

Transition Systems and Service Composition

Giuseppe De Giacomo

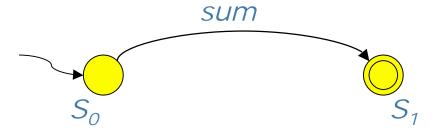
Coodination of Web Services - Models, Methods and Tools

INFWEST Seminar Tampere, June 5-7, 2007

Transition Systems

Concentrating on behaviors: SUM two integers

- Consider a program for computing the sum of two integers.
- Such a program has essentially two states
 - the state S_0 of the memory before the computation: including the two number to sum
 - the state S_1 of the memory after the computation: including the result of the computation
- Only one action, i.e. "sum", can be performed

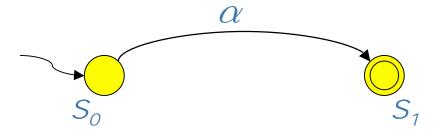


Concentrating on behaviors: CheckValidity

- Consider a program for computing the validity of a FOL formula:
- Also such a program has essentially two states
 - the state S_1 of the memory before the computation: including the formula to be checked
 - the state S_2 of the memory after the computation: including "yes", "no", "time-out"
- Only one action, i.e. "checkValidity", can be performed

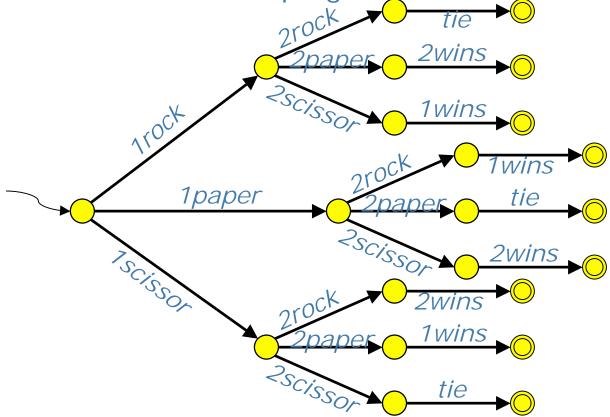
Concentrating on behaviors

- The programs SUM and CheckValidity are very different from a computational point of view.
 - SUM is trivial
 - CheckValidity is a theorem prover hence very complex
- However they are equally trivial from a behavioral point of view:
 - two states S_1 and S_2
 - a single action α causing the transition



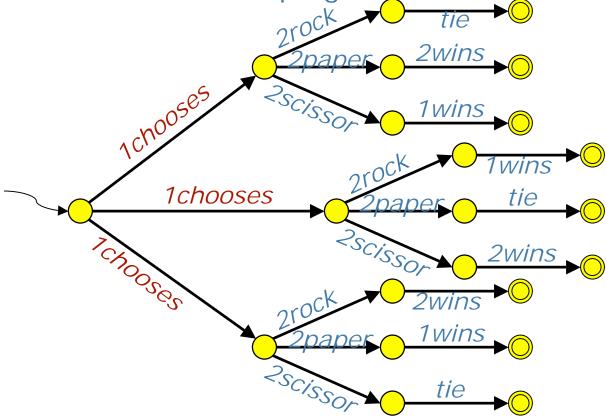
Concentrating on behaviors: RockPaperScissor

- Consider the program RockPaperScissor that allows to play two players the the well-known game.
- The behavior of this program is not trivial:



Concentrating on behaviors: RockPaperScissor (automatic)

- Consider a variant of the program RockPaperScissor that allows one players to play against the computer.
- The behavior of this program is now nondeterministic:



Concentrating on behaviors: WebPage

http://www.informatik.uni-trier.de/~ley/db/

e uni trior.de

A web page can have a complex behavior!

dblp.uni-trier.de

COMPUTER SCIENCE BIBLIOGRAPHY

UNIVERSITÄT TRIER

maintained by Michael Lev - Welcome - FAO

Mirrors: ACM SIGMOD - VLDB Endow. - SunSITE Central Europe

Search.

<u>Author</u> - <u>Title</u> - <u>Advanced</u> - New: <u>Faceted search</u> (<u>L38 Research Center</u>, <u>U. Hannover</u>)

Bibliographies

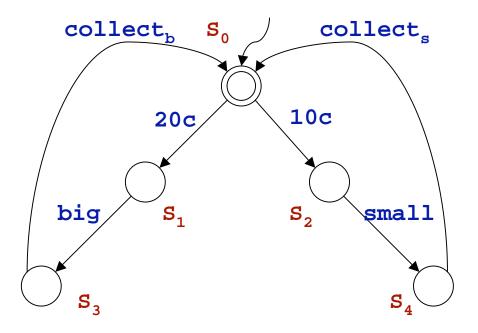
- Conferences: SIGMOD, VLDB, PODS, ER, EDBT, ICDE, POPL, ...
- Journals: CACM, TODS, TOIS, TOPLAS, DKE, VLDB J., Inf. Systems, TPLP, TCS, ...
- Series: LNCS/LNAL IFIP
- Books: Collections DB Textbooks
- By Subject: <u>Database Systems</u>, <u>Logic Prog.</u>, <u>IR</u>, ...

Full Text: ACM SIGMOD Anthology

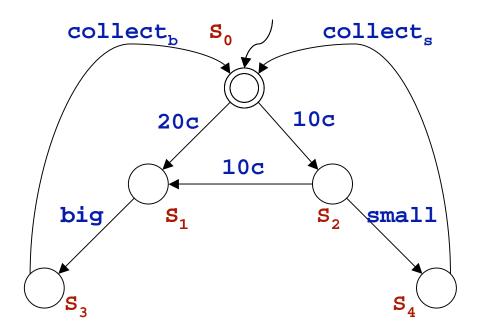
Links

- Computer Science Organizations: ACM (DL / SIGMOD / SIGIR), IEEE Computer Society (DL), IEEE Xplore, IFIP, ...
- Related Services: CiteSeer, CS BibTeX, io-port.net, CoRR, NZ-DL, Zentralblatt MATH, MathSciNet, Erdis Number Proi., Math Genealogy Proi., BibSonomy, ...

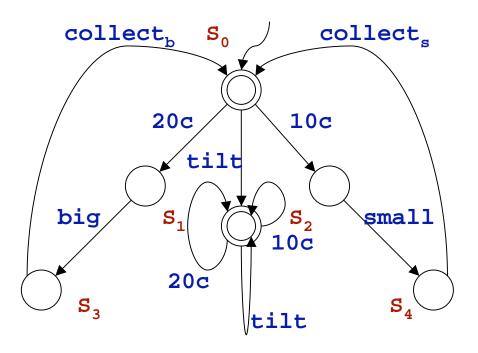
Concentrating on behaviors: Vending Machine



Concentrating on behaviors: Another Vending Machine



Concentrating on behaviors: Vending Machine with Tilt



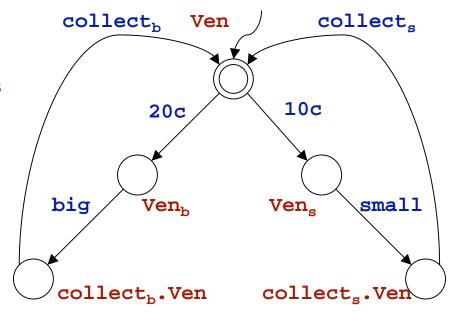
Transition Systems

- A transition system TS is a tuple $T = \langle A, S, S^0, \delta, F \rangle$ where:
 - A is the set of actions
 - S is the set of states
 - S⁰ ⊆ S is the set of initial states
 - $-\delta \subseteq S \times A \times S$ is the transition relation
 - F \subseteq S is the set of final states
- Variants:
 - No initial states
 - Single initial state
 - Deterministic actions
 - States labeled by propositions other than Final/¬Final

(c.f. Kripke Structure)

Process Algebras are Formalisms for Describing TS

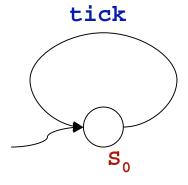
- Trans (a la CCS)
 - $Ven = 20c.Ven_b + 10c.Ven_s$
 - Ven_b = big.collect_b.Ven
 - Ven_I = small.collect_s.Ven
- Final
 - − √ Ven



- TS may have infinite states e.g., this happens when generated by process algebras involving iterated concurrency
- However we have good formal tools to deal only with finite states TS

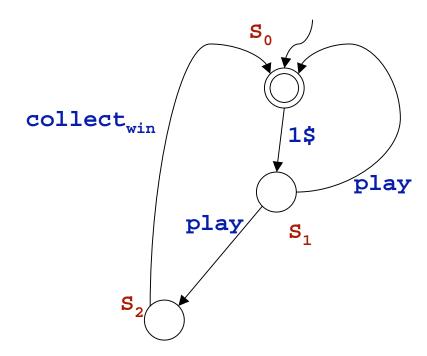
Example (Clock)

TS may describe (legal) nonterminating processes

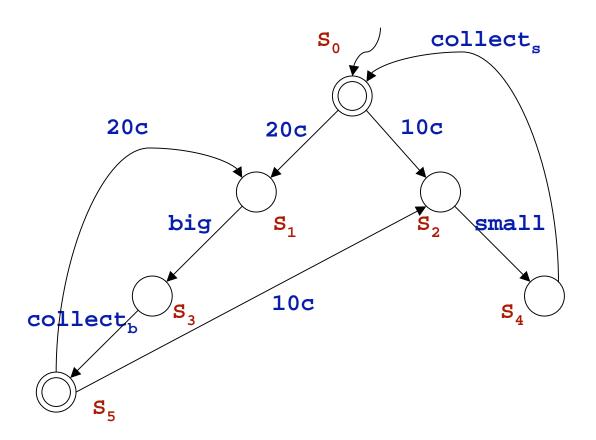


Example (Slot Machine)

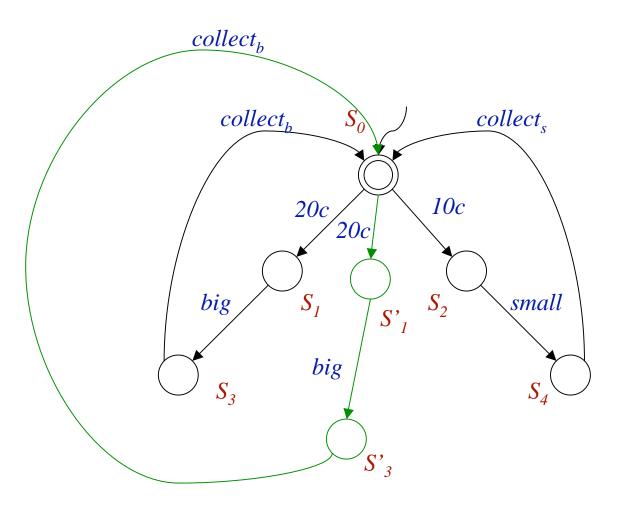
Nondereminisic transitions express choice that is not under the control of clients



Example (Vending Machine - Variant 1)



Example (Vending Machine - Variant 2)



Inductive vs Coinductive Definitions: Reachability, Bisimilarity, ...

