
Transition Systems andTransition Systems and

Service CompositionService Composition

Giuseppe De GiacomoGiuseppe De Giacomo

Coodination of Web Services - Models,

Methods and Tools

INFWEST Seminar Tampere, June 5-7, 2007

Transition SystemsTransition Systems

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 3

Concentrating on behaviors:Concentrating on behaviors:
SUM two integersSUM two integers

• Consider a program for computing the sum of two integers.

• Such a program has essentially two states

– the state S0 of the memory before the computation: including
the two number to sum

– the state S1 of the memory after the computation: including the
result of the computation

• Only one action, i.e. “sum”, can be performed

S1S0

sum

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 4

Concentrating on behaviors:Concentrating on behaviors:
CheckValidityCheckValidity

• Consider a program for computing the validity of a FOL
formula:

• Also such a program has essentially two states

– the state S1 of the memory before the computation: including
the formula to be checked

– the state S2 of the memory after the computation: including
“yes”, “no”, “time-out”

• Only one action, i.e. “checkValidity”, can be performed

S1S0

checkValidity

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 5

Concentrating on behaviorsConcentrating on behaviors

• The programs SUM and CheckValidity are very different from
a computational point of view.

– SUM is trivial

– CheckValidity is a theorem prover hence very complex

• However they are equally trivial from a behavioral point of
view:

– two states S1 and S2

– a single action causing the transition

S1S0

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 6

Concentrating on behaviors:Concentrating on behaviors:
RockPaperScissorRockPaperScissor

• Consider the program RockPaperScissor that allows to play
two players the the well-known game.

• The behavior of this program is not trivial:

2rock

2paper
2scissor

2wins

1wins

tie

2rock

2paper
2scissor

tie

2wins

1wins

2rock

2paper
2scissor

1wins

tie

2wins

1ro
ck

1scissor

1paper

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 7

Concentrating on behaviors:Concentrating on behaviors:
RockPaperScissor RockPaperScissor (automatic)(automatic)

• Consider a variant of the program RockPaperScissor that
allows one players to play against the computer.

• The behavior of this program is now nondeterministic:

2rock

2paper
2scissor

2wins

1wins

tie

2rock

2paper
2scissor

tie

2wins

1wins

2rock

2paper
2scissor

1wins

tie

2wins

1ch
oose

s

1chooses

1chooses

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 8

Concentrating on behaviors:Concentrating on behaviors:
WebPageWebPage

A web page can have a complex behavior!

http://www.informatik.uni-trier.de/~ley/db/

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 9

Concentrating on behaviors:Concentrating on behaviors:
Vending MachineVending Machine

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 10

Concentrating on behaviors:Concentrating on behaviors:
Another Vending MachineAnother Vending Machine

20c 10c

collectb collects

big small

S0

S1

S4

10c

big

S0

S1 S2

S3

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 11

Concentrating on behaviors:Concentrating on behaviors:
Vending Machine with TiltVending Machine with Tilt

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

tilt

tilt

20c

10c

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 12

• A transition system TS is a tuple T = < A, S, S0, , F> where:

– A is the set of actions

– S is the set of states

– S0 S is the set of initial states

– S A S is the transition relation

– F S is the set of final states

• Variants:

– No initial states

– Single initial state

– Deterministic actions

– States labeled by propositions other than Final/¬Final

Transition SystemsTransition Systems

(c.f. Kripke Structure)

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 13

Process Algebras Process Algebras areare
Formalisms for Describing Formalisms for Describing TSTS

• Trans (a la CCS)

– Ven = 20c.Venb + 10c.Vens

– Venb = big.collectb.Ven

– Venl = small.collects.Ven

• Final

– Ven

20c 10c

collectb collects

big small

Ven

Venb Vens

 collectb.Ven collects.Ven

• TS may have infinite states - e.g., this happens when generated by

 process algebras involving iterated concurrency

• However we have good formal tools to deal only with finite states TS

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 14

Example Example (Clock)(Clock)

tick

S0

TS may describe (legal) nonterminating processes

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 15

Example Example (Slot (Slot MachineMachine))

collectwin 1$

play

play

S0

S1

S2

Nondereminisic transitions express
 choice that is not under the control of clients

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 16

ExampleExample
(Vending Machine - Variant 1)(Vending Machine - Variant 1)

20c 10c

collectb

collects

big small

S0

S1 S2

S3 S4

20c

10c

S5

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 17

ExampleExample
(Vending Machine - Variant 2)(Vending Machine - Variant 2)

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

S’1

S’3

20c

big

collectb

Inductive Inductive vs Coinductive vs Coinductive Definitions:Definitions:
ReachabilityReachability, , BisimilarityBisimilarity, , ……

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 19

ReachabilityReachability

• A binary relation R is a reachability-like relation iff:

– (s,s) R

– if a. s’. s a s’ (s’,s’’) R then (s,s’’) R

• A state s_0 of transition system S is reachable-from a state sf iff for all a
reachability-like relations R we have (s0, sf) R.

• Notably that

– reachable-from is a reachability-like relation itself

– reachable-from is the smallest reachability-like relation

Note it is a inductive definition!

