
Towards Path-Aware Coverage-Guided Fuzzing
Giacomo Priamo˚, Daniele Cono D’Elia˚, Mathias Payer:, and Leonardo Querzoni˚

˚Sapienza University of Rome
:EPFL

{g.priamo, delia, querzoni}@diag.uniroma1.it, mathias.payer@nebelwelt.net

Abstract—Automated fuzz testing is now standard practice, yet
key blind spots persist. Coverage-guided fuzzers typically rely
on edge coverage as a lightweight proxy for program behavior.
However, this metric captures path variations only weakly: it
cannot differentiate executions that follow distinct control-flow
paths but traverse the same edges—causing many path-dependent
bugs to go undetected. Path awareness would offer a richer
coverage view but has been considered too costly for fuzzing.

We introduce a lightweight method for tracking intra-
procedural execution paths, enabling efficient path-aware feed-
back. This enhances the fuzzer’s ability to detect subtle bugs, even
in well-tested software. To counter the resulting seed explosion,
we evaluate two strategies—culling and opportunistic path-aware
fuzzing—that balance precision and throughput. Our findings
show that path-aware fuzzing, when properly guided, uncovers
more bugs and reveals untapped potential in fuzzing research.

Index Terms—Fuzzing, Coverage feedback, Path profiling

I. INTRODUCTION

Fuzzing has surged in popularity due to its effectiveness in
discovering bugs in software [1]. Generating random inputs for
a program under test is a simple, yet surprisingly effective way
to trigger crashes and expose bugs. Coverage-guided fuzzing
refines this approach by incorporating a feedback mechanism
to guide input generation. Rather than starting from scratch for
each input, it mutates previously interesting inputs—those that
trigger novel execution behaviors [1], [2]. This feedback-driven
strategy surpasses purely random input generation by focusing
mutations on test cases that cover new behaviors.

The most widely adopted feedback metric is edge coverage,
which records the control-flow edges exercised during execution.
While edge coverage is both efficient and effective [2], it
captures control-flow paths in a lossy form. Notably, it cannot
distinguish between test cases that traverse the same edges but
along different paths [3]. This limitation hinders the discovery
of bugs that depend on specific path-related conditions [4].

To overcome this limitation, one could consider not just
which edges are taken but also the order in which they are
traversed, thereby distinguishing complete execution paths.
Tracking statement ordering is known as flow-sensitivity in
program analysis [5] or path-sensitivity in testing [6] (without
considering path conditions). Here, we prefer the term path-
aware fuzzing to exclusively refer to the path exploration.

Literature considered path-aware fuzzing impractical due
to the anticipated high costs for instrumentation, storage, and
runtime [6], [7]; only PathAFL [7] tried tracking partial whole-
program paths, using aggressive pruning and partial instrumen-
tation. Modern fuzzers thus rely on the coarse, inaccurate [3]
approximation from edge coverage to deal with paths.

Our approach. This paper shows that it is feasible to
distinguish and track execution paths with manageable overhead.
Our key insight is that instead of tracking whole-program
paths [8], which leads to path explosion [7], we focus on
intra-procedural path profiles [3] (i.e., paths within individual
functions). By adapting an efficient path encoding [3], we
track per-function paths with costs almost comparable to
edge coverage. A fuzzer can use this mechanism to estimate
behavioral differences between executions based on function-
level path coverage. When we replace edge coverage with our
path-aware feedback, we discover numerous bugs missed by
edge coverage-guided fuzzing—even in well-tested software.

However, this finer-grained feedback increases the number
of interesting test cases that the fuzzer has to manage, resulting
in seed explosion [9] effects (also called queue explosion [4]).
Many of these test cases are redundant or unhelpful, slowing
down the fuzzer. To explore the benefits of path-aware fuzzing
while mitigating this overhead, we investigate two strategies:

(a) Culling: This method periodically culls the queue of
interesting test cases while preserving total edge coverage. By
trimming redundant test cases, it enables the fuzzer to explore
new execution paths more effectively, improving throughput and
occasionally revisiting previous paths. This strategy surpasses
both the path-aware and edge-guided baselines.

(b) Opportunistic: This method starts with a queue gen-
erated using edge coverage as feedback and switches to the
path-aware feedback for the remainder of the fuzzing time. This
hybrid strategy benefits from the effectiveness of edge-based
exploration and the sensitivity of path-aware fuzzing, revealing
bugs that neither the two baselines nor culling uncover.

The evaluation of our AFL++-based implementation on the
UNIFUZZ suite [10] shows that the increased visibility of
path-aware fuzzing uncovers a large number of bugs missed
with edge coverage. Our best configuration finds 10.1% more
bugs overall, and 27.5% that are unique to our approach. We
responsibly disclosed 11 zero-day vulnerabilities, 5 of which
were missed by traditional fuzzers. These findings indicate
that path-aware sensitivity, when guided by exploration biasing
methods, can open new directions for fuzzing research.

This paper proposes the following contributions:
‚ A practical, fuzzer-friendly instrumentation technique for

recognizing intra-procedural execution paths, making path-
aware fuzzing viable.

‚ Two exploration biasing strategies, culling and oppor-
tunistic, to mitigate seed explosion and broaden the
effectiveness of path-aware fuzzing.



‚ An open-source LLVM-based implementation of our tech-
niques: https://github.com/Sap4Sec/path-aware-fuzzing.

‚ An extensive evaluation on the UNIFUZZ benchmarks with
AFL++, showing our methods reveal a broader set of bugs
than both edge coverage-guided fuzzing and PathAFL,
and improve internal performance metrics.

II. BACKGROUND AND MOTIVATION

This section covers the fundamental concepts of coverage-
guided fuzzing and draws attention to a connected limitation.

A. Coverage-guided Fuzzing

Fuzzing techniques are popular in software testing and
security research thanks to their effectiveness in discovering
bugs [1]. The most basic implementation of a fuzzer is a system
that generates random inputs and feeds them as test cases to
the program under test during repeated executions.

Grey-box fuzzers [2], [11] enhance this baseline by em-
ploying lightweight instrumentation to track coarse-grained
information about program execution. These fuzzers are the
most prevalent choice among all fuzzer types due to their
effectiveness. Well-known grey-box fuzzers like AFL [2] track
code coverage and use it as a feedback mechanism to drive
the exploration of the program under test. More specifically,
they keep track of what control flow edges are taken during
the execution of the test cases (edge coverage). This strategy
significantly improves a fuzzer’s bug finding abilities [12].

Coverage-guided fuzzers instrument the code of the program
under test to collect coverage-related facts and update a
coverage map that profiles test case execution. With edge
coverage, a map entry describes one or more control flow
edges. This information drives the subsequent mutation work
of previous inputs, retaining in the fuzzer’s queue those test
cases that brought about coverage novelty, with the objective
of generating new inputs that either reach unexplored code
regions, or make the program crash. A common refinement
keeps track of how many times (hit count) a test case exercises
a coverage element, with a normalization step (power-of-two
buckets) to limit the number of inputs retained in the queue.

B. The Limitation of Edge Coverage

Despite the effectiveness in detecting bugs it entails, the use
of edge coverage presents one limitation in capturing program
control flows, which relates to its coarse-grained summary of
execution. Specifically, it only provides a loose [3] approxima-
tion of the control-flow paths that program execution traverses.

Edge coverage may miss relevant paths able to set the specific
internal conditions required to trigger certain bugs [4], [7]
or to unlock further code regions. This would occur because
traversing the same edges from different paths is not considered
a novelty by an edge coverage-based fuzzer.

Motivating example: We use the code in Figure 1 as a
running example to show how a path-aware coverage feedback
can assist a fuzzer in effectively exposing a bug that manifests
only when certain path-dependent conditions are met.

Function foo contains a heap-overflow bug on line 19 that
can trigger only when the execution passes through line 9

Fig. 1. Left: Motivating example for a path-aware fuzzer. Right: Control flow
graph for foo, augmented with machinery for path identification. Edges with
non-zero increments are instrumented to compute the path ID (initially set to
0). Traversing the path in red is necessary for triggering the bug.

and the size of the string input is greater than 50. To do
that, the program state must satisfy two conditions: (i) the
fuzzer-controlled input string input should be longer than
50 characters and start with an ‘h’; and (ii) execution must
pass through line 9 to set the value for variable j such that it
can overflow the bounds of the array arr on line 19.

While condition (i) can be met by byte mutations or branch
solving techniques, condition (ii) requires a precise program
state configuration to be met, which is set by execution flowing
from line 9 to line 19 by taking the edges for lines 8→9
and 16→19. A classic fuzzer instead would most likely first
reach line 19 from line 11 (10→11, 16→19) due to the hard
condition to be met on line 8. Then, if it reaches line 21 from
line 9 (8→9, 20→21), and only at a later point it generates a
test case that reaches line 19 from line 9 as required for (ii),
it will not retain this test case because all the individual edges
composing this path were observed in previous executions1.

A fuzzer able to discriminate control-flow paths would
instead retain the test case because the path through line 9 to
line 19 presents itself as a novelty to the fuzzer compared
to previous executions. It then becomes only a matter of
subsequent byte mutations to derive from such test case an
input that satisfies also condition (i) and thus triggers the bug.

C. Towards a Finer-grained Feedback

The issue above could be tackled by refining the edge-
coverage feedback for the fuzzer. Instead of considering only
which edges are hit, one could also track the order in which
they are activated. This corresponds to tracing execution paths.

The straightforward effect of adopting a more sensitive
feedback is augmenting the visibility of the fuzzer over the
program under test. More pervasive program testing with a
path-aware feedback increases the probability of traversing and
exploiting paths that set the required bug-triggering conditions.

1This holds unless the test case also satisfies condition (i) at the same time,
therefore immediately triggering the bug; which we however deem unlikely.

https://github.com/sap4sec/path-aware-fuzzing


These paths may be the only ones that satisfy the conditions,
or they may do so more readily than others.

Fuzzing with a path-aware feedback may pave the way
to discovering bugs that a classic fuzzer would struggle to
find. Occasionally, it may even facilitate the fuzzer in meeting
specific program conditions required for reaching new code
regions. Section V-A and V-C study these effects, respectively.

To build such a fuzzer, two technical challenges should be
addressed: (i) collecting path information may be expensive
and (ii) more sensitive feedbacks are prone to queue explosion
effects [4], [9]. For challenge (i), as a matter of fact, tracking
paths has been considered infeasible for fuzzing [6], [7]. Our
paper challenges this belief, showing a tenable solution.

As for challenge (ii), queue explosion effects can harm
fuzzing efficiency. The increased visibility of a path-aware
feedback comes at a cost: a high diversity of encountered
paths can make the fuzzer maintain a queue of overly abundant
test cases. A too large queue can prevent the fuzzer from
effectively utilizing all these test cases for generating new
inputs. With a limited time budget for testing, the fuzzer may
end up stressing only a small fraction of the witnessed program
states sufficiently, missing bugs tied to conditions set by those
test cases that received insufficient mutation time.

III. METHODOLOGY AND DESIGN

Our core idea for building a path-aware fuzzer is that
targeting acyclic paths within the control flow graph (CFG)
of individual functions greatly reduces the number of paths to
distinguish. This renders path tracking tenable, and the baseline
path-aware fuzzer already proves capable of uncovering bugs
the edge-based counterpart overlooks. However, the improved
visibility negatively affects the general fuzzing throughput.

To tame this queue explosion setback, we vary the explo-
ration strategy of the fuzzer with two biasing methods, seeking
to obtain every time further new bugs compared to the other
(edge and path-aware) configurations, thus proving that path-
awareness is a promising new direction for fuzzing research.