Reachability

- A binary relation R is a reachability-like relation iff:
 - $(s,s) \in R$ - if ∃ a. s'. s \rightarrow_a s' \land $(s',s'') \in R$ then $(s,s'') \in R$
- A state s_0 of transition system S is **reachable-from** a state s_f iff for **all** a **reachability-like relations** R we have $(s_0, s_f) \in R$.
- Notably that
 - reachable-from is a reachability-like relation itself
 - reachable-from is the smallest reachability-like relation

Note it is a inductive definition!

Computing Reachability on Finite Transition Systems

Algorithm ComputingReachability

Input: transition system TS

Output: the reachable-from relation (the smallest reachability-like relation)

```
Body
```

```
R = \emptyset
R' = \{(s,s) \mid s \in S\}
while (R \neq R') \{
R := R'
R' := R' \cup \{(s,s'') \mid \exists s',a. \ s \rightarrow_a s' \land (s',s'') \in R \}
}
return R'
```

YdoB

Bisimulation

A binary relation R is a bisimulation iff:

```
(s,t) \in R implies that

- s is final iff t is final

- for all actions a

• if s \rightarrow_a s' then \exists t' . t \rightarrow_a t' and (s',t') \in R

• if t \rightarrow_a t' then \exists s' . s \rightarrow_a s' and (s',t') \in R
```

- A state s₀ of transition system S is bisimilar, or simply equivalent, to a state t₀ of transition system T iff there exists a bisimulation between the initial states s₀ and t₀.
- Notably
 - bisimilarity is a bisimulation
 - bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Computing Bisimilarity on Finite Transition Systems


```
Algorithm ComputingBisimulation
```

Input: transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$

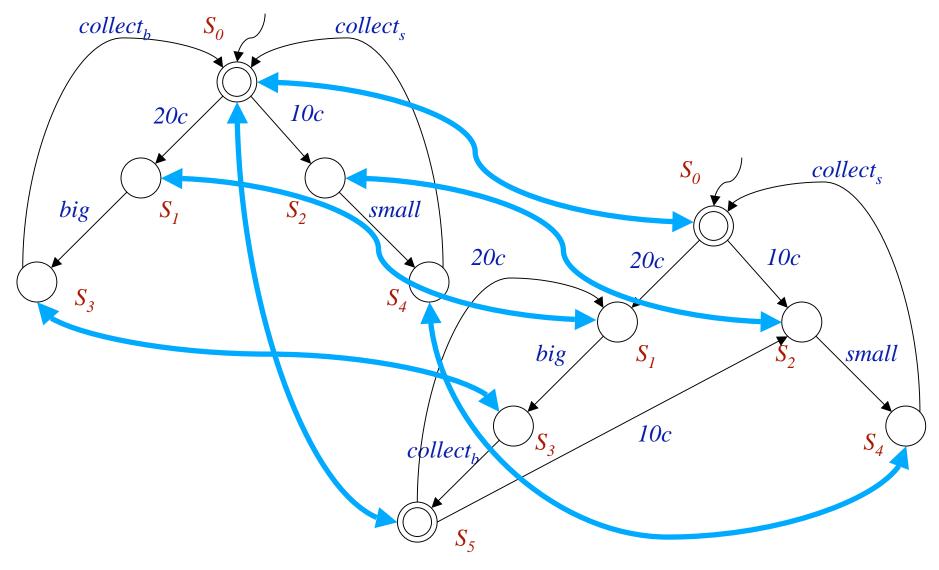
Output: the bisimilarity relation (the largest bisimulation)

```
Body
```

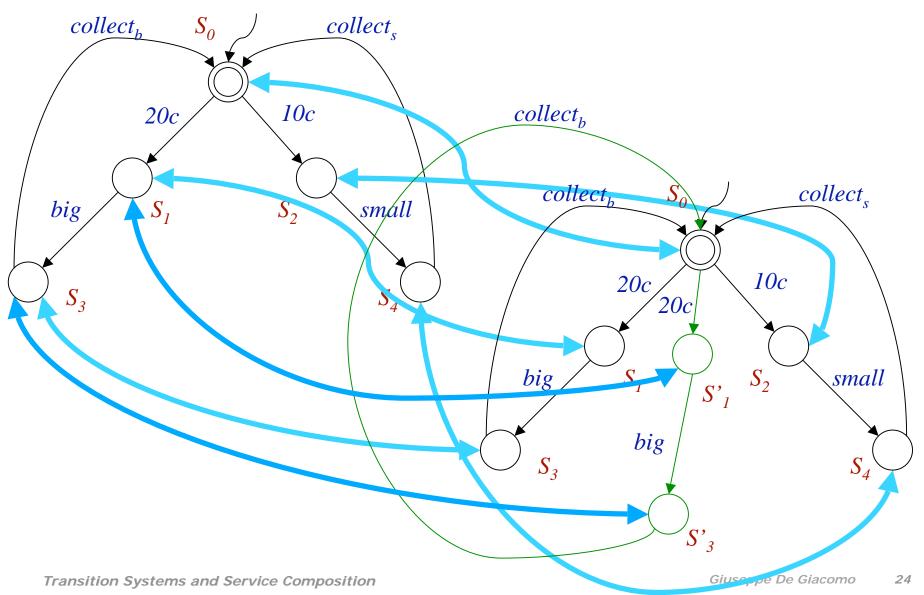
Ydob

```
\begin{split} R &= \emptyset \\ R' &= S \times T - \{(s,t) \mid \neg(s \in F_S \equiv t \in F_T)\} \\ \text{while } (R \neq R') \; \{ \\ R &:= R' \\ R' &:= R' - (\{(s,t) \mid \exists \, s', a. \, s \rightarrow_a \, s' \, \land \, \neg \exists \, t' \, . \, t \rightarrow_a \, t' \, \land \, (s',t') \in R' \, \} \\ &\qquad \qquad \{(s,t) \mid \exists \, t', a. \, t \rightarrow_a \, t' \, \land \, \neg \exists \, s' \, . \, s \rightarrow_a \, s' \, \land \, (s',t') \in R' \, \}) \\ \text{return } R' \end{split}
```


Example of Bisimulation

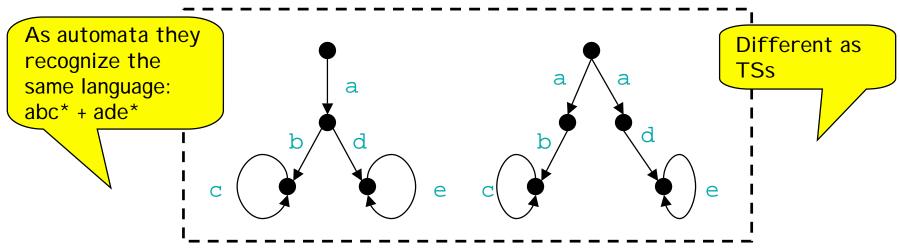


Example of Bisimulation



Automata vs. Transition Systems

- Automata
 - define sets of runs (or traces or strings): (finite) length sequences of actions
- TSs
 - ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"



Logics of Programs

Logics of Programs

- Are modal logics that allow to describe properties of transition systems
- Examples:
 - HennesyMilner Logic
 - Propositional Dynamic Logics
 - Modal (Propositional) Mu-calculus
- Perfectly suited for describing transition systems: they can tell apart transition systems modulo bisimulation

HennessyMilner Logic

- Propositions are used to denote final states
- <a> Φ means there exists an a-transition that leads to a state where Φ holds; i.e., expresses the capability of executing action a bringing about Φ
- [a] Φ means that all a-transitions lead to states where Φ holds; i.e., express that executing action a brings about Φ

Logics of Programs: Examples

- Usefull abbreviation:
 - $\langle any \rangle \Phi$ stands for $\langle a_1 \rangle \Phi \vee L \vee \langle a_n \rangle \Phi$
 - [any] Φ stands for $[a_1]\Phi \wedge L \wedge [a_n]\Phi$
 - <any $a_1 > \Phi$ stands for < $a_2 > \Phi \lor L \lor <$ $a_y > \Phi$
 - [any - a_1] Φ stands for [a_2] $\Phi \wedge L \wedge [a_v]\Phi$
- Examples:
 - <a>true cabability of performing action a
 - [a]false inability of performing action a
 - ¬Final \land <any>true \land [any-a]false
 - necessity/inevitability of performing action a (i.e., action a is the only action possible)
 - ¬Final ∧ [any]false deadlock!

Propositional Dynamic Logic

- $\Phi := P$ $\neg \Phi \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid$ $[r]\Phi \mid \langle r \rangle \Phi$
 - $r := a | r_1 + r_2 | r_1; r_2 | r^* | P?$

(atomic propositions) (closed under boolean operators) (modal operators)

(complex actions as regular expressions)

- Essentially add the capability of expressing partial correctness assertions via formulas of the form
 - $\Phi_1 \rightarrow [r]\Phi_2$ under the conditions Φ_1 all possible executions of r that terminate reach a state of the TS where Φ_2 holds
- Also add the ability of asserting that a property holds in all nodes of the transition system

 $- [(a_1 + L + a_1)^*]\Phi$

in every reachable state of the TS Φ holds

- Useful abbereviations:

 - u stands for any*

 any stands for (a₁+ L + a₂)
 Note that + can be expressed also in HM Logic This is the so called master/universal modality

Modal Mu-Calculus

- $\Phi := P \mid$ (atomic propositions) $\neg \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid$ (closed under boolean operators) $[r]\Phi \mid \langle r \rangle \Phi$ (modal operators) $\mu X.\Phi(X) \mid v X.\Phi(X)$ (fixpoint operators)
- It is the most expressive logic of the family of logics of programs.
- It subsumes
 - PDL (modalities involving complex actions are translated into fomulas involving fixpoints)
 - LTL (linear time temporal logic),
 - CTS, CTS* (branching time temporal logics)
- Examples:
- $[any^*]\Phi$ can be expressed as $v X. \Phi \wedge [any]X$
- μ X. Φ ∨ [any]X along all runs eventually Φ
 μ X. Φ ∨ <any>X along some run eventually Φ
- $v X. [a](\mu Y. <any>true \wedge [any-b]Y) \wedge X$

every run that that contains a contains later b

Model Checking

- Model checking is polynomial in the size of the TS for
 - HennessyMilner Logic
 - PDL
 - Mu-Calculus
- Also model checking is wrt the formula
 - Polynomial for HennessyMiner Logic
 - Polynomial for PDL
 - Polynomial for Mu-Calculus with bounded alternation of fixpoints and NP∩coNP in general

Model Checking

• Given a TS T, one of its states s, and a formula Φ verify whether the formula holds in s. Formally:

$$T,s \models \Phi$$

- Examples (TS is our vending machine):
 - S_0 ⊨ Final
 - S₀ \models <10c>true capability of performing action 10c
 - $S_2 \models [big]$ false inability of performing action big
 - $-S_0 \models [10c][big]$ false after 10c cannot execute big
 - S_i ⊨ μ X. Final \vee [any] X eventually a final state is reached
 - S_0 ⊨ v Z. (μ X. Final ∨ [any] X) ∧ [any] Z or equivalently S_0 ⊨ [any*](μ X. Final ∨ [any] X)

from everywhere eventually final

Al Planning as Model Checking

Build the TS of the domain:

- Consider the set of states formed all possible truth value of the propositions (this works only for propositional setting).
- Use Pre's and Post of actions for determining the transitions
 Note: the TS is exponential in the size od the description.

