
Automatic Behavior Composition Synthesis

Giuseppe De Giacomoa, Fabio Patrizia, Sebastian Sardiñab

aDipartimento di Informatica e Sistemistica - Sapienza Università di Roma - Rome, Italy.
bSchool of Computer Science and IT - RMIT University - Melbourne, Australia.

Abstract

The behavior composition problem amounts to realizing a virtual desired module (e.g.,
a surveillance agent system) by suitably coordinating (and re-purposing) the execution
of a set of available modules (e.g., a video camera, vacuum cleaner, a robot, etc.) In
particular, we investigate techniques to synthesize a controller implementing a fully
controllable target behavior by suitably coordinating available partially controllable
behaviors that are to execute within a shared, fully observable, but partially predictable
(i.e., non-deterministic), environment. Both behaviors and environment are represented
as arbitrary finite state transition systems. The technique we propose is directly based
on the idea that the controller job is to coordinate the concurrent execution of the avail-
able behaviors so as to “mimic” the target behavior. To this end, we exploit a variant
of the formal notion of simulation to formally capture the notion of “mimicking,” and
we show that the technique proposed is sound and complete, optimal with respect to
computational complexity, and robust for different kind of system failures. In addition,
we demonstrate that the technique is well suited for highly efficient implementation
based on synthesis by model checking technologies, by relating the problem to that
of finding a winning strategy in a special safety game and explaining how to actually
solve it using an existing verification tool.

Key words: Knowledge representation and reasoning, Intelligent agents, Reasoning
about actions and change, Automated planning, Synthesis of reactive systems

1. Introduction

In this paper, we provide a thorough investigation—from theory to
implementation—of the behavior composition problem, that is, the problem of
how to realize an abstract desired target behavior module by reusing and re-purposing
a set of accessible modules implementing certain concrete behaviors. More concretely,
we are interested in synthesizing a sort of controller that coordinates the available
existing behaviors in order to replicate a given desired target behavior [29, 77, 78].
Generally speaking, a behavior stands for the logic of any artifact that is able to operate
in the environment, such as devices, agents, software or hardware components, or
workflows. For example, consider a painting blocks-world scenario in which blocks
are painted and processed by different robotic arms; different behaviors stand for
different types of arms (e.g., a gripper, a painting arm, a cleaner arm, etc.), all acting

Preprint submitted to Elsevier January 27, 2011

in the same environment. The aim is to realize a desired (intelligent) virtual painting
system by suitably “combining” the available arms.

Behavior composition is of particular interest in agents and multi-agent settings.
A (desired) intelligent system may be built, for example, from a variety of existing
different modules operating (that is, performing actions) on a common environment
and whose logic is only partially known. These modules may, in turn, be other agents
themselves. A set of RoboCup players with different capabilities can be put together to
form an (abstract) more sophisticated “team” player. Similarly, a BDI (Belief-Desire-
Intention) agent may implement a desired deterministic plan (which was probably
obtained via planning or agent communication) by appealing to the set of available
user pre-defined non-deterministic plans [34, 73]. In robot-ecologies and ambient in-
telligence, advanced functionalities, such as a home surveillance agent, are achieved
through the composition of many simple robotic devices, such as a vacuum cleaner, a
lamp, or a video camera [74, 17].

Our work is really a form of process synthesis as studied in Computer Science
[68, 1, 87, 49]. However, while most literature on synthesis concentrates on synthe-
sizing a process satisfying a certain specification from scratch, behavior composition
focuses on synthesizing a process (the controller) starting from available components
[52]. This idea of composing and reusing components has been strongly put forward by
Service Oriented Computing, under the name of “service composition” [2, 40, 61, 84].
Indeed, service composition aims at composing complex services by orchestrating (i.e.,
controlling and coordinating) services that are already at disposal. When service com-
position takes into account the behavior of the component service, as in [20, 82, 16] for
instance, it becomes intimately related to what we call here “behavior composition.”

When we look at behavior composition from an Artificial Intelligence perspective,
the issue of actual controllability of the available behaviors becomes prominent. While
one can instruct a behavior module to carry out an action, the actual outcome of the
action may not be always foreseen a priori, though it can be possibly observed after
execution. Our work here is based on revisiting a certain stream of work in service
composition [13, 14, 15], called “Roman Model” in [40, 84], but keeping the need of
dealing with partial controllability central. In particular, we consider the problem of
synthesizing a fully controllable target behavior from a library of available partially
controllable behaviors that are to execute within a shared, fully observable, but par-
tially predictable environment [29, 77].

Technically, we abstract behaviors and the environment as finite state transition
systems. More precisely, each available module is represented as a nondeterministic
transition system (to model partial controllability); the target behavior is represented
as a deterministic transition system (to model full controllability); and the environment
is represented as a non-deterministic transition system (to model partial predictability).
The environment’s states are fully accessible by the other transition systems. Working
with finite state transition systems allows us to leverage on research in Verification and
Synthesis in Computer Science [67, 85, 48, 3, 23].

Once we settle for a formal specification of the problem of concern, we then de-
velop a novel sound and complete, and computationally optimal technique to generate
so-called compositions. The technique is directly based on the idea that a compo-
sition amounts to a controller that coordinates the concurrent execution of the avail-

2

able modules so as to “mimic” the desired target behavior. We capture “mimicking”
through the formal notion of simulation [58, 39]. Obviously, we need to consider
that available behaviors as well as the environment are only partially controllable (i.e.,
non-deterministic), and therefore a special variant of the classical notion of simulation
ought to be devised.

The proposed technique has several interesting features:

• The technique is sound and complete, in a very strong sense: it allows to syn-
thesize a sort of meta-controller, called controller generator, that represents all
possible compositions. While the set of possible compositions is infinite (in fact
uncountable) in general, the controller generator is unique.

• The technique gives us a very precise characterization of the sources of complex-
ity in the problem. Whereas behaviour composition is known to be EXPTIME-
hard even for deterministic available behaviors running in a stateless environ-
ment [59], the technique proposed here allows for computing the controller gen-
erator in time exponential in the number of available behavior, but not in the
number of their states. In other words, computing the controller generator (i.e.,
an implicit representation of all compositions) is EXPTIME-complete and in-
deed exponential only in the number of available behaviors.

• Due to its “universality,” the controller generator can be used to generate a sort
of lazy composition on-the-fly, possibly adapting reactively based on runtime
feedback.

In particular, we shall argue that the composition solutions obtained are robust to
behavior failures in two ways. First, they can handle (a) temporary behavior un-
availability as well as (b) unexpected behavior/environment evolution in a totally
reactive and on-the-fly manner—that is, without any extra effort or “re-planning”
required to continue the realization of the target behavior—if at all possible, by
the very nature of the composition generator. Second, the composition solutions
can be parsimoniously refined when a module (c) becomes permanently unavail-
able, or (d) unexpectedly resumes operation.

We complement the proposed technique by showing how it can be implemented
by making use of model checking technology applied to some special game structures
developed in the context of Synthesis in Computer Science [3, 45, 38, 67, 26]. To that
end, we show how to polynomially encode behavior compositions into safety games of
a specific form, in which each strategy for winning the game corresponds to a compo-
sition (Section 5). With that reduction at hand, one is then able to use available tools
such as TLV [69] in order to actually compute the controller generator by symbolic
model checking (Section 6).

The rest of the paper is organized as follows. In Section 2 we spell out our frame-
work for behavior composition. In Section 3, we provide our technique based on sim-
ulation for synthesizing compositions, and we detail the notion of controller generator.
In Section 4, we show how the approach can deal with behavior failures. Then, in Sec-
tion 5, we turn to synthesis by model checking, and show how one can compute the

3

controller generator through safety games. Based on the results of the previous sec-
tions, we show in Section 6 how to implement behavior composition in practice using
existing platforms for synthesis by model checking such as TLV [69]. (The full TLV
code for our running example is reported in an appendix.) We discuss related work in
various areas of Artificial Intelligence and Computer Science in Section 7, and draw
conclusions in Section 8.

2. The Framework

In this section, we formally define the problem of concern, by developing an ab-
stract framework based on (sort of) finite state transition systems.

Environment. We assume to have a shared fully observable environment which pro-
vides an abstract account of action preconditions and effects, and can be regarded as
a mean of communication among behaviors (defined below). As, in general, we have
incomplete information about preconditions and effects (akin to an action theory), the
environment can, in general, be non-deterministic.

Formally, an environment is a tuple E = 〈A, E, e0, ρ〉, where:

• A is a finite set of shared actions;

• E is the finite set of environment states;

• e0 ∈ E is the environment initial state;

• ρ ⊆ E ×A× E is the environment transition relation among states.

When referring to environment transitions, we equivalently use notations 〈e, a, e′〉 ∈ ρ
or e a−→ e′ (in E), both denoting that performing action a in state e may lead the
environment to successor state e′.

Observe that this notion of environment shares a lot of similarities with so-called
“transition systems” in action languages [32]; indeed, that formalism might well be
used to compactly represent the environment, in our setting.

Behaviors. A behavior abstracts the program of some agent (or, more in general, the
logic of a device/module), in terms of (internal) states, actions and transitions. Be-
haviors are not intended to execute on their own but, rather, to operate within an en-
vironment (and, through this, possibly interact with other behaviors). Hence, they are
equipped with the ability to test, when needed, conditions (or guards) on environment
states.

Formally, a behavior over an environment E is a tuple B = 〈B, b0, G, F, %〉, where:

• B is the finite set of behavior states;

• b0 ∈ B is the behavior initial state;

• G is a set of guards over E , that is, boolean functions g : E 7→ {>,⊥};

• F ⊆ B is the set of behavior final states;

4

• % ⊆ B ×G×A×B is the behavior transition relation.

We freely interchange notations 〈b, g, a, b′〉 ∈ %, and b
g,a−→ b′ in B. A “guarded”

transition 〈b, g, a, b′〉 ∈ % denotes that: (i) action a can be executed by B in state b
when the environment is in a state e such that g(e) = >; and (ii) the execution may
lead the behavior to successor state b′. Notice that a behavior’s evolution depends on
the environment it is defined over, as action executability depends on guard satisfaction.

Intuitively, behavior states model agent’s decision points: when the behavior is in
a given state, the agent selects the action to be executed next among those executable 1

at that state. Executing the selected action, besides other effects, leads the behavior to
a successor state, where a new set of actions become executable, and a new iteration
starts. Final states are those where the behavior can be safely stopped (e.g., final states
of a mechanic arm might correspond to safe configurations).

