Instructions for using Angry Bots and JaCO

@ Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar
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Instructions for using Angry Bots and JaCO
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@ Start the JaCO Web Service locally, by opening the console,
navigating to the folder of the project, and invoking:

java -jar jaco.jar
@ Start the Angry Bots patrolling domain executable by clicking
twice on this icon:

© By pressing Start, you will request a new composition from
the server, based on the current behaviors and target

@ By pressing Reset, you will return to the initial situation and
use the last obtained composition again
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The Angry Bots patrolling domain

@ Developed specifically to accommodate the Behavior
Composition model in a video game-like scenario

@ Built upon the Unity game engine (Angry Bots technical
demo)

@ Specification of the domain:
@ In the environment, we identified 20 points of interest (labeled
with letters from A to T)
@ Each NPC has a route leading it to some, but not all, the
points of interest

© The NPCs’ routes have overlaps: some points are covered by
more than one NPC

© The target behavior we want to achieve is any desired
patrolling routine (that may also include decision points)
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The Angry Bots patrolling domain

Relationship between the Behavior Composition framework and the
Angry Bots patrolling domain:

@ The behaviors are the finite state machines related to each of
the non-player characters

@ The target behavior is a desired collective behavior for the
non-player characters (any patrolling routine)

@ The controller is a computed control strategy that shows, for
each possible situation, how each action can be realized and
who can execute it
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The environment and the available behaviors

Points of interest and connectivity network:

Q
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The environment and the available behaviors

MyEnemyMech route:

Stefano Cianciulli



The environment and the available behaviors

MyEnemyMech route (expressed in Trivial Graph Format):
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The environment and the available behaviors
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MyEnemyMech route (expressed in Trivial Graph Format):

Declaration of nodes:
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The environment and the available behaviors

MyEnemyMech route (expressed in Trivial Graph Format):

NodeA
NodeB
NodeC
NodeD
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8 NodeM
9 NodeN
#
D

eclaration of edges
1 9 MoveTo
9 2 MoveTo
2 8 MoveTo
8
3

3 MoveTo
4 MoveTo
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The environment and the available behaviors

MyEnemyMineBot route:
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The environment and the available behaviors

MyEnemyMineBot1 route:
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Example of target behavior

Expressed as a transition system:

start —{ Nodel Node4

MoveToNodeN MoveToNodeM MoveToNodeB

MoveToNodeB

MoveToNodeN
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Example of target behavior

Expressed using the Trivial Graph Format:
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Node2
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2 MoveToNodelN
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2 MoveToNodelN
4 MoveToNodeM
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Example of target behavior

Let's add this slight modification to the target:

MoveToNodeB

MoveToNodeN

MoveToNodeT MoveToNodeP
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Example of target behavior

Let's add this slight modification to the target:
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The JaCO Web Service

@ We designed a web service that provides behavior composition
as-a-service, based on the REST principles: the whole
interaction with the server is realized by sending and receiving
HTTP messages
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@ The implementation of the service is called JaCO, which
stands for Java-based Composition-Oriented Web Service

@ The building blocks for the JaCO Web Service are:

Apache Tomcat, for deploying the API endpoints and
managing the incoming HTTP connections;

Jersey, for developing a RESTful web application using the
Java programming language;

JTLV, for calculating the composition by solving the safety
game corresponding to the current problem instance
Composition implementation, provided by Alberto lachini
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The JaCO Web Service

Endpoints of the JaCO Application Programming Interface:
© /auth: allows the user to retrieve the client_id that
identifies him, and that he should communicate along the

other requests

@ /behaviors: allows the user to send, retrieve, update or delete
the finite state machines that define the behaviors

© /target: allows the user to communicate the target behavior
that he wants to be realized

© /composition: allows the user to ask the server to compute
the composition, and to retrieve it when it is ready

s/13



Usage scenario of the JaCO Web Service

GET http://jaco.dis.uniromal.it/1/auth o
-
o 200 OK_ {client_id}

JEE [For all behaviors]
POST http://jaco.dis.uniromal.it/1/{client id}/behaviors {behavlor}l

1 201 Created
<

POST http://jaco.dis.uniromal.it/1/{client_id}/target, {target} >
- 201 Created
D POST http://jaco.dis.uniroma.it/1/{client_id}/composition >
< 200 OK, {composition_response}

JEE [until compesition Is not ready]
GET http://jace.dis.uniromaL.it/1/{client_Id}/composition >
200 OK, {composition_response}

-
-
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A complete interaction with the JaCO Web Service

Step 1: Obtain the client_id

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/auth --request GET
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A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
MyEnemyMech route (expressed in XML):

<behavior>
<name>MyEnemyMech</name>
<finiteStateMachine>
<state node="NodeA">
<transition action="MoveToNodeN">
<target>NodeN</target>
</transition>
<transition action="MoveToNodeG">
<target>NodeG</target>
</transition>
<transition action="TakeSnapshotNodeA">
<target>NodeA</target>
</transition>
</state>
<!-- Other declarations of states -->
</finiteStateMachine>
</behavior>
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A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
MyEnemyMech route (expressed in XML):

<behavior>
<name>MyEnemyMech</name>
<finiteStateMachine>
<state node="NodeA">
<transition action="MoveToNodeN">
<target>NodeN</target>
</transition>
<transition action="MoveToNodeG">
<target>NodeG</target>
</transition>

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/behaviors
--request POST --header "Content-Type:text/xml"
--data @MyEnemyMech.xml
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A complete interaction with the JaCO Web Service

Step 2: Send the behaviors to the server
Repeat the process for all the available behaviors...

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/behaviors
—--request POST --header "Content-Type:text/xml"
--data @MyEnemyMineBot.xml

<

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/behaviors
—--request POST --header "Content-Type:text/xml"
--data @MyEnemyMineBotl.xml
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A complete interaction with the JaCO Web Service

Step 3: Send the target behavior to the server

<behavior>
<name>TargetBehavior</name>
<finiteStateMachine>
<state node="Nodel">
<transition action="MoveToNodeN">
<target>Node2</target>
</transition>
</state>
<state node="Node2">
<transition action="MoveToNodeS">
<target>Node3</target>
</transition>
</state>
<state node="Node3">
<transition action="MoveToNodeI">
<target>Node4</target>
</transition>
</state>
<!-- Other declarations of states -->
</finiteStateMachine>
</behavior>
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A complete interaction with the JaCO Web Service

Step 3: Send the target behavior to the server

<behavior>
<name>TargetBehavior</name>
<finiteStateMachine>
<state node="Nodel">
<transition action="MoveToNodeN">
<target>Node2</target>
</transition>
</state>
<state node="Node2">
<transition action="MoveToNodeS">
<target>Node3</target>
</transition>
</state>

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/target
--request POST --header "Content-Type:text/xml"
--data Q@Target.xml
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A complete interaction with the JaCO Web Service

Step 4: Ask the server to compute the composition

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_id/composition
--request POST

Step 5: Poll the server to get the computed calculation, if ready

cURL command for interacting with JaCO:

curl http://jaco.dis.uniromal.it/1/client_1d/composition
--request GET
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