A. Path Profiles as Feedback for Fuzzing

The order in which individual CFG edges are traversed
can be traced in many ways. Previous endeavors attempted to
reason on the whole program, thus collecting inter-procedural
path information [7]. Yet, the enormous number of paths that
a program can subsume represents a significant setback, as it
makes their complete enumeration untenable [6], [7].

We therefore explore the tracking of path information in a
per-function fashion, focusing on accurately identifying the
internal states of each function and, for the sake of scalability,
truncating paths that involve function calls.

To both handle the collection of this intra-procedural path
feedback and discriminate any two program executions for
novelty, we avail ourselves of the notion of path profiles.

In performance profiling literature, a path profile determines
how many times each path in a routine executes [3]. A path
profile subsumes the more common basic block and edge
profiling information, which are cheap to collect but typically

inaccurate if used as a proxy for predicting paths [3]. Path
profiles proved themselves valuable in software performance
measuring and tuning [13], [14] and in debugging [15].

a) A feedback for fuzzing: Path profiles represent an inter-
esting opportunity to refine the feedback mechanism of a code
coverage-guided fuzzer. A more sensitive feedback can help it
explore the code of the program under test more pervasively [9].
Here, a path-aware fuzzer could more effectively explore under-
tested code regions harboring bugs that manifest only when
specific execution paths shape the program state as required
for triggering—or do so more easily than other paths.

Nonetheless, this integration is not straightforward, as a
fuzzer must be efficient in order to be effective. Therefore,
the benefits of the complexity introduced when switching to a
more refined feedback must outweigh its costs.

Loops represent a threat in this sense, as they give rise
to a potentially unbounded number of intra-procedural paths.
Accurate reasoning on cyclic paths is deemed an intractable
task in programming language research when limited spatial
and temporal performance overheads are allowed [13]. Thus,
the literature [3], [16] resorts to the notion of acyclic paths.

Acyclic paths can be conveniently enumerated by
transforming a function’s CFG into a Directed Acyclic Graph
(DAG) and taking special provisions for back edges (we return
to this in Section IV). The space requirements for their accurate
enumeration and identification are reasonable, and a path
profiling tool only needs to maintain a single word-sized state
for differentiating paths [3]. Although acyclic-path profiling
implies a partial loss of information about the program under
analysis [13], it stands as a good trade-off for efficiency.

We find this pragmatic way of collecting path information
a suitable candidate for fuzzing. It allows us to identify and
instrument the acyclic paths within a function in a cost-effective
way during the compilation of the program under test, replacing
the edge coverage feedback instrumentation.

We employ this gathered intelligence to track at run-time the
paths traversed during test case execution, informing the fuzzer
by issuing a coverage map update every time an acyclic path
reaches its end (as opposed to when traversing each edge, if
the traditional feedback is used). Such a path terminates when
execution reaches the function epilogue or a loop back edge.

b) Mode of operation: Our path-aware feedback operates
similarly to an edge coverage-based feedback, but with a key
distinction: the fuzzer considers each new traversed path as a
novelty, rather than only any new covered edge.

Our design instruments CFG edges with probes for identify-
ing the intra-procedural acyclic path that execution is currently
traversing. The signals from the probes are aggregated at path
termination, informing the fuzzer of the identity of the traversed
path by triggering a coverage map update.

Figure 1 visually shows the effects of this mechanism applied
to our motivating example from the previous section (we
defer to Section IV a detailed discussion of it, as how to
track path profiles represents an implementation choice). We
instrument CFG edges to apply predetermined increments to
a path identifier (ID) integer variable, which is initially set



TABLE I
UNIFUZZ SUBJECTS STATISTICS: QUEUE ITEMS AFTER 24-HOUR FUZZING.

Benchmark Type Functions Queue (edge) Queue (path)

cflow C 310 1 120 3 237
exiv2 C++ 2 644 2 071 2 153
ffmpeg C 37 218 2 619 14 648
flvmeta C 907 458 566
gdk C 435 2 969 10 203
imginfo C 577 1 647 4 342
infotocap C 3 007 3 538 191 297
jhead C 40 364 1 013
jq C 409 1 910 11 044
lame C/C++ 482 2 151 69 590
mp3gain C 71 1 592 5 877
mp42aac C++ 2 505 3 042 4 053
mujs C 742 4 806 7 589
nm-new C 3 259 3 310 15 419
objdump C 6 241 3 854 7 303
pdftotext C/C++ 4 607 4 868 10 022
sqlite3 C 1 194 10 112 21 516
tiffsplit C 782 1 096 19 538

to zero. The sum of the increments along each acyclic path
gives us a path ID unique for the CFG. In the figure, the path
capable of triggering the bug is highlighted in red and sees
two increment operations, which give it the ID value ‘3’ to
distinguish it among the five acyclic paths for the CFG.

The fuzzer now gains the ability to discriminate what it
cannot with an edge-based feedback: if a new test case traverses
a crucial path to reach a bug, it is considered novel even if all its
edges were individually visited before. Subsequent mutations
can now leverage this test case to trigger the bug.

B. Wielding the Feedback for Increased Efficiency

With the path-aware feedback we propose, the benefits in
terms of efficacy are clear in our experiments: this baseline
integration of a path-aware feedback already provides valuable
and interesting results, identifying several bugs in well-tested
software that the edge coverage-based counterpart failed to
expose (Section V-A). Moreover, it already tackles challenges
deemed insurmountable in previous works [6], [7].

Nevertheless, as we discussed, a fuzzer employing a more
sensitive feedback risks producing an overly rich queue
that hinders its overall efficiency. To give an idea about
the relevance of this phenomenon, Table I reports statistics
from fuzzing for 24 hours our evaluation programs from the
UNIFUZZ [10] benchmarking platform. The size increase
compared to the edge feedback assumes different proportions
depending on the program, ranging from moderate to very high.

To address this setback, we propose and evaluate two simple
methods of immediate applicability that bias the exploration
work of a path-aware fuzzer. That is, for all code, the fuzzer
always reasons about paths, but we manipulate the selection
of test cases (and associated paths) it can pick for mutation.

The culling method periodically reduces the queue size,
preserving its edge coverage. It is a reactive method that
lets the path-aware fuzzer—which lacks time to fully explore
its queue—revisit its exploration choices. The opportunistic
method capitalizes on a wealth of code coverage attained by
a more coarse-grained fuzzer: it looks for bugs in potentially

under-explored code, working with a smaller queue than the
one a fully path-aware fuzzer would have built in that time.

Figure 2 depicts the operation of the two exploration-biasing
strategies and their expected impact on the fuzzer’s queue size.

1) Culling: We devise a dynamic mechanism that, after
suspending the fuzzer’s execution at set time intervals, which
we term culling rounds, runs a heuristic to significantly reduce
the size of its queue and then resumes its execution.

The rationale is to offer the fuzzer a fresh start, allowing it
to make new prioritization choices, some of which may differ
from those made during previous rounds, helping it break out
of local minima. With a limited temporal budget, the fuzzer
would hardly have enough time to examine and sufficiently
mutate those queues. Therefore, an effective prioritization may
substantially boost the fuzzer’s bug finding abilities.

Reducing the queue size, and thus path diversity, ultimately
improves the fuzzer’s bug finding performance, as the test
cases in it can now receive more, and hopefully sufficient,
mutation time; meanwhile, it does not prevent the fuzzer from
re-considering previously-discarded paths as they reoccur.

As one possible culling criterion, we choose to retain a set
of test cases capable of exercising all the edges encountered
across prior executions. This procedure provides at least the
same visibility as an edge coverage-guided fuzzer (avoiding
regression in a traditional code coverage sense) and successfully
keeps the dimension of the queue at bay. Additionally, as the
path-aware fuzzer sees as equally novel any two paths (i.e.,
regardless of the traversed blocks or edges), the procedure
eases the prioritization of any new code reached in the previous
round. Such code will now have a fresh, higher opportunity
to be scheduled, whereas many inputs (and paths) covering
previously known code will have been trimmed by then.

The procedure above is program-agnostic and does not
require any specific insight or analysis of the code before
or during execution. These are desirable properties as they help
safeguarding the efficiency of the fuzzer, granting it the freedom
to decide which program parts it should focus its exploration
on. A downside of the culling strategy is that the fuzzer runs
the risks of doing repeated work every time the queue is
reduced, as in the subsequent exploration it may “regenerate”
some of the discarded paths all over again. Nevertheless, the
evidence we gathered from our experiments suggests that
the benefits outmatch this potential loss: the fuzzer seems
capable of catching up quickly, and this optimization gives a
considerable boost to the bug finding abilities of the baseline
path profiling-based fuzzer, managing to expose more bugs
than the edge-based feedback does (Section V-A).

The curious reader may wonder why we do not cull the
queue to cover all paths rather than all edges. In reality,
many fuzzers (especially AFL-derived ones) already maintain
a favored corpus of test cases entailing this coverage and
skip non-favored test cases from scheduling with a very high
probability. Experiments we conducted using path identity as
culling criterion confirmed the benefits of using edges here.

2) Opportunistic: With this strategy, we start the fuzzing
campaign with the coarse-grained edge feedback to achieve



baseline

path-aware exploration

seeds

opportunistic

final 
queue

seeds

path-aware
exploration

final 
queue

culling

seeds edge
queue

final 
queueedge-aware exploration path-aware exploration

path-aware
exploration

culling
round

culling
round

path-aware
exploration

culling
round

culling
round

path-aware
exploration

Fig. 2. Comparison of the three techniques we study for path-aware fuzzing (baseline, culling, opportunistic), with visual cues on relative queue sizes.

sufficient code coverage, and then transition to our path-aware
feedback for the remaining exploration.

The rationale behind it is that while exploring program
state more pervasively eases bug discovery, a more sensitive
feedback reduces the fuzzer’s opportunities to progressively
reach new program parts within the time budget. Although a
higher sensitivity may occasionally help meet difficult branch
conditions, total code coverage is expected to be lower than, or
at best similar to, what the edge-based feedback achieves [4].

Therefore, we propose to opportunistically rely on the work
of another fuzzer to reach a larger portion of code faster, and
see whether our fuzzer can discover overlooked bugs even
without the wealth of alternative paths to bugs that the use of
path-awareness from the start would have provided it with.

We note that a queue collected under the guidance of edge
coverage represents a feasible outcome for a (very biased)
path-aware exploration. As such a queue is smaller (Table I),
the path-aware fuzzer is not immediately harmed by queue
explosion effects when using it, and can thus build on the work
of others for probing more code regions than it would normally
be able to within the budget. Our method allocates a fraction
of the total fuzzing budget to the work of the less sensitive
feedback before switching to the path-aware one.

An insight behind this method’s design is that edge coverage-
guided fuzzers tend to unlock less and less new coverage
over time [17] due to factors independent of the coverage
feedback, such as hard-to-solve branches and incomplete
harnesses. Therefore, the efficacy of a fuzzer technique can
show by exposing bugs in this wealth of already reached code.
From a practical perspective, the opportunity is interesting,
as saturated queues from edge coverage-guided fuzzers are
easily available [18]. As Section V-A will show, this flavor of
path-aware fuzzer can find bugs missed by the other edge and
path-aware fuzzer configurations we discussed until now.

IV. IMPLEMENTATION

We devise our techniques as a set of analysis and transfor-
mation passes (~1800 C++ LOC) for the intermediate repre-
sentation of the LLVM compiler [19]. We work atop the state-
of-the-art AFL++ [20] fuzzer (v. 4.07a), as it combines dozens
of incremental research efforts and constantly delivers superb
performance in community benchmarking initiatives [21]. We
plug our path profiling machinery in the fuzzer’s compilation
process for the program under test, as an alternative option to
the edge coverage feedback. This enables a seamless integration
that requires no external intervention in the building phase of
programs, producing a binary ready to use for fuzzing.