We say that a behavior B over environment E is deterministic if no behavior and
environment states exist, say b ∈ B and e ∈ E, respectively, for which two transitions
b
g1,a−→ b′ and b

g2,a−→ b′′ exist such that b′ 6= b′′ and g1(e) = g2(e) = >.
Clearly, given a deterministic behavior’s and an environment’s states, and an ex-

ecutable action, the next behavior state is always predictable. In other words, deter-
ministic behaviors are fully controllable by appropriate action selections. In general,
however, behaviors are non-deterministic, that is, the state resulting from an action ex-
ecution is unpredictable, and, thus, so are the actions that will be available in such a
state. In other words, non-deterministic behaviors are only partially controllable.

System and Target Behavior. As said above, behaviors operate within an environment
(the one they are defined over) and can, through this, interact with each other. The
notion of system introduced below allows for identifying a set of interacting behaviors
over the same environment.

The system is a tuple S = 〈B1, . . . ,Bn, E〉, where E is an environment and
B1, . . . ,Bn are predefined, possibly non-deterministic, available behaviors over E . We
stress that available behaviors are given and cannot be modified, though they can, of
course, be (partially) controlled through action execution. The behaviors of a sys-
tem model the only available implementations one can actually use to execute actions.
Importantly, a behavior cannot be instructed to execute actions regardless of its (and
environment’s) current state, but needs to be in a state where the desired action is actu-
ally executable; external controllers must, of course, take these constraints into account
when coordinating a set of behaviors.

Finally, we define the so-called target behavior BT as a deterministic behavior over
E , which represents the fully controllable desired behavior to be obtained. Roughly
speaking, the challenge we deal with here is to bring about the “virtual” (i.e., non-
readily available) target behavior by properly “composing” the execution of available
behaviors.

Example 1. In the painting arms scenario depicted in Figure 1, the overall aim of
the system is to process blocks. Only one block at a time can be processed: it can

1Subject to environment’s current state.

5

e1 e2

e3e4

preparerecharge

clean

dispose
paint
clean
recharge

recharge

dispose

paint
clean

recharge

prepare

(a) Environment E .

t1

t4

t2

t3t5

prepare
clean

pa
int

paint
dispose

recharge

(b) Target arm BT .

b1 b2 b3 b4
prepare

paint

clean

paint
recharge prepare

clean

B2

a1 a2
e1 ∨ e2 : cleandispose

recharge

recharge

dispose

B1

c1 c2
recharge

paint

prepare
B2

(c) Available arms B1, B2, and B3.

Figure 1: The painting arms system S = 〈B1,B2,B3, E〉 and the target arm BT .

be cleaned or painted, but needs first to be prepared. After preparation, cleaning and
painting can be performed when water and paint, stored in two different tanks, are
(respectively) available. Both tanks can be charged simultaneously by pushing a button.
Blocks can also be cleaned, but only in particular circumstances (i.e., environment in
state e3, see below).

The non-deterministic environment E provides general domain’s rules. Nodes and
edges represent states and transitions, respectively; each edge label represents the ac-
tion that triggers the transition; and the initial state has an incoming edge without
source. For instance, as said, blocks can be painted or cleaned only after they have
been prepared: so, from e1, a state where either action paint or clean is enabled (either
e2 or e3) can only be reached by first executing prepare. Though not graphically repre-
sented, the environment accounts for tank states, e.g.: in e1 and e2 the water tank is not
empty, while it is in e3 and e4. Action clean can also be performed in e3, even though
the water tank is empty, as in this state a cleaning tool not relying on water becomes
available.
BT describes the (deterministic) behavior of a desired (target) arm-agent module.

Observe that state t2 captures a decision point: cleaning a block is optional, as the
selection of the transition is demanded to the executor, which makes its decisions ac-

6

cording to internal policies –e.g., ensuring first that the block is dirty. Also, notice that
BT is “conservative,” in that it always recharges the tanks after processing a block, so
as to guarantee that clean will be executable, if needed.

The desired arm BT does not exist in reality. Nonetheless, there are three differ-
ent actual arms available: B1 (states a1, a2), a cleaning-disposing arm able to clean
and dispose blocks; B2 (states b1, . . . , b4), capable of preparing, cleaning, and painting
blocks; and B3 (states c1, c2), a paint arm that can also prepare blocks for process-
ing. All three arms are able to press the charge button (to refill the tanks). Notice
that arm B2 behaves non-deterministically when it comes to painting a block. This
non-determinism captures modeler’s incomplete information about B2’s internal logic.
Observe also that arm B1 requires the environment to be in e1 or e2, in order to perform
clean, as it needs water to actually execute the action.

In this example, all behavior states are assumed final, thus imposing no restrictions
on when the execution can be stopped. �

Next, we derive the notions of behavior and system enactment, which are abstract
structures needed to formally state the composition problem and characterize its solu-
tions.

Enacted behaviors. Behaviors and the environment mutually affect their executions.
Such a “combined” evolution is formally described by enacted behaviors. Given
a behavior B = 〈B, b0, G, F, %〉 over an environment E = 〈A, E, e0, ρ〉, the
enacted behavior of B on E is a tuple TB = 〈S,A, s0, Q, δ〉, where:

• S = B × E is the (finite) set of TB’s states, where for each state s = 〈b, e〉 ∈ S,
we denote b as beh(s) and e as env(s);

• A is the same set of actions as in E ;

• s0 ∈ S is the initial state of TB, such that beh(s0) = b0 and env(s0) = e0;

• δ ⊆ S ×A× S is the enacted transition relation, where 〈s, a, s′〉 ∈ δ or, equiva-
lently, s a−→ s′ in TB, if and only if:

– env(s)
a−→ env(s′) in E , that is, action a is actually executable in E ;

– beh(s)
g,a−→ beh(s′) in B, with g(env(s)) = > for some g ∈ G, that is,

action a can be performed by B from its state beh(s) when the environment
state env(s) satisfies the guard which labels the respective transition.

• Q = {s ∈ S | beh(s) ∈ F} is the set of the enacted behavior’s final states.

Technically, TB is the synchronous product of the behavior and the environment, and
represents all possible executions obtained from running behavior B once guards are
evaluated and actions are performed in E . Observe that the enacted behavior non-
determinism stems from both environment’s and behavior’s. Moreover, notice that
action executability for a behavior is subject to: (i) its own state; (ii) guard evaluation
in current environment state; and (iii) the environment state itself. In particular, even
though a transition labeled with action a and outgoing from current behavior (B) state

7

c1
e1

c1
e2

c1
e3

c1
e4

c2
e1

c2
e2

c2
e3

c2
e4

recharge

prepare

paint

recharge

recharge paint

prepare

Figure 2: Enacted Arm T3.

exists, if, given current environment state e, no transition outgoing from e is labelled
with a, then B cannot execute a –as if its precondition were not satisfied. In the fol-
lowing, when no ambiguity arises, we simplify the notation by denoting the enacted
counterpart of a behavior Bi simply as Ti, instead of TBi

.

Example 2. The enacted behavior T3 depicted in Figure 2 describes the evolution of
arm B3 if it were to act alone in the environment. Observe that there exist some joint
states that cannot be reached by B3 alone. For instance, 〈c1, e4〉 can be reached only
by executing action clean which, however, is not available in B3. �

Enacted system behavior. The enacted system behavior formally captures the con-
current, interleaved, execution of all available behaviors on the environment of a
system. Let S = 〈B1, . . . ,Bn, E〉 be a system, where E = 〈A, E, e0, ρ〉 and
Bi = 〈Bi, bi0, Gi, Fi, %i〉 (i = 1, . . . , n). The enacted system behavior of S is a tu-
ple TS = 〈SS ,A, {1, . . . , n}, sS0, QS , δS〉, where:

• SS = B1×· · ·×Bn×E is the finite set of TS states; given sS = 〈b1, . . . , bn, e〉,
we denote bi as behi(sS) (i = 1, . . . , n) and e as env(sS);

• sS0 ∈ SS is the initial state of TS , such that behi(sS0) = bi0 (i = 1, . . . , n) and
env(sS0) = e0;

• QS = {sS ∈ SS | ∀i ∈ {1, . . . , n} behi(sS) ∈ Fi} is the set of TS final states;

• δS ⊆ SS × A × {1, . . . , n} × SS is TS ’s transition relation, where

〈sS , a, k, s′S〉 ∈ δS or, equivalently, sS
a,k−→ s′S in TS , if and only if:

– env(sS)
a−→ env(s′S) in E ;

– behk(sS)
g,a−→ behk(s′S) in Bk, with g(env(sS)) = >, for some g ∈ Gk;

– behi(sS) = behi(s′S), for i ∈ {1, . . . , n} \ {k}.

The enacted system behavior TS is technically the synchronous product of: (i) the
environment, and (ii) the asynchronous product of the available behaviors. Except for
the presence of index k in transitions, which identifies the behavior that performs the
labeling action, it is formally analogous to an enacted behavior.

8

Controller. We are now ready to introduce the main component of our framework:
the controller, which models an entity able to instruct available behaviors to execute
actions, as well as to activate, stop, and resume their execution. We assume the con-
troller has full observability on both available behaviors and the environment, that is,
it can keep track, at runtime, of their current states. Although other choices are pos-
sible, full observability is quite natural in this context, since available behaviors and
environment are already suitable abstractions of actual modules: if details have to be
hidden, this can be done directly within the exposed abstract behaviors, by resorting to
non-determinism.

In order to formally define controllers, we start with the notions of traces and his-
tories. Let TB = 〈S,A, s0, Q, δ〉 be an enacted behavior of some (available or tar-
get) behavior B over environment E . A trace for TB is a possibly infinite sequence

τ = s0
a1−→ s1

a2−→ · · · , such that (i) s0 = s0; and (ii) sj aj+1

−→ sj+1 in TB, for all

j ≥ 0. A history is just a finite prefix (ending with a state) h = s0
a1−→ · · · a`−→ s` of

a trace. We denote h’s last state s` by last(h), and its length ` by |h|. As finite traces
are also histories, function |·| is also defined over them; if τ is an infinite trace, we let
|τ | =∞.

Traces and histories extend immediately to enacted system behaviors, by adding

index k. System traces have the form s0
a1,k1−→ s1

a2,k2−→ · · · , and system histories have

the form s0
a1,k1−→ · · · a

`,k`−→ s`. Functions |·| and last are extended in the obvious way.

Now, consider a system S = 〈B1, . . . ,Bn, E〉 and its enacted behavior TS . Let
H be the set of all TS histories. A controller for S is a possibly partial function
P : H×A 7→ {1, . . . , n}. Intuitively, P (h, a) identifies the available behavior, i.e.,
BP (h,a), to delegate action a to, after S has evolved as described by enacted system
behavior history h.

