

VISUALIZING SERVICE

BEHAVIOR COMPOSITION

Examples in video-game scenarios!

Stavros Vassos, DIS Room B214, vassos@dis.uniroma1.it

Stefano Cianciulli, stefano.cianciulli@gmail.com

mailto:vassos@dis.uniroma1.it
mailto:stefano.cianciulli@gmail.com

Behavior Composition with JaCO
2

 AI for non-player characters (NPCs) in video games

 Unity game engine

 Angry Bots Patrolling Domain for Behavior

Composition

 Demo / Getting started guide

 Behaviors in TGF (Trivial Graph Format)

 JaCO server

 API and usage

 Behaviors in XML

 A possible application in interactive storytelling

Non-player Characters in Video Games
3

 Game engine, a typical example:

 C++

 Creates game-world objects with (x,y,z) coordinates and

calculates what happens to them on every frame

 E.g., a crate is up in the air on frame1. On frame 2 the

game engine will calculate the new position, etc

Non-player Characters in Video Games
4

 Game engine, a typical example:

 C++

 Creates game-world objects with (x,y,z) coordinates and

calculates what happens to them on every frame

 E.g., a crate is up in the air on frame1. On frame 2 the

game engine will calculate the new position, etc

 Same for non-player characters (NPCs)!

Finite State Machines (FSMs)
5

 Video Games:

 Finite State Machines

 Decision Diagrams

 Behavior Trees

 Goal Oriented Action Planning

 Academic AI on agents:

 Knowledge representation, First-order logic,

Classical planning, Planning with preferences, …

 Belief-Desire-Intention architecture, Agent-based

programming, …

 Probabilistic reasoning, Bayesian networks,

Utility theory, Markov Decision Processes, …

Finite State Machines (FSMs)
6

 Video Games:

 Finite State Machines

 Decision Diagrams

 Behavior Trees

 Goal Oriented Action Planning

 Academic AI on agents:

 Knowledge representation, First-order logic,

Classical planning, Planning with preferences, …

 Belief-Desire-Intention architecture, Agent-based

programming, …

 Probabilistic reasoning, Bayesian networks,

Utility theory, Markov Decision Processes, …

Finite State Machines (FSMs)
7

 Simple transition systems

Finite State Machines (FSMs)
8

 NPC behavior based on high-level states

On Guard Fight

Run away

See small enemy

Losing fight

Energy OK

Finite State Machines (FSMs)
9

 Traditionally one of the first techniques for NPC

behavior

 Very simple to understand

 Very simple to implement

 E.g., directly using if-then-else statements

 int NPC::think(){

 if (state==ONGUARD && seeSmallEnemy()){

 state=FIGHT;

 makeScarySound();

 }

 else if (state==FIGHT && energy>30){

 ...

 }

 else if ...

 }

Finite State Machines (FSMs)
10

Behavior Composition in videogames?
11

 Transition systems are already used in videogames

 Each NPC expresses an available behavior

 A target behavior can be used to express a “virtual”

intended behavior

 A controller can be used to orchestrate the NPCs

 Two examples

 Angry Bots Patrolling Domain

 A possible application in interactive storytelling

Game development with Unity
12

 Amazing tools available for (indie) game developers!

Game development with Unity
13

 Integrated Game Development Environment

 C#, Javascript, Boo programming languages

 Asset-centric instead of code-centric, adopting a

look and feel like 3D CAD software

Game development with Unity
14

Game development with Unity
15

 Terminology

 Project

 Scene

 GameObject and Component

 Asset and Prefab

 Script

Game development with Unity
16

 3D platform game tutorial

available online by Unity3D

 http://unity3d.com/gallery/de

mos/demo-projects

 http://u3d.as/content/unity-

technologies/3d-platformer-

tutorial/3yF

http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF
http://u3d.as/content/unity-technologies/3d-platformer-tutorial/3yF

Game development with Unity
17

 Sections 1,2 of the tutorial

 Start with an empty platform

level

 Add our player: Lerpz

 Add a camera that follows him

 Add a 3rd person controller to

control Lerpz

 Tweak his movement

 Section 5

 Add NPCs!

Game development with Unity
18

 Quick demo using

 Lerpz

 SpringFollowCamera

 ThirdPersonController

 CharacterController

 ThirdPersonPlayerAnimation

Game development with Unity
19

Game development with Unity
20

 Angry Bots Patrolling Domain

 Getting started

 http://jaco.dis.uniroma1.it

 Example1: download jaco.jar and patrolling-win.zip

 Initialize the standalone JaCO server (Java 1.7

required). Run it from command line:

 java –jar jaco.jar

 Unzip and run the patrolling demo

http://jaco.dis.uniroma1.it/

Angry Bots Patrolling Domain
21

 20 Points of interest

 3 Robots

Angry Bots Patrolling Domain
22

 20 Points of interest

 3 Robots

Angry Bots Patrolling Domain
23

 Stefano Cianciulli Non-Player Character Behavior
Composition in Unity Game Engine, M.Sc. Thesis,
March 2013