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 20

Computing Computing Reachability Reachability onon
Finite Finite Transition SystemsTransition Systems

Algorithm ComputingReachability

Input: transition system TS

Output: the reachable-from relation (the smallest reachability-like relation)

Body

R =

R’ = {(s,s) | s S}

while (R R’) {

R := R’

R’ := R’ {(s,s’’) | s’,a. s a s’ (s’,s’’) R }

}

return R’

YdoB

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 21

BisimulationBisimulation

• A binary relation R is a bisimulation iff:

 (s,t) R implies that
– s is final iff t is final

– for all actions a

• if s a s’ then t’ . t a t’ and (s’,t’) R

• if t a t’ then s’ . s a s’ and (s’,t’) R

• A state s0 of transition system S is bisimilar, or simply equivalent,
to a state t0 of transition system T iff there exists a bisimulation
between the initial states s0 and t0.

• Notably
– bisimilarity is a bisimulation

– bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 22

Computing Computing Bisimilarity Bisimilarity onon
Finite Finite Transition SystemsTransition Systems

Algorithm ComputingBisimulation

Input: transition system TSS = < A, S, S0, S, FS> and

 transition system TST = < A, T, T0, T, FT>

Output: the bisimilarity relation (the largest bisimulation)

Body

R =

R’ = S T - {(s,t) | ¬(s FS t FT)}

while (R R’) {

R := R’

R’ := R’ - ({(s,t) | s’,a. s a s’ ¬ t’ . t a t’ (s’,t’) R’ }

 {(s,t) | t’,a. t a t’ ¬ s’ . s a s’ (s’,t’) R’ })

}

return R’

Ydob

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 23

Example of Example of BisimulationBisimulation

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

20c 10c

collectb

collects

big small

S0

S1 S2

S3 S4

20c

10c

S5

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 24

Example of Example of BisimulationBisimulation

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

S’1

S’3

20c

big

collectb

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 25

Automata vsAutomata vs..Transition SystemsTransition Systems

• Automata
– define sets of runs (or traces or strings): (finite) length sequences of

actions

• TSs
– … but I can be interested also in the alternatives “encountered” during

runs, as they represent client’s “choice points”

a

b

c e

d

a

b

c e

d

a

Different as
TSs

As automata they
recognize the
same language:
abc* + ade*

Logics of ProgramsLogics of Programs

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 27

Logics of ProgramsLogics of Programs

• Are modal logics that allow to describe properties of
transition systems

• Examples:

– HennesyMilner Logic

– Propositional Dynamic Logics

– Modal (Propositional) Mu-calculus

• Perfectly suited for describing transition systems: they can
tell apart transition systems modulo bisimulation

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 28

HennessyMilner HennessyMilner LogicLogic

• := P | (atomic propositions)

 ¬ | 1 2 | 1 2 | (closed under boolean operators)

 [a] | <a> (modal operators)

• Propositions are used to denote final states

• <a> means there exists an a-transition that leads to a state
where holds; i.e., expresses the capability of executing
action a bringing about

• [a] means that all a-transitions lead to states where
holds; i.e., express that executing action a brings about

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 29

Logics of Programs: ExamplesLogics of Programs: Examples

• Usefull abbreviation:
– <any> stands for <a1> L <an>

– [any] stands for [a1] L [an]

– <any - a1> stands for <a2> L <a >

– [any –a1] stands for [a2] L [a]

• Examples:

– <a>true cabability of performing action a

– [a]false inability of performing action a

– ¬Final <any>true [any-a]false
 necessity/inevitability of performing action a

 (i.e., action a is the only action possible)

– ¬Final [any]false deadlock!

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 30

Propositional Dynamic LogicPropositional Dynamic Logic

• := P | (atomic propositions)

 ¬ | 1 2 | 1 2 | (closed under boolean operators)

 [r] | <r> (modal operators)

 r := a | r1 + r2| r1;r2| r* | P? (complex actions as regular expressions)

• Essentially add the capability of expressing partial correctness assertions via
formulas of the form
– 1 [r] 2 under the conditions 1 all possible executions of r that terminate

 reach a state of the TS where 2 holds

• Also add the ability of asserting that a property holds in all nodes of the
transition system
– [(a1+ L + a)*] in every reachable state of the TS holds

• Useful abbereviations:
– any stands for (a1+ L + a) Note that + can be expressed also in HM Logic

– u stands for any* This is the so called master/universal modality

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 31

Modal Modal Mu-CalculusMu-Calculus

• := P | (atomic propositions)

 ¬ | 1 2 | 1 2 | (closed under boolean operators)

 [r] | <r> (modal operators)

 μ X. (X) | X. (X) (fixpoint operators)

• It is the most expressive logic of the family of logics of programs.
• It subsumes

– PDL (modalities involving complex actions are translated into fomulas involving fixpoints)
– LTL (linear time temporal logic),
– CTS, CTS* (branching time temporal logics)

• Examples:
• [any*] can be expressed as X. [any]X

• μ X. [any]X along all runs eventually
• μ X. <any>X along some run eventually
• X. [a](μ Y. <any>true [any-b]Y) X

 every run that that contains a contains later b

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 32

Model CheckingModel Checking

• Model checking is polynomial in the size of the TS for

– HennessyMilner Logic

– PDL

– Mu-Calculus

• Also model checking is wrt the formula

– Polynomial for HennessyMiner Logic

– Polynomial for PDL

– Polynomial for Mu-Calculus with bounded alternation of fixpoints
and NP coNP in general

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 33

Model CheckingModel Checking

• Given a TS T, one of its states s, and a formula verify whether the
formula holds in s. Formally:

 T,s

• Examples (TS is our vending machine):
– S0 Final

– S0 <10c>true capability of performing action 10c

– S2 [big]false inability of performing action big

– S0 [10c][big]false after 10c cannot execute big

– Si μ X. Final [any] X eventually a final state is reached

– S0 Z. (μ X. Final [any] X) [any] Z or equivalently

 S0 [any*](μ X. Final [any] X)

from everywhere eventually final

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 34

AI Planning as Model CheckingAI Planning as Model Checking

• Build the TS of the domain:
– Consider the set of states formed all possible truth value of the

propositions (this works only for propositional setting).
– Use Pre’s and Post of actions for determining the transitions
Note: the TS is exponential in the size od the description.