The Behavior Composition Problem. Roughly speaking, the problem we deal with is
that of synthesizing, for a given system S, a controller that realizes a desired target be-
havior, that is, able to coordinate the available behaviors so that the resulting behavior
is, in fact, analogous to the target. In order to formalize this notion, we first need to de-
fine trace realizations. Let S = 〈B1, . . . ,Bn, E〉 be a system, BT a target behavior, and
P a controller for S. Furthermore, letH be the set of all TS (enacted system behavior)

histories, and consider a TT (enacted target behavior) trace τ = s0
a1−→ s1

a2−→
We say that P realizes τ if:

• for all TS histories h ∈ Hτ,P ⊆ H (Hτ,P defined below): if |h| < |τ |, then

P (h, a|h|+1) = k and last(h)
a|h|+1,k−→ s′S in TS for some s′S , where Hτ,P =⋃

`≥0H`τ,P is the set of TS histories induced by P and τ , inductively defined as
follows:

– H0
τ,P = {sS0};

– Hj+1
τ,P is the set of all (j + 1)-length histories h

aj+1,kj+1

−→ sj+1
S such that:

9

∗ h ∈ Hjτ,P ;

∗ env(sj+1
S) = env(sj+1);

∗ kj+1 = P (h, aj+1), that is, at history h, action aj+1 is delegated to
available behavior Bkj+1 ;

∗ last(h)
aj+1,kj+1

−→ sj+1 in TS , that is, behavior Bkj+1 can actually exe-
cute action aj+1;

• if τ is finite and s|τ | ∈ QT (i.e., beh(s|τ |) is final for BT), then all |τ |-length
histories h ∈ H|τ |τ,P are such that last(h) ∈ QS .

Informally, saying that a controller realizes a target behavior trace means that: given a
(possibly infinite) sequence of actions compliant with the target behavior, and a pos-
sible environment evolution resulting from the execution of such action sequence, the
controller selects at each step of execution a behavior able to actually execute the action
requested at that step, no matter how behaviors –which are non-deterministic– selected
earlier evolved. In addition, if the target trace finishes at a final state (for the enacted
target behavior), then the whole system is brought to a legal terminating state, too. In
other words, the controller is always able to delegate the actions so as to mimicking the
target behavior.

Because a deterministic behavior itself can be seen as a specification of a set of
traces, we say that a controller P realizes a target behavior BT if and only if it realizes
all traces of TT . This can be informally rephrased as the ability to delegate, step by step,
all target behavior’s action sequences, no matter how the environment and the available
behaviors evolve.

Observe that the controller can observe the current states of the available behaviors
as well as that of the environment (in fact, it can observe the whole system history up
to the current state), in order to decide which behavior to select next. This makes these
controllers akin to an advanced form of conditional plans and, in fact, the problem
itself is related to planning [37], being both synthesis tasks. Here, though, we are
not planning for choosing the next action, but for who shall execute the next action,
whatever such action happens to be at runtime. Formally, the problem that we deal
with is as follows:

Given a system S = 〈B1, . . . ,Bn, E〉 and a deterministic target behavior
BT over E , synthesize a controller P that realizes BT .

All controllers that are a solution to this problem are called compositions (of BT on E).

Example 3. Even though compositions are, in general functions of system histories
(and actions), there are cases where they depend on history last k (≥ 0) states only. In
such cases, they can be represented as finite-state machines. In Figure 3, for instance,
two finite-state controllers, P1 and P2, are depicted. An edge outgoing from a state s
and labeled with a pair c : 〈a, k〉 means that when the controller is in state s and action
a is requested, it is delegated to behavior Bk, provided condition c holds (omitted
conditions are assumed true).

The main difference between P1 and P2 is in the arm used for painting: P1 uses
B2, while P2 uses B3. In addition, P1 charges the tanks using either B1 or B2, in

10

s1

s4

s2

s3s5

prepare, 2

clean
,1

paint, 2

paint, 2

dis
po

se
, 1

B 2
in
b 1

:
re

ch
ar

ge
,1

B 2
in
b 3

:
re

ch
ar

ge
,2

(a) Controller P1

s1

s4

s2

s3s5

prepare, 3

clean,1

paint, 3
paint, 3

dis
po

se
, 1re

ch
ar

ge
,3

(b) Controller P2

Figure 3: Two finite-state controllers.

particular: if B2 is in state b1 then B1 is used, while if B2 is in b3 then B2 is used.
As for controller P2, instead, it uses always B3. It can be easily seen that P1 realizes
all of TT traces, and, therefore that it is a composition of BT on E . On the contrary,
this is not the case for P2, as it does not even realize the simple TT one-action trace
〈t1, e1〉

prepare−→ 〈t2, e2〉. Finally, to see the usefulness of conditions, take a controller
P ′1 analogous to P1, excepting for the edge from s5 to s1, which is re-labeled with
just “recharge, 1” (i.e., action recharge is always delegated to B1). In such a case, P ′1
would realize all those traces where B2 always evolves to b1, after executing paint.
However, as, in general, B2 may well evolve to b3,too , there exist also BT traces
that cannot be realized by P ′1. Clearly, as P1 shows, this can be easily avoided by a
properly conditioning action delegation, based on behavior states. Notice also that this
possibility is guaranteed by the assumption of full observability on state of the (whole)
system. �

This concludes the formal statement of the behavior composition problem. The
framework just presented stands for what can be considered the “core” framework, i.e.,
a basic setting that incorporates all distinguishing features of the problem. However,
we stress that extensions and generalization can be defined so as to obtain non-trivial
variants, which can be adopted to model and solve similar problems from domains that
satisfy different assumptions (see Section 8 for a discussion on this).

3. Composition via Simulation

Next, we present our approach to composition synthesis. This is originally inspired
by [15], where a restricted version of the composition problem was addressed, in the
context of services, by taking the standard notion of simulation relation [58, 39] as a
formal tool for solution characterization. Here, the shared environment and the (devil-
ish) non-determinism of both the available behaviors and the environment significantly
sophisticate that framework, calling for a new formal setting, the one presented here,

11

where the usual notion of simulation relation is no longer enough to fully characterize
the set of solutions and, hence, to guide the solution process.

Intuitively, we say that a transition system S1 simulates another transition system
S2, if S1 is able to “match”, step by step, all of S2 moves during execution. More pre-
cisely, imagine to execute S2 starting from its initial state. At each step of execution,
S2 performs a transition among those allowed in its (current) state. If, for all possible
ways of executing S2, S1 can, at each step, choose a transition that “matches” (accord-
ing to some criteria, e.g., label equivalence) the one executed by S2 then S1 simulates
S2. We stress that S1 decisions are required to be made in an “online” fashion, as S2

evolves. In other words, it is not the case that S1 knows in advance which transitions
S2 will execute in the future.

Such an intuition is formalized in the following definition, where both non-
determinism and the shared environment are taken into account.

Let S = 〈B1, . . . ,Bn, E〉 be a system, BT a target behavior over E , and TS =
〈SS ,A, {1, . . . , n}, sS0, QS , δS〉 and TT = 〈ST ,A, sT0, QT , δT 〉 the enacted sys-
tem and enacted target behaviors corresponding to S and BT on E , respectively. An
ND-simulation relation of TT by TS is a relationR ⊆ ST ×SS , such that 〈sT , sS〉 ∈ R
implies:

1. env(sT) = env(sS);
2. if sT ∈ QT , then sS ∈ QS ;
3. for all a ∈ A, there exists a k ∈ {1, . . . , n}—also referred to as a witness of
〈sT , sS〉 ∈ R for action a—such that for all transitions sT

a−→ s′T in TT :

(a) there exists a transition sS
a,k−→ s′S in TS with env(s′S) = env(s′T);

(b) for all transitions sS
a,k−→ s′S in TS with env(s′S) = env(s′T), it is the case

that 〈s′T , s′S〉 ∈ R.

In words, if a pair of enacted states is in the ND-simulation (relation), then: (i) its states
share the same environment component; (ii) if the target behavior is in a final state, so
does the system; and (iii) for all actions the (enacted) target behavior can execute, there
exists a witness behavior Bk that can execute the same action while guaranteeing, re-
gardless of non-determinism, preservation of the ND-simulation relation for successor
target and system states.

We say that a state sT ∈ ST is ND-simulated by a state sS ∈ SS (or sS ND-
simulates sT), denoted sT � sS , if there exists an ND-simulation relation R of TT by
TS such that 〈sT , sS〉 ∈ R. Observe that this is a co-inductive definition. As a result,
the relation � is itself an ND-simulation relation, in fact the largest one, in the sense
that all ND-simulations are contained in �.

Given TT and TS , relation � can be computed by Algorithm 1 (NDS). Roughly
speaking, the algorithm works by iteratively removing those tuples for which the re-
quirements of the ND-simulation definition do not apply, until a fixpoint is reached. It
is straightforward to prove that the algorithm reaches a fixpoint in a finite number of
steps and computes the largest ND-simulation, by comparing the algorithm with the
definition of ND-simulation relation and observing that no tuple is ever added to the
candidate setR, and that C ⊆ R.

12

Algorithm 1: NDS(TT , TS) – Largest ND-Simulation

R := ST × SS \ {〈sT , sS〉 | env(sT) 6= env(sS) ∨ (sT ∈ QT ∧ sS /∈ QS)};1

repeat2

R := (R \ C), where C is the set of 〈sT , sS〉 ∈ R such that there exists an3

action a ∈ A and for each k there exists a transition sT
a−→ s′T in TT such

that either:

(a) there is no transition sS
a,k−→ s′S in TS such that env(s′T) = env(s′S); or

(b) there exists a transition sS
a,k−→ s′S in TS such that env(s′T) = env(s′S)

but 〈s′T , s′S〉 6∈ R.

until (C = ∅) ;4

returnR;5

Example 4. Figure 4 shows a fragment of the largest ND-simulation relation for our
painting blocks world example. In particular, Figure 4(a) shows the enacted target
behavior of BT and Figure 4(b) depicts a fragment of the system enacted behavior.
States in Figure 4(b) contain, in the bottom half, the environment component, and, in
the top half, a compact representation of available service (current) states: the first
component of the integer string represents the subscript of the state that B1 is in, the
second refers to B2, and so on. For instance, the node labeled with 〈211, e4〉 represents
the system state 〈〈a2, b1, c1〉, e4〉.

Matching patterns between TT and TS states mean that such states are in ND-
simulation. For example, 〈〈a1, b3, c2〉, e2〉 of TS ND-simulates 〈t2, e2〉 of TT ; this
implies that (i) every conceivable action taken in 〈t2, e2〉 can be replicated by some be-
havior (possibly a different one for each action) when the system is in 〈〈a1, b3, c2〉, e2〉
and, moreover, that (ii) this property propagates to the resulting successor states.

