Instructions for using Angry Bots and JaCO

@ Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar

113

Instructions for using Angry Bots and JaCO

1/13

@ Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar
@ Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

Stefano Cianciulli

Instructions for using Angry Bots and JaCO

1/13

@ Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar
@ Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

© By pressing Start, you will request a new composition from
the server, based on the current behaviors and target

Stefano Cianciulli

Instructions for using Angry Bots and JaCO

1/13

@ Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar
@ Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

© By pressing Start, you will request a new composition from
the server, based on the current behaviors and target

@ By pressing Reset, you will return to the initial situation and
use the last obtained composition again

Stefano Cianciulli

The Angry Bots patrolling domain

@ Developed specifically to accommodate the Behavior
Composition model in a video game-like scenario

@ Built upon the Unity game engine (Angry Bots technical
demo)

@ Specification of the domain:
@ In the environment, we identified 20 points of interest (labeled
with letters from A to T)
@ Each NPC has a route leading it to some, but not all, the
points of interest

© The NPCs’ routes have overlaps: some points are covered by
more than one NPC

© The target behavior we want to achieve is any desired
patrolling routine (that may also include decision points)

2/13

The Angry Bots patrolling domain

Relationship between the Behavior Composition framework and the
Angry Bots patrolling domain:

@ The behaviors are the finite state machines related to each of
the non-player characters

@ The target behavior is a desired collective behavior for the
non-player characters (any patrolling routine)

@ The controller is a computed control strategy that shows, for
each possible situation, how each action can be realized and
who can execute it

2/13

The environment and the available behaviors

Points of interest and connectivity network:

Q

Stefano Cianciulli

The environment and the available behaviors

MyEnemyMech route:

Stefano Cianciulli

The environment and the available behaviors

MyEnemyMech route (expressed in Trivial Graph Format):

3/13

D wWw N e

W oo N O~ H © -

NodeA
NodeB
NodeC
NodeD

NodeM
NodeN

9 MoveTo
2 MoveTo
8 MoveTo
3 MoveTo
4 MoveTo

Stefano Cianciulli

The environment and the available behaviors

3/13

MyEnemyMech route (expressed in Trivial Graph Format):

Declaration of nodes:

[

=W N

NodeA
NodeB
NodeC
NodeD

NodeM
NodeN

W o0 N O H,0 00 -

9 MoveTo
2 MoveTo
8 MoveTo
3 MoveTo
4 MoveTo

Stefano Cianciulli

The environment and the available behaviors

MyEnemyMech route (expressed in Trivial Graph Format):

NodeA
NodeB
NodeC
NodeD

D wWw N e

8 NodeM
9 NodeN
#
D

eclaration of edges
1 9 MoveTo
9 2 MoveTo
2 8 MoveTo
8
3

3 MoveTo
4 MoveTo

a/13

The environment and the available behaviors

MyEnemyMineBot route:

Stefano Cianciulli

The environment and the available behaviors

MyEnemyMineBot1 route:

Stefano Cianciulli

Example of target behavior

Expressed as a transition system:

start —{ Nodel Node4

MoveToNodeN MoveToNodeM MoveToNodeB

MoveToNodeB

MoveToNodeN

4/13 Stefano Cianciulli

Example of target behavior

Expressed using the Trivial Graph Format:

4/13

AW W R D WN

Nodel
Node2
Node3
Node4

2 MoveToNodelN
3 MoveToNodeB
2 MoveToNodelN
4 MoveToNodeM
3 MoveToNodeB

Stefano Cianciulli

Example of target behavior

Let's add this slight modification to the target:

MoveToNodeB

MoveToNodeN

MoveToNodeT MoveToNodeP

4/13 Stefano Cianciulli

Example of target behavior

Let's add this slight modification to the target:

4/13

GOON D W WNE HF O WwWND -

N O wdH DN WN

Nodel
Node2
Node3
Node4
Nodeb

MoveToNodeN
MoveToNodeB
MoveToNodeN
MoveToNodeM
MoveToNodeB
MoveToNodeP
MoveToNodeT

Stefano Cianciulli

The JaCO Web Service

@ We designed a web service that provides behavior composition
as-a-service, based on the REST principles: the whole
interaction with the server is realized by sending and receiving
HTTP messages