• Write the goal in a logic of program
– typically a single least fixpoint formula of Mu-Calculus (compute

reachable states intersection states where goal true)

• Planning:
– model check the formula on the TS starting from the given initial state.
– use the path (paths) used in the above model checking for returning the

plan.

• This basic technique works only when we have complete information (or at least total
observability on state):

– Sequiential plans if initial state known and actions are deterministic
– Conditional plans if many possible initial states and/or actions are nondeterministic

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 35

ExampleExample

• Operators (Services + Mappings)
– Registered ¬FlightBooked [S1:bookFlight] FlightBooked
– ¬Registered [S1:register] Registered
– ¬HotelBooked [S2:bookHotel] HotelBooked

• Additional constraints (Community Ontology):
– TravelSettledUp

 FlightBooked HotelBooked EventBooked

• Goals (Client Service Requests):
– Starting from state

Registered ¬FlightBooked ¬ HotelBooked ¬EventBooked
check <any*>TravelSettedUp

– Starting from all states such that
 ¬FlightBooked ¬ HotelBooked ¬EventBooked
 check <any*>TravelSettledUp

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 36

ExampleExample

S1:fR

Ss:h

S1:r

Ss:h

S1:r

Ss:h
S1:f

H

R,H

R,H,F,T

R,F

Starting from state
 Registered ¬ FlightBooked ¬ HotelBooked ¬ EventBooked
check
 <any*>TravelSettledUp

Plan:
 S_1:bookFlight;
 S_2:bookHotel

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 37

S1:fR

Ss:h

S1:r

Ss:h

S1:r

Ss:h
S1:f

H

R,H

R,H,F,T

R,F

ExampleExample

Starting from states where
 ¬ FlightBooked ¬ HotelBooked ¬ EventBooked
check
 <any*>TravelSettledUp

Plan:
 if(¬Registered) {
 S1:register;
 }
 S1:bookFlight;
 S2:bookHotel

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 38

SatisfiabilitySatisfiability

• Observe that a formula may be used to select among all TS
T those such that for a given state s we have that T,s

• SATISFIABILITY: Given a formula verify whether there

exists a TS T and a state s such that. Formally:

 check whether exists T, s such that T,s

• Satisfiability is:

– PSPACE for HennesyMilner Logic

– EXPTIME for PDL

– EXPTIME for Mu-Calculus

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 39

ReferencesReferences

[Stirling Banff96] C. Stirling: Modal and temporal logics for processes. Banff Higher Order
Workshop LNCS 1043, 149-237, Springer 1996

[Bradfield&Stirling HPA01] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook
of Process Algebra, 293-332, Elsevier, 2001.

[Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer
Science, Springer 2001

[Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical
Computer Science, Vol. B, 789–840. North Holland, 1990.

[HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.
[Clarke& Schlingloff HAR01] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of

Automated Reasoning 2001: 1635-1790
[CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.
[Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical

Computer Science, Vol B: 995-1072. North Holland, 1990.
[Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive

Systems. Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996
[Vardi CST] M. Vardi: Alternating automata and program verification. Computer Science

Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.
[Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic

Approach to Branching-Time Model Checking (full version of CAV'94 paper).
[Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.

Composition: the Composition: the ““RomanRoman”” Approach Approach

Name by
Rick Hull

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 41

The Roman ApproachThe Roman Approach

Community Ontology

Service1 Service2 ServiceN

Mapping1 Mapping2 MappingN

Client-tailored!

Community ontology: just
a set of actions

Client formulates the
service it requires as a
TS using the actions of
the common ontology

Available services:
described in terms of a TS
using actions of the
community ontology

The community realizes
the client’s target service
by “reversing” the mapping
and hence using fragments
of the computation of the
the available services

Client

Service request

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 42

Community of ServicesCommunity of Services

• A community of Services is

– a set of services …

– … that share implicitly a common understanding on a common
set of actions (common ontology limited to the alphabet of
actions)…

– … and export their behavior using (finite) TS over this common
set of actions

• A client specifies needs as a service behavior, i.e, a (finite)
TS using the common set of actions of the community

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 43

(Target & Available) Service TS(Target & Available) Service TS

b

c
S0

a

Example:

a: “search by author (and select)”

b: “search by title (and select)”

c: “listen (the selected song)”

• We model services as finite TS T = (, S, s0, , F) with

– single initial state (s0)

– deterministic transitions (i.e., is a partial function from S
to S)

Note: In this way the client entirely controls/chooses the transition to
execute

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 44

Composition: an ExampleComposition: an Example

available service 1

available service 2

target service (virtual!)

b

c

a

a

c

b

c

Lets get some intuition ofLets get some intuition of what a what a compositioncomposition is is

through an through an exampleexample

orchestrator

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 45

Composition: an ExampleComposition: an Example

target service

b

c

a

a

c

b

c

A sample runA sample run
action request:

orchestrator

available service 1

available service 2

orchestrator response:

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 46

a

Composition: an ExampleComposition: an Example

target service

b

c

a

c

b

c

a

a,1

A sample runA sample run

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 47

a

a

Composition: an ExampleComposition: an Example

target service

b

c
c

b

c

ca

a,1

A sample runA sample run

c,1

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 48

b

b

c

a

a

Composition: an ExampleComposition: an Example

target service

c

c

ca

b,2a,1

A sample runA sample run

c,1

b

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 49

b

b

c

a

a

Composition: an ExampleComposition: an Example

target service

c

c

ca

b,2a,1

A sample runA sample run
c …

c,1 c,2

b

orchestrator

action request:

orchestrator response:

available service 1

available service 2

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 50

A A orchestrator orchestrator program realizing theprogram realizing the
target behaviortarget behavior

target service

b

c

a

a

c

b

c

orchestrator program

a,1a,1

b,2b,2

c,1c,1

c,2c,2

orchestrator

available service 1

available service 2

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 51

• Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

• A history is the sequence of actions done so far:

h = a1 a2 … ak

• Observe that to take a decision P has full access to the past, but no
access to the future
– Note given an history h = a1 a2 … ak an the function P we can reconstruct the state

of the target service and of each available service

• a1 a2 … ak determines the state of the target service

• (a1 ,P([] ,ak))(a2 ,P([a1], a2)) … (ak ,P([a1 a2 … ak-1],ak)) determines the state
of of each available service

• Problem: synthesize a orchestrator program P that realizes the
target service making use of the available services

Orchestrator Orchestrator programsprograms

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 52

Service Execution TreeService Execution Tree

S0

a b

c c

a b a b

c c c c

...

...

...

...

By “unfolding” a (finite) TS one gets an (infinite) execution tree
-- yet another (infinite) TS which bisimilar to the original one)

• Nodes: history i.e., sequence of actions
executed so far

• Root: no action yet performed

• Successor node x a of x: action a can
be executed after the sequence of
action x

• Final nodes: the service can terminate

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 53

Composition:
– coordinating program …
– … that realizes the target service …
– … by suitably coordinating available services

 Composition can be seen as:
– a labeling of the execution tree of the target service such that

…
– … each action in the execution tree is labeled by the available

service that executes it …
– … and each possible sequence of actions on the target service

execution tree corresponds to possible sequences of actions on
the available service execution trees, suitably interleaved

Alternative (but Equivalent)Alternative (but Equivalent)
Definition of Definition of SService Compositionervice Composition

54

Example of CompositionExample of Composition

a

c

S1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...
S0 = orch(S1 || S2)

b

c
S0

a

55

Example of CompositionExample of Composition

a

c

S1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

AAll ll services services start start from their starting from their starting statestate

S0 = orch(S1 || S2)

56

Example of Composition (5)Example of Composition (5)

a

c

S1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

EEach action of the targetach action of the target service is executed by service is executed by at at least least oneone of the of the component servicescomponent services

S0 = orch(S1 || S2)

57

Example of composition (6)Example of composition (6)

a

c

S1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

WWhen the target hen the target service service can can be leftbe left, , thenthen all component services must be all component services must be in a final in a final statestate

S0 = orch(S1 || S2)

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 58

Example of composition (7)Example of composition (7)

a

c

S1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a S0 = orch(S1 || S2)

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 59

Example of composition (8)Example of composition (8)

a

c

S1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a S0 = orch(S1 || S2)

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 60

ObservationObservation

• This labeled execution tree has a finite representation as
a finite TS …

• …with transitions labeled by an action and the service
performing the action

a,1

c,1

b,2

c,2

Is this always the case when we deal with services expressible as finiteIs this always the case when we deal with services expressible as finite
TS? See laterTS? See later……

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 61

QuestionsQuestions

Assume services of community and target service are finite
TSs

– Can we always check composition existence?

– If a composition exists there exists one which is a finite
TS?

– If yes, how can a finite TS composition by computed?

To answer ICSOC’03 exploits PDL SAT

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 62

AnswersAnswers

Reduce service composition synthesis to satisfability in
(deterministic) PDL

– Can we always check composition existence?

Yes, SAT in PDL is decidable in EXPTIME

– If a composition exists there exists one which is a finite
TS?

Yes, by the small model property of PDL

– How can a finite TS composition be computed?

From a (small) model of the corresponding PDL formula

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 63

Basic idea:

• A orchestrator program P realizes the target service T iff at each point:

– transition labeled a of the target service T …

– … an available service Bi (the one chosen by P) that can make an a-
transition, realizing the a-transition of T

• Encoding in PDL:

– transition labeled a …
use branching

– an available service Bi that can make an a-transition …
use underspecified predicates assigned through SAT

Encoding in PDLEncoding in PDL

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 64

Structure of the PDL EncodingStructure of the PDL Encoding

 = Init [u](0 i=1,…,n i aux)

PDL PDL encodingencoding isis polynomialpolynomial in the in the sizesize of the of the serviceservice TSsTSs

InitialInitial statesstates of of allall

servicesservices

PDL PDL encodingencoding of of

target target serviceservice

PDL PDL encodingencoding of of ii--
thth componentcomponent

serviceservice

PDL PDL additionaladditional

domain-domain-

independentindependent

conditionsconditions

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 65

PDL EncodingPDL Encoding

• Target service S0 = (, S0, s
0
0, 0, F0) in PDL we define 0 as

the conjunction of:

– s ¬ s' for all pairs of distinct states in S0

service states are pair-wise disjoint

– s <a> T [a]s' for each s'= 0(s,a)

target service can do an a-transition going to state s’

– s [a] for each 0(s,a) undef.

target service cannot do an a-transition

– F0 s F0 s

denotes target service final states

• …

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 66

PDL Encoding (cont.d)PDL Encoding (cont.d)

• available services S
i
= (, Si, s

0
i, i, Fi) in PDL we define i as

the conjunction of:

– s ¬ s' for all pairs of distinct states in Si

Service states are pair-wise disjoint

– s [a](movedi s' ¬ movedi s) for each s'= i(s,a)

if service moved then new state, otherwise old state

– s [a](¬ movedi s) for each i(s,a) undef.

if service cannot do a, and a is performed then it did not move

– Fi s Fi s

denotes available service final states
• …

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 67

PDL Encoding (cont.d)PDL Encoding (cont.d)

• Additional assertions aux

– <a>T [a] i=1,…,n movedi for each action a

at least one of the available services must move at each step

– F0 i=1,…,n Fi

when target service is final all comm. services are final

– Init s0
0 i=1....n s

0
i

Initially all services are in their initial state

PDL encoding: = Init [u](0 i=1,…,n i aux)

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 68

ResultsResults

Thm[ICSOC’03,IJCIS’05]:
Composition exists iff PDL formula SAT

From composition labeling of the target service one can build a

tree model of the PDL formula and viceversa

Information on the labeling is encoded in predicates movedi

Corollary [ICSOC’03,IJCIS’05]:
Checking composition existence is decidable in EXPTIME

Thm[Muscholl&Walukiewicz FoSSaCS’07]:
Checking composition existence is EXPTIME-hard

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 69

Results on TS CompositionResults on TS Composition

Thm[ICSOC’03,IJCIS’05]:
If composition exists then finite TS composition exists.

From a small model of the PDL formula ,

one can build a finite TS machine

Information on the output function of the machine is encoded in
predicates movedi

 finite TS composition existence of services expressible as
finite TS is EXPTIME-complete

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 70

Example (1)Example (1)

a

c

S1

b

c

S2

b

c
S0

a

…

…

…

s0
0 s1

0 s2
0

<a> T [a] (moved1 moved2)

 T [b] (moved1 moved2)

<c> T [c] (moved1 moved2)

F0 F1 F2

Target serviceTarget service

Available servicesAvailable services

PDLPDL

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 71

Example (2)Example (2)

s0
0 ¬ s0

1

s0
0 <a> T [a] s0

1

s0
0 T [b] s0

1

s0
1 <c> T [c] s0

0

s0
0 [c]

s0
1 [a]

s0
1 [b]

F0 s0
0

…

…

…

b

c
S0

a

Target serviceTarget service

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 72

Example (3)Example (3)
…

s1
0 ¬ s1

1

s1
0 [a] (moved1 s1

1
 ¬moved1 s1

0)

s1
0 [c] ¬moved1 s1

0

s1
0 [b] ¬moved1 s1

0

s1
1 [a] ¬moved1 s1

1

s1
1 [b] ¬moved1 s1

1

s1
1 [c] (moved1 s1

0
 ¬moved1 s1

0)

F1 s1
0

s2
0 ¬ s2

1

s2
0 [b] (moved2 s2

1
 ¬moved2 s2

0)

s2
0 [c] ¬moved2 s2

0

s2
0 [a] ¬moved2 s2

0

s2
1 [b] ¬moved2 s2

1

s2
1 [a] ¬moved2 s2

1

s2
1 [c] (moved2 s2

0
 ¬moved2 s2

0)

F2 s2
0

…

Available servicesAvailable services

a

c

S1

b

c

S2

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 73

Example (4)Example (4)

Check: run SAT on PDL formula

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 74

ExampleExample

Check: run SAT on PDL formula

Yes (small) model
a b

c ca b

ss00
00, , ss

00
11, , ss

00
22,,

FF00, , FF11, , FF22,,

InitInit

ss00
00
, , ss00

11, , ss
00

22
,,

FF00, , FF11, , FF22,,

movedmoved22

ss11
00
, , ss11

11
, , ss00

22,,

FF22, , movedmoved11

ss11
00
, , ss00

11
, , ss11

22,,

FF11,, movedmoved22

ss00
00
, , ss00

11
, , ss00

22,,

FF00, , FF11, , FF22,,

movedmoved11

b a

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 75

ExampleExample

Check: run SAT on PDL formula

Yes (small) model

 extract finite TS

a,1 b,2

c,1 c,2
a,1

b,2
b,2

a,1

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 76

ExampleExample

Check: run SAT on PDL formula

Yes (small) model

 extract finite TS

minimize finite TS
 (similar to Mealy machine minimization)

c,1 c,2

a,1 b,2

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 77

Results on SynthesizingResults on Synthesizing
CompositionComposition

• Using PDL reasoning algorithms based on model
construction (cf. tableaux), build a (small) model

Exponential in the size of the PDL encoding/services finite TS

Note: SitCalc, etc. can compactly represent finite TS,

PDL encoding can preserve compactness of representation

• From this model extract a corresponding finite TS
Polynomial in the size of the model

• Minimize such a finite TS using standard techniques (opt.)

