L 4 d 
(J) 

Fig. 3. End effector error: nominal payload # actual payload, initial error 
= 24 mm. 

it guarantees zero steady-state error (as the PID controller). There- 
fore, the proposed APD controller ensures the best dynamic perfor- 
mances when the payload is not a priori known and the initial 
positioning error has a large range of variation. 

VII. CONCLUSIONS 

In practice, the robot parameters are never exactly known. This is 
especially true for the payload, which can vary during operations. 
Therefore, the use of robust control laws is to be preferred. We 
have shown that a PD controller, which is robust with respect to 
inertial and frictional parameters, also can be made adaptive with 
reference to the gravity parameters. The resulting adaptive PD 

Fig. 4. End effector error: nominal payload # actual payload, initial error 
= 412 mm. 

controller has been proved to be globally asymptotically stable. 
Moreover, the choice of the gain matrices, which ensure the stabil- 
ity, is greatly simplified with respect to the PID control algorithm. 

Simulation tests have shown that the performances of the adaptive 
PD controller are scarcely influenced by the initial error, while the 
performances of the PID control law deteriorate considerably as this 
error increases. 
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