Write the goal in a logic of program

typically a single least fixpoint formula of Mu-Calculus (compute reachable states intersection states where goal true)

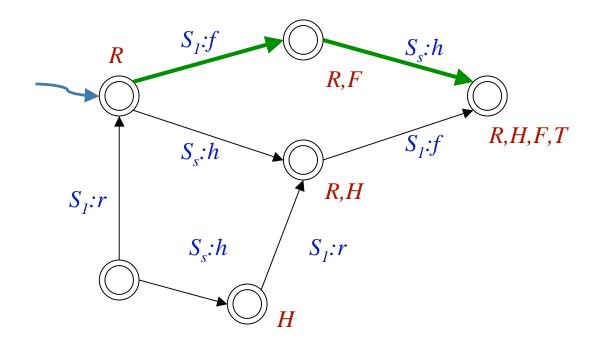
Planning:

- model check the formula on the TS starting from the given initial state.
- use the path (paths) used in the above model checking for returning the plan.
- This basic technique works only when we have complete information (or at least total observability on state):
 - Sequiential plans if initial state known and actions are deterministic
 - Conditional plans if many possible initial states and/or actions are nondeterministic

Example

- Operators (Services + Mappings)
 - Registered ∧ ¬FlightBooked → [S₁:bookFlight] FlightBooked
 - ¬Registered → [S₁:register] Registered
 - ¬HotelBooked → [S₂:bookHotel] HotelBooked
- Additional constraints (Community Ontology):
 - TravelSettledUp ≡
 FlightBooked ∧ HotelBooked ∧ EventBooked
- Goals (Client Service Requests):
 - Starting from state Registered ∧ ¬FlightBooked ∧ ¬ HotelBooked ∧ ¬EventBooked check <any* > TravelSettedUp
 - Starting from all states such that
 ¬FlightBooked ∧ ¬ HotelBooked ∧ ¬EventBooked
 check <any*>TravelSettledUp

Example



Plan:

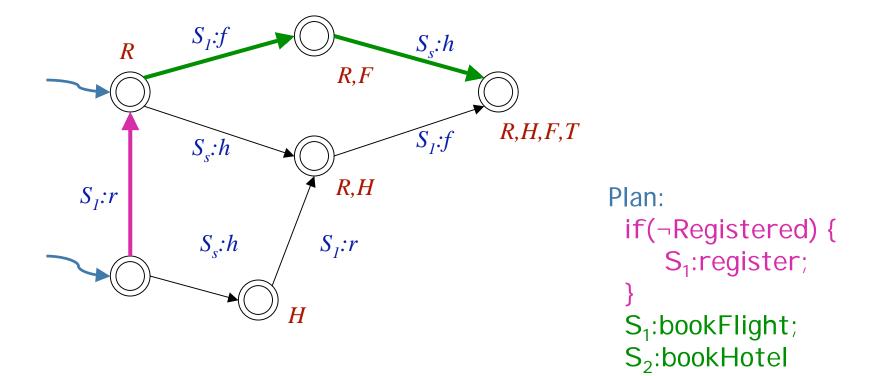
S_1:bookFlight;

S_2:bookHotel

Starting from state Registered $\land \neg$ FlightBooked $\land \neg$ HotelBooked $\land \neg$ EventBooked check

<any*>TravelSettledUp

Example



```
Starting from states where

¬ FlightBooked ∧ ¬ HotelBooked ∧ ¬ EventBooked check

<any*>TravelSettledUp
```

Satisfiability

- Observe that a formula Φ may be used to select among all TS T those such that for a given state s we have that T,s $\models \Phi$
- SATISFIABILITY: Given a formula Φ verify whether there exists a TS T and a state s such that. Formally:

check whether exists T, s such that $T,s \models \Phi$

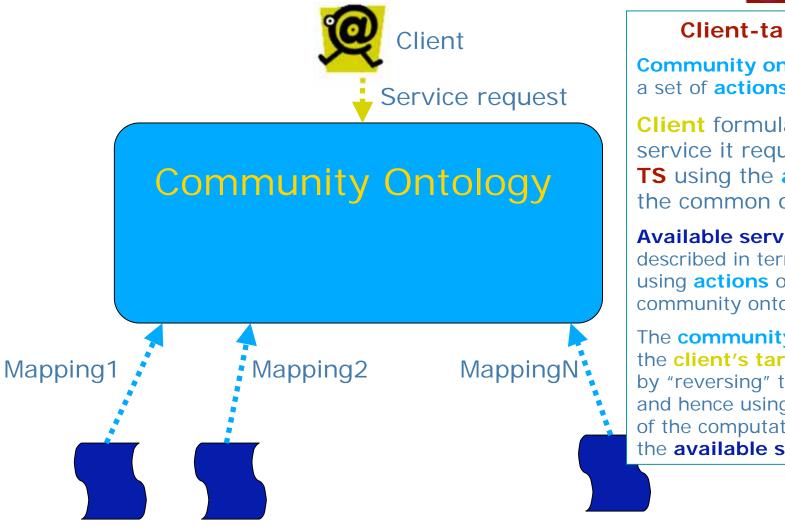
- Satisfiability is:
 - PSPACE for HennesyMilner Logic
 - EXPTIME for PDI
 - EXPTIME for Mu-Calculus

References

- [Stirling Banff96] C. Stirling: Modal and temporal logics for processes. Banff Higher Order Workshop LNCS 1043, 149-237, Springer 1996
- [Bradfield&Stirling HPA01] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook of Process Algebra, 293-332, Elsevier, 2001.
- [Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer Science, Springer 2001
- [Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical Computer Science, Vol. B, 789–840. North Holland, 1990.
- [HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.
- [Clarke& Schlingloff HAR01] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of Automated Reasoning 2001: 1635-1790
- [CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.
- [Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science, Vol B: 995-1072. North Holland, 1990.
- [Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive Systems. Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996
- [Vardi CST] M. Vardi: Alternating automata and program verification. Computer Science Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.
- [Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic Approach to Branching-Time Model Checking (full version of CAV'94 paper).
- [Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.

Composition: the "Roman" Approach

The Roman Approach



Client-tailored!

Community ontology: just a set of actions

Client formulates the service it requires as a **TS** using the **actions** of the common ontology

Available services:

described in terms of a TS using actions of the community ontology

The **community** realizes the client's target service by "reversing" the mapping and hence using fragments of the computation of the the available services

ServiceN

Service2

Service1

Community of Services

- A community of Services is
 - a set of services ...
 - ... that share implicitly a common understanding on a common set of actions (common ontology limited to the alphabet of actions)...
 - ... and export their behavior using (finite) TS over this common set of actions

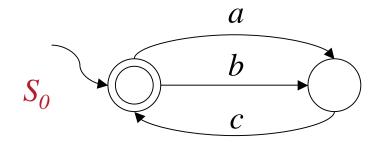
A client specifies needs as a service behavior, i.e, a (finite)
 TS using the common set of actions of the community

(Target & Available) Service TS

- We model services as finite TS T = $(\Sigma, S, s^0, \delta, F)$ with
 - single initial state (s⁰)
 - deterministic transitions (i.e., δ is a partial function from $S \times \Sigma$ to S)

Note: In this way the client entirely controls/chooses the transition to execute

Example:



a: "search by author (and select)"

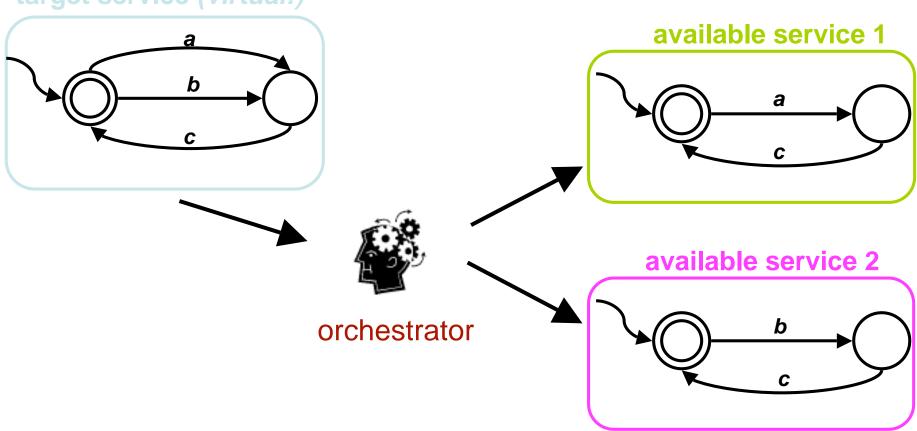
b: "search by title (and select)"

c: "listen (the selected song)"

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Composition: an Example

target service (virtual!)

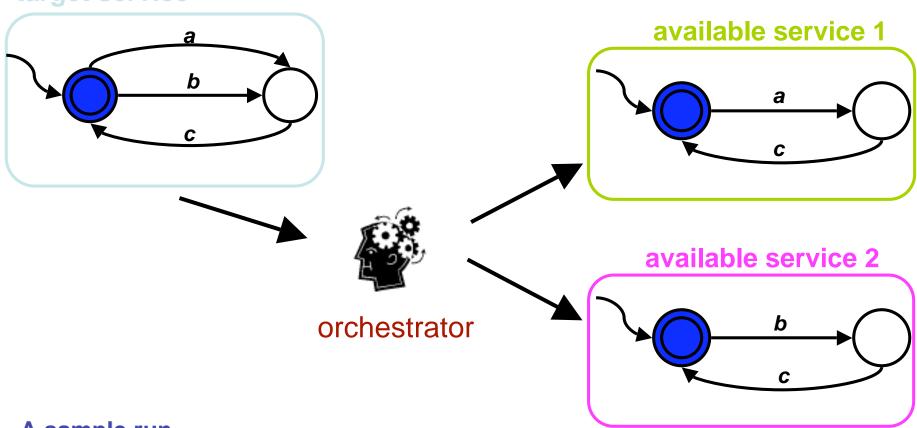


Lets get some intuition of what a composition is through an example

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Composition: an Example

target service



A sample run

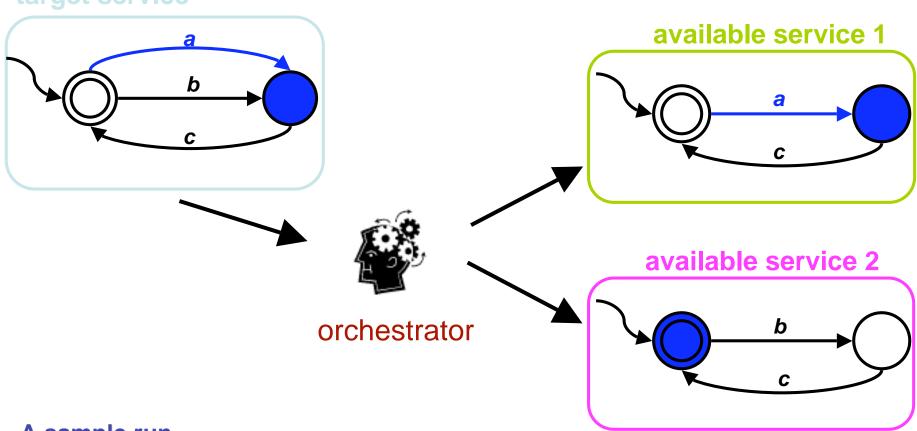
action request:

orchestrator response:

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Composition: an Example

target service



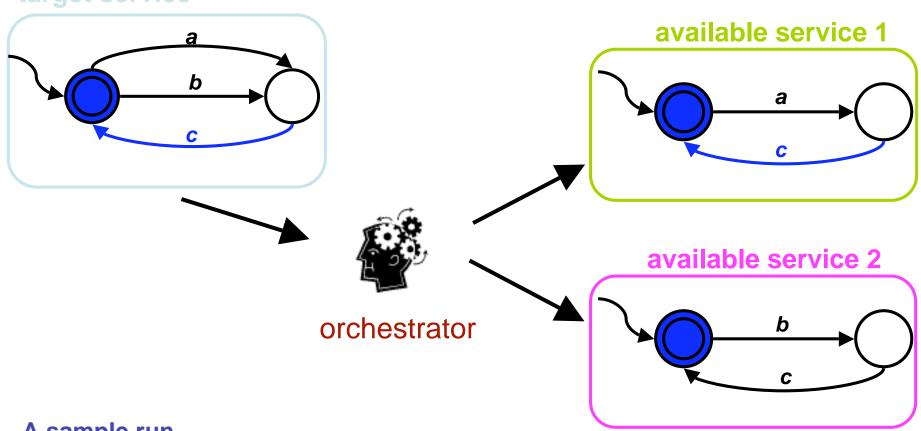
A sample run

action request:

orchestrator response: a,1

Composition: an Example

target service



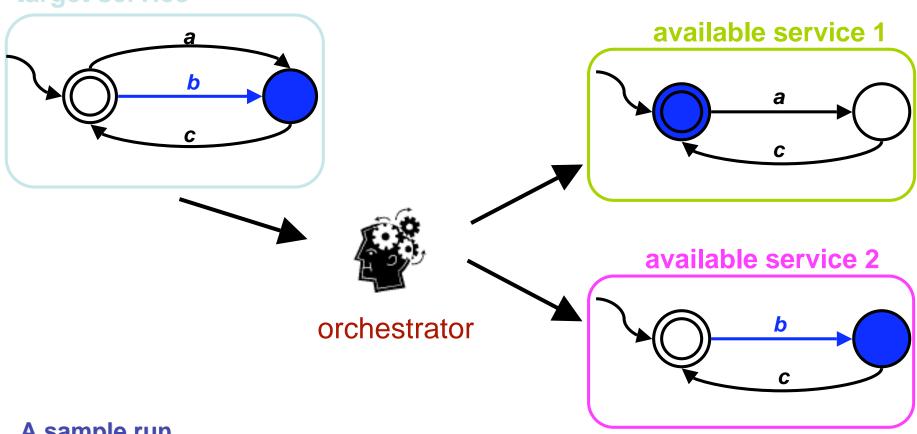
A sample run

action request: a c

orchestrator response: a,1 c,1

Composition: an Example

target service



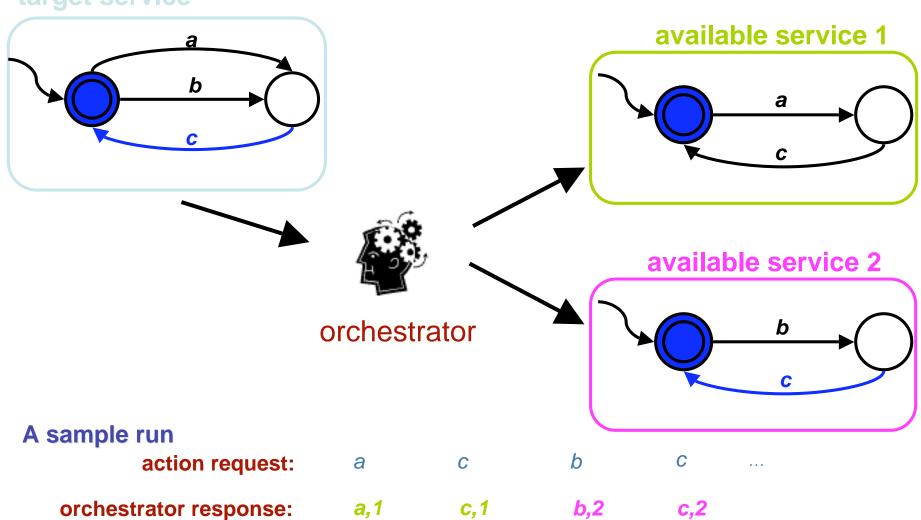
A sample run

b action request:

orchestrator response: a,1 c, 1 *b*,2

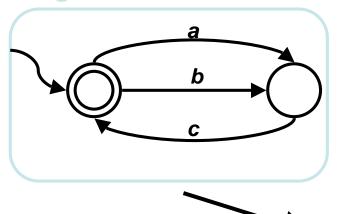
Composition: an Example

target service

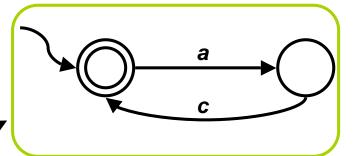


A orchestrator program realizing the target behavior

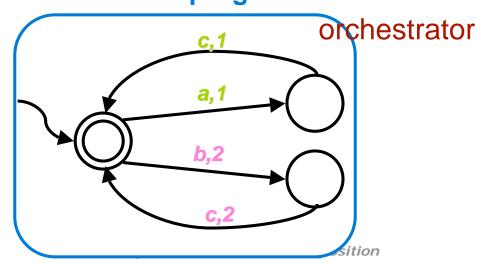
target service



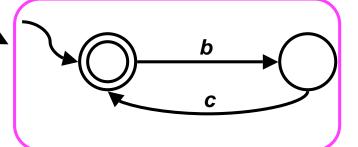
available service 1



orchestrator program



available service 2



Orchestrator programs

- Orchestrator program is any function P(h,a) = i that takes a history h
 and an action a to execute and delegates a to one of the available
 services i
- A history is the sequence of actions done so far:

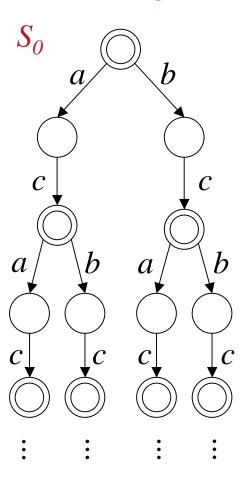
$$h = a_1 a_2 ... a_k$$

- Observe that to take a decision P has full access to the past, but no access to the future
 - Note given an history $h = a_1 a_2 ... a_k$ an the function P we can reconstruct the state of the target service and of each available service
 - $a_1 a_2 \dots a_k$ determines the state of the target service
 - $(a_1, P([], a_k))(a_2, P([a_1], a_2)) \dots (a_k, P([a_1 a_2 \dots a_{k-1}], a_k))$ determines the state of of each available service
- Problem: synthesize a orchestrator program P that realizes the target service making use of the available services

Service Execution Tree

By "unfolding" a (finite) TS one gets an (infinite) execution tree

-- yet another (infinite) TS which bisimilar to the original one)



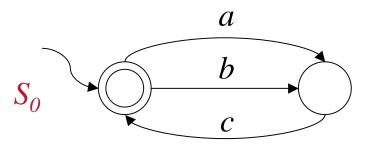
- Nodes: history i.e., sequence of actions executed so far
- Root: no action yet performed
- Successor node x·a of x: action a can be executed after the sequence of action x
- Final nodes: the service can terminate

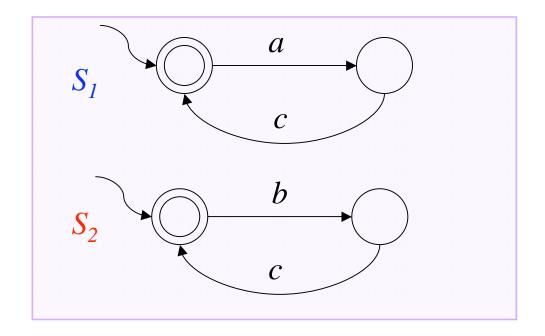
Alternative (but Equivalent) Definition of Service Composition

Composition:

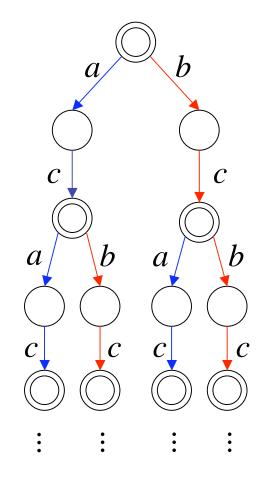
- coordinating program ...
- ... that realizes the target service ...
- ... by suitably coordinating available services
- ⇒ Composition can be seen as:
 - a labeling of the execution tree of the target service such that
 - ... each action in the execution tree is labeled by the available service that executes it ...
 - ... and each possible sequence of actions on the target service execution tree corresponds to possible sequences of actions on the available service execution trees, suitably interleaved

Example of Composition

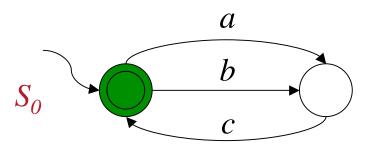


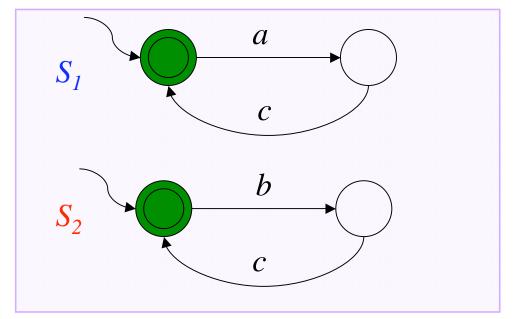


$$S_0 = orch(S_1 || S_2)$$



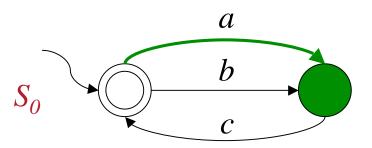
Example of Composition

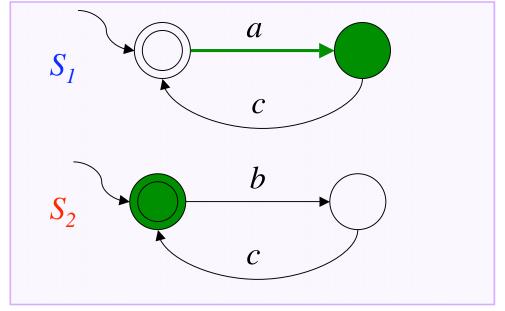




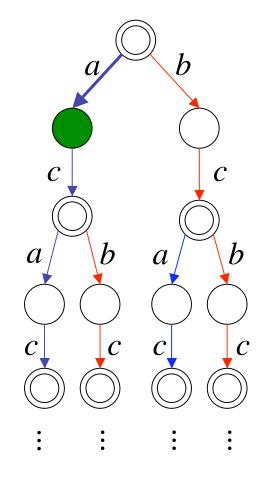


Example of Composition (5)