Ball-Larus algorithm: To construct path profiles, we rely
on the efficient Ball-Larus algorithm [3], which profoundly in-
fluenced compiler and performance profiling literature [8], [22].
The algorithm offers an accurate and spatially optimal encoding,
with provisions to minimize the number of instrumentation
probes to place on CFG edges. We refer the interested reader
to the original paper [3] for its more advanced technicalities,
providing hereafter an operational description of it and how
we adapt it to work synergistically with a fuzzer.

The algorithm identifies acyclic paths in a function through
a numeric value: one of t0 ... n ´ 1u, where n is the number
of acyclic paths in the function. As we anticipated, the path
ID value is given by the sum of increment values that the
algorithm places as edge labels in the CFG of a function.
The run-time instrumentation adds these constant values to a
per-function, word-sized state variable. A profiling client can
consume this variable to identify a path once the execution
completes its traversal. An acyclic path ends at the function
epilogue or at a back edge: those points receive instrumentation
to consume the path ID and reset the state variable to zero.

Using the Ball-Larus algorithm to profile test case execution
presents interesting advantages for fuzzers. First, it can distin-



guish paths with minimal temporal and spatial overheads: it
maintains just a word-sized state, and its operations are initial-
izations and constant increments to such variable. Additionally,
unlike edge coverage tracking that instruments and issues an
event (for a fuzzer, a coverage map update) at every edge, only
a fraction of the CFG edges here require instrumentation.

Integration: In practice, using path profiles as coverage
feedback for a fuzzer requires: (1) running the Ball-Larus
algorithm over the code of the program under test as detailed
above and (2) make the fuzzer consume the produced path IDs,
which translates to correctly handling coverage map updates.

We adapt a publicly available implementation of the Ball-
Larus algorithm [23]. Path enumeration and increment value
definition are compile-time tasks; this is ideal, as we avoid
placing their burden on the fuzzer’s operation. To ensure
accuracy and ease performance and compatibility, we perform
our analyses and add our instrumentation right after the
compiler completes the execution of all optimization passes
on the intermediate representation (LLVM IR) of the code. As
a result, the compiler is in no way restricted from optimizing
program code (or, as we will see, enabling sanitizers) in its
middle-end, and its back-end can generate efficient code for
our instrumentation merged within the optimized program.

Path tracking occurs at run-time by issuing a coverage
map update upon encountering loop back edges and function
returns, availing itself of the instrumentation introduced during
the compilation phase. In this way, paths can be traced with
costs almost comparable to the best-performing edge coverage
tracking flavor available to date for fuzzers (pcguard), as we
show more in detail in Section V-B and in Appendix A.

Concerning the fuzzer, we use AFL++’s configurable fixed-
size bitmap, set to 218 entries in the evaluation to match typical
L2 cache sizes as in common practices [24]. To index the map,
we combine the path ID and the identifier of the associated
function as in: (path_id ‘ function)%map_size.

With this modification and the above instrumentation for
run-time intra-procedural acyclic path identification, we make
AFL++ path-aware, without affecting its other components and
the many optimizations they enable for fuzzing.

We believe that these changes, with the appropriate adapta-
tions, may also be applied to other coverage-guided fuzzers
that rely on source code instrumentation and coverage maps.

Culling: We devise the culling method through a driver
that orchestrates fuzzer executions (~180 LOC). The driver
takes as input a time budget, the number and duration of culling
rounds, and the initial seeds. Once a culling round other than
the last completes, the driver invokes a culling procedure to
prune the queue, then starts a new fuzzer instance seeded with
the culled queue. For fairness, the driver tracks the running
time of each culling action and subtracts the accumulated time
from the duration allowed for the last round; therefore, culling
costs are accounted for in the fuzzing budget.

To build a minimal edge coverage-preserving queue of test
cases, we rely on a fast approximation that fuzzers employ
for the expensive set cover problem [25]: the favored corpus

construction. In our tests, this was more efficient than using the
afl-cmin queue minimization tool, for equivalent results.

Opportunistic: This method means to provide a queue
collected with the edge coverage feedback as the starting point
for the path-aware fuzzer. For fairness and efficiency, we argue
that such a queue needs some (light) pre-processing.

First, to avoid biasing the results, we remove crashing inputs
found by the less sensitive fuzzer to ensure that our more sen-
sitive fuzzer relies solely on its capabilities. Second, we argue
that a queue from many hours of fuzzing may be “overburdened”
with many test cases sharing very similar activated edges. We
thus trim this queue, seeding the path-aware stage with a smaller
queue that preserves all the exercised edges. Although this may
hamper the path-aware fuzzer by limiting path diversity, it
serves our rigorous goal of evaluating the fuzzer’s ability to
discover new bugs without initial path feedback.

V. EVALUATION

To evaluate the benefits of our path-aware feedback for
fuzzing, we aim to address the following research questions:

RQ1: Can our path-aware feedback expose bugs that an
edge coverage-based solution overlooks?

RQ2: What is the runtime cost of tracking execution paths?
RQ3: How does path-awareness affect code coverage?
The main materials from our evaluation are available as part

of the artifacts we share for this paper on the linked repository.
Environment: We conduct our experiments on a server

machine featuring two AMD EPYC CPUs (2.25 GHz), 1 TB
RAM, and Ubuntu 20.04.5 LTS. Each fuzzer runs in a dedicated
Docker container on a single CPU core. LLVM version 12 is
our compiler choice for our evaluation.

Fuzzer configurations: We center our comparisons around
the capabilities of edge coverage-guided fuzzing, as fuzzing
evaluation best practices [26] suggest that a new fuzzing method
should be compared against the existing implementation of
a fuzzer that shares the highest number of similarities to
the proposed one. For a fair comparison, we take the most
performant embodiment available for edge coverage, pcguard,
which is also the default configuration of AFL++.

While PathAFL is the only prior work to model paths,
our approach is comparable with it only in a limited sense.
PathAFL traces portions of whole-program paths [8] through
partial instrumentation, aggressive pruning, and coarse-grained
identifiers—all devised atop AFL [2]. It also modifies other
components of the fuzzer, including seed selection, hash func-
tions and power scheduling. Our approach traces all traversed
intra-procedural acyclic paths, which embody a different path
abstraction, and only replaces the fuzzer’s coverage feedback.
For these reasons, we believe the only ground to compare the
two approaches is by looking at bug counts.

We test the following fuzzer configurations (“fuzzers”):
‚ path: the baseline approach using intra-procedural paths

as coverage feedback (Section III-A);
‚ cull: the path fuzzer augmented with our culling-based

biasing method (Section III-B1);



TABLE II
UNIQUE BUGS (AND UNIQUE CRASHES BETWEEN PARENTHESES) FOUND BY EACH FUZZER CUMULATIVELY ACROSS THE 10 RUNS, FOLLOWED BY PAIRWISE

COMPARISONS FOR COMMON (SET INTERSECTIONS) AND DIFFERENT (SET SUBTRACTIONS) BUGS.

Benchmark path pcguard cull opp path X

pcguard

cull X

pcguard

opp X

pcguard

opp X

cull
path \
pcguard

pcguard \
path

cull \
pcguard

pcguard \
cull

opp \
pcguard

pcguard \
opp

opp \
cull

cull \
opp

cflow 2 (21) 2 (18) 3 (28) 2 (18) 1 (15) 2 (18) 1 (15) 2 (18) 1 (6) 1 (3) 1 (10) 0 (0) 1 (3) 1 (3) 0 (0) 1 (10)
exiv2 8 (24) 8 (58) 6 (16) 8 (28) 7 (16) 6 (14) 7 (21) 6 (10) 1 (8) 1 (42) 0 (2) 2 (44) 1 (7) 1 (37) 2 (18) 0 (6)
ffmpeg 2 (2) 3 (3) 1 (1) 0 (0) 2 (2) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 2 (2) 0 (0) 3 (3) 0 (0) 1 (1)
flvmeta 2 (11) 2 (9) 2 (13) 2 (6) 2 (9) 2 (9) 2 (6) 2 (6) 0 (2) 0 (0) 0 (4) 0 (0) 0 (0) 0 (3) 0 (0) 0 (7)
gdk 8 (58) 7 (42) 11 (90) 9 (70) 7 (35) 7 (37) 7 (40) 9 (63) 1 (23) 0 (7) 4 (53) 0 (5) 2 (30) 0 (2) 0 (7) 2 (27)
imginfo 2 (2) 2 (2) 2 (3) 3 (4) 2 (2) 2 (2) 2 (2) 2 (3) 0 (0) 0 (0) 0 (1) 0 (0) 1 (2) 0 (0) 1 (1) 0 (0)
infotocap 2 (2) 5 (5) 3 (3) 5 (5) 2 (2) 3 (3) 5 (5) 3 (3) 0 (0) 3 (3) 0 (0) 2 (2) 0 (0) 0 (0) 2 (2) 0 (0)
jhead 6 (12) 6 (11) 6 (13) 6 (13) 6 (11) 6 (11) 6 (10) 6 (13) 0 (1) 0 (0) 0 (2) 0 (0) 0 (3) 0 (1) 0 (0) 0 (0)
jq 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
lame 4 (6) 4 (6) 5 (7) 4 (6) 4 (4) 4 (4) 4 (3) 4 (5) 0 (2) 0 (2) 1 (3) 0 (2) 0 (3) 0 (3) 0 (1) 1 (2)
mp3gain 3 (9) 4 (8) 3 (12) 3 (10) 2 (5) 1 (2) 2 (5) 2 (3) 1 (4) 2 (3) 2 (10) 3 (6) 1 (5) 2 (3) 1 (7) 1 (9)
mp42aac 7 (20) 8 (21) 8 (27) 6 (15) 6 (16) 7 (18) 6 (14) 6 (15) 1 (4) 2 (5) 1 (9) 1 (3) 0 (1) 2 (7) 0 (0) 2 (12)
mujs 3 (4) 4 (4) 4 (5) 1 (1) 2 (2) 3 (3) 1 (1) 1 (1) 1 (2) 2 (2) 1 (2) 1 (1) 0 (0) 3 (3) 0 (0) 3 (4)
nm-new 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
objdump 9 (38) 8 (34) 12 (62) 11 (44) 8 (22) 8 (28) 7 (24) 10 (34) 1 (16) 0 (12) 4 (34) 0 (6) 4 (20) 1 (10) 1 (10) 2 (28)
pdftotext 8 (11) 10 (19) 18 (36) 10 (13) 4 (7) 7 (10) 7 (8) 9 (10) 4 (4) 6 (12) 11 (26) 3 (9) 3 (5) 3 (11) 1 (3) 9 (26)
sqlite3 5 (6) 9 (16) 7 (8) 7 (8) 3 (4) 6 (6) 4 (4) 4 (5) 2 (2) 6 (12) 1 (2) 3 (10) 3 (4) 5 (12) 3 (3) 3 (3)
tiffsplit 5 (34) 6 (30) 6 (55) 5 (39) 4 (24) 5 (26) 5 (22) 5 (37) 1 (10) 2 (6) 1 (29) 1 (4) 0 (17) 1 (8) 0 (2) 1 (18)

TOTAL 77 (263) 89 (289) 98 (382) 83 (283) 63 (179) 71 (195) 67 (183) 72 (229) 14 (84) 26 (110) 27 (187) 18 (94) 16 (100) 22 (106) 11 (54) 26 (153)

‚ opp: the path fuzzer augmented with our opportunistic
biasing method (Section III-B2);

‚ pcguard: the default embodiment of edge coverage-
guided fuzzing in AFL++.

For all these fuzzers, we enable AFL++’s cmplog instrumen-
tation during program compilation to aid them with difficult
branches using input-to-state correspondence [27], and the
ASAN [28] sanitizer to expose silent memory safety bugs.

