
Instructions for using Angry Bots and JaCO

1 Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar

2 Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

3 By pressing Start, you will request a new composition from
the server, based on the current behaviors and target

4 By pressing Reset, you will return to the initial situation and
use the last obtained composition again

1 / 13 Stefano Cianciulli

Instructions for using Angry Bots and JaCO

1 Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar

2 Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

3 By pressing Start, you will request a new composition from
the server, based on the current behaviors and target

4 By pressing Reset, you will return to the initial situation and
use the last obtained composition again

1 / 13 Stefano Cianciulli

Instructions for using Angry Bots and JaCO

1 Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar

2 Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

3 By pressing Start, you will request a new composition from
the server, based on the current behaviors and target

4 By pressing Reset, you will return to the initial situation and
use the last obtained composition again

1 / 13 Stefano Cianciulli

Instructions for using Angry Bots and JaCO

1 Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar

2 Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

3 By pressing Start, you will request a new composition from
the server, based on the current behaviors and target

4 By pressing Reset, you will return to the initial situation and
use the last obtained composition again

1 / 13 Stefano Cianciulli

The Angry Bots patrolling domain

Developed specifically to accommodate the Behavior
Composition model in a video game-like scenario

Built upon the Unity game engine (Angry Bots technical
demo)

Specification of the domain:
1 In the environment, we identified 20 points of interest (labeled

with letters from A to T)
2 Each NPC has a route leading it to some, but not all, the

points of interest
3 The NPCs’ routes have overlaps: some points are covered by

more than one NPC
4 The target behavior we want to achieve is any desired

patrolling routine (that may also include decision points)

2 / 13 Stefano Cianciulli

The Angry Bots patrolling domain

Relationship between the Behavior Composition framework and the
Angry Bots patrolling domain:

The behaviors are the finite state machines related to each of
the non-player characters

The target behavior is a desired collective behavior for the
non-player characters (any patrolling routine)

The controller is a computed control strategy that shows, for
each possible situation, how each action can be realized and
who can execute it

2 / 13 Stefano Cianciulli

The environment and the available behaviors

Points of interest and connectivity network:

3 / 13 Stefano Cianciulli

The environment and the available behaviors

MyEnemyMech route:

3 / 13 Stefano Cianciulli

The environment and the available behaviors

MyEnemyMech route (expressed in Trivial Graph Format):

1 NodeA

2 NodeB

3 NodeC

4 NodeD

...

8 NodeM

9 NodeN

#

1 9 MoveTo

9 2 MoveTo

2 8 MoveTo

8 3 MoveTo

3 4 MoveTo

...

3 / 13 Stefano Cianciulli

The environment and the available behaviors

MyEnemyMech route (expressed in Trivial Graph Format):

Declaration of nodes:

1 NodeA

2 NodeB

3 NodeC

4 NodeD

...

8 NodeM

9 NodeN

#

1 9 MoveTo

9 2 MoveTo

2 8 MoveTo

8 3 MoveTo

3 4 MoveTo

...

3 / 13 Stefano Cianciulli

The environment and the available behaviors

MyEnemyMech route (expressed in Trivial Graph Format):

1 NodeA

2 NodeB

3 NodeC

4 NodeD

...

8 NodeM

9 NodeN

#

Declaration of edges

1 9 MoveTo

9 2 MoveTo

2 8 MoveTo

8 3 MoveTo

3 4 MoveTo

...

3 / 13 Stefano Cianciulli

The environment and the available behaviors

MyEnemyMineBot route:

3 / 13 Stefano Cianciulli

The environment and the available behaviors

MyEnemyMineBot1 route:

3 / 13 Stefano Cianciulli

Example of target behavior

Expressed as a transition system:

Node1start

Node2 Node3

Node4

MoveToNodeN

MoveToNodeB

MoveToNodeN

MoveToNodeM MoveToNodeB

4 / 13 Stefano Cianciulli

Example of target behavior

Expressed using the Trivial Graph Format:

1 Node1

2 Node2

3 Node3

4 Node4

#

1 2 MoveToNodeN

2 3 MoveToNodeB

3 2 MoveToNodeN

3 4 MoveToNodeM

4 3 MoveToNodeB

4 / 13 Stefano Cianciulli

Example of target behavior

Let’s add this slight modification to the target:

Node2 Node3

Node5

MoveToNodeP

MoveToNodeB

MoveToNodeN

MoveToNodeT

4 / 13 Stefano Cianciulli

Example of target behavior

Let’s add this slight modification to the target:

1 Node1

2 Node2

3 Node3

4 Node4

5 Node5

#

1 2 MoveToNodeN

2 3 MoveToNodeB

3 2 MoveToNodeN

3 4 MoveToNodeM

4 3 MoveToNodeB

2 5 MoveToNodeP

5 2 MoveToNodeT

4 / 13 Stefano Cianciulli

The JaCO Web Service

We designed a web service that provides behavior composition
as-a-service, based on the REST principles: the whole
interaction with the server is realized by sending and receiving
HTTP messages

The implementation of the service is called JaCO, which
stands for Java-based Composition-Oriented Web Service

The building blocks for the JaCO Web Service are:

Apache Tomcat, for deploying the API endpoints and
managing the incoming HTTP connections;
Jersey, for developing a RESTful web application using the
Java programming language;
JTLV, for calculating the composition by solving the safety
game corresponding to the current problem instance
Composition implementation, provided by Alberto Iachini

5 / 13 Stefano Cianciulli

The JaCO Web Service

Endpoints of the JaCO Application Programming Interface:

1 /auth: allows the user to retrieve the client id that
identifies him, and that he should communicate along the
other requests

2 /behaviors: allows the user to send, retrieve, update or delete
the finite state machines that define the behaviors

3 /target: allows the user to communicate the target behavior
that he wants to be realized

4 /composition: allows the user to ask the server to compute
the composition, and to retrieve it when it is ready

5 / 13 Stefano Cianciulli

Usage scenario of the JaCO Web Service

6 / 13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 1: Obtain the client id

cURL command for interacting with JaCO:

curl http://jaco.dis.uniroma1.it/1/auth --request GET

7 / 13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
MyEnemyMech route (expressed in XML):

<behavior>

<name>MyEnemyMech</name>

<finiteStateMachine>

<state node="NodeA">

<transition action="MoveToNodeN">

<target>NodeN</target>

</transition>

<transition action="MoveToNodeG">

<target>NodeG</target>

</transition>

<transition action="TakeSnapshotNodeA">

<target>NodeA</target>

</transition>

</state>

<!-- Other declarations of states -->

</finiteStateMachine>

</behavior>

8 / 13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
MyEnemyMech route (expressed in XML):

<behavior>

<name>MyEnemyMech</name>

<finiteStateMachine>

<state node="NodeA">

<transition action="MoveToNodeN">

<target>NodeN</target>

</transition>

<transition action="MoveToNodeG">

<target>NodeG</target>

</transition>

...

cURL command for interacting with JaCO:

curl http://jaco.dis.uniroma1.it/1/client id/behaviors

--request POST --header "Content-Type:text/xml"

--data @MyEnemyMech.xml

9 / 13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
Repeat the process for all the available behaviors...

cURL command for interacting with JaCO:

curl http://jaco.dis.uniroma1.it/1/client id/behaviors

--request POST --header "Content-Type:text/xml"

--data @MyEnemyMineBot.xml

cURL command for interacting with JaCO:

curl http://jaco.dis.uniroma1.it/1/client id/behaviors

--request POST --header "Content-Type:text/xml"

--data @MyEnemyMineBot1.xml

10 / 13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 3: Send the target behavior to the server

<behavior>

<name>TargetBehavior</name>

<finiteStateMachine>

<state node="Node1">

<transition action="MoveToNodeN">

<target>Node2</target>

</transition>

</state>

<state node="Node2">

<transition action="MoveToNodeS">

<target>Node3</target>

</transition>

</state>

<state node="Node3">

<transition action="MoveToNodeI">

<target>Node4</target>

</transition>

</state>

<!-- Other declarations of states -->

</finiteStateMachine>

</behavior>

11 / 13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 3: Send the target behavior to the server

<behavior>

<name>TargetBehavior</name>

<finiteStateMachine>

<state node="Node1">

<transition action="MoveToNodeN">

<target>Node2</target>

</transition>

</state>

<state node="Node2">

<transition action="MoveToNodeS">

<target>Node3</target>

</transition>

</state>

...

cURL command for interacting with JaCO:

curl http://jaco.dis.uniroma1.it/1/client id/target

--request POST --header "Content-Type:text/xml"

--data @Target.xml

12 / 13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 4: Ask the server to compute the composition

cURL command for interacting with JaCO:

curl http://jaco.dis.uniroma1.it/1/client id/composition

--request POST

Step 5: Poll the server to get the computed calculation, if ready

cURL command for interacting with JaCO:

curl http://jaco.dis.uniroma1.it/1/client id/composition

--request GET

13 / 13 Stefano Cianciulli