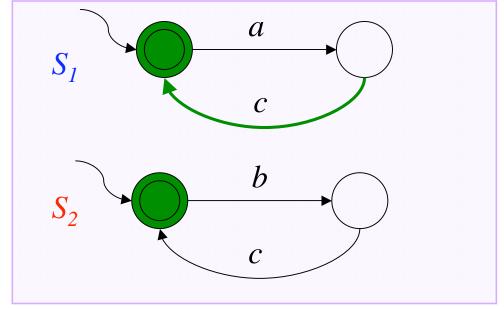
$$S_0 = orch(S_1 || S_2)$$



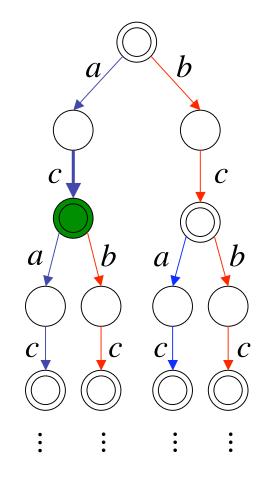
Each action of the target service is executed by at least one of the component services

Example of composition (6)



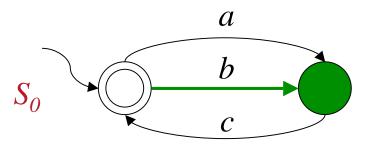


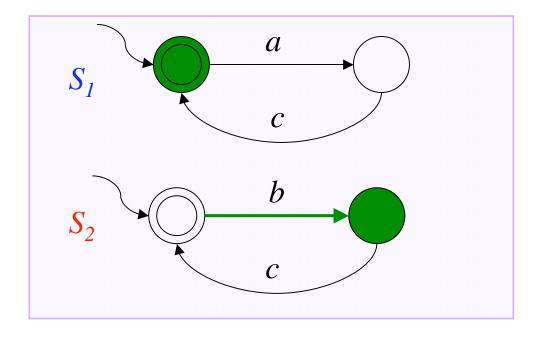
$$S_0 = orch(S_1 || S_2)$$



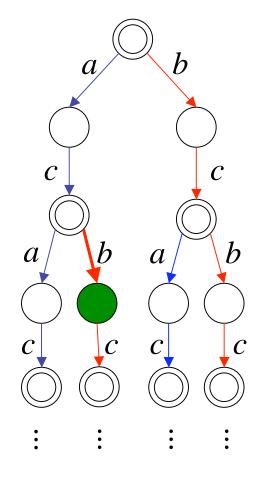
When the target service can be left, then all component services must be in a final state

Example of composition (7)

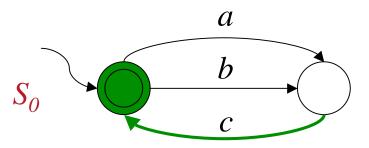


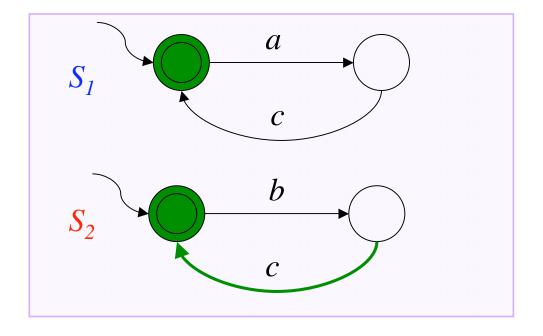


$$S_0 = orch(S_1 || S_2)$$

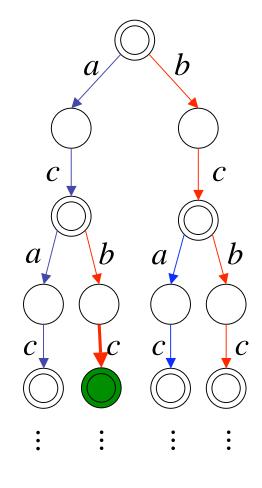


Example of composition (8)





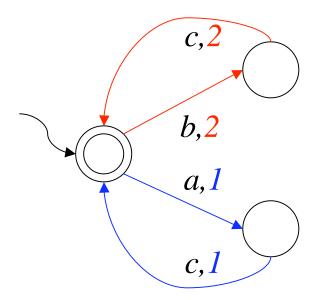
$$S_0 = orch(S_1 || S_2)$$



Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Observation

- This labeled execution tree has a finite representation as a finite TS ...
- ...with transitions labeled by an action and the service performing the action



Is this always the case when we deal with services expressible as finite TS? See later...

Questions

Assume services of community and target service are finite TSs

- Can we always check composition existence?
- If a composition exists there exists one which is a finite TS?
- If yes, how can a finite TS composition by computed?

To answer ICSOC'03 exploits PDL SAT

Answers

Reduce service composition synthesis to satisfability in (deterministic) PDL

Can we always check composition existence?

Yes, SAT in PDL is decidable in EXPTIME

 If a composition exists there exists one which is a finite TS?

Yes, by the small model property of PDL

How can a finite TS composition be computed?
 From a (small) model of the corresponding PDL formula

Encoding in PDL

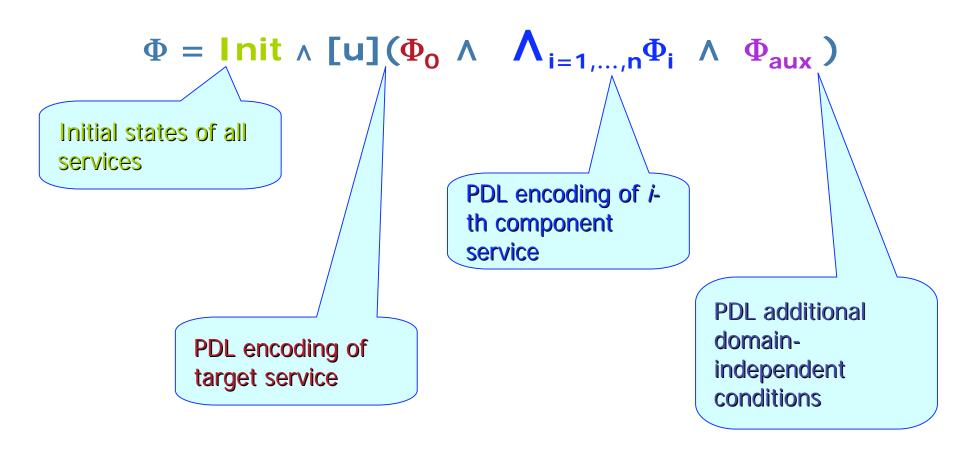
Basic idea:

- A orchestrator program *P* realizes the target service *T* iff at each point:
 - – ∀ transition labeled a of the target service T
 - ... \exists an available service B_i (the one chosen by P) that can make an a-transition, realizing the a-transition of T
- Encoding in PDL:
 - ∀ transition labeled a ...

use branching

an available service B_i that can make an a-transition ... use underspecified predicates assigned through SAT

Structure of the PDL Encoding



PDL encoding is polynomial in the size of the service TSs

PDL Encoding

- Target service $S_0 = (\Sigma, S_0, S_0, \delta_0, F_0)$ in PDL we define Φ_0 as the conjunction of:
 - $S \rightarrow \neg S'$

for all pairs of distinct states in S_0 service states are pair-wise disjoint

- $s \rightarrow \langle a \rangle T \wedge [a]s'$ for each $s' = \delta_0(s,a)$ target service can do an a-transition going to state s'
- s \rightarrow [a] \perp

for each $\delta_0(s,a)$ undef.

- $F_0 \equiv v_{s \in F0} S$

target service cannot do an a-transition

denotes target service final states

•

PDL Encoding (cont.d)

- available services $S_i = (\Sigma, S_i, s_i^0, \delta_i, F_i)$ in PDL we define Φ_i as the conjunction of:
 - $S \rightarrow \neg S'$

for all pairs of distinct states in S_i

Service states are pair-wise disjoint

- s → [a](moved_i ∧ s' v ¬ moved_i ∧ s) for each s'= δ_i (s,a) if service moved then new state, otherwise old state
- $s \rightarrow [a](\neg moved_i \land s)$ for each $\delta_i(s,a)$ undef. if service cannot do a, and a is performed then it did not move
- $F_i \equiv V_{s \in F_i} S$

denotes available service final states

•

PDL Encoding (cont.d)

- Additional assertions Φ_{aux}
 - $\langle a \rangle T \rightarrow [a] V_{i=1,...,n}$ moved_i for each action a at least one of the available services must move at each step
 - $\quad F_0 \rightarrow \Lambda_{i=1,...,n} \; F_i$ when target service is final all comm. services are final
 - Init = $S_0^0 \wedge_{i=1...n} S_i^0$

Initially all services are in their initial state

PDL encoding: $\Phi = Init \wedge [u](\Phi_0 \wedge_{i=1,...,n} \Phi_i \wedge \Phi_{aux})$

Results

Thm[ICSOC'03,IJCIS'05]:

Composition exists iff PDL formula Φ SAT

From composition labeling of the target service one can build a tree model of the PDL formula and viceversa

Information on the labeling is encoded in predicates moved;

Corollary [ICSOC'03,IJCIS'05]:

Checking composition existence is decidable in **EXPTIME**

Thm[Muscholl&WalukiewiczFoSSaCS'07]:

Checking composition existence is **EXPTIME-hard**

Results on TS Composition

Thm[ICSOC'03,IJCIS'05]:

If composition exists then finite TS composition exists.

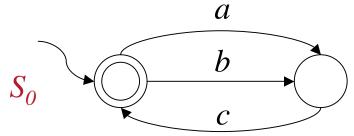
From a <u>small model</u> of the PDL formula Φ , one can build a finite TS machine

Information on the output function of the machine is encoded in predicates moved;

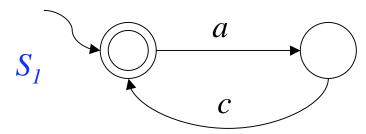
→ <u>finite TS</u> composition existence of services expressible as finite TS is EXPTIME-complete

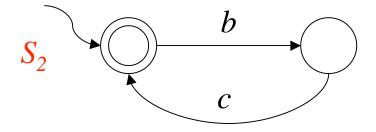
Example (1)

Target service



Available services





PDL

• • •

• • •

• • •

$$S_0^0 \wedge S_1^0 \wedge S_2^0$$

$$\langle a \rangle T \rightarrow [a] \text{ (moved}_1 \text{ v moved}_2)$$

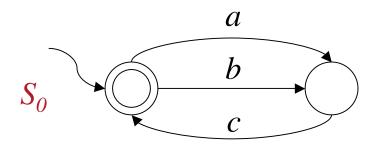
$$\langle b \rangle T \rightarrow [b] (moved_1 \vee moved_2)$$

$$\langle c \rangle T \rightarrow [c] (moved_1 \vee moved_2)$$

$$F_0 \rightarrow F_1 \wedge F_2$$

Example (2)

Target service



$$S_0^0 \rightarrow \neg S_0^1$$

$$S_0^0 \rightarrow \langle a \rangle T \wedge [a] S_0^1$$

$$S_0^0 \rightarrow \langle b \rangle T \wedge [b] S_0^1$$

$$S_0^1 \rightarrow \langle c \rangle T \wedge [c] S_0^0$$

$$S_0^0 \rightarrow [c] \perp$$

$$S_0^1 \rightarrow [a] \perp$$

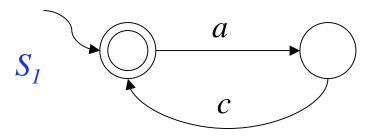
$$S_0^1 \rightarrow [b] \perp$$

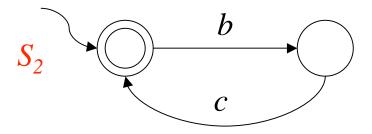
$$F_0 \equiv S_0^0$$
...
...