Given the richness of the feedback that path-aware fuzzers
provide, we set a budget of 48 hours for each fuzzing run, so
as to grant enough time (as in, e.g., [9], [29]–[31]) to the fuzzer
to leverage the increased visibility over the program under test.
We perform 10 runs per experiment. An important aspect for
the cull fuzzer is the duration of each fuzzing round: we
set it empirically to 6 hours, as this value yielded the best
results in a preliminary sensitivity study we conducted2. For
the opp fuzzer, we split the 48 hours evenly, using at each run
a different queue from a 24-hour run with pcguard (we take
the early test cases retained in the 48-hour pcguard runs).

Benchmarks and seeds: As we do not introduce new
mutation or branch solving techniques, but solely change
how a fuzzer differentiates executions, to estimate bug finding
capabilities we seek for subjects with multiple bugs reachable
by existing fuzzing techniques. Thus, under identical fuzzing
budgets on such subjects, variations in retrieved bugs can be
reasonably attributed to differences in feedback mechanisms.

Our choice falls on the UNIFUZZ [10] suite, which provides
assorted benchmarks for different tasks and input formats. By
construction, its programs hold the properties of comprehen-
siveness (for the different functionalities and vulnerability types
they present) and practicality (i.e., at least one bug per subject
should be found in a reasonable amount of time), as its authors
explain in [10]. The suite has seen extensive use in the literature
and comes with seeds that ease reproducibility.

2The main takeaway was that runs of 3 or 6 hours yielded similar results
for most subjects, with 6 hours performing slightly better in a few cases. As
expected, longer durations (e.g., 12 hours) proved detrimental.

Fig. 3. Venn diagrams (set logical relations) for unique bugs found by the
four fuzzers across all benchmarks.

We test the fuzzers on 18 of the 20 UNIFUZZ subjects
(Table I). We excluded wav2svf as it does not compile with
LLVM and patching its code may threaten soundness, whereas
for tcpdump we found several hundreds of unique crashes
that make it an outlier in the collection, which would have
biased the global comparison and impeded manual bug triaging.

A. RQ1: Bug Finding Capabilities

As the main goal of fuzzing is detecting bugs [32], and our
methods aim to contribute to enhancing this task, we first study
the crashes exposed by the fuzzers in the tested subjects.

Bug triaging: For a rigorous evaluation, we manually
deduplicate the crashes exposed by the fuzzers to estimate
their bug finding capabilities. As a preliminary step, we employ
standard stack trace hashing-based clustering to identify unique
crashes (as per common practices [32], we consider the top 5
frames), and then proceed with manual bug analysis. Table II
lists how many unique bugs (alongside unique crashes, in
brackets) each fuzzer found in our test programs over all the
10 fuzzing trials, and pairwise comparisons between fuzzers
that differentiate bugs by their identity. For space reasons,
we plot columns only for the most relevant pairs of fuzzers.
Appendix B then reports the data points for the median runs.

Next, to allow a more comprehensive, high-level view of
the performance of the approaches, we provide the cumulative
inclusion relations in Figure 3, which show more clearly the



differences in unique bugs detected by each fuzzer, as these
may be overlooked if only focusing on bug counts.

Baseline approach: In support of our claim that a
baseline fuzzer that uses path profiles as fuzzing feedback
(Section III-A) can already prove its worth, we remark that the
path fuzzer discloses, out of a total of 77 bugs, a considerable
amount of 14 bugs (18.2%) that the edge coverage-based
pcguard fuzzer misses, and only 12 fewer bugs (-13.5%)
than pcguard (89) in absolute numbers.

We use a heap overflow detected in cflow as an example
of bug uniquely found by path. This bug, an out-of-bounds
access to structure token_stack[curs] in parser.c
(line 302), occurred when the value of the curs variable was
96, while the structure held only 96 elements at that point in
the execution, while no bounds check is present in the code.
The underlying cause of this bug is the index curs gradually
reaching its limit value token_stack_length through
repetitive execution of the same functions, while the function
that increments the value of curs is called repeatedly as
parse_function_declaration() skips unexpected
input tokens in the stack. Even though pcguard could
reach the relevant code, it failed to trigger the error, as the
problematic value of curs depended on intricate conditions set
by distinct paths, each within separate functions, discriminated
by our path-aware feedback. Our fuzzer was instead capable
of retaining “intermediate” inputs that showed this progression,
and it evolved them into a crashing input through mutation.

This example is representative of one of our key experimental
findings: all the 14 bugs exposed by path and missed by
pcguard involve code portions covered by the pcguard
campaign. This backs our claim that our more sensitive path-
aware feedback allows a more pervasive exploration of
already-discovered code, meaning that the edge-driven explo-
ration overlooked some bugs lingering in the depths of code.

Biased exploration: When also considering our two
exploration biasing methods, other interesting results emerge.

The cull fuzzer (98 bugs) surpasses pcguard in absolute
counts by finding 9 more bugs (+10.1%), with a remarkable
27 out of these 98 (27.5%) being missed by pcguard. The
path-aware baseline path misses 32 out of these 98 (32.7%)
bugs, neatly reflecting the benefits of the optimization.

The opp fuzzer (83 bugs) detects 6 fewer bugs than
pcguard (-6.74%) but 6 more bugs than path (+7.8%).
However, 16 and 19 out of these 83 (19.3% and 22.9%) are
missed by pcguard and path, respectively. In the shared
initial 24-hour runs, pcguard found 76 bugs, which as we
explained we do not pass to opp. Nevertheless, opp recovers
65 of them (85.5%) in the following 24-hour operation.

Moreover, cull spots 26 bugs missed by opp (+31.3%),
while opp finds 11 bugs missed by cull (+11.2%). This
highlights the trade-offs between the two biasing methods.

Looking at the bigger picture—namely, the third inclusion
diagram from Figure 3—the reader can appreciate that both
strategies find 72 common bugs, while path alone finds
77. This indicates that biasing the exploration significantly
impacts the bug finding abilities of our path-aware fuzzer.

Especially cull is capable of exposing many bugs (20) that
the other path-aware fuzzers (above all, the baseline approach
path) were not able to bring to light.

Further data interpretation led us to believe that optimizing
the baseline has no universal solution. Neither strategy super-
sedes the other, as their effectiveness depends on the subject.
More importantly, both methods unveiled many bugs that
neither the other biasing method nor the path (third inclusion
diagram: 20 for cull and 7 for opp) or edge baselines (dis-
cussed above and shown in the second inclusion diagram) could
expose. This further substantiates our speculation that the path-
aware research direction is valuable for future fuzzer design.

Lastly, path-aware fuzzers excel at discovering alternative
ways of triggering the same bugs, as one can appreciate by
looking at the unique crashes each fuzzer detects: 263 for
path, 382 for cull (the highest across all of the fuzzers),
and 283 for opp, compared to the 289 detected by pcguard.

Zero-days: Testing all the crashing inputs on the latest
subject versions revealed 2 enduring zero-day vulnerabilities (1
each for mp42aac and mp3gain). These are found by either
or both path and cull, while pcguard misses them.

As a further test, we ran a 1-week fuzzing campaign on 13
actively maintained UNIFUZZ subjects, 9 of which are tested
daily by OSS-Fuzz [18]. For those on OSS-Fuzz, as an indicator
of well-fuzzed code, we pick the harness with most bugs
reported in the OSS-Fuzz statistics. We do 9 pcguard runs
and 9 with the path-aware feedback (6 with our best-performing
cull and 3 with path). The path-aware runs revealed
another 9 zero-day vulnerabilities: 2 for mp42aac, 4 for
objdump, and 1 each for jq, ffmpeg and xpdf. Strikingly,
pcguard missed one third of them, and found no others.

We promptly reported all these 11 new bugs to the devel-
opers, following standard practices for responsible disclosure.

PathAFL: We ran the PathAFL fuzzer on the UNIFUZZ
subjects for 10 runs. PathAFL was able to find 33 bugs in
total, corresponding to 29.5% of those discovered by cull,
38.9% of those found by the baseline path and 32.5% of
those detected by opp. On a positive note, it found 4 bugs
that none of our fuzzers found. We provide a detailed report
of these results in Appendix C. The data make us believe that
PathAFL’s bug finding abilities are much more limited than
our path-aware fuzzers (and the standard pcguard, too).

Takeaway: The path-aware feedback enables a more
pervasive exploration of code. This reveals a significant
number of bugs that the traditional fuzzer overlooks in
the code that it covers. The increased visibility can be
wielded in multiple ways, exposing many further bugs that
the baseline version likely misses for efficiency reasons.

B. RQ2: Runtime Costs

We now inspect the effects our more sensitive path-aware
feedback mechanism entails on a fuzzer’s runtime operation.

We study two key fuzzer metrics: the throughput (test case
executions per second) of the fuzzers, and the queue size at the
end of a run (as queue management is a key driver for fuzzing



TABLE III
MEDIAN QUEUE SIZES AND COMPARISON AGAINST PCGUARD (RATIOS).

Benchmark path pcguard cull opp path
pcguard

cull
pcguard

opp
pcguard

cflow 4 420 1 177 3 624 2 637 3.76 3.08 2.24
exiv2 2 619 2 461 1 446 1 689 1.06 0.59 0.69
ffmpeg 23 070 3 947 6 924 12 281 5.85 1.75 3.11
flvmeta 586 470 381 386 1.25 0.81 0.82
gdk 12 508 3 122 6 584 9 326 4.01 2.11 2.99
imginfo 4 771 1727 3 464 4 072 2.76 2.01 2.36
infotocap 222 494 3 571 6 4610 74 295 62.31 18.10 20.81
jhead 1 029 365 831 802 2.82 2.28 2.20
jq 12 982 2 037 6 013 10 024 6.37 2.95 4.92
lame 82 652 2 200 40 784 42 725 37.58 18.54 19.42
mp3gain 11 626 1 623 4 988 3 864 7.16 3.07 2.38
mp42aac 6 001 3 766 3 169 6 104 1.59 0.84 1.62
mujs 8 580 5 216 4 923 38 303 1.64 0.94 7.34
nm-new 21 882 3 678 9 606 14 703 5.95 2.61 4.00
objdump 12 069 4 551 6 286 9 055 2.65 1.38 1.99
pdftotext 13 874 6 400 8 054 15 044 2.17 1.26 2.35
sqlite3 29 254 11 555 8 110 11 029 2.53 0.70 0.95
tiffsplit 26 035 1 160 10 821 17 362 22.44 9.33 14.97

GEOMEAN 4.46 2.22 3.15

performance). While we omit complete data for brevity, we
describe the main findings we gathered.

We observe path’s fuzzing throughput to be close to
pcguard’s on average (about 7% lower), while for some
subjects it is even higher. Factors contributing to this include not
only the instrumentation overhead, but also the increased queue
management costs for path, and the diverging prioritization
choices the fuzzers made during the campaigns. This value
is much smaller than the 1.26x instrumentation slowdown we
measured for running test cases in isolation (Appendix A), as
other main fuzzer tasks are unaffected by it.

Table III reports the median queue size for each fuzzer.
Queue explosion effects are evident: the baseline path-aware
fuzzer averages 4.46x more test cases than with the edge
feedback. The queue size increases for path can range from a
1.06x factor with exiv2 to peaks of 62.31x with infotocap
and 37.58x with lame. When it is considerable, queue
explosion is expected to harm the bug discovery efficiency
of the fuzzer: for example, path exposes only 2 bugs for
infotocap, while pcguard discovers 5.

Our two exploration biasing methods deeply mitigate queue
explosion. The cull fuzzer shows an average queue size
increase of 2.22x, significantly lower than path’s. This value is
strongly influenced by pathological subjects like infotocap,
lame, and tiffsplit, which exhibit 18.10x, 18.54x, and
9.33x larger queues respectively compared to pcguard,
although the difference with path is evident. As expected, opp
lags behind cull, with an average 3.15x queue size increase.