Polynomial in the size of the TS

Note: finite TS extracted from the model is not minimal

because encodes output in properties of individuals/states

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 78

Tools for SynthesizingTools for Synthesizing
CompositionComposition

• In fact we use only a fragment of PDL in particular we use
fixpoint (transitive closure) only to get the universal
modality …

• … thanks to a tight correspondence between PDLs and
Description Logics (DLs), we can use current highly
optimized DL reasoning systems to do synthesis …

• … when the ability or returning models will be added …

• … meanwhile we have developed a prototype tool on this
idea (see last Massimo’s lecture)

Pellet already has this ability, and we are exploring its use

Composition via SimulationComposition via Simulation

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 80

BisimulationBisimulation

• A binary relation R is a bisimulation iff:

 (s,t) R implies that
– s is final iff t is final

– for all actions a

• if s a s’ then t’ . t a t’ and (s’,t’) R

• if t a t’ then s’ . s a s’ and (s’,t’) R

• A state s0 of transition system S is bisimilar, or simply equivalent, to a
state t0 of transition system T iff there exists a bisimulation between the
initial states s0 and t0.

• Notably
– bisimilarity is a bisimulation

– bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 81

Computing Computing Bisimilarity Bisimilarity onon
Finite Finite Transition SystemsTransition Systems

Algorithm ComputingBisimulation

Input: transition system TSS = < A, S, S0, S, FS> and

 transition system TST = < A, T, T0, T, FT>

Output: the bisimilarity relation (the largest bisimulation)

Body

R =

R’ = S T - {(s,t) | ¬(s FS t FT)}

while (R R’) {

R := R’

R’ := R’ - ({(s,t) | s’,a. s a s’ ¬ t’ . t a t’ (s’,t’) R’ }

 {(s,t) | t’,a. t a t’ ¬ s’ . s a s’ (s’,t’) R’ })

}

return R’

Ydob

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 82

SimulationSimulation

• A binary relation R is a simulation iff:

 (s,t) R implies that
– s is final implies that t is final

– for all actions a

• if s a s’ then t’ . t a t’ and (s’,t’) R

• A state s0 of transition system S is simulated by a state t0 of transition
system T iff there exists a simulation between the initial states s0 and t0.

• Notably
– simulated-by is a simulation

– simulated-by is the largest simulation

Note it is a co-inductive definition!

• NB: A simulation is just one of the two directions of a bisimulation

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 83

Computing Computing Simulation Simulation onon
Finite Finite Transition SystemsTransition Systems

Algorithm ComputingSimulation

Input: transition system TSS = < A, S, S0, S, FS> and

 transition system TST = < A, T, T0, T, FT>

Output: the simulated-by relation (the largest simulation)

Body

R =

R’ = S T - {(s,t) | s FS ¬(t FT)}

while (R R’) {

R := R’

R’ := R’ - {(s,t) | s’,a. s a s’ ¬ t’ . t a t’ (s’,t’) R’ }

}

return R’

Ydob

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 84

Potential Behavior Potential Behavior of theof the
Whole Whole CommunityCommunity

• Let TS1, L ,TSn be the TSs of the component services.

• The Community TS is defined as
the asynchronous product of TS1, L ,TSn, namely:

TSc = < A, Sc, Sc
0, c, Fc> where:

– A is the set of actions

– Sc = S1 L Sn

– Sc
0 = {(s0

1,L, s0
m)}

– F F1 L Fn

– c Sc A Sc is defined as follows:

 (s1 L sn) a (s’1 L s’n) iff

1. i. si a s’i i

2. j i. s’j = sj

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 85

Example of CompositionExample of Composition

a

c

TS1

b

c

TS2

b

c
TS0

a

•• Available ServicesAvailable Services

••Target ServiceTarget Service

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 86

Example of CompositionExample of Composition

a

c

TSc

b

c
TS0

a

Community TSCommunity TS

Target ServiceTarget Service

b

c

c

a

b

c

Composition exists!

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 87

Composition via SimulationComposition via Simulation

• Thm[Subm07]
A composition realizing a target service TS TSt exists if there exists a
simulation relation between the initial state st

0 of TSt and the initial state
(s1

0, .., sn
0) of the community TS TSc.

• Notice if we take the union of all simulation relations then we get the largest
simulation relation S, still satisfying the above condition.

• Corollary[Subm07]
A composition realizing a target service TS TSt exists
iff (st

0 , (s1
0, .., sn

0)) S.

• Thm[Subm07]
Computing the largest simulation S is polynomial in the size of the
target service TS and the size of the community TS…

• ... hence it is EXPTIME in the size of the available services.

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 88

Composition Composition viavia Simulation Simulation

• Given the largest simulation S form TSt to TSc(which include the initial states), we can
build the orchestrator orchestrator generatorgenerator.

• This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

• Def: OG = < A, [1,…,n], Sr, sr
0, r, r, Fr> with

– A : the actions shared by the community
– [1,…,n]: the identifiers of the available services in the community
– Sr = St S1 L Sn : the states of the orchestrator program

– sr
0 = (s0

t, s
0
1, ..., s

0
m) : the initial state of the orchestrator program

– Fr { (st , s1 , ..., sn) | st Ft : the final states of the orchestrator program

– r : Sr Ar [1,…,n] : the service selection function, defined as follows:
• If st a, s’t then

chosechose k s.t. sk’. sk a, sk’ (st’, (s1 , ..., s’k , ..., sn)) S

– r Sr Ar [1,…,n] Sr : the state transition function, defined as follows:
• Let r(st, s1 , ..., sk , ..., sn, a) = k then