• • •

Example (3)

Available services





```
S_1^0 \rightarrow \neg S_1^1
s_1^0 \rightarrow [a] \pmod{1} \land s_1^1 \lor \neg moved_1 \land s_1^0
s_1^0 \rightarrow [c] \neg moved_1 \land s_1^0
s_1^0 \rightarrow [b] \neg moved_1 \land s_1^0
s_1^1 \rightarrow [a] \neg moved_1 \land s_1^1
s_1^1 \rightarrow [b] \neg moved_1 \land s_1^1
s_1^1 \rightarrow [c] \pmod{1} \land s_1^0 \lor \neg moved_1 \land s_1^0
F_1 \equiv S_1^0
S_2^0 \rightarrow \neg S_2^1
s_2^0 \rightarrow [b] \text{ (moved}_2 \land s_2^1 \lor \neg \text{moved}_2 \land s_2^0 \text{)}
s_2^0 \rightarrow [c] \neg moved_2 \land s_2^0
s_2^0 \rightarrow [a] \neg moved_2 \land s_2^0
s_2^1 \rightarrow [b] \neg moved_2 \land s_2^1
s_2^1 \rightarrow [a] \neg moved_2 \land s_2^1
s_2^1 \rightarrow [c] \text{ (moved}_2 \land s_2^0 \lor \neg \text{moved}_2 \land s_2^0 \text{)}
F_2 = S_2^0
```

. . .

Example (4)

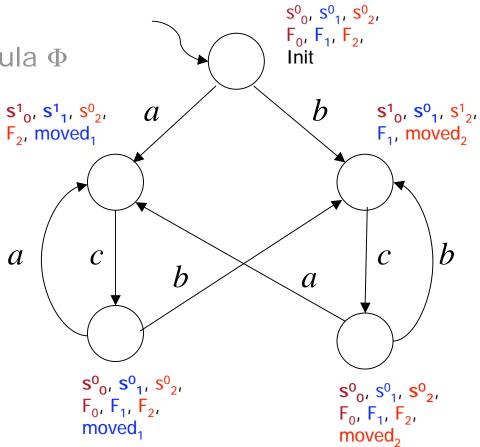
Check: run SAT on PDL formula Φ

Dipartimento di Informatica e Sistemistica "Antonio Ruberti"

Example

Check: run SAT on PDL formula Φ

Yes ⇒ (small) model



Example

Check: run SAT on PDL formula Φ

Yes ⇒ (small) model

⇒ extract finite TS



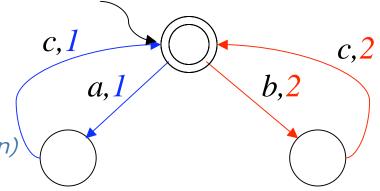
Example

Check: run SAT on PDL formula Φ

Yes ⇒ (small) model

⇒ extract finite TS

⇒ minimize finite TS (similar to Mealy machine minimization)



Results on Synthesizing Composition

 Using PDL reasoning algorithms based on model construction (cf. tableaux), build a (small) model
 <u>Exponential</u> in the size of the PDL encoding/services finite TS

Note: SitCalc, etc. can compactly represent finite TS, PDL encoding can preserve compactness of representation

- From this model extract a corresponding finite TS
 <u>Polynomial</u> in the size of the model
- Minimize such a finite TS using standard techniques (opt.)
 <u>Polynomial</u> in the size of the TS

Note: finite TS extracted from the model is not minimal because encodes output in properties of individuals/states

Tools for Synthesizing Composition

- In fact we use only a fragment of PDL in particular we use fixpoint (transitive closure) only to get the universal modality ...
- ... thanks to a tight correspondence between PDLs and Description Logics (DLs), we can use current highly optimized DL reasoning systems to do synthesis ...
- ... when the ability or returning models will be added ...

Pellet already has this ability, and we are exploring its use

 ... meanwhile we have developed a prototype tool on this idea (see last Massimo's lecture)

Composition via Simulation

Bisimulation

A binary relation R is a bisimulation iff:

```
(s,t) \in R implies that

- s is final iff t is final

- for all actions a

• if s \rightarrow_a s' then \exists t' . t \rightarrow_a t' and (s',t') \in R

• if t \rightarrow_a t' then \exists s' . s \rightarrow_a s' and (s',t') \in R
```

- A state s₀ of transition system S is **bisimilar**, or simply **equivalent**, to a state t₀ of transition system T iff there **exists** a **bisimulation** between the initial states s₀ and t₀.
- Notably
 - bisimilarity is a bisimulation
 - bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Computing Bisimilarity on Finite Transition Systems


```
Algorithm ComputingBisimulation
```

Input: transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$

Output: the bisimilarity relation (the largest bisimulation)

Body

```
\begin{split} R &= \emptyset \\ R' &= S \times T - \{(s,t) \mid \neg (s \in F_S \equiv t \in F_T)\} \\ \text{while } (R \neq R') \; \{ \\ R &:= R' \\ R' &:= R' - (\{(s,t) \mid \exists \, s', a. \, s \rightarrow_a \, s' \, \land \, \neg \exists \, t' \, . \, t \rightarrow_a \, t' \, \land \, (s',t') \in R' \, \} \\ &\qquad \qquad \{(s,t) \mid \exists \, t', a. \, t \rightarrow_a \, t' \, \land \, \neg \exists \, s' \, . \, s \rightarrow_a \, s' \, \land \, (s',t') \in R' \, \}) \\ \text{return } R' \end{split}
```

Ydob

Simulation

A binary relation R is a simulation iff:

```
(s,t) ∈ R implies that
- s is final implies that t is final
- for all actions a
• if s →<sub>a</sub> s' then ∃ t' . t →<sub>a</sub> t' and (s',t')∈ R
```

- A state s_0 of transition system S is **simulated by** a state t_0 of transition system T iff there **exists** a **simulation** between the initial states s_0 and t_0 .
- Notably
 - simulated-by is a simulation
 - simulated-by is the largest simulation

Note it is a co-inductive definition!

NB: A simulation is just one of the two directions of a bisimulation

Computing Simulation on Finite Transition Systems


```
Algorithm ComputingSimulation Input: transition system TS_S = \langle A, S, S^0, \delta_S, F_S \rangle and transition system TS_T = \langle A, T, T^0, \delta_T, F_T \rangle Output: the simulated-by relation (the largest simulation) Body R = \emptyset R' = S \times T - \{(s,t) \mid s \in F_S \wedge \neg (t \in F_T)\} while (R \neq R') { R := R' R' := R' - \{(s,t) \mid \exists s',a. \ s \rightarrow_a s' \ \land \neg \exists \ t'. \ t \rightarrow_a t' \land (s',t') \in R' \} return R'
```

Potential Behavior of the Whole Community

- Let TS₁, L ,TS_n be the TSs of the component services.
- The Community TS is defined as the asynchronous product of TS₁, L ,TS_n, namely:

$$TS_c = \langle A, S_c, S_c^0, \delta_c, F_c \rangle$$
 where:

- A is the set of actions
- $S_c = S_1 \times L \times S_n$
- $S_c^0 = \{ (s_{1}^0, L, s_{m}^0) \}$
- $F \subseteq F_1 \times L \times F_n$
- δ_c ⊆ S_c × A × S_c is defined as follows:

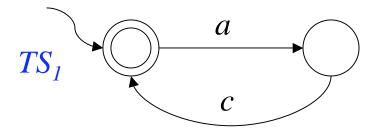
$$(s_1 \times L \times s_n) \rightarrow_a (s'_1 \times L \times s'_n)$$
 iff

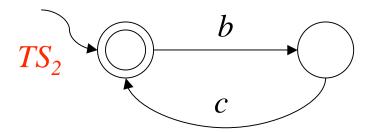
1.
$$\exists i. s_i \rightarrow_a s'_i \in \delta_i$$

2.
$$\forall j \neq i. S'_j = S_j$$

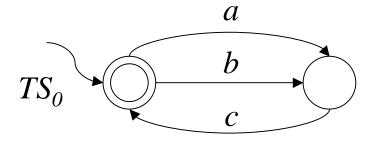
Example of Composition

Available Services





Target Service

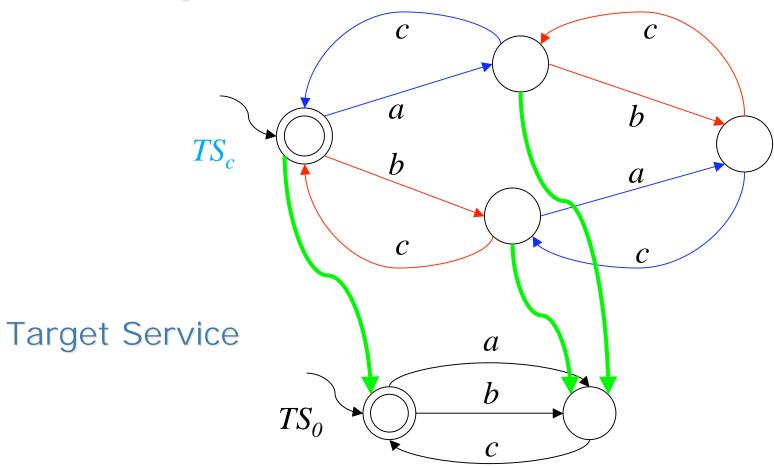


Example of Composition

Dipartimento di Informatica e Sistemistica "Antonio Ruberti"

SAPIENZA

Community TS



Composition exists!

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Composition via Simulation

Thm[Subm07]

A composition realizing a target service TS TS_t exists if there **exists** a simulation relation between the initial state s_t^0 of TS_t and the initial state $(\mathsf{s}_1^0, ..., \mathsf{s}_n^0)$ of the community TS TS_c .

- Notice if we take the union of all simulation relations then we get the largest simulation relation S, still satisfying the above condition.
- Corollary[Subm07] A composition realizing a target service TS TS_t exists iff $(s_t^0, (s_1^0, ..., s_n^0)) \in S$.

Thm[Subm07] Computing the largest simulation

Computing the largest simulation *S* is polynomial in the size of the target service TS and the size of the community TS...

... hence it is EXPTIME in the size of the available services.