Observe that, clearly, a TT state can be simulated by several TS ’s, as is the case for,
e.g., 〈t4, e2〉, which is simulated by both 〈〈a1, b1, c1〉, e2〉 and 〈〈a1, b3, c1〉, e2〉. Also
the converse may happen: 〈〈a1, b1, c1〉, e1〉 in TS ND-simulates TT state 〈t1, e1〉 as
well as 〈t5, e1〉. �

The relevance of the ND-simulation relation to the composition problem addressed
here is twofold. Firstly, as will be shown next, computing the largest ND-simulation
relation between a target enacted behavior and a system enacted behavior is essen-
tially equivalent to checking whether there exists a composition for the target behavior
that “uses” the behaviors available in the system. Secondly, this “simulation-based”
approach overcomes the main obstacles that previous solution techniques (e.g., [13])
encountered, as enabling the construction of flexible solutions that can take runtime
information into account, at no additional (worst-case) cost.

Our first main result states that checking the existence of a composition can be
reduced to checking whether the enacted target behavior’s initial state is ND-simulated
by the enacted system behavior’s initial state, which corresponds to checking whether
there exists an ND-simulation relation that includes the initial states of both.

13

t1
e1

t2
e2

t3
e3

t4
e3

t5
e4

t3
e2

t4
e2

t5
e1

prepare
cleanpaint

clean

paintdispose

recharge

paint

dispose

recharge

(a) Enacted Target Arm TT

111
e1

121
e2

111
e3

131
e1

211
e2

221
e2

111
e2

131
e2

231
e2

prepare, B

recharge, A

paint, Bpa
in

t,
B

clean, A

clean, B

dispose, A

paint, Bpaint, B

recharge, B

di
sp

os
e,
A

dispose, Adis
po

se,
A

221
e3

231
e3

211
e4

211
e3

131
e4clean, A

paint, Bpaint, Bdispose, A

recharge, A

dispose, A

recharge, B

132
e1

232
e3

132
e2

232
e2

recharge, C

prepare, C

paint, C

clean, Apaint, C

recharge, C

clean, A

clean, A
clean, A

clean, A

clean, A

paint, C

(b) Enacted System Behavior TS

Figure 4: The largest ND-simulation relation � between the enacted target behavior TT and (a fragment
of) the enacted system behavior TS . A state in TS ND-simulates those in TT that share its pattern, e.g.,
〈〈a1, b3, c1〉, e2〉 � 〈t4, e2〉. Observe that state 〈〈a1, b1, c1〉, e1〉 has two patters—black and white–and
hence ND-simulates both 〈t1, e1〉 and 〈t5, e1〉, and that state 〈〈a1, b1, c1〉, e3〉 ND-simulates no state.

Theorem 1. Let S = 〈B1, . . . ,Bn, E〉 be a system and BT a target behavior over E .
Moreover, let TT = 〈ST ,A, sT0, QT , δT 〉 and TS = 〈SS ,A, {1, . . . , n}, sS0, QS , δS〉
be the enacted target behavior and the enacted system behavior for BT and S, respec-
tively. Then, a composition controller P of target BT on system S exists if and only if
sT0 � sS0.

Proof. (IF PART). First, we define P . To this end, let h = s0S
a1,k1−→ · · · a

`,k`−→ s`S ∈ H
be a TS history and a ∈ A an action. If there exists a TT history hT = s0T

a1−→ · · · a`−→
s`T (i.e., a history matching the actions of h) such that s`T � s`S , and a transition
s`T

a−→ s`+1
T in TT (i.e., action a is BT -executable in s`T), then we define P (h, a) ∈ ωa,

where ωa is the set of indexes such that for all transitions s`T
a−→ s`+1

T and any k ∈ ωa:

14

• there exists a transition s`S
a,ka−→ s`+1

S in TS with env(s`+1
S) = env(s`+1

T);

• for all transitions s`S
a,ka−→ s`+1

S in TS with env(s`+1
S)=env(s`+1

T), s`+1
T � s`+1

S .

Because s`T � s`S , we know that ωa 6= ∅. In all other cases, namely, when hT does
not exist or a is not BT -executable, we take P (h, a) = u.

Next, we prove that P is indeed a composition, that is, we show that every TT trace

is realized by P . To this end, we consider any TT trace τ = s0T
a1−→ s1T

a2−→ · · ·
(s0T = sT0) and prove the following claim first:

(†) for every TS history h = s0S
a1,k1−→ · · · a

`,k`−→ s`S ∈ Hτ,P , with 0 ≤ ` <
|τ |, it is the case that s`T � s`S .

SinceHτ,P =
⋃
`≥0H`τ,P , we prove (†) by induction on ` as follows:

• LetH0
τ,P = {sS0}. Clearly, sT0 � sS0 and (†) holds trivially.

• Take h`+1 = s0S
a1,k1−→ · · · a

`,k`−→ s`S
a`+1,k`+1

−→ s`+1
S ∈ H`+1

τ,P , where s0S = sS0.

By the definition of H`+1
τ,P , s`S

a`+1,k`+1

−→ s`+1
S in TS , env(s`+1

T) = env(s`+1
S)

and P (h`, a`+1) = k`+1. By the induction hypothesis, we know that s`T � s`S .
Then, by the way P was defined above, it follows that s`+1

T � s`+1
S .

Next, take any h ∈ Hτ,P such that |h| < |τ |. Because of the way each Hiτ,P is

constructed, h ought to be of the form h = s0S
a1,k1−→ · · · a

`,k`−→ s`S , that is, h has to match
all actions in τ . From (†) above, we have that s`T � s`S . Then, by definition of ND-
simulation, the fact that a`+1 is BT -executable in s`T , and the way P is defined above,

there exists a transition s`S
a`+1,k−→ s`+1

S , where k = P (h, a`+1) and k ∈ {1, . . . , n}.
In addition, if τ is finite, then for every h ∈ H|τ |τ,P we have, due to (†) above, that

s
|τ |
T � last(h), which in turns implies that if s|τ |T ∈ QT (i.e., TT is final in enacted state
s
|τ |
T), then last(h) ∈ QS . Then, P realizes τ and P is a composition.

(ONLY-IF PART). Let P be a controller for S that is a composition of BT on
E . From P , we build a relation R ⊆ ST × SS that is an ND-simulation such that
〈sT0, sS0〉 ∈ R. The definition of R is as follows: 〈sT , sS〉 ∈ R if and only if there

exists a TT trace τ = s0T
a1−→ s1T

a2−→ · · · and an (induced) TS history h ∈ Hτ,P such
that sT = s

|h|
T and sS = last(h).

Next, we show that R is an ND-simulation relation (page 12). Consider then a pair

〈sT , sS〉 ∈ R. By R’s definition, there exists a TT trace of the form τ = s0T
a1−→

· · · a`−→ sT · · · and an `-length TS history (induced by τ and P) h ∈ H`τ̂ ,P such that

h = s0S
a1,k1−→ · · · a

`,k`−→ sS .
First, due to the way set H`τ,P is constructed, env(sT) = env(sS) holds, as only

system histories matching the evolution of the environment as in trace τ are considered.

15

Second, because P is a composition, P realizes τ as well as its |h|-length trace prefix
τ ||h|. It follows then that if last(τ ||h|) = sT ∈ QT , then sS ∈ QS .

It remains to prove that the third requirement of ND-simulation holds. To that end,
consider an action a ∈ A that is BT -executable in sT , that is, there exists sT

a−→ s∗T in
BT . Take now trace τ∗ = τ |`

a−→ s∗T . Clearly, h ∈ H`τ∗,P , that is, h can be induced by
P when realizing trace τ∗. Since P is a composition, it realizes trace τ∗ and hence there

exits ka ∈ {1, . . . , n} such that P (h, a) = ka and sS
a,ka−→ s∗S in TS . Next consider any

transition sT
a−→ s′T in TT . Because the evolution of the environment is independent

of that of the behaviors, there must exist sS
a,ka−→ s′S with env(s′T) = env(s′S) and hence

condition (3.a) of ND-simulation definition applies. Moreover, τ ′ = τ |`
a−→ s′T is a

legal trace of TT and history h
a,ka−→ s′S ∈ H

`+1
τ ′,P . Hence, by definition of R above,

R(s′T , s
′
S) holds, that is, requirement (3.b) of the ND-simulation definition is satisfied,

with ka = P (h, a) being indeed a witness of sT � sS for action a.

Theorem 1 provides a straightforward method for checking the existence of a com-
position, namely: (i) compute the largest ND-simulation relation between TT and TS ,
and (ii) check whether 〈sT0, sS0〉 is in such a relation.

As for computational complexity considerations, observe that algorithm NDS de-
scribed above computes the largest ND-simulation relation � between TT and TS in
polynomial time, with respect to the size of TT and TS . Since the number of states
in TS is exponential in the number of available behaviors B1, . . . ,Bn, we get that the
largest ND-simulation relation � can be computed in exponential time in the number
of available behaviors. Hence, as formally stated in the next theorem, this technique
is a notable improvement with respect to the ones based on reduction to PDL [29, 77],
which are exponential also in the number of states of both the behaviors and the en-
vironment.2 Considering that the composition problem is EXPTIME-hard [59], the
upper bound we get is indeed tight, that is, roughly speaking, this is the best we can
hope for.

Theorem 2. Checking for the existence of compositions by computing the largest ND-
simulation relation � can be done in polynomial time in the number of states of the
available behaviors, of the environment, and of the target behavior, and in exponential
time in the number of available behaviors.

Once computed the ND-simulation relation, the problem of “synthesizing” a con-
troller that is a composition arises. Next, we show how, from the largest ND-simulation
relation, we can build a finite state program, i.e., a controller generator, that returns,
at each step, the set of all available behaviors capable of performing the requested
action, while guaranteeing the possibility of delegating to available services all (target-
compliant) requests that can be issued in the future.

2Though in light of the result in here, a better complexity analysis involving the specific PDL satisfiability
procedures could be carried out.

16

Formally, let S = 〈B1, . . . ,Bn, E〉 be a system, BT a target behavior over
E , and TS = 〈SS ,A, {1, . . . , n}, sS0, QS , δS〉 and TT = 〈ST ,A, sT0, QT , δT 〉
the enacted system behavior and the enacted target behavior corresponding, re-
spectively, to S and BT . The controller generator (CG) of S for BT is a tuple
CG = 〈Σ,A, {1, . . . , n}, ∂, ω〉, where:

1. Σ = {〈sT , sS〉 ∈ ST × SS | sT � sS} is the set of CG states, formed by all
pairs of TT and TS state belonging to the largest ND-simulation relation; given
σ = 〈sT , sS〉 we denote sT by comT (σ) and sS by comS(σ).

2. A is the finite set of shared actions.
3. {1, . . . , n} is the finite set of available behavior indexes.
4. ∂ ⊆ Σ×A× {1, . . . , n} × Σ is the transition relation, where 〈σ, a, k, σ′〉 ∈ ∂,

or σ
a,k−→ σ′ in CG, if and only if:

• there exists a transition comT (σ)
a−→ comT (σ′) in TT ;

• there exists a transition comS(σ)
a,k−→ comS(σ′) in TS ;

• for all transitions comS(σ)
a,k−→ s′S in TS such that env(s′S) =

env(comT (σ′)), 〈comT (σ′), s′S〉 ∈ Σ holds (i.e., k is a witness of
comT (σ) � comS(σ) for action a).