 (st, s1 , ..., sk , ..., sn) a,k (st’, s1 , ..., s’k , ..., sn) where sk a, s’k

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 89

Composition Composition viavia Simulation Simulation

• For generating OG we need only to compute S and then
apply the template above

• For running an orchestrator from the OG we need to store
and access S (polynomial time, exponential space) …

• … and compute r and r at each step (polynomial time and space)

Extension to the Roman ModelExtension to the Roman Model

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 91

ExtensionsExtensions

• Nondeterministic (angelic) target specification
– Loose specification in client request

– Angelic (don’t care) vs devilish (don’t know) nondeterminism

– See [ICSOC’04]

• Nondeterministic (devilish) available services
– Incomplete specification in available services

– Devilish (don’t know) vs angelic (don’t care) nondeterminism

– See below & [IJCAI’07]

• Distributing the orchestration
– Often a centralized orchestration is unrealistic: eg. services deployed on mobile devices

• too tight coordination

• too much communication

• orchestrator cannot be embodied anywhere

– Drop centralized orchestrator in favor of independent controllers on single available services
(exchanging messages)

– Under suitable conditions: a distributed orchestrator exists iff a centralized one does

– Still decidable (EXPTIME-complete)

– See [AAAI’07]

• Dealing with data
– This is the single most difficult issue to tackle

• First results: actions as DB updates, see [VLDB’05]

• Literature on Abstraction in Verification

– From finite to infinite transition systems!

• Security and trust aware composition [SWS’06]

• Automatic Workflows Composition of Mobile Services [ICWS’07]

See later

Nondeterministic Available ServicesNondeterministic Available Services

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 93

Nondeterminism Nondeterminism inin
Available ServicesAvailable Services

• Nondeterministic available services
– Incomplete information on the actual behavior

– Mismatch between behavior description (which is in
terms of the environment actions) and actual behavior of
the agents/devices

• Deterministic target service
– it’s a spec of a desired service: (devilish) nondeterminism is

banned

Devilish (don’t know)!

In general, devilish nondeterminism difficult to cope with
eg. nondeterminism moves AI Planning from PSPACE (classical planning) to EXPTIME
(contingent planning with full observability [Rintanen04])

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 94

a

a

Example: NondeterministicExample: Nondeterministic
Available ServicesAvailable Services

service 1

service 2

target servce

a

b

b

b

S10S10 S11S11

S20S20

Available services represented as Available services represented as nondeterministicnondeterministic transition systems transition systems

orchestrator

Devilish nondeterminism!

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 95

a

a

service 1

service 2

target service

a

b

b

b

S10S10 S11S11

S20S20

Example: NondeterministicExample: Nondeterministic
Available ServicesAvailable Services

orchestrator

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 96

a

a

a

service 1

service 2

target service

b

b

b

S10S10 S11S11

S20S20

Example: NondeterministicExample: Nondeterministic
Available ServicesAvailable Services

orchestrator

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 97

a

a

a

service 1

service 2

target service

b

b

b

S10S10 S11S11

S20S20

observe theobserve the

actual state!actual state!

Example: NondeterministicExample: Nondeterministic
Available ServicesAvailable Services

orchestrator

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 98

a

a

a

service 1

service 2

target service

b

b

b

S10S10 S11S11

S20S20

observe theobserve the

actual state!actual state!

Example: NondeterministicExample: Nondeterministic
Available ServicesAvailable Services

orchestrator

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 99

a

a

a

service 1

service 2

target service

b

b

b

S10S10 S11S11

S20S20

observe theobserve the

actual state!actual state!

Example: NondeterministicExample: Nondeterministic
Available ServicesAvailable Services

orchestrator

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 100

orchestrator

a

a

service 1

service 2

target service

a

b

b

b

S10S10 S11S11

S20S20

orchestrator program

True?True? aa,,11

S11?S11? bb,,11

S10?S10? bb,,22

An An Orchestrator Orchestrator Program RealizingProgram Realizing
the Target Servicethe Target Service

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 101

• Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

• A history is a sequence of the form:

(s1
0,s2

0,…,sn
0,e0) a1 (s1

1,s2
1,…,sn

1,e1) … ak (sk
1,s2

k,…,sn
k,ek)

• Observe that to take a decision P has full access to the past, but no
access to the future

• Problem: synthesize a orchestrator program P that realizes the target
service making use of the available services

Orchestrator Orchestrator ProgramsPrograms
contains all the observable

information up the current situation

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 102

Basic idea:

• A orchestrator program P realizes the target service T iff at each point:

– transition labeled a of the target service T …

– … an available service Bi (the one chosen by P) which can make an a-
transition …

– … and a-transition of Bi realize the a-transition of T

• Encoding in PDL:

– transition labeled a …
use branching

– an available service Bi …
use underspecified predicates assigned through SAT

– a-transition of Bi … :
use branching again

Technique: Reduction to PDLTechnique: Reduction to PDL

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 103

Technical Results: TheoreticalTechnical Results: Theoretical

Thm[IJCAI’07] Checking the existence of orchestrator
program realizing the target service is EXPTIME-complete.

Thm [IJCAI’07] If a orchestrator program exists there
exists one that is finite state.

EXPTIME-hardness due to Muscholl&Walukiewicz07

for deterministic services

Exploits the finite model property of PDL

Note: same results as for deterministic

services!