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Composition via Simulation

- Given the largest simulation S form TS_t to TS_c (which include the initial states), we can build the **orchestrator generator**.
- This is an orchestrator program that can change its behavior reacting to the information acquired at run-time.
- Def: OG = $< A_1, [1,...,n], S_r, S_r^0, \omega_r, \delta_r, F_r > \text{with}$
 - A: the actions shared by the community
 - [1,...,n]: the **identifiers** of the available services in the community
 - $S_r = S_t \times S_1 \times L \times S_n$: the **states** of the orchestrator program
 - $s_r^0 = (s_1^0, s_1^0, ..., s_m^0)$: the **initial state** of the orchestrator program
 - $\quad F_r \subseteq \{ \ (s_t \ , \ s_1 \ , \ \ldots, \ s_n) \ | \ s_t \in F_t \colon \text{the } \textbf{final states} \text{ of the orchestrator program}$
 - $\omega_r: S_r \times A_r \rightarrow [1,...,n]:$ the **service selection function**, defined as follows:
 - If $s_t \rightarrow_{a_i} s'_t$ then chose $k \text{ s.t. } \exists \ s_k' . \ s_k \rightarrow_{a_i} s_k' \ \land \ (s_t', \ (s_1, \ldots, s_k', \ldots, s_n)) \in \textbf{\textit{S}}$
 - $-\delta_r \subseteq S_r \times A_r \times [1,...,n] \to S_r$: the **state transition function**, defined as follows:
 - Let $\omega_r(s_t, s_1, ..., s_k, ..., s_n, a) = k$ then $(s_t, s_1, ..., s_k, ..., s_n) \rightarrow_{a,k} (s_t', s_1, ..., s_n')$ where $s_k \rightarrow_{a_i} s_k'$

Composition via Simulation

- For generating OG we need only to compute S and then apply the template above
- For running an orchestrator from the OG we need to store and access **S** (polynomial time, exponential space) ...
- ... and compute ω_r and δ_r at each step (polynomial time and space)

Extension to the Roman Model

Extensions

See later

- Nondeterministic (angelic) target specification
 - Loose specification in client request
 - Angelic (don't care) vs devilish (don't know) nondeterminism
 - See [ICSOC'04]

Nondeterministic (devilish) available services

- Incomplete specification in available services
- Devilish (don't know) vs angelic (don't care) nondeterminism
- See below & [IJCAI'07]

Distributing the orchestration

- Often a centralized orchestration is unrealistic: eg. services deployed on mobile devices
 - too tight coordination
 - too much communication
 - · orchestrator cannot be embodied anywhere
- Drop centralized orchestrator in favor of independent controllers on single available services (exchanging messages)
- Under suitable conditions: a distributed orchestrator exists iff a centralized one does
- Still decidable (EXPTIME-complete)
- See [AAAI'07]

Dealing with data

- This is the single most difficult issue to tackle
 - First results: actions as DB updates, see [VLDB'05]
 - Literature on Abstraction in Verification
- From finite to infinite transition systems!
- Security and trust aware composition [SWS'06]
- Automatic Workflows Composition of Mobile Services [ICWS'07]

Nondeterministic Available Services

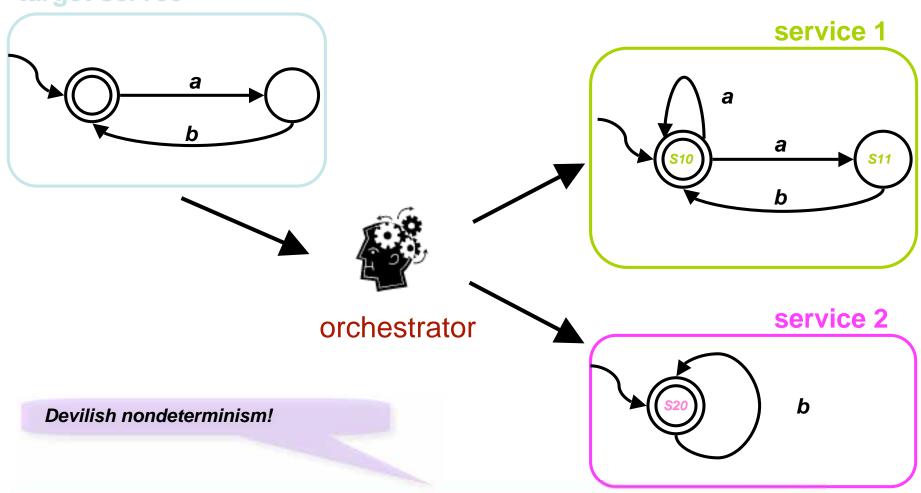
Nondeterminism in Available Services

Devilish (don't know)!

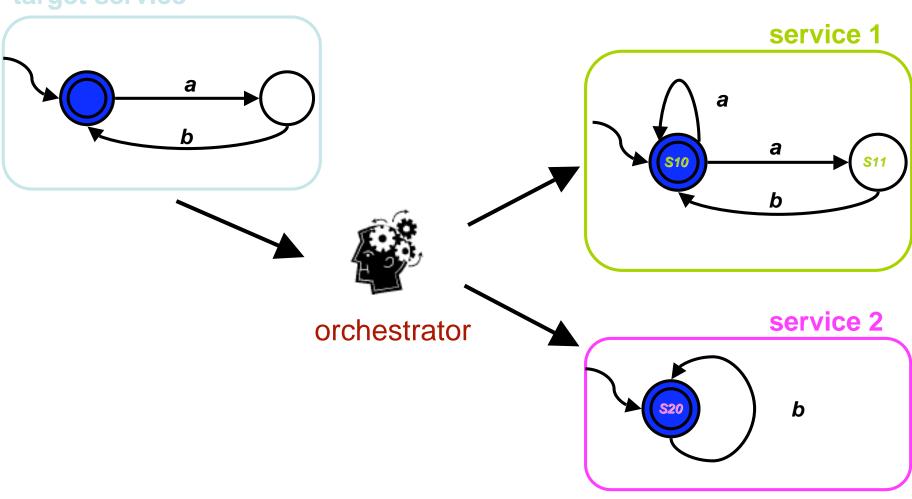
- Nondeterministic available services
 - Incomplete information on the actual behavior
 - Mismatch between behavior description (which is in terms of the environment actions) and actual behavior of the agents/devices
- Deterministic target service
 - it's a spec of a desired service: (devilish) nondeterminism is banned

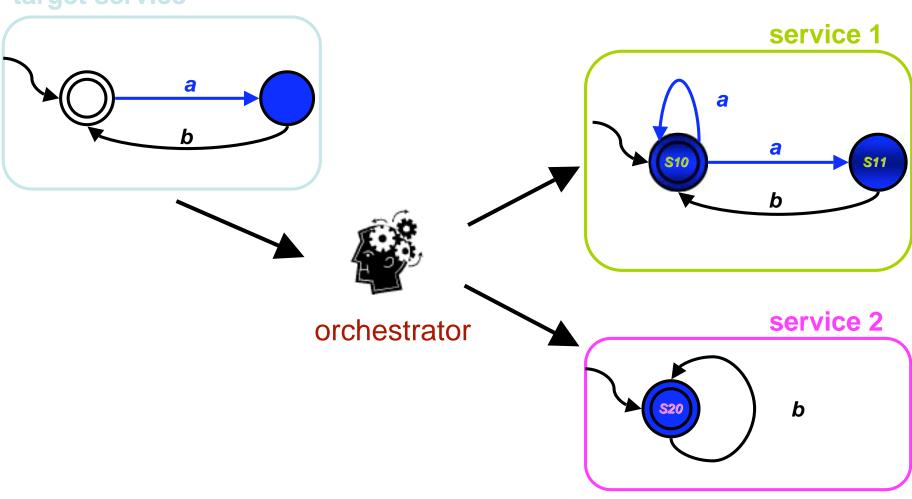
In general, devilish nondeterminism difficult to cope with eg. nondeterminism moves AI Planning from PSPACE (classical planning) to EXPTIME (contingent planning with full observability [Rintanen04])

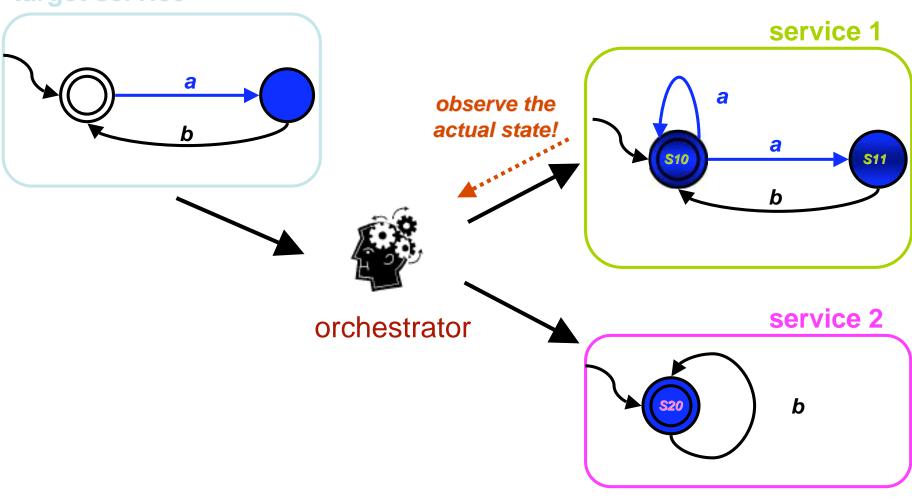
target servce

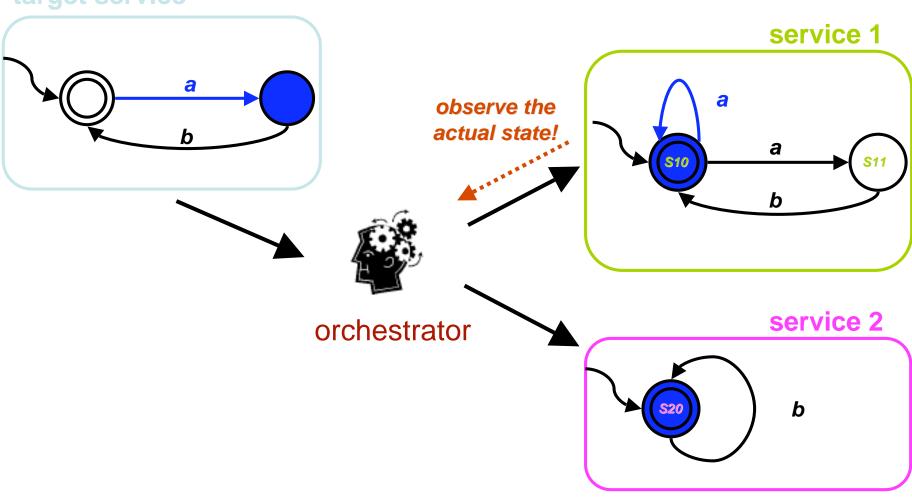


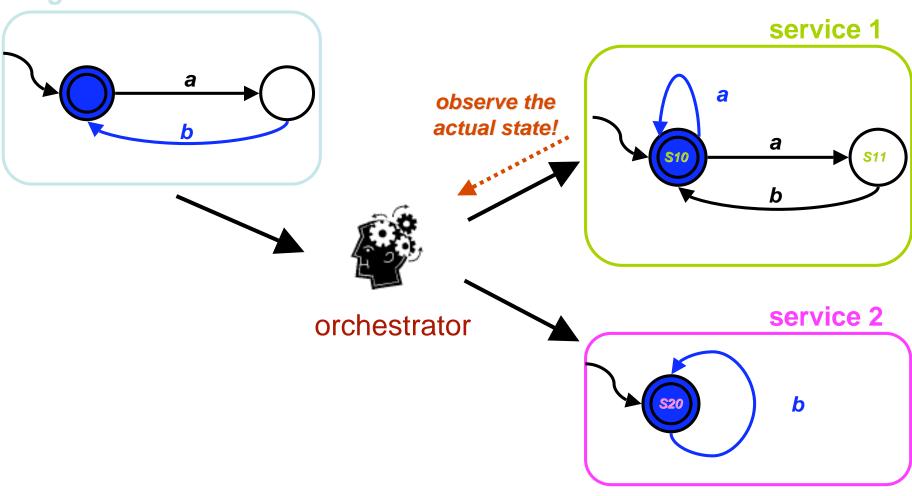
Available services represented as nondeterministic transition systems