 Angry Bots Patrolling Domain project:
http://github.com/CianciuStyles/angrybots-jaco

 JaCO behavior composition server project:
http://github.com/CianciuStyles/jaco-web-service

 JaCO API/examples/server/executable demo
http://jaco.dis.uniroma1.it

 Next: more details on these on Jaco-patrolling.pdf

https://github.com/CianciuStyles/angrybots-jaco
https://github.com/CianciuStyles/angrybots-jaco
https://github.com/CianciuStyles/angrybots-jaco
https://github.com/CianciuStyles/jaco-web-service
https://github.com/CianciuStyles/jaco-web-service
https://github.com/CianciuStyles/jaco-web-service
https://github.com/CianciuStyles/jaco-web-service
https://github.com/CianciuStyles/jaco-web-service
http://jaco.dis.uniroma1.it/

Angry Bots Patrolling Domain
24

Further development
25

 Add a shared environment

 This is the environment in which all services act

 Possible MSc thesis: extend the system to include a

shared environment

 More advanced forms of synthesis

 E.g., describing the target behavior in terms of

sequencing of goals to be achieved

 Possible MSc thesis: extend the system to more

advanced forms of service synthesis and composition

 Exploit this idea for more flexible/interactive

storytelling in video games (also for MSc thesis)

Interactive storytelling: a possible
application

26

 A simple example of a nonlinear story

Interactive storytelling: a possible
application

27

 A simple example of a nonlinear story

 The player embarks to a journey to become a powerful

fighter or magician

 The story evolves by means of self-contained quests

Interactive storytelling: a possible
application

28

 A simple example of a nonlinear story

Interactive storytelling: a possible
application

29

 A simple example of a nonlinear story

 The player embarks to a journey to become a powerful

fighter or magician

 The story evolves by means of self-contained quests

 Each node in this transition system is a decision point

 The story is led by an “AI Director” who may chose the

next action based on different parameters, e.g.,

player’s satisfaction, time of play, etc.

Interactive storytelling: a possible
application

30

 A simple example of a nonlinear story

 The quests can be initiated/facilitated/handled by

some key NPCs that participate in the story, e.g., the

mayor of a small town, an evil wizard, a village

 Each NPC can be involved in more than one quests

 Each quest can be handled by more than one NPC

 Each quest affects the mood of the NPC

Interactive storytelling: a possible
application

31

 A simple example of a nonlinear story

Interactive storytelling: a possible
application

32

 A simple example of a nonlinear story

 NPC1

 Can be used only for quest3 or

quest4

 Either of them fixes the NPC into

a positive or negative state

Interactive storytelling: a possible
application

33

 A simple example of a nonlinear story

 NPC2

 A positive mood is hurt by
quest6

 Note the nondeterminism

 [Note that for simplicity we
assume that quests may be
performed more than once]

Interactive storytelling: a possible
application

34

 A simple example of a nonlinear story

Interactive storytelling: a possible
application

35

 A simple example of a nonlinear story

 NPC5, NPC6

 Special ending of the game

depending on the fighter or

magician track

 [Note that the runs of the

transition system are infinite]

Interactive storytelling: a possible
application

36

 A simple example of a nonlinear story

 The quests can be initiated/facilitated/handled by

some key NPCs that participate in the story, e.g., the

mayor of a small town, an evil wizard, a village

 Each NPC can be involved in more than one quests

 Each quest can be handled by more than one NPC

 Each quest affects the mood of the NPC

 Deadlocks arise due to overlap! How can this be

handled in an automated way?

Interactive storytelling: a possible
application

37

 A simple example of a nonlinear story

 Behavior composition

 The transition systems representing the mood of NPCs

are the available behaviors

 The transition system representing the nonlinear story is

the target behavior

 A controller can be extracted from the composition,

showing how to orchestrate the available behaviors in

order to avoid deadlocks

 We can connect to JaCO from the command line

Interactive storytelling: a possible
application

38

 XML files for the example

 http://jaco.dis.uniroma1.it/#example2

 http://jaco.dis.uniroma1.it/storytelling.zip

 cURL

 http://curl.haxx.se/

 Rest client

 http://restclient.net/

 http://code.google.com/p/rest-client/

http://jaco.dis.uniroma1.it/
http://jaco.dis.uniroma1.it/
http://jaco.dis.uniroma1.it/
http://jaco.dis.uniroma1.it/
http://jaco.dis.uniroma1.it/storytelling.zip
http://jaco.dis.uniroma1.it/storytelling.zip
http://curl.haxx.se/
http://curl.haxx.se/
http://curl.haxx.se/
http://restclient.net/
http://restclient.net/
http://code.google.com/p/rest-client/
http://code.google.com/p/rest-client/
http://code.google.com/p/rest-client/
http://code.google.com/p/rest-client/

Interactive storytelling: a possible
application

39

 Accessing jaco.dis.uniroma1.it

 Inside DIS: interaction-dis.bat

 Outside DIS: interaction-jaco.bat

 Accessing the local server: interaction-local.bat

