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Behavior Composition with JaCO 
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 AI for non-player characters (NPCs) in video games 

 Unity game engine 

 Angry Bots Patrolling Domain for Behavior 

Composition  

 Demo / Getting started guide 

 Behaviors in TGF (Trivial Graph Format) 

 JaCO server 

 API and usage 

 Behaviors in XML 

 A possible application in interactive storytelling 



Non-player Characters in Video Games 
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 Game engine, a typical example: 

 C++  

 Creates game-world objects with (x,y,z) coordinates and 

calculates what happens to them on every frame 

 E.g., a crate is up in the air on frame1. On frame 2 the 

game engine will calculate the new position, etc 
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 Game engine, a typical example: 

 C++ 

 Creates game-world objects with (x,y,z) coordinates and 

calculates what happens to them on every frame 

 E.g., a crate is up in the air on frame1. On frame 2 the 

game engine will calculate the new position, etc 

 Same for non-player characters (NPCs)! 



Finite State Machines (FSMs) 
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 Video Games: 

 Finite State Machines 

 Decision Diagrams 

 Behavior Trees 

 Goal Oriented Action Planning 

 Academic AI on agents: 

 Knowledge representation, First-order logic, 

Classical planning, Planning with preferences, … 

 Belief-Desire-Intention architecture, Agent-based 

programming, … 

 Probabilistic reasoning, Bayesian networks, 

Utility theory, Markov Decision Processes, … 
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 Simple transition systems 
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 NPC behavior based on high-level states 

On Guard Fight 

Run away 

See small enemy 

Losing fight 

Energy OK 
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 Traditionally one of the first techniques for NPC 

behavior 

 Very simple to understand 

 Very simple to implement 

 E.g., directly using if-then-else statements 



 int NPC::think(){ 

 if (state==ONGUARD && seeSmallEnemy()){ 

  state=FIGHT; 

 makeScarySound(); 

 } 

 else if (state==FIGHT && energy>30){ 

 ... 

   } 

   else if ... 

 } 

Finite State Machines (FSMs) 
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Behavior Composition in videogames? 
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 Transition systems are already used in videogames 

 Each NPC expresses an available behavior 

 A target behavior can be used to express a “virtual” 

intended behavior 

 A controller can be used to orchestrate the NPCs 

 Two examples 

 Angry Bots Patrolling Domain  

 A possible application in interactive storytelling 



Game development with Unity 
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 Amazing tools available for (indie) game developers! 



Game development with Unity  
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 Integrated Game Development Environment 

 

 C#, Javascript, Boo programming languages 

 

 Asset-centric instead of code-centric, adopting a 

look and feel like 3D CAD software 
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 Terminology 

 Project 

 Scene 

 GameObject and Component 

 Asset and Prefab 

 

 Script 

 



Game development with Unity  
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 3D platform game tutorial 

available online by Unity3D 

 http://unity3d.com/gallery/de

mos/demo-projects 

 http://u3d.as/content/unity-

technologies/3d-platformer-

tutorial/3yF 
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 Sections 1,2 of the tutorial 

 Start with an empty platform 

level 

 Add our player: Lerpz 

 Add a camera that follows him 

 Add a 3rd person controller to 

control Lerpz 

 Tweak his movement 

 Section 5 

 Add NPCs! 



Game development with Unity 
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 Quick demo using 

 Lerpz 

 SpringFollowCamera 

 ThirdPersonController 

 CharacterController 

 ThirdPersonPlayerAnimation 
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 Angry Bots Patrolling Domain 

 Getting started 

 http://jaco.dis.uniroma1.it 

 Example1: download jaco.jar and patrolling-win.zip 

 Initialize the standalone JaCO server (Java 1.7 

required). Run it from command line: 

   java –jar jaco.jar 

 Unzip and run the patrolling demo 

http://jaco.dis.uniroma1.it/


Angry Bots Patrolling Domain 
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 20 Points of interest 