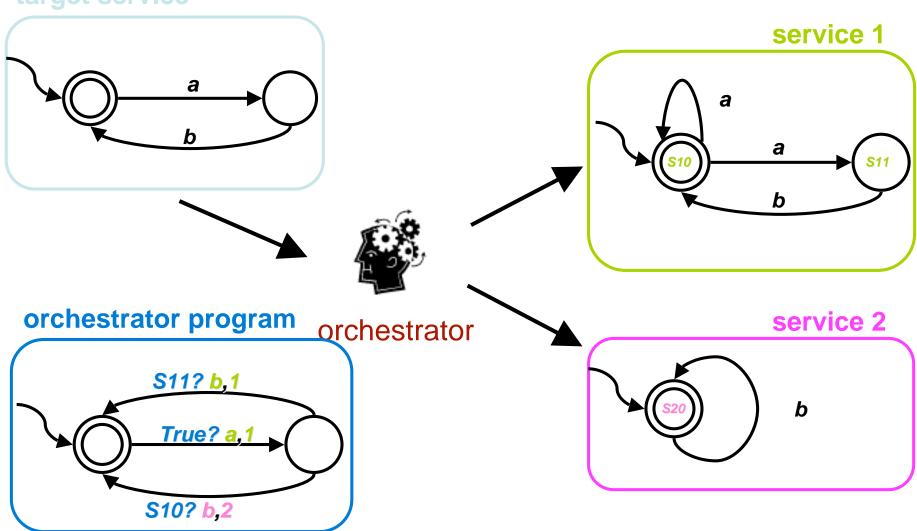








An Orchestrator Program Realizing the Target Service



contains all the observable information up the current situation

- Orchestrator program is any function P(h,a) = i that takes a history h
 and an action a to execute and delegates a to one of the available
 services i
- A history is a sequence of the form:

$$(s_1^0, s_2^0, ..., s_n^0, e^0) \ a_1 \ (s_1^1, s_2^1, ..., s_n^1, e^1) \ ... \ a_k \ (s_k^1, s_2^k, ..., s_n^k, e^k)$$

- Observe that to take a decision P has full access to the past, but no access to the future
- Problem: synthesize a orchestrator program P that realizes the target service making use of the available services

Technique: Reduction to PDL

Basic idea:

- A orchestrator program P realizes the target service T iff at each point:
 - – ∀ transition labeled a of the target service T....
 - ... \exists an available service B_i (the one chosen by P) which can make an a-transition ...
 - ... and \forall a-transition of B_i realize the a-transition of T
- Encoding in PDL:

use branching

- \exists an available service B_i ...

use underspecified predicates assigned through SAT

- \forall a-transition of B_i ...:

use branching again

Technical Results: Theoretical

Thm[IJCAI'07] Checking the existence of orchestrator program realizing the target service is **EXPTIME-complete**.

EXPTIME-hardness due to Muscholl&Walukiewicz07 for deterministic services

Thm [IJCAI'07] If a orchestrator program exists there exists one that is finite state.

Exploits the finite model property of PDL

Note: same results as for deterministic services!

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Technical Results: Practical

Reduction to PDL provides also a practical sound and complete technique to compute the orchestrator program also in this case

eg, PELLET @ Univ. Maryland

- Use state-of-the-art tableaux systems for OWL-DL for checking SAT of PDL formula Φ coding the composition existence
- If SAT, the tableau returns a finite model of Φ

exponential in the size of the behaviors

- Project away irrelevant predicates from such model, and possibly minimize
- The resulting structure is a finite orchestrator program that realizes the target behavior

polynomial in the size of the model

Nondeterministic Available Services: Composition à la Simulation

Composition à la Simulation

• We consider binary relations *R* satisfying the following co-inductive condition:

```
 \begin{split} &(s,(q_1,\,...,\,q_n)) \in \textit{R} \text{ implies that} \\ &- \text{ if s is } \textit{final} \text{ then } q_i, \text{ with } i=1,\,...,\,n, \text{ is } \textit{final} \\ &- \text{ for } \textbf{all} \text{ actions a} \\ &\bullet \text{ if } s \rightarrow_a s' \text{ then } \exists \ k \in 1..n. \\ &- \exists \ q_{\textbf{k}'} \ . \ q_k \rightarrow_a q_k' \\ &- \forall \ q_k' \ . \ q_k \rightarrow_a q_k' \supset (s',(,q_1,...,q_{\textbf{k}'},\,...,\,q_n)) \in \textit{R} \end{split}
```

Note similar in the spirit to simulation relation! But more involved, since it deals with

- the existential choice (as the simulation) of the service, and
- the universal condition on the nondeterministic branches!
- A composition realizing a target service TS TS_t exists if there **exists** a relation R satisfying the above condition between the initial state s_t^0 of TS_t and the initial state $(s_1^0, ..., s_n^0)$ of the community big TS TS_c .
- Notice if we take the union of all such relation *R* then we get the largest relation *RR* satisfying the above condition.
- A composition realizing a target service TS T exists iff $(s_t^0, (s_1^0, ..., s_n^0)) \in RR$.

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

Composition à la Simulation

- Given RR form TS_t to TS_c(which include the initial states), we can build the orchestrator generator.
- This is an orchestrator program that can change its behavior reacting to the information acquired at run-time.
- Def: OG = $< A_1 [1,...,n], S_r, S_r^0, \omega_r, \delta_r, F_r > with$
 - A: the actions shared by the community
 - [1,...,n]: the **identifiers** of the available services in the community
 - $S_r = S_t \times S_1 \times L \times S_n$: the **states** of the orchestrator program
 - $s_r^0 = (s_1^0, s_1^0, ..., s_m^0)$: the **initial state** of the orchestrator program
 - $F_r \subseteq \{ (s_t, s_1, ..., s_n) \mid s_t \in F_t : \text{ the } final \text{ states } of \text{ the orchestrator program } \}$
 - $\omega_r: S_r \times A_r \rightarrow [1,...,n]:$ the **service selection function**, defined as follows:
 - If $s_t \to_{a_i} s'_t$ then *chose* $k \ s.t. \ \exists \ s_k'. \ s_k \to_{a_i} s_k' \ \land \ \forall \ s_k'. \ s_k \to_{a_i} s_k' \ \supset (s_t', \ (s_1 \ , \ ..., \ s_n) \) \in \textit{RR}$
 - $-\delta_r \subseteq S_r \times A_r \times [1,...,n] \times S_r$: the **state transition relation**, defined as follows:
 - Let $\omega_r(s_t, s_1, ..., s_k, ..., s_n, a) = k$ then $(s_t, s_1, ..., s_k, ..., s_n) \rightarrow_{a,k} (s_t', s_1, ..., s_n')$ for each $s_k \rightarrow_{a_i} s_k'$

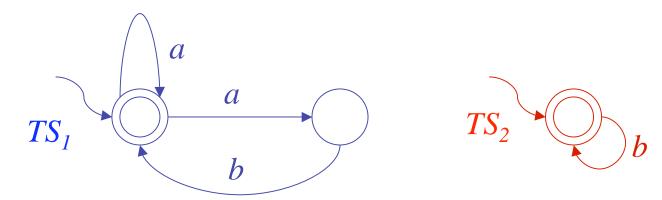
Composition à la Simulation

- Computing RR is polynomial in the size of the target service
 TS and the size of the community TS...
- ... composition can be done in EXPTIME in the size of the available services

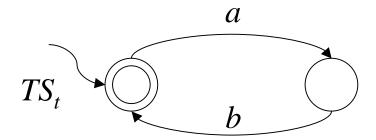
- For generating OG we need only to compute RR and then apply the template above
- For running the OG we need to store and access RR
 (polynomial time, exponential space) ...
- ... and compute ω_r and δ_r at each step (polynomial time and space)

Example of Composition

Available Services

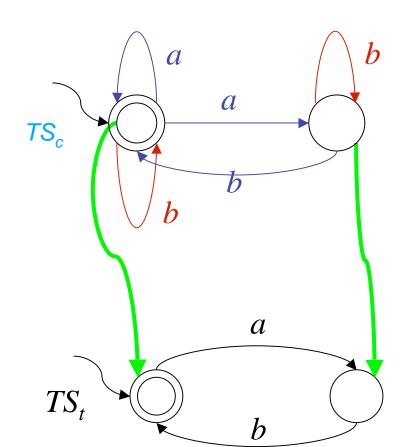


Target Service



Example of Composition

Community TS



Target Service

Composition exists!

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA

References

- [ICSOC'03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: Automatic Composition of E-services That Export Their Behavior. ICSOC 2003: 43-58
- [WES'03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: A Foundational Vision of e-Services. WES 2003: 28-40
- [TES'04] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: : A Tool for Automatic Composition of Services Based on Logics of Programs. TES 2004: 80-94
- [ICSOC'04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Diego Calvanese: Synthesis of underspecified composite e-services based on automated reasoning. ICSOC 2004: 105-114
- [IJCIS'05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: Automatic Service Composition Based on Behavioral Descriptions. Int. J. Cooperative Inf. Syst. 14(4): 333-376 (2005)
- [VLDB'05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, Massimo Mecella: Automatic Composition of Transition-based Semantic Web Services with Messaging. VLDB 2005: 613-624
- [ICSOC'05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella: Composition of Services with Nondeterministic Observable Behavior. ICSOC 2005: 520-526
- [SWS'06] Fahima Cheikh, Giuseppe De Giacomo, Massimo Mecella: Automatic web services composition in trustaware communities. Proceedings of the 3rd ACM workshop on Secure web services 2006. Pages: 43 52.
- [AISC'06] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella. Automatic Web Service Composition: Service-tailored vs. Client-tailored Approaches. In Proc. AISC 2006, International Workshop jointly with ECAI 2006.
- [FOSSACS'07] Anca Muscholl, Igor Walukiewicz: A lower bound on web services composition. Proceedings FOSSACS, LNCS, Springer, Volume 4423, page 274--287 2007.
- [IJCAI'07] Giuseppe De Giacomo, Sebastian Sardiña: Automatic Synthesis of New Behaviors from a Library of Available Behaviors. IJCAI 2007: 1866-1871
- [AAAI'07] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Automatic synthesis of a global behavior from multiple distributed behaviors. In Proceedings of the National Conference on Artificial Intelligence (AAAI), Vancouver, Canada, July 2007.
- [Subm07] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, Fabio Patrizi: Automatic Service Composition via Simulation. Submitted.