Takeaway: The higher sensitivity of the path-aware feed-
back inevitably entails runtime costs, mainly due to the
queue explosion effect. When taming it with exploration
biasing strategies, these costs become much more tenable.

C. RQ3: Code Coverage

We examine the code exploration abilities for our approach
by analyzing the unique edges traversed, a common metric
in fuzzing literature for estimating (path-unaware) exploration.
For the sake of space, we present in Table IV only the

TABLE IV
EDGE COVERAGE ATTAINED BY THE FUZZERS CUMULATIVELY ACROSS THE

10 RUNS, AND SOME PAIRWISE COMPARISONS (SET SUBTRACTIONS).

Benchmark path pcguard cull opp path \
pcguard

cull \
pcguard

opp \
pcguard

cflow 1165 1165 1165 1165 0 0 0
exiv2 5252 5387 5338 5064 101 93 25
ffmpeg 15026 23608 15249 22207 306 630 1082
flvmeta 250 250 250 250 0 0 0
gdk 2315 2323 2316 2312 6 7 0
imginfo 2274 2276 2199 2270 4 3 32
infotocap 1239 1392 1328 1392 1 2 3
jhead 197 197 197 197 0 0 0
jq 1967 1996 1954 1993 1 1 0
lame 2691 2693 2683 2693 0 0 0
mp3gain 930 935 931 935 0 3 1
mp42aac 2253 2364 2323 2227 6 76 7
mujs 2685 2744 2656 2711 57 25 2
nm-new 3506 3518 3559 3521 88 185 26
objdump 5615 5043 4914 4843 786 93 30
pdftotext 6270 7813 6693 7072 63 169 93
sqlite3 17188 17699 17199 17748 354 313 212
tiffsplit 1622 1569 1534 1583 105 21 23

TOTAL 72445 82972 72488 80183 1878 1621 1536

most significant columns from our coverage study, easing an
immediate comparison between our fuzzers and pcguard.

For the baseline path-aware implementation, we observe
the impact of a reduced general fuzzing efficiency in favor
of an increased visibility: path reaches a lower amount of
edges than pcguard for 13 subjects out of 18 (72.2%), the
same amount for 3 (16.6%), and more edges only in 2 subjects
(11.2%). The total amount of edges we measure for path
is 87.3% (70567 vs. 82972) of those traversed in total by
pcguard, whereas if we account for edge identity path
covers 85.05% (70567) of the edges traversed by pcguard.
Occasionally, path reaches edges that pcguard does not:
1878 in total across 13 subjects.

Moving to our two biasing methods, the reader can appreci-
ate that cull’s benefits are not completely aligned with those
of path. Although cull explored only 43 more edges than
path and 10,484 fewer than pcguard, it uniquely explored
1,621 edges missed by pcguard and, critically, 3,552 edges
not reached by path. The queue culling enhancement enabled
the fuzzer to explore distinct code than in path.

While opp outperforms path and cull, this is largely
attributed to its opportunistic initial 24-hour exploration under
pcguard. Yet, when opp and pcguard continue with their
respective feedbacks on the same initial queues, opp covers
1,536 unique edges, whereas pcguard covers 4,325.

It is evident that increasing the sensitivity of the feedback
mechanism can be detrimental for code coverage, especially
when looking at absolute counts. Nevertheless, factoring in the
results of Section V-A, path-aware fuzzers appear capable of
finding different, if not more, bugs over smaller areas of code
because they explore these areas more pervasively. Additionally,
we learned here that they can occasionally unlock code regions
that an edge coverage-guided fuzzer struggles to reach.

As, according to Klees et al. [32], no fundamental correlation
between maximizing code coverage and finding more bugs has
been established, we remark that the decreased coverage should
not be considered a fundamental weak spot of our solution.



Future research may look into this efficiency gap, e.g., by
interleaving in longer runs path-aware “exploitation” stages
with edge-based “exploration” stages that advance coverage.

Takeaway: The more pervasive exploration by the path-
aware fuzzer hinders its efficiency in reaching more code.
Yet, taming queue explosion allows it to surpass edge
coverage-based fuzzing for global bug finding efficiency,
despite the lower code coverage. Biasing the exploration
proves to also partially affect what code is reached.

VI. DISCUSSION

Our experiments confirm that implementing a path-aware
fuzzing feedback mechanism, by tracing acyclic paths within
functions, is both feasible and highly promising. This is evident
in the significant number of unique bugs detected by our path-
aware fuzzers that both the state-of-the-art edge coverage-
guided fuzzer pcguard and the path-aware PathAFL missed.
This increased sensitivity can be leveraged to mitigate queue
explosion and supports our belief that intra-procedural path-
aware fuzzing offers a rich design space for fuzzer architects.

Missing some bugs with respect to pcguard is an expected
outcome. Fuzzing is a zero-sum game: since our approach
redistributes the available energy, it is natural that some
bugs will be lost. The key is that we uncover bugs that
would otherwise not have been found. We observed the same
phenomenon in other works close to us in spirit (e.g., [4], [33]),
where the authors proposed different enhancements for some
existing fuzzing technique: in doing so, they missed many bugs
from pcguard and other baselines, but notably found many
that were overlooked with the standard technique.

We consider it a strong point that these results were
achieved by altering only a single component—the feedback
mechanism—of an existing fuzzer. Our approach thus readily
benefits from years of research in mutation methods, scheduling,
and more, all built upon edge coverage feedback. This warrants
further investigation into tailoring other features, like the power
schedule, to better leverage our path-aware feedback.

Contrary to previous belief deeming path tracking infeasible
for fuzzing [6], [7], we show that intra-procedural path profiles
offer a tenable means to achieve such feedback. Unlike the
insurmountable number of whole-program paths, our approach
allows the fuzzer to globally identify and reason on individual
(acyclic) paths traversed during each function activation.

While sensitive feedbacks commonly lead to queue ex-
plosion [4], our two orthogonal biasing methods mitigate it,
enhancing fuzzing efficiency for bug discovery. These methods
each have trade-offs, and neither consistently outperforms the
other; rather, they are distinct design points in a promising
optimization space for revealing more bugs than current fuzzers.
Our key takeaway here is that there is no single right way of
wielding the increased visibility a more refined feedback can
provide. We hope this may inspire new research directions and
encourage the community to work towards that objective.

Nevertheless, in our tests, our culling method already
surpasses edge coverage-based feedback in bug finding, both

quantitatively and qualitatively, uncovering largely different
bugs. However, our proposal does not aim to replace edge
coverage; alike [4], [33], it rather means to expand the software
testing arsenal with a method to uncover many different bugs
that edge coverage-guided fuzzers struggle to expose.

For this paper, we refrained from proposing selective forms
of path sensitivity where only some program regions get
accurate path coverage information. As this paper establishes
that the path-aware direction is profitable, fuzzer researchers
can reason on optimizations of this kind.

A further interesting outcome of our methodology is that
path coverage-guided fuzzers often identify many alternative
ways to trigger the same bug, via different paths leading to
distinct crashing stack traces. This is valuable in practice, as
some complex bugs receive partial fixes that address known
manifestations but not the root cause. Providing developers
with more test cases to triage bugs can help them create more
comprehensive fixes. Similarly, with adaptations, a path-aware
fuzzer could assist in more thorough software patch testing.

While in this paper we focused on software for which the
source code is available, our approach is also applicable to
binary-level fuzzing with some engineering effort. The key
challenges are (i) identifying function boundaries and (ii)
reconstructing the CFG of program functions to compute
and inject path increment values. Both might already be
attempted statically using binary rewriting, as demonstrated
by Retrowrite [34] for edge coverage, and we expect limited
impact on fuzzing effectiveness from potential inaccuracies in
either step. Dynamic instrumentation in AFL++’s QEMU-User
backend would also be possible for great precision [35] and
compatibility, although it may face higher runtime overhead.

Threats to validity: We acknowledge the following threats
to the validity of our approach. One threat to internal validity
is the inherently stochastic nature of fuzzing, which could raise
doubts on whether the bugs we discovered can be attributed
to the path-aware feedback. We attempt to mitigate this non-
determinism by establishing a rigorous experimental setup
following fuzzing best practices (e.g., [36]). A second threat
of the same type is that manual bug deduplication can be an
error-prone activity, but it remains arguably superior to stack
trace-based deduplication (which notoriously incurs both under
and over-counting issues [32]), and the landscape remains
lackluster in semantic automatic methods that readily and
reliably work with heterogeneous benchmarks. One threat to
external validity is our fuzzer choice, though we note that the
use of AFL++ is dominant in recent literature thanks to the
many techniques it incorporates from fuzzing research and
its high end-to-end performance [37]. Lastly, another threat
to external validity lies in the choice of the UNIFUZZ suite
to evaluate our proposal. Yet, we find that its assortment of
subjects for different tasks and input types, along with other
characteristics argued by its authors [10], mitigates this threat.

VII. RELATED WORKS

Paths in fuzzing: We are aware of several works in the
fuzzing literature that try to refine the operation of a fuzzer



with some notion of “paths”. None tracks full intra-procedural
execution paths as we do, and a recurrent trait in them is to
enhance the fuzzer’s capabilities through a loose approximation
of path coverage. It is important to stress out that the concept
of “paths” that some of these works discuss about differs
significantly from ours. For example, by “path” CollAFL [6]
refers to an AFL’s implementation shorthand, which is the
identity of all the edges traversed by the execution, without
any notion of ordering. For the works we review next, an
analytical comparison with our methods is scarcely possible,
hence a qualitative discussion is given.

INSTRIM [38] employs an approximate path differentiation
technique to distinguish inter-procedural paths in the program
under test, treating some as identical. The work mainly aims at
reducing the instrumentation required to track code coverage
during fuzzing by enhancing edge coverage with coarse-grained
information about inter-procedural paths. Probably due to being
a preliminary work, the authors did not report experimental
data for the percentage of paths ignored during the fuzzer’s
execution due to the approximation.

Fang et al. in [39] address the coverage saturation problem in
coverage-guided fuzzers [40], where fuzzers repeatedly explore
the same paths, leaving security analysts unable to intervene.
They propose a human-in-the-loop directed fuzzing approach.
Using the Ball-Larus algorithm as an external profiling oracle,
they gather path coverage and related frequency data. This
information is presented to a human agent, who is tasked
with prioritizing those seeds that exercise the most neglected
paths, thus directing the fuzzer to target specific code areas.
While our work also relies on the Ball-Larus encoding to
identify paths, our proposal is fully automated and pertains
to coverage-guided fuzzing (as opposed to directed fuzzing):
we integrate the encoding into the fuzzing process not only to
discriminate paths, but also to have an off-the-shelf fuzzer use
it to autonomously conduct its exploration of the program.

Some of our readers may be familiar with the n-gram
feedback. This coverage feedback tracks the history of the
most recently traversed blocks, where n is a user-controlled
parameter. Trivially, n“0 represents block coverage and n“1
edge coverage, while higher values yield partial, weak forms
of flow-sensitive path tracking. This feedback lacks a rigorous
experimental study in the literature: we find it mentioned
in two comparative studies [9], [27] of fuzzing techniques,
with n empirically set to one of t2, 4, 8u and effects on bug
finding and code coverage that largely vary depending on
the specific program and choice of n. We remark that, with
acyclic paths, our approach fully supersedes n-gram coverage
while bringing optimal spatial efficiency for the encoding. As
future work, in spite of the anticipated queue explosion, we
foresee an opportunity in extending our method to track 2-grams
of specific acyclic paths, as when exiting loops or crossing
function boundaries (as a partial form of context-sensitivity).