5/13

@ The implementation of the service is called JaCO, which
stands for Java-based Composition-Oriented Web Service

@ The building blocks for the JaCO Web Service are:

Apache Tomcat, for deploying the API endpoints and
managing the incoming HTTP connections;

Jersey, for developing a RESTful web application using the
Java programming language;

JTLV, for calculating the composition by solving the safety
game corresponding to the current problem instance
Composition implementation, provided by Alberto lachini

Stefano Cianciulli

The JaCO Web Service

Endpoints of the JaCO Application Programming Interface:
© /auth: allows the user to retrieve the client_id that
identifies him, and that he should communicate along the

other requests

@ /behaviors: allows the user to send, retrieve, update or delete
the finite state machines that define the behaviors

© /target: allows the user to communicate the target behavior
that he wants to be realized

© /composition: allows the user to ask the server to compute
the composition, and to retrieve it when it is ready

s/13

Usage scenario of the JaCO Web Service

GET http://jaco.dis.uniromal.it/1/auth o
-
o 200 OK_ {client_id}

JEE [For all behaviors]
POST http://jaco.dis.uniromal.it/1/{client id}/behaviors {behavlor}l

1 201 Created
<

POST http://jaco.dis.uniromal.it/1/{client_id}/target, {target} >
- 201 Created
D POST http://jaco.dis.uniroma.it/1/{client_id}/composition >
< 200 OK, {composition_response}

JEE [until compesition Is not ready]
GET http://jace.dis.uniromaL.it/1/{client_Id}/composition >
200 OK, {composition_response}

-
-

6/13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 1: Obtain the client_id

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/auth --request GET

7/13 Stefano Cianciulli

A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
MyEnemyMech route (expressed in XML):

<behavior>
<name>MyEnemyMech</name>
<finiteStateMachine>
<state node="NodeA">
<transition action="MoveToNodeN">
<target>NodeN</target>
</transition>
<transition action="MoveToNodeG">
<target>NodeG</target>
</transition>
<transition action="TakeSnapshotNodeA">
<target>NodeA</target>
</transition>
</state>
<!-- Other declarations of states -->
</finiteStateMachine>
</behavior>

513

A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
MyEnemyMech route (expressed in XML):

<behavior>
<name>MyEnemyMech</name>
<finiteStateMachine>
<state node="NodeA">
<transition action="MoveToNodeN">
<target>NodeN</target>
</transition>
<transition action="MoveToNodeG">
<target>NodeG</target>
</transition>

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/behaviors
--request POST --header "Content-Type:text/xml"
--data @MyEnemyMech.xml

o)1

A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
Repeat the process for all the available behaviors...

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/behaviors
—--request POST --header "Content-Type:text/xml"
--data @MyEnemyMineBot.xml

<

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/behaviors
—--request POST --header "Content-Type:text/xml"
--data @MyEnemyMineBotl.xml

10/13

A complete interaction with the JaCO Web Service

Step 3: Send the target behavior to the server

<behavior>
<name>TargetBehavior</name>
<finiteStateMachine>
<state node="Nodel">
<transition action="MoveToNodeN">
<target>Node2</target>
</transition>
</state>
<state node="Node2">
<transition action="MoveToNodeS">
<target>Node3</target>
</transition>
</state>
<state node="Node3">
<transition action="MoveToNodeI">
<target>Node4</target>
</transition>
</state>
<!-- Other declarations of states -->
</finiteStateMachine>
</behavior>

s

A complete interaction with the JaCO Web Service

Step 3: Send the target behavior to the server

<behavior>
<name>TargetBehavior</name>
<finiteStateMachine>
<state node="Nodel">
<transition action="MoveToNodeN">
<target>Node2</target>
</transition>
</state>
<state node="Node2">
<transition action="MoveToNodeS">
<target>Node3</target>
</transition>
</state>

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/target
--request POST --header "Content-Type:text/xml"
--data Q@Target.xml

1213

A complete interaction with the JaCO Web Service

Step 4: Ask the server to compute the composition

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/composition
--request POST

Step 5: Poll the server to get the computed calculation, if ready

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_1d/composition
--request GET

1313