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 104

• Use state-of-the-art tableaux systems for OWL-DL for checking

SAT of PDL formula coding the composition existence

• If SAT, the tableau returns a finite model of

• Project away irrelevant predicates from such model, and possibly
minimize

• The resulting structure is a finite orchestrator program that realizes
the target behavior

Technical Results: PracticalTechnical Results: Practical

Reduction to PDL provides also a practical sound andReduction to PDL provides also a practical sound and

complete technique to compute the complete technique to compute the orchestrator orchestrator programprogram

also in this casealso in this case

polynomial in the size of the model

exponential in the size of the behaviors

eg, PELLET @ Univ. Maryland

Nondeterministic Available Services:Nondeterministic Available Services:
CompositionComposition àà la la SimulationSimulation

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 106

Composition Composition àà la Simulation la Simulation

• We consider binary relations R satisfying the following co-inductive condition:

 (s,(q1, .., qn)) R implies that
– if s is final then qi, with i=1, .., n, is final
– for all actions a

• if s a s’ then k 1..n.
– qk’ . qk a qk’
– qk’. qk a qk’ (s’,(,q1,..,qk’, .., qn)) R

Note similar in the spirit to simulation relation!
But more involved, since it deals with

• the existential choice (as the simulation) of the service, and
• the universal condition on the nondeterministic branches!

• A composition realizing a target service TS TSt exists if there exists a relation R satisfying the above
condition between the initial state st

0 of TSt and the initial state (s1
0, .., sn

0) of the community big TS
TSc.

• Notice if we take the union of all such relation R then we get the largest relation RR satisfying the
above condition.

• A composition realizing a target service TS T exists iff (st
0 , (s1

0, .., sn
0)) RR.

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 107

Composition Composition àà la Simulation la Simulation

• Given RR form TSt to TSc(which include the initial states), we can build the
orchestrator orchestrator generatorgenerator.

• This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

• Def: OG = < A, [1,…,n], Sr, sr
0, r, r, Fr> with

– A : the actions shared by the community
– [1,…,n]: the identifiers of the available services in the community
– Sr = St S1 L Sn : the states of the orchestrator program

– sr
0 = (s0

t, s
0
1, ..., s

0
m) : the initial state of the orchestrator program

– Fr { (st , s1 , ..., sn) | st Ft : the final states of the orchestrator program

– r : Sr Ar [1,…,n] : the service selection function, defined as follows:
• If st a, s’t then

chosechose k s.t. sk’. sk a, sk’ sk’. sk a, sk’ (st’, (s1 , ..., s’k , ..., sn)) RR

– r Sr Ar [1,…,n] Sr : the state transition relation, defined as follows:
• Let r(st, s1 , ..., sk , ..., sn, a) = k then

 (st, s1 , ..., sk , ..., sn) a,k (st’, s1 , ..., s’k , ..., sn) for each sk a, s’k

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 108

Composition Composition àà la Simulation la Simulation

• Computing RR is polynomial in the size of the target service
TS and the size of the community TS…

• ... composition can be done in EXPTIME in the size of the
available services

• For generating OG we need only to compute RR and then
apply the template above

• For running the OG we need to store and access RR
(polynomial time, exponential space) …

• … and compute r and r at each step (polynomial time and space)

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 109

Example of CompositionExample of Composition

a

b

TS1 b
TS2

b
TSt

a

 Available ServicesAvailable Services

Target ServiceTarget Service

a

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 110

Example of CompositionExample of Composition

b
TSt

a

Community TSCommunity TS

Target ServiceTarget Service

Composition exists!

a

b

TSc

a b

b

Transition Systems and Service CompositionTransition Systems and Service Composition Giuseppe De Giacomo 111

ReferencesReferences
[ICSOC’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:

Automatic Composition of E-services That Export Their Behavior. ICSOC 2003: 43-58
[WES’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: A

Foundational Vision of e-Services. WES 2003: 28-40
[TES’04] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: : A

Tool for Automatic Composition ofServices Based on Logics of Programs. TES 2004: 80-94
[ICSOC’04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Diego Calvanese:

Synthesis of underspecified composite e-services based on automated reasoning. ICSOC 2004: 105-
114

[IJCIS’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:
Automatic Service Composition Based on Behavioral Descriptions. Int. J. Cooperative Inf. Syst. 14(4):
333-376 (2005)

[VLDB’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, Massimo Mecella:
Automatic Composition of Transition-based Semantic Web Services with Messaging. VLDB 2005: 613-
624

[ICSOC’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella: Composition of
Services with Nondeterministic Observable Behavior. ICSOC 2005: 520-526

[SWS’06] Fahima Cheikh, Giuseppe De Giacomo, Massimo Mecella: Automatic web services composition in
trustaware communities. Proceedings of the 3rd ACM workshop on Secure web services 2006. Pages:
43 - 52.

[AISC’06] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella. Automatic Web
Service Composition: Service-tailored vs. Client-tailored Approaches. In Proc. AISC 2006, International
Workshop jointly with ECAI 2006.

[FOSSACS’07] Anca Muscholl, Igor Walukiewicz: A lower bound on web services composition. Proceedings
FOSSACS, LNCS, Springer, Volume 4423, page 274--287 - 2007.

[IJCAI’07] Giuseppe De Giacomo, Sebastian Sardiña: Automatic Synthesis of New Behaviors from a Library
of Available Behaviors. IJCAI 2007: 1866-1871

[AAAI’07] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Automatic synthesis of a global behavior
from multiple distributed behaviors. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), Vancouver, Canada, July 2007.

[Subm07] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, Fabio Patrizi: Automatic Service
Composition via Simulation. Submitted.