VIII. CONCLUSION

We presented a new approach to inform fuzzers with path-
aware feedback. While prior work considers run-time path

tracking infeasible for the anticipated instrumentation, storage,
and performance overheads, we show a tenable way to achieve
this exists if we focus on tracing intra-procedural acyclic
paths. Our strategy grants an increased visibility to the fuzzer,
which becomes capable of discovering bugs overlooked by a
traditional fuzzer. We study two methods to wield the queue
explosion effect expected with the more sensitive feedback.

Our evaluation shows that a “naive” path-aware exploration
is already capable of uncovering many bugs overlooked by edge
coverage and by the state-of-the-art path-aware fuzzer PathAFL.
Taming queue explosion further boosts the bug finding abilities
of our fuzzers, managing to surpass their traditional counterpart
with the culling method.

We believe our work reveals significant untapped potential
in fuzzing research, and we hope it can draw attention to this
new, and promising, path-aware fuzzer design paradigm.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their feedback. We
are grateful to Adrian Herrera, Andrea Fioraldi, and Odysseas
Diamadis for the help they provided at the early stages of
this project. This work was partially supported by the Italian
MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU through projects SERICS
(PE00000014) and Rome Technopole (ECS00000024), and by
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 850868).

DATA AVAILABILITY STATEMENT

This paper comes with an artifact acknowledged as both
Available and Reusable by the Artifact Evaluation Committee
of the conference. We make available the artifact as reviewed on
Figshare under the DOI 10.6084/m9.figshare.30646583.v2 [41],
together with its actively maintained implementation at
https://github.com/Sap4Sec/path-aware-fuzzing. We are grateful
to our anonymous evaluators for their feedback.

ARTIFACT APPENDIX

A. Abstract

We introduce a lightweight method for tracking intra-
procedural execution paths, enabling efficient path-aware
feedback for fuzzers. This enhances the fuzzer’s ability to detect
subtle bugs, even in well-tested software. Our techniques are
built atop the AFL++ fuzzer (version 4.07a) and rely on LLVM
version 12.0.1. We tested the artifacts on a machine running
Ubuntu version 20.04. The fuzzer can run on any commodity
hardware that satisfies the aforementioned requirements.

B. Artifact check-list (meta-information)
‚ Program: UniFuzz (automatically retrieved).
‚ Compilation: LLVM 12.0.1.
‚ Transformations: Instrumentation using LLVM IR pass.
‚ Run-time environment: The system was developed and tested

on Ubuntu 20.04. Python 3.8 is required by AFL++ and
AFLTriage, Rust 1.78.0 is required by AFLTriage.

‚ Hardware: x86-64 platform.

https://github.com/sap4sec/path-aware-fuzzing
https://github.com/unifuzz/unibench


‚ Metrics: Unique crashes, unique bugs.
‚ Experiments: (1) Minimal working example to test the system

functionality. (2) Full evaluation on the UniFuzz benchmark.
‚ How much disk space required (approximately)?: ~15 GB if

using our Docker images.
‚ How much time is needed to prepare workflow (approxi-

mately)?: 10-15 minutes.
‚ How much time is needed to complete experiments (approx-

imately)?: 48 hours – excluding the manual bug analysis.
‚ Publicly available?: Yes.
‚ Code licenses (if publicly available)?: Apache License v2.0.
‚ Archived (provide DOI)?: 10.6084/m9.figshare.30646583.v2

C. Description

1) How delivered: The artifact is available as a
self-contained archive at: https://doi.org/10.6084/m9.
figshare.30646583.v2, or alternatively from https://github.com/
Sap4Sec/path-aware-fuzzing.

2) Hardware dependencies: commodity x86-64 machine
(consumer-grade laptop is sufficient for functionality).

3) Software dependencies:
‚ Ubuntu 20.04 x86-64
‚ LLVM version 12.0.1
‚ Python 3.8
‚ Rust 1.78.0
‚ Dockerfile provides the full list of dependencies
4) Data sets: UNIFUZZ benchmark.

D. Installation

The AFL++ fuzzer configurations (hereafter “fuzzers”)
evaluated in the paper, including our path-aware fuzzers and
the edge-based baseline, can be built in the following ways:

(a) For a local installation:

CC=clang CXX=clang++ \
LLVM_CONFIG=llvm-config make

We also provide a script to automate the installation and
environment configuration process: setup.sh. Please refer
to the artifact’s README file for further information.

(b) Using the provided Docker image (recommended):

docker build -t path-fuzzing .

The image can then be used directly by running:

docker run -it path-fuzzing:latest /bin/bash

Alternatively, for each UNIFUZZ subject and fuzzer (our
path-aware fuzzer path and the mainstream pcguard) we
also provide a dedicated Docker image located under the
unifuzz/<subject>/[path|pcguard]/ path. Each
image can be built using the provided build_image.sh
script and run via the run_docker.sh script.

Please refer to the artifact’s README file for further details.

E. Experiment workflow

We provide shell scripts to automate the entire testing
workflow. A thorough description of these scripts can be found
in the artifact’s README file.

In short, the start_session.sh script is tasked with:
1) Building the subjects using our path-aware instrumentation

or the pcguard one (cfr. the build_bench.sh and
the build_pcguard.sh scripts).

2) Starting the fuzzing campaign on the target. You
can optionally pass the -cull parameter to
start_session.sh to fuzz the program using
our queue culling technique (i.e., switching to our
path-aware fuzzer cull).

3) Invoking the scripts/deduplicate_crashes.sh
script to automatically deduplicate the crashes detected
by the fuzzer (if present) using the AFLTriage tool.

The results of the campaign will be located in the
afl_out_0/ directory. In particular the u-crashes5/ sub-
directory will contain the deduplicated (“unique”) crashes
discovered during the campaign.

Please beware that in our work we further manually analyzed
these crashes to derive the unique bugs subsumed by them,
namely those showing distinct underlying root causes. Kindly
refer to Section VIII-H.

F. Evaluation and expected result

To evaluate our artifact, we performed 10 runs per
xsubject, fuzzery pair, lasting 48 hours each. Then, we:

1) Manually analyzed all the detected unique crashes to
derive unique bugs, which we present as aggregated results
in Tables II (cumulative values) and VI (median values).

2) Computed the dimensions of the queues generated by each
fuzzer, which we present in Table III.

3) Analyzed the code coverage achieved by each fuzzer over
all the testing subjects using the afl-showmap tool and
a pcguard-instrumented binary, which we present in
Table IV.

For the opp fuzzer, which implements our opportunistic
strategy, we split the 48 hours evenly, using at each run a
different queue from a 24-hour run with pcguard (for such
a queue, we take the early test cases retained in the 48-hour
pcguard runs).

G. Experiment customization

Our path-aware fuzzers can be seamlessly employed to test
any other piece of software compatible with the AFL++ fuzzer.
For brevity, the instructions below are for the baseline path-
aware fuzzer.

1) Correctly set the required environment variables:
export AFL_LLVM_INSTRUMENT="classic"
export AFL_PATH_PROFILING="1"

2) Build the program to be fuzzed using its own building
system (make, cmake, automake, etc.), after defining
afl-clang-fast and afl-clang-fast++ as the
default C and C++ compilers.

3) Start the campaign as one would normally do with AFL++:
./afl-fuzz -t 1000+ -i <seeds> \

-o <output_dir> -m none \
-- ./<target_program> [<placeholder>]

https://doi.org/10.6084/m9.figshare.30646583.v2
https://doi.org/10.6084/m9.figshare.30646583.v2
https://github.com/Sap4Sec/path-aware-fuzzing
https://github.com/Sap4Sec/path-aware-fuzzing
https://github.com/unifuzz/unibench


Making sure to set the appropriate values for the seeds
and output_dir directories, and the placeholder to provide
the program with an input (usually: @@).

H. Notes

For the CGO artifact evaluators: we refer to the Docker
Image (recommended) section of the README file, and in
particular we recommend to follow the steps in the Minimal
Working Example section to run a minimal working example
of our system to explore its functionality.

Please make sure to select reasonable values for the fuzzer’s
overall runtime and the culling script’s fuzzing rounds using
the dedicated environment variables (respectively: RUNTIME -
default: 48h; and FUZZING_WINDOW_ORIG - default: 6h):

export RUNTIME=10800 # 3 hours
export FUZZING_WINDOW_ORIG=3600 # 1 hour

We did not apply for the Results Validated and Reproduced
badge due to the large number of fuzzing runs we performed
in our evaluation (which also require to run for 48 hours)
to meet modern fuzzing paper evaluation standards. For the
same reason, we find the manual bug analysis step that such
evaluation practices recommend (to identify unique bugs from
the automatically identified unique crashes) to be beyond
reasonable effort for AEC evaluators. Therefore, we do not
expect the AEC to fully reproduce our results.

REFERENCES

[1] M. Payer, “The Fuzzing Hype-Train: How Random Testing Triggers
Thousands of Crashes,” IEEE Security & Privacy, vol. 17, no. 1, pp.
78–82, 2019.

[2] M. Zalewski, “American Fuzzy Lop - Whitepaper,” https://lcamtuf.
coredump.cx/afl/technical details.txt, 2016, accessed: 2024-06-12.

[3] T. Ball and J. Larus, “Efficient Path Profiling,” in Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 29, 1996, pp. 46–57.

[4] P. Borrello, A. Fioraldi, D. C. D’Elia, D. Balzarotti, L. Querzoni, and
C. Giuffrida, “Predictive Context-sensitive Fuzzing,” in Network and
Distributed System Security Symposium (NDSS), 2024.

[5] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in International Symposium on Code Generation and
Optimization (CGO 2011), 2011, pp. 289–298.

[6] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path Sensitive Fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP), 2018, pp. 679–696.

[7] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “PathAFL: Path-Coverage
Assisted Fuzzing,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’20. New
York, NY, USA: Association for Computing Machinery, 2020, pp.
598–609. [Online]. Available: https://doi.org/10.1145/3320269.3384736

[8] J. R. Larus, “Whole program paths,” in Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language Design and
Implementation, ser. PLDI ’99. New York, NY, USA: Association
for Computing Machinery, 1999, pp. 259–269. [Online]. Available:
https://doi.org/10.1145/301618.301678

[9] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive and
collaborative: Analyzing impact of coverage metrics in greybox fuzzing,”
in 22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019), 2019, pp. 1–15.

[10] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng, K. Lu, and T. Wang, “UNIFUZZ: A Holistic
and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers,” in
Proceedings of the 30th USENIX Security Symposium, 2021.

[11] “libFuzzer - a library for coverage-guided fuzz testing,” https://llvm.org/
docs/LibFuzzer.html, LLVM Project, 2024, accessed: 2024-06-12.

[12] J. Demott, D. Richard, R. Enbody, D. William, and W. Punch, “Revolu-
tionizing the Field of Grey-box Attack Surface Testing with Evolutionary
Fuzzing,” Black Hat USA, 2007.

[13] D. C. D’Elia and C. Demetrescu, “Ball-Larus path profiling across
multiple loop iterations,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, ser. OOPSLA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 373–390. [Online].
Available: https://doi.org/10.1145/2509136.2509521

[14] M. Bond and K. McKinley, “Practical Path Profiling for Dynamic
Optimizers,” in International Symposium on Code Generation and
Optimization, 2005, pp. 205–216.

[15] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
“HOLMES: Effective statistical debugging via efficient path profiling,”
in 2009 IEEE 31st International Conference on Software Engineering,
2009, pp. 34–44.

[16] T. Apiwattanapong and M. J. Harrold, “Selective path profiling,” in
Proceedings of the 2002 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE ’02.
New York, NY, USA: Association for Computing Machinery, 2002, pp.
35–42. [Online]. Available: https://doi.org/10.1145/586094.586104

[17] J. Bundt, A. Fasano, B. Dolan-Gavitt, W. Robertson, and T. Leek,
“Homo in Machina: Improving Fuzz Testing Coverage via Compartment
Analysis,” in 2023 IEEE Conference on Software Testing, Verification
and Validation (ICST), 2023, pp. 117–128.