5. ω : Σ×A 7→ 2{1,...,n} is the output function defined as

ω(σ, a) = {k | ∃ σ′ ∈ Σ s.t. σ
a,k−→ σ′ is in CG}.

Roughly speaking, the CG is a finite state transducer that, given an action a (compliant
with the target behavior), outputs, through function ω, the set of all available behaviors
that can perform a next, according to the largest ND-simulation relation �. Observe
that computing the CG from relation � is easy, as it involves checking local condi-
tions only. In fact, one could directly compute the CG by enriching relation �, during
computation, with information about actions, indices, and transitions.

By Theorem 1, if there exists a composition of BT , then sT0 � sS0 and CG
does include state σ0 = 〈sT0, sS0〉. In such a case, we can build actual controllers,
called generated controllers, that are compositions of BT , by picking up, at each step,
one available behavior among those returned by output function ω. Notice that full-
observability of available behavior states is a crucial assumption here, as both ω and ∂
depend on the current states of both the environment and all system behaviors, which,
due to non-determinism, cannot be known with certainty, i.e., can be reconstructed,
by just looking at the action history. As a result, after each action execution, in order
to obtain ω’s output, the new states of the system and of the environment need to be
known. Of course, more complex scenarios where available behavior states are only
partially observable can be considered, though this is out of the scope of this paper.

Formally, controllers that are compositions can be generated from the CG as fol-
lows. 3 Firstly, in analogy with behavior and system traces, we define CG traces and

3We stress that as a composition exists if and only if σ0 = 〈sT0, sS0〉 ∈ Σ (Theorem 1), constructing a
composition makes sense only if this condition holds.

17

histories: a trace for CG is a possibly infinite sequence σ0 a1,k1−→ σ1 a2,k2−→ · · · , such

that each transition σj
aj+1,kj+1

−→ σj+1 is in CG, for all j ≥ 0 4; consequently, a
history for CG is a finite prefix of a trace. Functions last and | · | over CG histories are

defined as usual. For technical convenience, given a CG trace τCG = σ0 a
1,k1−→ σ1 a

2,k2−→
· · · , we define the corresponding projected system trace as the sequence projS(τCG) =

comS(σ0)
a1,k1−→ comS(σ1)

a2,k2−→ · · · , intuitively obtained from τCG by taking only the
system component of each state. Clearly, by definition of CG, if σ0 = 〈sT0, sS0〉
then projS(τCG) is a legal TS trace. Also, from τCG we define the corresponding

projected target trace projT (τCG) = comT (σ0)
a1−→ comT (σ1)

a2−→ · · · that can be
easily proven to be a legal TT trace if σ0 = 〈sT0, sS0〉. Similarly, we can derive from
each CG history hCG a projected system history and a projected target history, which
are, respectively, a TT history and a TS history, if σ0 = 〈sT0, sS0〉.

Next, letHCG be the set of all CG histories, and consider a selection function

CGPCHOOSE : HCG ×A 7→ {1, . . . , n}

such that for all hCG ∈ HCG, CGPCHOOSE(hCG, a) = CHOOSE(ω(last(hCG), a)),
where CHOOSE stands for a choice function that picks a random (index) element
among those returned by ω(last(hCG), a), if non empty, while is left unconstrained,
if ω(last(hCG), a) is empty or hCG is not a legal history for CG. Observe that, being a
choice function, different applications of CHOOSE to the same parameters yield differ-
ent results, each corresponding to a different way of resolving the non-determinism in
the element choice.

Finally, assuming that CG includes σ0 = 〈sT0, sS0〉, for each CG history hCG =

σ0 a1,k1−→ · · · a
`,k`−→ σ` such that σ0 = σ0, consider the corresponding projected system

history:

projS(hCG) = comS(σ0)
a1,k1−→ · · · a

`,k`−→ comS(σ`).

For a given selection function CGPCHOOSE, a generated controller is any function
PCHOOSE : H × A 7→ {1, . . . , n} such that for every TS history h ∈ H and ac-
tion a ∈ A, if h = projS(hCG) for some CG history hCG, then PCHOOSE(h, a) =
CGPCHOOSE(hCG, a).

The following results relate CGs to compositions and show that, given a CG con-
taining σ0, one gets all and only controllers that are compositions by considering all
possible resolutions of the non-determinism of function CHOOSE. Notably, while each
specific composition may be an infinite state program, the controller generator, which
in fact includes them all, is always finite.

Theorem 3. Let S, BT , TS and TT be as above, and let CG = 〈Σ,A, {1, . . . , n}, ∂, ω〉
be the controller generator of S for BT . If σ0 = 〈sT0, sS0〉 ∈ Σ, then:

1. every generated controller obtained from CG as shown above is a composition
of BT on E;

4Observe that we do not require σ0 = 〈sT0, sS0〉
.
= σ0 as, in general, the CG does not include σ0.

18

2. every controller that is a composition of BT on E can be obtained from CG as
shown above.

Proof. To prove 1., we show that for every target trace τ ∈ HT and controller PCHOOSE

defined as above, there exists a controller P , defined as in the (IF PART) of Theorem 1,
such thatHτ,P = Hτ,PCHOOSE

. Since P is proven to realize τ , by looking at the definition
of trace realization, this is enough to prove that PCHOOSE realizes τ as well.

Let H`τ,PCHOOSE
⊆ Hτ,PCHOOSE

be the set of system histories h = s0S
a1,k1−→ · · · a

`,k`−→ s`S
induced by τ and PCHOOSE. Also, let H`τ,P ⊆ Hτ,P be the analogous set for τ and P .
We prove, by induction, the existence of P (defined as in the (IF PART) of Theorem 1)
such that H`τ,PCHOOSE

= H`τ,P , for every ` ≥ 0. Since, for every controller C, Hτ,C =⋃
`≥0H`τ,C , we get thatHτ,PCHOOSE

= Hτ,P .
For the base case (` = 0), no matter how P is defined,H0

τ,PCHOOSE
= H0

τ,P = {sS0}.
By induction hypothesis, assume H`τ,PCHOOSE

= H`τ,P , and consider a system history

h = s0S
a1,k1−→ · · · a

`,k`−→ s`S ∈ H`τ,PCHOOSE
. Because h is an induced history, for i =

1, . . . , `, we have ki = PCHOOSE(h|i−1, ai), where h|j = s0S
a1,k1−→ · · · a

j ,kj−→ sjS . In
particular k` = PCHOOSE(h|`−1, a`) is defined, and therefore, by PCHOOSE definition,

there exists a CG history h̃CG = 〈s̃0T , s0S〉
a1,k1−→ · · · a

`−1,k`−1

−→ 〈s̃`−1T , s`−1S 〉 such that
projS(h̃CG) = h|`−1. In principle, h̃CG can be any, as long as projS(h̃CG) = h|`−1.
In particular, it could be unrelated to τ . But because h̃CG is a history for CG, it is such
that 〈s̃iT , siS〉 ∈ Σ (i = 0, . . . , `−1), hence s̃iT � siS and therefore env(s̃iT) = env(siS).
In turn, h being induced by τ , env(siS) = env(siT), and hence env(s̃iT) = env(siS) =
env(siT) (i = 0, . . . , `−1). Finally, BT being deterministic and having s̃0T = s0T = sT0,
we get beh(s̃iT) = beh(siT). So, we conclude that projT (h̃CG) = τ |`−1. Based on this
and the fact that projS(h̃CG) = h|`−1, we also have that h̃CG is unique, for fixed h.

By definition of induced history, given h, k` = PCHOOSE(h|`−1, a`) =
CGPCHOOSE(h̃CG, a

`) ∈ ω(〈s`−1T , s`−1S 〉, a`). So, observing the definition of CG and

ω, it is easily seen that the sequence hCG = 〈s0T , s0S〉
a1,k1−→ · · · a

`,k`−→ 〈s`T , s`S〉 is a CG
history, in particular, such that projS(hCG) = h and projT (hCG) = τ |`.

Next, we prove that all possible extensions of h, obtained by realizing action a`+1

in τ (if any), according to PCHOOSE, are also possible under P , and viceversa. In other
words, we prove that H`+1

τ,PCHOOSE
= H`+1

τ,P . Two cases are possible: either (i) τ = τ |`
(i.e., τ is finite); or (ii) not. In case (i), we trivially obtain H`+1

τ,PCHOOSE
= H`+1

τ,P = ∅. For
case (ii), observe that s`T � s`S –as 〈s`T , s`S〉 ∈ Σ– and that a`+1 is BT -executable in s`T
(this trivially comes from a`+1 position in τ). In addition, hCG is proved, above, a CG
history such that projS(hCG) = h. Therefore, by definition of generated controller,
PCHOOSE(h, a`+1) = k`+1 ∈ ω(〈s`T , s`S〉, a`+1) 6= ∅.

On the other hand, consider the construction of P in the (IF PART) of Theo-
rem 1. Given h, τ |` matches (by construction) all actions in h, and is such that s`T =
last(τ |`) � last(h) = s`S (as proven above). So, P (h, a`+1) ∈ ωa`+1 6= ∅. But then,
observing that ω(〈s`T , s`S〉, a`+1) = ωa`+1 , no matter which index PCHOOSE returns, P
can choose the same index, say k`+1, from ωa`+1 so that k`+1 = PCHOOSE(h, a`+1) =
P (h, a`+1). Clearly, given h, a`+1 and k`+1, every possible system history of the form

19

ĥ = h
a`+1,k`+1

−→ s`+1 is such that ĥ ∈ H`+1
τ,P if and only if ĥ ∈ H`+1

τ,PCHOOSE
. Since h is

arbitrarily chosen, we ultimately getH`+1
τ,P = H`+1

τ,PCHOOSE
.

We prove 2. by showing that for all TT traces, all decisions made by P along an
arbitrary history induced by τ and P are compliant with the definition of generated
controller.

Let τ = s0T
a1−→ s1T

a2−→ · · · be a TT trace, and h = s0S
a1,k1−→ · · · a

`,k`−→ s`S ∈ Hτ,P
a generic history induced by τ and P . Since P is a composition, by (ONLY-IF PART)
of Theorem 1, we get that ki = P (h|i, ai+1) is a witness of siT � siS for ai+1, for

i = 0, . . . , `−1. Then, hCG = 〈s0T , s0S〉
a1,k1−→ · · · a

`,k`−→ 〈s`T , s`S〉 is a CG-history. Indeed,
by definition of ω, for every a that is BT -executable in sT , ω(〈sT , sS〉, a) contains all
(and only) the witnesses of sT � sS for a. So, this will be true, in particular, for
ω(〈siT , siS〉, ai+1).