 3 Robots 
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 Stefano Cianciulli Non-Player Character Behavior 
Composition in Unity Game Engine, M.Sc. Thesis, 
March 2013 

 Angry Bots Patrolling Domain project: 
http://github.com/CianciuStyles/angrybots-jaco 

 JaCO behavior composition server project: 
http://github.com/CianciuStyles/jaco-web-service 

 JaCO API/examples/server/executable demo 
http://jaco.dis.uniroma1.it 

 

 Next: more details on these on Jaco-patrolling.pdf 
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Angry Bots Patrolling Domain 
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Further development   
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 Add a shared environment 

 This is the environment in which all services act 

 Possible MSc thesis: extend the system to include a 

shared environment 

 More advanced forms of synthesis  

 E.g., describing the target behavior in terms of 

sequencing of goals to be achieved 

 Possible MSc thesis: extend the system to more 

advanced forms of service synthesis and composition 

 Exploit this idea for more flexible/interactive 

storytelling in video games (also for MSc thesis) 



Interactive storytelling: a possible 
application 
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 A simple example of a nonlinear story 
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 A simple example of a nonlinear story 

 The player embarks to a journey to become a powerful 

fighter or magician 

 The story evolves by means of self-contained quests 
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 A simple example of a nonlinear story 
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 A simple example of a nonlinear story 

 The player embarks to a journey to become a powerful 

fighter or magician 

 The story evolves by means of self-contained quests 

 

 Each node in this transition system is a decision point 

 The story is led by an “AI Director” who may chose the 

next action based on different parameters, e.g., 

player’s satisfaction, time of play, etc. 



Interactive storytelling: a possible 
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 A simple example of a nonlinear story 

 The quests can be initiated/facilitated/handled by 

some key NPCs that participate in the story, e.g., the 

mayor of a small town, an evil wizard, a village  

 

 Each NPC can be involved in more than one quests 

 Each quest can be handled by more than one NPC 

 Each quest affects the mood of the NPC 

 



Interactive storytelling: a possible 
application 
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 A simple example of a nonlinear story 
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 A simple example of a nonlinear story 

 NPC1 

 Can be used only for quest3 or 

quest4 

 Either of them fixes the NPC into 

a positive or negative state 



Interactive storytelling: a possible 
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 A simple example of a nonlinear story 

 NPC2 

 A positive mood is hurt by 
quest6 

 

 Note the nondeterminism 

 

 [Note that for simplicity we 
assume that quests may be 
performed more than once] 
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 A simple example of a nonlinear story 
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 A simple example of a nonlinear story 

 NPC5, NPC6 

 Special ending of the game 

depending on the fighter or 

magician track 

 

 [Note that the runs of the 

transition system are infinite] 
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 A simple example of a nonlinear story 

 The quests can be initiated/facilitated/handled by 

some key NPCs that participate in the story, e.g., the 

mayor of a small town, an evil wizard, a village  

 

 Each NPC can be involved in more than one quests 

 Each quest can be handled by more than one NPC 

 Each quest affects the mood of the NPC 

 

 Deadlocks arise due to overlap! How can this be 

handled in an automated way? 
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 A simple example of a nonlinear story 

 Behavior composition 

 The transition systems representing the mood of NPCs 

are the available behaviors 

 The transition system representing the nonlinear story is 

the target behavior 

 A controller can be extracted from the composition, 

showing how to orchestrate the available behaviors in 

order to avoid deadlocks 

 We can connect to JaCO from the command line 



Interactive storytelling: a possible 
application 
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 XML files for the example 

 http://jaco.dis.uniroma1.it/#example2 

 http://jaco.dis.uniroma1.it/storytelling.zip 

 cURL 

  http://curl.haxx.se/ 

 Rest client 

 http://restclient.net/ 

 http://code.google.com/p/rest-client/ 
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 Accessing jaco.dis.uniroma1.it 

 Inside DIS: interaction-dis.bat 

 Outside DIS: interaction-jaco.bat 

 Accessing the local server: interaction-local.bat 

 

 

 