[18] “OSS-Fuzz: continuous fuzzing of open source software,” https://github.
com/google/oss-fuzz, Google, 2016, accessed: 2024-06-12.

[19] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[20] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
Incremental Steps of Fuzzing Research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[21] M. Wang, J. Liang, C. Zhou, Z. Wu, J. Fu, Z. Su, Q. Liao, B. Gu, B. Wu,
and Y. Jiang, “Data Coverage for Guided Fuzzing,” in 33rd USENIX
Security Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 2511–2526.

[22] G. Ammons and J. R. Larus, “Improving data-flow analysis with path
profiles,” in Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, ser. PLDI ’98.
New York, NY, USA: ACM, 1998, pp. 72–84. [Online]. Available:
https://doi.org/10.1145/277651.277660

[23] S. Fujita, “Path Profiling,” https://github.com/syoyo/LLVM/blob/master/
lib/Transforms/Instrumentation/PathProfiling.cpp, 2011, accessed: 2024-
06-12.

[24] A. Ahmed, J. D. Hiser, A. Nguyen-Tuong, J. W. Davidson, and
K. Skadron, “BigMap: Future-proofing Fuzzers with Efficient Large
Maps,” in 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2021, pp. 531–542.

[25] G. Cormode, H. Karloff, and A. Wirth, “Set cover algorithms for
very large datasets,” in Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, ser. CIKM ’10.
New York, NY, USA: Association for Computing Machinery, 2010, pp.
479–488. [Online]. Available: https://doi.org/10.1145/1871437.1871501

[26] M. Böhme, L. Szekeres, and J. Metzman, “On the Reliability of Coverage-
based Fuzzer Benchmarking,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22, 2022, pp. 1–13.

[27] A. Fioraldi, A. Mantovani, D. Maier, and D. Balzarotti, “Dissecting
American Fuzzy Lop: A FuzzBench Evaluation,” ACM Trans. Softw.
Eng. Methodol., vol. 32, no. 2, mar 2023. [Online]. Available:
https://doi.org/10.1145/3580596

[28] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A Fast Address Sanity Checker,” in USENIX ATC 2012, 2012.

[29] S. Li and Z. Su, “Accelerating Fuzzing through Prefix-Guided Execution,”
Proc. ACM Program. Lang., vol. 7, no. OOPSLA1, Apr. 2023. [Online].
Available: https://doi.org/10.1145/3586027

[30] S. Song, C. Song, Y. Jang, and B. Lee, “CrFuzz: fuzzing multi-purpose
programs through input validation,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
690–700. [Online]. Available: https://doi.org/10.1145/3368089.3409769

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1145/3320269.3384736
https://doi.org/10.1145/301618.301678
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2509136.2509521
https://doi.org/10.1145/586094.586104
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://doi.org/10.1145/277651.277660
https://github.com/syoyo/LLVM/blob/master/lib/Transforms/Instrumentation/PathProfiling.cpp
https://github.com/syoyo/LLVM/blob/master/lib/Transforms/Instrumentation/PathProfiling.cpp
https://doi.org/10.1145/1871437.1871501
https://doi.org/10.1145/3580596
https://doi.org/10.1145/3586027
https://doi.org/10.1145/3368089.3409769


[31] C. Lyu, H. Liang, S. Ji, X. Zhang, B. Zhao, M. Han, Y. Li, Z. Wang,
W. Wang, and R. Beyah, “SLIME: program-sensitive energy allocation
for fuzzing,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2022. New
York, NY, USA: Association for Computing Machinery, 2022, p.
365–377. [Online]. Available: https://doi.org/10.1145/3533767.3534385

[32] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
Fuzz Testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, pp. 2123–2138.
[Online]. Available: https://doi.org/10.1145/3243734.3243804

[33] A. Fioraldi, D. C. D’Elia, and D. Balzarotti, “The use of likely invariants
as feedback for fuzzers,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 2829–2846.

[34] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1497–1511.

[35] F. De Goër, S. Rawat, D. Andriesse, H. Bos, and R. Groz, “Now you
see me: Real-time dynamic function call detection,” in Proceedings of
the 34th Annual Computer Security Applications Conference, 2018, pp.
618–628.

[36] M. Schloegel, N. Bars, N. Schiller, L. Bernhard, T. Scharnowski,
A. Crump, A. Ale-Ebrahim, N. Bissantz, M. Muench, and T. Holz,
“SoK: Prudent Evaluation Practices for Fuzzing,” in 2024 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2024, pp. 140–140. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00137

[37] J. Metzman, L. Szekeres, L. Maurice Romain Simon, R. Trevelin Sprabery,
and A. Arya, “FuzzBench: An Open Fuzzer Benchmarking Platform and
Service,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 1393–1403. [Online].
Available: https://doi.org/10.1145/3468264.3473932

[38] C.-C. Hsu, C.-Y. Wu, H.-C. Hsiao, and S.-K. Huang, “INSTRIM:
Lightweight Instrumentation for Coverage-guided Fuzzing,” in 2018
Workshop on Binary Analysis Research (BAR), 01 2018.

[39] H. Fang, K. Zhang, D. Yu, and Y. Zhang, “DDGF: Dynamic Directed
Greybox Fuzzing with Path Profiling,” in Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2024. New York, NY, USA: Association
for Computing Machinery, 2024, p. 832–843. [Online]. Available:
https://doi.org/10.1145/3650212.3680324

[40] J. R. A. Groce, “The Saturation Effect in Fuzzing,” https://blog.regehr.
org/archives/1796, 2020, accessed: 2024-11-01.

[41] G. Priamo, D. C. D’Elia, M. Payer, and L. Querzoni, “Artifact:
path-aware-fuzzing,” 11 2025. [Online]. Available: https://doi.org/10.
6084/m9.figshare.30646583.v2

APPENDIX A
INSTRUMENTATION OVERHEAD

In this experiment, we compare the efficiency of our path-
aware instrumentation against the edge coverage one employed
by pcguard. Table V shows the initial processing times of
AFL++ as we provide it with a large queue from a 48-hour run
and set it to execute each seed only once during calibration.

These time measurements include the costs of running the
seeds (which are directly influenced by the instrumentation)
and those required for ascertaining their coverage novelty. The
values suggest that paths can be tracked with costs almost
comparable to the edge coverage feedback of pcguard, as
the geometric mean of the time ratios amounts to 1.26. Once a
campaign starts, the fuzzer will also face mutation, scheduling,
and other queue maintenance costs that make the direct impact
(i.e., excluding queue explosion) of our instrumentation on
fuzzing throughput even lower, as Section V-B discussed.

TABLE V
INPUT PROCESSING TIME (IN SECONDS) FOR A LARGE SET OF SEEDS: EDGE

COVERAGE TRACKING (PCGUARD) VS. PATH-AWARE (PATH)
INSTRUMENTATION.

Benchmark pcguard path path
pcguard

cflow 8.39 s 9.56 s 1.14
exiv2 1.88 s 2.08 s 1.11
ffmpeg 2368.91 s 2216.81 s 0.94
flvmeta 0.16 s 0.29 s 1.81
gdk 17.18 s 17.8 s 1.04
imginfo 3.07 s 4.04 s 1.32
infotocap 410.96 s 504.99 s 1.23
jhead 0.31 s 0.56 s 1.81
jq 17.45 s 23.42 s 1.34
lame 733.9 s 740.16 s 1.01
mp3gain 20.68 s 25.42 s 1.23
mp42aac 7.49 s 9.52 s 1.27
mujs 13.68 s 17.99 s 1.32
nm-new 13.15 s 20.64 s 1.57
objdump 46.17 s 50.15 s 1.09
pdftotext 41.24 s 44.47 s 1.08
sqlite3 80.64 s 85.31 s 1.06
tiffsplit 7.89 s 14.68 s 1.86

GEOMEAN 1.26

APPENDIX B
MEDIAN VALUES FOR FOUND BUGS

In the main evaluation, we followed the evaluation method
of other works close to us in spirit (e.g., [4], [33]) that improve
fuzzing sensitivity, comparing fuzzers for the bugs found within
the campaign. We here report in Table VI the median number of
bugs detected by each one of our fuzzers and pcguard across
the 10 runs of the experiment we presented in Section V-A.
The values in the table confirm the benefits of employing a
path-aware feedback during fuzzing, as the trends we describe
in Section V-A are mostly preserved (even though in some
cases they can be slightly less evident).

APPENDIX C
COMPARISON WITH PATHAFL

To experiment with PathAFL on the UNIFUZZ subjects, we
followed the instructions3 that the authors provided for the
running example in the publicly released artifacts. PathAFL
uses afl-gcc to perform the compilation and initial instru-
mentation of the program under test, and then uses two scripts
to extract information from the binary and patch it to complete
the instrumentation. We made available gcc v. 9.4.0 and IDA
Pro v. 7.0 to PathAFL to complete these tasks. Then, we tested
the instrumented UNIFUZZ binaries for 48 hours in the custom
PathAFL fuzzer, ensuring a fair and equal comparison with
the results of our bug finding experiment from Section V-A.

Table VII shows the complete main results of the experiment.
As we anticipated in Section V-A, PathAFL was only able to
detect a fraction of the bugs brought to light by our fuzzers,
corresponding to 29 of those discovered by our best-performing
cull (29.5%), 30 of those found by the baseline path
(38.9%) and 27 of those detected by opp (32.5%). However,
PathAFL exposed 4 bugs (1 stack overflow on exiv2, 1

3https://github.com/yanxxd/PathAFL/blob/master/README CN.md

https://doi.org/10.1145/3533767.3534385
https://doi.org/10.1145/3243734.3243804
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00137
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3650212.3680324
https://blog.regehr.org/archives/1796
https://blog.regehr.org/archives/1796
https://doi.org/10.6084/m9.figshare.30646583.v2
https://doi.org/10.6084/m9.figshare.30646583.v2
https://github.com/yanxxd/PathAFL/blob/master/README_CN.md


TABLE VI
MEDIAN NUMBER OF UNIQUE BUGS FOUND BY EACH FUZZER CUMULATIVELY ACROSS THE 10 RUNS, FOLLOWED BY PAIRWISE COMPARISONS FOR

COMMON (SET INTERSECTIONS) AND DIFFERENT (SET SUBTRACTIONS) BUGS.

Benchmark path pcguard cull opp path X

pcguard

cull X

pcguard

opp X

pcguard

opp X

cull
path \
pcguard

pcguard \
path

cull \
pcguard

pcguard \
cull

opp \
pcguard

pcguard \
opp

opp \
cull

cull \
opp

cflow 2 1 2 1 1 1 1 1 1 0 1 0 0 0 0 1
exiv2 4 5 4 3 4 3 3 3 0 1 1 2 0 2 0 1
ffmpeg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
flvmeta 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
gdk 6 6 8 6 6 6 6 6 0 0 2 0 0 0 0 2
imginfo 1 2 1 1 1 1 1 1 0 1 0 1 0 1 0 0
infotocap 1 4 1 3 1 1 3 1 0 3 0 3 0 1 2 0
jhead 6 5 6 5 5 5 5 5 1 0 1 0 0 0 0 1
jq 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
lame 4 4 4 3 4 4 3 3 0 0 0 0 0 1 1 1
mp3gain 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1
mp42aac 6 5 6 5 5 5 4 4 1 0 1 1 1 1 2 2
mujs 3 2 2 1 2 2 1 1 1 0 0 0 0 1 0 1
nm-new 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
objdump 9 8 11 9 8 8 7 9 1 0 3 0 2 1 2 2
pdftotext 8 9 16 8 5 7 7 8 3 4 9 2 1 2 0 8
sqlite3 5 8 6 6 4 6 4 4 1 4 0 2 2 4 2 2
tiffsplit 5 5 6 4 4 5 4 4 1 1 1 0 0 1 2 2

TOTAL 48 55 58 47 41 42 45 42 7 14 16 13 2 10 5 16

TABLE VII
UNIQUE BUGS FOUND BY OUR PATH-AWARE FUZZERS AND PATHAFL , CUMULATIVELY ACROSS THE 10 RUNS, FOLLOWED BY PAIRWISE COMPARISONS FOR

COMMON (SET INTERSECTIONS) AND DIFFERENT (SET SUBTRACTIONS) BUGS.