Since every prefix of a history is a history itself, and ` being arbitrary, the ar-
gument above proves that for every prefix of h, say h|j (j = 0, . . . , ` − 1), there
exists an hCG prefix hCG|j , which is a CG-history, such that projS(hCG|j) = h|j .
But then, PCHOOSE(h|j , aj+1) = CGPCHOOSE(hCG|j) ∈ ω(〈sjT , s

j
S〉, aj+1). As kj ∈

ω(〈sjT , s
j
S〉, aj+1), we get that PCHOOSE can behave in the same way as P , along h, by

properly picking, at every step, an element from the set returned by ω. Since ` was
arbitrarily chosen, this result extends to all histories h ∈ Hτ,P .

We close this Section by observing that compositions can be generated just-in-time,
based on both the CG and observability of behavior and environment states. Intuitively,
the CG is analogous to a sort of “meta-plan” or a stateful non-deterministic “complete
universal plan”, which keeps all the existing plans at its disposal and selects the one to
follow for next action, possibly with contingent decisions.

Example 5. The CG can decide how to delegate actions, as requests from target arm
BT come in. For instance, if a clean action is requested after a block has been prepared,
the CG knows it ought to delegate such a request to arm BA, so as to stay within the
ND-simulation relation. While physically possible, delegating clean to arm BB would
bring the enacted system into state 〈〈a1, b1, c1〉, e3〉 which is known not to be in ND-
simulation with the (enacted) target. �

4. On Behavior Failures

In discussing the behavior composition problem, we have, so far, assumed implic-
itly that all (available) component modules are fully reliable, i.e., that they are always
available, and behave “correctly”, relative to their specification. However, there are
many situations and domains in which full reliability of components might be not an
adequate assumption. For example, in multi-agent complex and highly dynamic do-
mains, one cannot rely neither on total availability nor on reliability of the existing
modules, which may stop being available due to a variety of reasons, e.g.: devices may
break down, agents may decide to stop cooperating, communication with agents may

20

drop, exogenous events may change the state of the environment, and many other; also,
behaviors may possibly re-appear into the system at some later stage, thus creating new
“composition opportunities” for the controller.

Generally speaking, behavior and environment specifications can be seen as con-
tracts, and failures, such as those described above, can be interpreted as “breaches”
of such contracts. In this Section, we identify some classes of failures and propose
respective procedures to “repair” the controller under execution when the failure oc-
curred. Specifically, we identify five core ways of breaking contracts:5

(a) A behavior temporarily freezes, that is, it stops responding and remains still, then
eventually resumes in the same state it was in. As a result, while frozen, the con-
troller cannot delegate actions to it.

(b) A behavior unexpectedly and arbitrarily (i.e., without respecting its transition re-
lation) changes its current state. The controller can in principle keep delegating
actions to it, but it must take into account the behavior’s new state.

(c) The environment unexpectedly and arbitrarily (i.e., without respecting its transition
relation) changes its current state. The controller has to take into account that this
affects both the target and the available behaviors.

(d) A behavior dies, that is, it becomes permanently unavailable. The controller has
to completely stop delegating actions to it.

(e) A behavior that was assumed dead unexpectedly resumes operation starting in a
certain state. The controller can exploit this opportunity by delegating actions to
the resumed behavior, again.

Previous composition techniques (e.g., [14, 29, 77]) do not address these cases, as they
assume that controllers always deal with fully reliable modules. Consequently, upon
any of the above failures, we are only left with the (default) option of “re-planning”
from scratch for a whole new controller, if any. What we shall prove in this Section is
that the simulation-based technique presented in Section 3 is intrinsically robust, in the
sense of being able to deal with unexpected failures by suitably refining the solution at
hand, either on-the-fly (for cases (a), (b), and (c)), or parsimoniously (for cases (d) and
(e)), thus avoiding full re-planning.

4.1. Reactive Adaptability
We start by showing that Theorem 3 provides us with a sound and complete tech-

nique for dealing with failure cases (a), (b), and (c), without requiring any re-planning
step. As a matter of fact, once we have the controller generator, actual compositions can
be generated “just-in-time”, as (target compliant) actions are requested. What is partic-
ularly interesting about generated controllers is that one can delay the choice performed
by CHOOSE until run-time, when contingent information, such as actual behavior avail-
ability, can be taken into account. This ability provides controllers with great flexibility,
as, in a sense, they can “switch” compositions online, as needed. A controller that delay
delegation in this way is referred to as just-in-time generated controllers, and denoted
as CGPJIT. Below, we discuss the effectiveness of CGPJITs in cases (a), (b), and (c).

5Obviously, we assume an infrastructure that is able to distinguish between these failures.

21

Freezing of behaviors. A CGPJIT fully addresses temporary behavior freezings, i.e.,
failure case (a). Indeed, if a behavior is temporarily frozen, the CGPJIT simply stops
delegating actions to it, and continues with any other possible choice. 6 Obviously, if
no other choices are possible, the CGPJIT is left with no other option than waiting for
the frozen behavior to come back.

State change of behaviors and environment. CGPJITs also address unexpected changes
in the internal state of behaviors and/or of the environment, that is, failure cases (b)
and (c).7 To understand this, let us denote by TS(zS) the variant of the enacted system
behavior whose initial state is zS instead of sS0. Similarly, let us denote by TT (zT)
the enacted target behavior whose initial state is zT instead of sT0. Next, suppose that
the state of the enacted system behavior changes, unexpectedly, to state ŝS , due to a
change of the state of a behavior (or a set of behaviors) and/or of the environment.
Then, if sT is the state of the target when the failure happened, one should recompute
the composition with the system starting in ŝS and the target starting from ŝT , where
ŝT is just sT with its environment state replaced by the one in ŝS (note ŝT = sT for
failures of type (b)). Observe, though, that ND-simulation relations are independent
from the initial states of both the target and the system enacted behaviors. Therefore,
the largest ND-simulation relation between TT (ŝT) and TS(ŝS) is, in fact, relation �,
that we already computed. This implies that we can still use the very same controller
generator CG (and the same just-in-time generated controller CGPJIT as well), with the
guarantee that all compositions of the system variant for the target variant, if any, are
still captured by the CG (and CGPJIT too). Put it all together, we only need to check
whether ŝT � ŝS , and, if so, continue to use CGPJIT (now from 0-length CG history
h0CG = 〈ŝT , ŝS〉).

Example 6. Upon an unexpected change in the system, in the environment or any
available behavior, the CG can react/adapt to the change immediately. For instance, re-
ferring to Figure 4, suppose the target is in state t3, the environment in state e3, and the
available behaviors B1, B2, and B3, are in their states a2, b2, and c2, respectively. That
is, TT is in 〈t3, e3〉, and TS is in 〈〈a2, b2, c1〉, e3〉. Suppose that, unexpectedly, the envi-
ronment happens to change to state e2—someone has recharged the water tank. All that
is needed in this case is to check whether the new states of TT and TS , namely 〈t3, e2〉
and 〈〈a2, b2, c1〉, e2〉, respectively, are still related according to relation �. Since they
are, the CG continues the realization of the target from such (new) enacted states. �

Computing reactive compositions on-the-fly. Observe that CGPJIT, that is CGPCHOOSE

where CHOOSE is resolved at run-time (and CG for the matter), can be computed on-
the-fly by storing only the ND-simulation relation �. In fact, at each point, the only
information required for the next choice is ω(σ, a), where σ ∈ Σ (recall Σ = �)
is formed by the current state of the enacted target behavior and that of the enacted
system behavior. Now, in order to compute ω(σ, a) we only need to know �.

6If more information is at hand, the CGPJIT may use it to choose in an informed way, though this is out
of the scope of this paper.

7Although hardly as meaningful as the ones above, unforeseen changes in the target state can be ac-
counted for in a similar way.

22

Algorithm 2: NDSP(TT , TS ,Rinit,Rsure)

R :=Rinit \ Rsure;1

R :=R \ {〈sT , sS〉 | (env(sT) 6= env(sS)) ∨ (sT ∈ QT ∧ sS /∈ QS)};2

repeat3

R := (R \ C), where C is the set of 〈sT , sS〉 ∈ R such that there exists an4

action a ∈ A such that for each k there is a transition sT
a−→ s′T in TT such

that either:

(a) there is no transition sS
a,k−→ s′S in TS such that env(s′T) = env(s′S); or

(b) there exists a transition sS
a,k−→ s′S in TS such that env(s′T) = env(s′S)

but 〈s′T , s′S〉 6∈ R ∪Rsure.

until (C = ∅) ;5

returnR∪Rsure;6

4.2. Parsimonious Refinement

As seen above, failure cases (a), (b), and (c), do not need any particular effort to be
dealt with. However, when considering cases (d) and (e), things change significantly:
a simple reactive approach is no longer sufficient, and more complex refinement tech-
niques are required. In this Section, we show how a composition can be refined, in
an intelligent manner, so as to cope with the latter cases. We start by defining a new
algorithm, namely Algorithm 2 (NDSP), and some related results that will be useful
later on.

Algorithm 2 is a (generalized) parametric version of Algorithm 1 that computes
the largest ND-simulation relation contained in a set Rinit, between TT and TS . To
this end, it takes two extra input parameters, namely: Rinit ⊆ ST × SS , i.e., a starting
relation from which the largest ND-simulation is to be computed; andRsure ⊆ ST×SS ,
i.e., a relation containing tuples already known to be in the ND-simulation relation.
Intuitively, the algorithm works the same way as NDS, except that: (i) instead of

starting from ST ×SS , it takes the initial setRinit as input and, in addition, (ii) neglects
all pairs contained in Rsure, as they are assumed to be (surely) included in the ND-
simulation relation. Clearly, for Rinit = ST × SS and Rsure = ∅, we expect NDSP to
behave in the same way as NDS. Indeed, this is a special case of next result, which
identifies sufficient conditions on the new parameters to guarantee that the outputs of
NDSP and NDS match.

Lemma 4. Consider a system S = {B1, . . . ,Bn, E} and a target behavior BT , and let
TS and TT be their respective enacted behaviors. If Rsure ⊆ NDS(TT , TS) ⊆ Rinit,
then NDSP(TT , TS ,Rinit,Rsure) = NDS(TT , TS).

Proof. Let Ri1 and Ri2 be the sets representing R in algorithms NDS and NDSP, re-
spectively, after i repeat-loop iteration. Similarly, define Ci1 and Ci2. Moreover, assume
that NDSP and NDS require n2 and n1, respectively, repeat-loop iterations (clearly,
n2 ≤ n1).

23

First, let us prove, by induction on i, that Ri2 ∪ Rsure ⊆ Ri1. It is obvious that
R0

2 ∪ Rsure ⊆ R0
1 (observe Rinit ⊆ ST × SS). Suppose now that Rr2 ∪ Rsure ⊆ Rr1,

with r < n1. Let π = 〈sT , sS〉 ∈ Rr+1
2 ∪ Rsure, but π 6∈ Rr+1

1 . Since neither Ri1
nor Ri2 are ever expanded along iterations, it is the case that π 6∈ Rsure (otherwise
π ∈ NDS(TT , TS) and π ∈ Rr+1

1 , as NDS(TT , TS) ⊆ Rr+1
1), and thus π ∈ Rr+1

2 ,
π ∈ Rr2, and π ∈ Rr1. Because π 6∈ Rr+1

1 , π was deleted at the r-th loop iteration
of NDS, that is, π ∈ Cr1 . This means that there exists an action â ∈ A such that for
each k there is a transition sT

â−→ s′T in TT such that either (a) or (b) of step 3 of NDS
holds. If case (a) holds, then also π ∈ Cr2 trivially holds. If case (b) applies for some

k, then there exists a tuple π′k = 〈s′T , s′S〉 such that sS
â,k−→ s′S in TS , but π′k 6∈ Rr1. By

induction hypothesis, π′k 6∈ Rr2 ∪ Rsure. Thus, action â and tuple π′k do indeed satisfy
the requirement of the step 4 of NDSP. Hence, π ∈ Cr2 . We conclude that if either (a)
or (b) of NDS’ step 3 hold then π ∈ Cr2 and, consequently, π 6∈ Rr+1

2 . Contradiction.
Therefore,Rr+1

2 ∪Rsure ⊆ Rr+1
1 and NDSP(Tt, TS ,Rinit,Rsure) ⊆ NDS(Tt, TS).

Next, we prove that NDS(TT , TS) ⊆ NDSP(TT , TS ,Rinit,Rsure). To that end, we
shall prove, by induction on i, that NDS(TT , TS) ⊆ Ri2 ∪Rsure. Since NDS(TT , TS) ⊆
Rinit, NDS(TT , TS) ⊆ R0

2 ∪ Rsure. Next, suppose that NDS(TT , TS) ⊆ Rr2 ∪ Rsure,
for some r < n2, and let π = 〈sT , sS〉 ∈ NDS(TT , TS) but π 6∈ Rr+1

2 ∪ Rsure. By
induction hypothesis, π ∈ Rr2 ∪ Rsure, and π was therefore removed from R2 in the
r-th iteration of the NDSP algorithm. This means that there exists an action â ∈ A
such that for each k there is a transition sT

â−→ s′T in TS such that either (a) or (b)
of the fourth step in NDSP holds. In particular, if case (b) applies for some k, then

there exists a tuple π′k = 〈s′T , s′S〉 such that sS
â,k−→ s′S in TS , but π′k 6∈ Rr2 ∪ Rsure.

By the induction hypothesis, π′k 6∈ NDS(TT , TS) and thus π′k 6∈ R
n1
1 . However, since

π ∈ NDS(TT , TS), π ∈ Rn1
1 . But, by using the same action â, together with the

corresponding π′k 6∈ R
n1
1 tuples, π is a candidate to be removed from set Rn1

1 , i.e.,
π ∈ Cn1

1 . Then, algorithm NDS requires more than n1, a contradiction. Hence, π ∈
Rr2 ∪Rsure and NDS(TT , TS) ⊆ NDSP(Tt, TS ,Rinit,Rsure) follows.

Next, we introduce convenient notations to shrink and expand systems and ND-
simulation relations. Given a system S = 〈B1, . . . ,Bn, E〉 and a set of behavior indexes
W ⊆ {1, . . . , n}, we denote by S(W) the system derived from S by considering only
(i.e., projecting on) all behaviors Bi such that i ∈ W (note S = S({1, . . . , n})). Also,
for an enacted target behavior TT over E , we denote by �W the largest ND-simulation
relation of TT by TS(W). Finally, given a further set of indexes U ⊆ {1, . . . , n} such
that W ∩ U = ∅, we denote by �W ⊗ U the relation obtained from �W , by (trivially)
putting back into the system all Bi such that i ∈ U . Formally, this latter operation
can be define as follows (without loss of generality, assume W = {1, . . . , `} and U =
{`+ 1, . . . ,m}):

�W ⊗ U =
{〈sT , s′〉 | s′ = 〈b1, . . . , b`, b`+1, . . . , bm, e〉

such that 〈sT , 〈b1, . . . , b`, e〉〉 ∈�W and
bi is a state of Bi, for i ∈ {`+ 1, . . . ,m} }.

24

Intuitively, adding a set of behaviors to a system can only extend, and never reduce,
the capabilities of the system. Indeed, the additional behaviors do not constrain in
any way those already present, while, in general, make the system able to execute more
actions. In particular, if a system can simulate a target behavior (on some environment),
we expect it to have the same ability, and possibly more, after introducing additional
behaviors. The next result proves this intuition, i.e., that when “putting back” a set of
behaviors U into system S(W), by extending �W as shown above, we are guaranteed
to obtain an ND-simulation relation for the (expanded) system S(W ∪ U), though not
necessarily the largest one.

Lemma 5. Given a system S = {B1, . . . ,Bn, E}, a target behavior BT and its respec-
tive enacted behavior TT over E , let W,U ⊆ {1, . . . , n} be such that W ∩U = ∅. The
following hold:

• �W ⊗ U ⊆�W∪U ;

• �W ⊗ U is an ND-simulation relation of TT by TS(W∪U).

Proof. Without loss of generality, consider W = {1, . . . , `}, and U = {`+ 1, . . . ,m}.
Suppose that 〈〈t, e〉, 〈b1, . . . , b`, b`+1, . . . , bm, e

′〉〉 ∈ �W ⊗ U . Due to the defini-
tion of operation ⊗, it is the case that 〈t, e〉�W 〈b1, . . . , b`, e′〉. This means that
e = e′ and that for each a ∈ A, there exists index ka ∈ W satisfying the require-
ments of the ND-simulation relation definition for system S(W). Then, 〈t, e〉 �W∪U
〈b1, . . . , b`, b`+1, . . . , bm, e

′〉. Indeed, e = e′, and for every a ∈ A, the same in-
dex ka would also satisfy the requirements of the ND-simulation definition for system
S(W ∪ U)—the new behaviors are not used and they cannot either remove or inhibit
other behaviors capabilities. This shows that �W ⊗ U is an ND-simulation relation of
TT by TS(W∪U) and, hence,�W ⊗U ⊆�W∪U , as�W∪U is the largest ND-simulation
relation of TT by TS(W∪U).

As it turns out, adding new behaviors has a minimal impact on the ND-simulation
relation, that can be recomputed through simple projection operations. Unfortunately,
this is not the case when behaviors become unavailable. As discussed below, this has,
in general, a disruptive impact on the ND-simulation relation, which, in order to be
recomputed, requires more than just local changes. To see this, let F ⊆ W be the
set of indexes of those behaviors that become permanently unavailable, and denote by
�W|F the relation obtained from �W by projecting out all (failed) behaviors Bi such
that i ∈ F . In general, the so-obtained relation just contains (possibly properly) the
new largest ND-simulation after failure. Specifically, we have:

Lemma 6. For S and TT as above, let W,F ⊆ {1, . . . , n} be such that F ⊆ W . The
following holds:

• �(W\F)⊆ �W|F ;

• �W|F may not be an ND-simulation relation of TT by TS(W\F).

25

Proof. By Lemma 5, �(W\F) ⊗F ⊆ �(W\F)∪F , that is, �(W\F)⊗F ⊆ �W . By
projecting out F on both relations, we get �(W\F)⊗F |F ⊆ �W|F . Then, since �
⊗X|X =� for any � and X , �(W\F)⊆ �W|F follows.

It is immediate to find cases where the containment is proper, and hence the second
part follows.

Notice that even though �W is the largest ND-simulation relation when all be-
haviors in W are active, the projected relation �W |F is not necessarily even an ND-
simulation relation for the (contracted) system S(W \ F).

In light of these results, we next show how to deal with failure cases (d) and (e).

Permanent unavailability. When a behavior becomes permanently unavailable (cf.
case (d)), one cannot wait for it to resume. Instead, one can either continue to ex-
ecuting the composition (controller) and just “hope for the best”, i.e., that the failed
behavior will not be actually required (because, e.g., some actions occurring in the tar-
get behavior are not executed at runtime), or one can “refine” the current composition
so as to continue guaranteeing the full realization of the target behavior.

Assume that, at some point, while a composition built from an ND-simulation rela-
tion is executing, a set of available behaviors become unavailable. Clearly, the current
composition is no longer sound (as some required behaviors might be unavailable), the
ND-simulation relation is no longer useful, and one is required to recompute a new
one (and a corresponding composition) in order to keep executing the target behavior.
Of course, the new ND-simulation relation can always be computed “from scratch,” by
considering only the set of currently available behaviors. However, from the computa-
tional point of view this might not be the best solution, as it does not take advantage of
what has been previously computed. In the following, we propose a different approach,
based on the above results, that aims at minimizing the required computational effort
by refining, rather than recomputing, the ND-simulation relation at hand.

Lemma 6 essentially says that, when some behaviors become unavailable, in order
to compute the new ND-simulation relation, it is enough executing the NDSP algorithm
by instantiatingRinit with the relation obtained by projecting out the failed components
from the current ND-simulation relation. This yields, in general, substantially less
algorithm iterations than NDS. Indeed, as behaviors become unavailable, the effort to
obtain the new largest ND-simulation relation is systematic and incremental, in that no
tuples that were previously discarded are considered again. This, along with Lemma 4
leads to the following

Theorem 7. Consider S, BT and TT as above. Let W ⊆ {1, . . . , n} contain the
indexes of the behaviors currently working in S and let F ⊆W contain the indexes of
the behaviors that, at a given point, become permanently unavailable. Then, for every
relation β such that β ⊆�(W\F), the following holds:

�(W\F)= NDSP(TT , TS(W\F),�W |F , β).

Proof. Direct consequence of Lemmas 4 and 6.

26

t1
e1

t4
e2

t2
e2

t3
e2

t5
e1

t5
e4

t3
e3

t4
e3

prepare

cl
ea

n

pa
int

paint
dispose

recharge

cl
ea

n

paintdispose

re
ch

ar
ge

(a) Enacted Target Arm TT

1 1
e1

1 1
e2

2 1
e2

dispose, A
disp

ose,
A

2 1
e3

1 1
e4dispose, A

1 2
e1

2 2
e3

1 2
e2

2 2
e2

recharge, C

prepare, C

paint, C

clean, A

paint, C

recharge, C

clean, A
paint, C

(b) Enacted System Behavior

Figure 5: An ND-simulation relation between enacted target behavior TT and enacted system TS({1,3}).