Benchmark path pathafl cull opp path X

pathafl

cull X

pathafl

opp X

pathafl
path \
pathafl

pathafl \
path

cull \
pathafl

pathafl \
cull

opp \
pathafl

pathafl \
opp

cflow 2 0 3 2 0 0 0 2 0 3 0 2 0
exiv2 8 4 6 8 3 3 3 5 1 3 1 5 1
ffmpeg 2 2 1 0 2 1 0 0 0 0 1 0 2
flvmeta 2 2 2 2 2 2 2 0 0 0 0 0 0
gdk 8 0 11 9 0 0 0 8 0 11 0 9 0
imginfo 2 0 2 3 0 0 0 2 0 2 0 3 0
infotocap 2 3 3 5 2 2 2 0 0 1 0 3 0
jhead 6 6 6 6 6 6 6 0 0 0 0 0 0
jq 1 1 1 1 1 1 1 0 0 0 0 0 0
lame 4 3 5 4 3 3 3 1 0 2 0 1 0
mp3gain 3 1 3 3 1 1 1 2 0 2 0 2 0
mp42aac 7 0 8 6 0 0 0 7 0 8 0 6 0
mujs 3 1 4 1 0 0 0 3 1 4 1 1 1
nm-new 0 0 0 0 0 0 0 0 0 0 0 0 0
objdump 9 5 12 11 5 5 5 4 0 7 0 6 0
pdftotext 8 3 18 10 2 2 2 6 1 16 1 8 1
sqlite3 5 1 7 7 1 1 1 4 0 6 0 6 0
tiffsplit 5 4 6 5 4 4 3 1 0 2 0 2 1

TOTAL 77 34 98 83 30 29 27 47 4 69 5 56 7

segmentation fault on infotocap, 1 heap overflow on mujs,
and 1 exception-triggered abort on pdftotext) that none
of our path-aware fuzzers brought to light, with pcguard
missing them as well. All the other bugs found by PathAFL
are also disclosed by at least one of our fuzzers. Furthermore,
PathAFL found no bugs on 4 subjects, for which our path-aware
fuzzers discovered more than 1 bug.

To investigate the reasons why our fuzzers missed those 4
bugs, we further tested the UNIFUZZ subjects using the baseline
AFL fuzzer (v. 2.52b) atop which PathAFL was developed, in
the same setup of the other experiments. Interestingly, AFL and
PathAFL found nearly the same bugs: out of 34 bugs spotted by
PathAFL and 32 by AFL, 31 were found by both. This means
that PathAFL found only 3 bugs (2 in objdump and 1 in
infotocap) that AFL was not able to detect, while it missed

1 (on mp3gain) found by its baseline. Notably, AFL finds 3
of the 4 bugs that both our path-aware fuzzers and pcguard
missed, indicating that their discovery may not be dependent
on the techniques introduced by PathAFL, but rather on the
different underlying fuzzer. The infotocap one remains the
only bug found in our tests solely by PathAFL.

To understand this modest performance of PathAFL, we
observe that the evaluation from its paper revolves around
“unique crashes” (and not unique bugs, unlike our work and
more recent fuzzing evaluation practices). Reasoning on crashes
inevitably leads to bug over-counting [32], as the PathAFL
authors acknowledge in their paper [7]. Moreover, the authors
employ the base AFL notion of “unique crashes”, which
consists in considering any 2 crashes unique if they cover
at least 1 different edge in the path from the beginning of the



TABLE VIII
UNIQUE BUGS FOUND BY PATHAFL AND AFL CUMULATIVELY ACROSS THE

10 RUNS, FOLLOWED BY PAIRWISE COMPARISONS FOR COMMON (SET
INTERSECTIONS) AND DIFFERENT (SET SUBTRACTIONS) BUGS.

Benchmark pathafl afl pathafl X

afl

pathafl \
afl

afl \
pathafl

cflow 0 0 0 0 0
exiv2 4 4 4 0 0
ffmpeg 2 2 2 0 0
flvmeta 1 1 1 0 0
gdk 0 0 0 0 0
imginfo 0 0 0 0 0
infotocap 3 2 2 1 0
jhead 6 6 6 0 0
jq 1 1 1 0 0
lame 2 2 2 0 0
mp3gain 1 2 1 0 1
mp42aac 0 0 0 0 0
mujs 1 1 1 0 0
nm-new 0 0 0 0 0
objdump 5 3 3 2 0
pdftotext 3 3 3 0 0
sqlite3 1 1 1 0 0
tiffsplit 4 4 4 0 0

TOTAL 34 32 31 3 1

TABLE IX
CRASHES AND UNIQUE CRASHES FOUND BY PATHAFL AND AFL

CUMULATIVELY ACROSS THE 10 RUNS.

Benchmark pathafl afl

crashes unique crashes crashes unique crashes

cflow 0 0 0 0
exiv2 103 20 72 14
ffmpeg 7 2 7 2
flvmeta 747 1 917 1
gdk 0 0 0 0
imginfo 0 0 0 0
infotocap 304 3 980 3
jhead 311 9 296 11
jq 31 3 107 3
lame 11 4 17 5
mp3gain 472 2 705 3
mp42aac 0 0 0 0
mujs 442 2 1609 2
nm-new 0 0 0 0
objdump 56 11 22 4
pdftotext 31 3 35 4
sqlite3 2 1 4 1
tiffsplit 2341 23 1768 21

TOTAL 4858 84 6539 74

program to the crash site. This is an even more imprecise
deduplication criterion, compared to the stack trace-based
clustering [32] that we employed before manual analysis and
that much literature used as evaluation practice before moving,
more recently, to manually deduplicated unique bugs.

We provide in Table IX a comparison of the crashes detected
by AFL and PathAFL, using both their notion of “unique
crashes” (crashes columns 2 and 4) and the more standard one
we adopted for our main experiment in Section V-A (unique
crashes columns 3 and 5), i.e., the hashing-based clustering
that considers the top 5 frames of the stack trace leading to
the crash. The results of this analysis indicate that PathAFL
actually finds a considerable number of crashes that are missed
by the base AFL, which is in line with what the authors claim
in their paper, but in the end most of these crashes are actually
different manifestations of the same bugs.

In light of the results of this experiment, we conclude that our
methods evidently and largely outperform the one proposed

TABLE X
UNIQUE BUGS FOUND BY THE PATH AND CULL FUZZERS AND THE CULLR

VARIANT FOR THE ABLATION EXPERIMENT, CUMULATIVELY ACROSS THE
10 RUNS, FOLLOWED BY PAIRWISE COMPARISONS FOR COMMON (SET

INTERSECTIONS) AND DIFFERENT (SET SUBTRACTIONS) BUGS.

Benchmark path cullr cull path X

cullr

cull X

cullr

path \
cullr

cullr \
path

cull \
cullr

cullr \
cull

cflow 2 2 3 2 2 0 0 1 0
exiv2 8 9 6 8 6 0 1 0 3
ffmpeg 2 1 1 1 1 1 0 0 0
flvmeta 2 1 2 1 1 1 0 1 0
gdk 8 10 11 8 10 0 2 1 0
imginfo 2 2 2 2 2 0 0 0 0
infotocap 2 2 3 2 2 0 0 1 0
jhead 6 6 6 6 6 0 0 0 0
jq 1 1 1 1 1 0 0 0 0
lame 4 4 5 4 4 0 0 1 0
mp3gain 3 4 3 1 3 2 3 0 1
mp42aac 7 7 8 7 6 0 0 2 1
mujs 3 2 4 1 1 2 1 3 1
nm-new 0 0 0 0 0 0 0 0 0
objdump 9 11 12 7 11 2 4 1 0
pdftotext 8 10 18 7 7 1 3 11 3
sqlite3 5 3 7 2 2 3 1 5 1
tiffsplit 5 6 6 4 5 1 2 1 1

TOTAL 77 81 98 64 70 13 17 28 11

by Shengbo et al. [7], as they proved capable of discovering
many more, and different, bugs that neither PathAFL nor our
pcguard baseline were able to spot.

APPENDIX D
CULLING WITH RANDOM SELECTION

To complete our investigation into the source of the exper-
imental differences between our approach and classic edge
coverage-guided fuzzing, we conducted an ablation study by
replacing the edge coverage-preserving criterion for culling
with a random selection strategy. The rationale behind this
experiment is to understand whether retaining edge coverage
is the key driver of the benefits of our culling technique, and
whether reducing the queue size already improves the results
of the baseline path-aware fuzzer.

For the ablation, we first analyzed the average size of the
queue after each culling round performed by the cull fuzzer
for each subject, and used those values as range of options to
decide the quantity of test cases to randomly remove at each
culling round. For the removal, we seed the random number
generator with the timestamp of each culling round, and trim
from the queue between 84% and 98% of its elements.

We show in Table X the outcome of this experiment, where
we compare the unique bugs discovered by this new fuzzer
configuration, which we name cullr, against those discovered
by path and cull after 48 hours of testing with 10 runs per
subject, as we did for all the main experiments.

As the reader can appreciate, cullr discovered 4 more bugs
(81 in total) than the baseline path (77 in total), and 17 fewer
bugs than cull (98 in total). This indicates that an unoptimized
culling strategy may already bring an improvement with respect
to the baseline path-aware fuzzer, which is overburdened by
the queue explosion phenomenon. On the other hand, it is also
evident that just removing test cases randomly is inefficient for
the total number of bugs found when compared to cull, as
an inevitable outcome of this operation is causing regression
and thus requiring rediscovery of certain code areas.



Interestingly, cullr was able to disclose 17 and 11 bugs
missed by path and cull, respectively. Further analysis
shows that cullr exposed 5 bugs that no other path-aware
fuzzer (path, cull, opp) could disclose. These bugs affect
mp3gain, mujs, pdftotext, sqlite3, and tiffplit
(one each per program), and pcguard could expose only
the one affecting sqlite3. These results further substantiate
our claim that there is no single right way of wielding the
increased visibility brought about by our path-aware feedback,

warranting future exploration of this research direction.
For a comparison with the remaining path-aware fuzzer opp,

we observe that cullr slightly underperforms in terms of
total number of disclosed bugs: 83 for opp and 81 for cullr.
However, when taking into account bug identity, cullr was
capable of discovering 13 bugs missed by opp, whereas opp
found 15 bugs missed by cullr. This indicates that random
culling and the opportunistic biasing approach have their own
advantages and neither strategy supersedes the other.


	Introduction
	Background and Motivation
	Coverage-guided Fuzzing
	The Limitation of Edge Coverage
	Towards a Finer-grained Feedback

	Methodology and Design
	Path Profiles as Feedback for Fuzzing
	Wielding the Feedback for Increased Efficiency
	Culling
	Opportunistic


	Implementation
	Evaluation
	RQ1: Bug Finding Capabilities
	RQ2: Runtime Costs
	RQ3: Code Coverage

	Discussion
	Related Works
	Conclusion
	Abstract
	Artifact check-list (meta-information)
	Description
	How delivered
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Notes

	References
	Appendix A: Instrumentation Overhead
	Appendix B: Median values for found bugs
	Appendix C: Comparison with PathAFL
	Appendix D: Culling with Random Selection