Example 7. Suppose that arm BT (Figure 1) is being successfully realized by means
of controller P1 (Figure 3). At some point, assume that arm B2 breaks down in state
b3, just after painting a block. With B2 out, controller P1 cannot guarantee BT re-
alization anymore —yet, interestingly, this can be now done by controller P2 on the
new (unexpected) sub-system. To handle such a failure case, first, behavior B2 is pro-
jected out from the ND-simulation relation �{1,2,3}, thus getting �{1,2,3}|{2}; then,
the new largest ND-simulation relation is computed with NDSP starting from relation
�{1,2,3}|{2}, thus obtaining�{1,3} —from which, a new CG and a corresponding com-
position can be derived. The result is shown in Figure 5, where the enacted target be-
havior is the same as in Figure 4(a), reported here for convenience. Like in Example 4,
matching filling patterns individuate pairs in the ND-simulation relation. Observe that
tuple 〈〈t3, e3〉, 〈〈a2, c1〉, e3〉〉 belongs to relation �{1,2,3}|{2}, but is filtered out by the
NDSP algorithm (the original tuple 〈〈t3, e3〉, 〈〈a2, b2, c1〉, e3〉〉 ∈ �{1,2,3} relied on B2
for maintaining the ND-simulation). �

Resumed behaviors. Consider now the situation where the operating behaviors are
those with indexes in W , and others, supposed to be permanently unavailable, become
unexpectedly available (cf. case (e)). Let U be the set of indexes of such behaviors,
with U ∩W = ∅. As already observed, this never reduces the capabilities of the whole
system but could enhance it with more choices, or, differently said, after behaviors in
U become available again, the system can still realize at least the same executions as
before. However, if one wants to exploit the further capabilities brought by the re-
sumed behaviors, the new largest ND-simulation relation �(W∪U) must be computed.

27

In doing so, one can leverage on the fact that �(W∪U) contains relation �W ⊗ U (cf.
Lemma 5) and completely neglect, for potential filtering, tuples in �W ⊗ U . That is,
such tuples can be provided in input to the NDSP algorithm as the “sure set.”

Theorem 8. Consider S, BT and TT as above. Let W ⊆ {1, . . . , n} contain the
indexes of the behaviors currently working in S, and U ⊆ {1, . . . , n}, withW ∩U = ∅,
the indexes of those that were assumed permanently unavailable but have unexpectedly
resumed. Then, for every set α such that �(W∪U)⊆ α, the following holds:

�(W∪U) = NDSP(TT , TS(W∪U), α,�W ⊗ U).

Proof. Consequence of Lemmas 4 and 5.

As it turns out, this requires, in general, less iterations than those required for com-
puting the ND-simulation relation from scratch, as tuples considered by NDS are not
processed by NDSP. Observe that even if new behaviors not appearing in {1, . . . , n}
are included inU , the thesis of Lemma 5 still holds. Therefore, if the system is enriched
with new behaviors, one can use the largest ND-simulation relation previously com-
puted, in order to save computational efforts, when computing the new ND-simulation
relation.

Reusing previous computed ND-simulations. Theorems 7 and 8 essentially show that,
by using algorithm NDSP, when a behavior resumes or becomes unavailable and a new
ND-simulation relation needs to be re-computed, one can take advantage of the ND-
simulation relation previously computed. In fact, such theorems can be combined so
as to reuse not only the last ND-simulation relation computed, but all those computed
in the past (assuming they have been stored).

To see this, let W ⊆ 2{1,...,n}, such that {1, . . . , n} ∈ W , be a set of sets of
behavior indices, and assume that the largest ND-simulation relation for each set inW
has been already computed and stored. For W 6∈ W , in order to compute the (largest)
ND-simulation relation �W , one can first define the following sets:

ᾱ =
⋂
{W ′∈cWW }

�W ′ |(W ′\W);

β̄ =
⋃
{W ′∈bWW }

�W ′ ⊗ (W \W ′);

where cWW and bWW stand for the set of tightest supersets and subsets, respectively, of
W inW , namely:

cW
W= {W ′ ∈ W |W ⊆W ′ ∧ ∀V ∈ W.W ⊆ V → V 6⊂W ′};
bW

W= {W ′ ∈ W |W ′ ⊆W ∧ ∀V ∈ W.V ⊆W →W ′ 6⊂ V ′}.

Then, by applying Theorems 7 and 8, �W can simply be computed as follows:

�W = NDSP(TT , TS(W), ᾱ, β̄).

Clearly, by using NDSP(TT , TS(W), ᾱ, β̄) to compute �W , the computations already
carried out are maximally reused to devise other ND-simulation relations, as ᾱ and β̄

28

are the tightest sets one can obtain starting from the ND-simulation relations for sets in
W . Of course, once computed �W , CGPJIT can be immediately computed on-the-fly,
as before.

We close this section by noting that the kind of failures considered can be seen
as core classes of breach-of-contract, with respect to the specification. Other forms
of failures are clearly conceivable [86, 62, 53], which assume additional information
at hand —e.g., a module may announce unavailability duration and/or the state (or
possible states) it will join back—, and that can be exploited for failure reaction, thus
opening interesting research directions. However, covering a wider range of failure
cases is out of the scope of the present paper, and we limit our attention only to the
classes presented above.

5. Simulation and Safety Games

In previous Sections, we have shown that the behavior composition problem can
be reduced to the problem of finding an ND-simulation relation between two transition
systems that, together, describe the original problem instance. Moreover, we have
discussed optimization approaches to obtain computational benefits, when computing
a new ND-simulation relation in response to different type of failures. In the rest of the
paper, we adopt a more pragmatic perspective, and focus on finding effective ways for
actually computing an ND-simulation relation. Concretely, we will demonstrate how
controller generators can be synthesized by applying model checking techniques.

We begin by laying down the theoretical bases for actually solving the behavior
composition problem, and show that an ND-simulation relation can be constructed by
resorting to infinite games. In particular, we argue that constructing an ND-simulation
relation is equivalent to building a winning strategy in a safety-game (cf. [5, 6, 67]).8

The main motivation behind the use of game structures is the availability of software
tools, such as TLV [69], LILY [42], ANZU [43], and MOCHA [4], which provide (i)
effective procedures for strategy computation; and (ii) convenient languages for repre-
senting the problem instance in a modular and high-level manner. In fact, next section
explains in detail how to solve behavior composition problem instances using the TLV
system. We note that, even though not all tools above offer efficient, or more appropri-
ately optimized, solution techniques, there are currently promising efforts in this direc-
tion (cf., e.g., [42]), so we may likely expect formal synthesis technology to become
available as an effective alternative, in the future –similarly to model checking [23].

5.1. Safety-Game structures

We specialize the notion of game structure proposed in [67], to deal with synthesis
problems for invariant properties. Roughly speaking, a safety-game structure repre-
sents a game played by two players, system and controller,9 where, at each turn, the

8Safety games are those where some condition—the invariant property—needs to be always maintained,
in our case: TS is always able to “locally” (i.e., state-by-state) mimicking TT .

9To avoid confusion with our previous notation, we adopt a notation different from that of [67], in which
the players are the environment (our system) and the system (our controller)

29

former moves and the latter replies. Moves are subject to constraints (i.e., only some
moves/replies are allowed in a given game state). Intuitively, the controller’s objective
is to be always able to reply to system’s moves so as to satisfy a given (goal) property,
while the system tries to avoid this.

Throughout the rest of the paper, we assume to deal with infinite-play (though
finite-state) games, possibly obtained by introducing fake loops, as customary, e.g., in
LTL verification. Infinite plays are assumed for technical convenience only, so as to
handle all plays—finite or infinite—in a uniform way. This assumption, however, does
not limit the power of game structures (for technical details about plays, see below).

A safety-game structure (2-GS, for short) is a tuple G = 〈V,X ,Y,Θ, ρs, ρc,2ϕ〉,
where:

• V = {v1, . . . , vn} is the finite set of state variables, which range over finite do-
mains V1, . . . , Vn, respectively. Set V is partitioned into sets X = {v1, . . . , vm}
(the system variables) and Y = {vm+1, . . . , vn} (the controller variables). A
valuation of variables in V is a total function val : V −→

⋃n
i=1 Vi such that

val(vi) ∈ Vi, for each i ∈ {1, . . . , n}. For convenience, we represent valuations
as vectors ~s = 〈s1, . . . , sn〉 ∈ V , where V = V1 × . . . × Vn and si = val(vi),
for each i ∈ {1, . . . , n}. Consequently, (sub)valuations of variables in X (resp.
Y) are represented by vectors ~x ∈ X (~y ∈ Y), with X = V1 × · · · × Vm
(Y = Vm+1 × · · · × Vn). A game state is a valuation ~s = 〈s1, . . . , sn〉 ∈ V ,
and its sub-vectors ~x = 〈s1, . . . , sm〉 ∈ X and ~y = 〈sm+1, . . . , sn〉 ∈ Y are the
corresponding system and controller states, respectively. By a slight abuse of
notation, we shall also write ~s = 〈~x, ~y〉.

• Θ is a formula representing the initial states of the game. Technically, it is a
boolean combination of expressions of the form (vi = si), where vi ∈ V , for
some i ∈ {1, . . . , n}, and si ∈ Vi. Each of such expressions is an assignment
constraint, satisfied by state ~s = 〈s1, . . . , sn〉 if val(vi) = si. In general, not all
variables in V are required to occur in Θ. Given a game state 〈~x, ~y〉 ∈ V , we
write 〈~x, ~y〉 |= Θ if 〈~x, ~y〉 satisfies, in the obvious way, the boolean combination
of assignment constraints specified by Θ.

• ρs ⊆ X×Y ×X is the system transition relation, which relates each game state
to its possible successor system states.

• ρc ⊆ X×Y ×X×Y is the controller transition relation, relating each game state
together with one if its successor system states (i.e., move), to possible successor
controller states.

• 2ϕ is the goal formula, representing the invariant property to be guaranteed,
where ϕ has the same form as Θ above.

The above definition is completed by enforcing the infinite-play game assumption, in-
formally stated above, by requiring that for each game state 〈~x, ~y〉 ∈ V :

• there exists an ~x′ ∈ X such that ρs(~x, ~y, ~x′); and

• for all ~x′ such that ρs(~x, ~y, ~x′), there exists a ~y′ ∈ Y such that ρc(~x, ~y, ~x′, ~y′).

30

In the rest of the paper, when no ambiguity arises, we will use “game structure” or
simply “game” to refer to a safety-game structure. The idea behind game structures is
that, with the game in some state ~s = 〈~x, ~y〉, the system moves, by choosing ~x′ such that
ρs(~x, ~y, ~x

′), and the controller then replies, by choosing ~y′ such that ρc(~x, ~y, ~x′, ~y′).
Each pair of system move and subsequent controller reply defines a game transition
from ~s = 〈~x, ~y〉 to state ~s′ = 〈~x′, ~y′〉. Note that the controller is allowed to observe the
system move before replying, as witnessed by the presence of ~x′ in ρc(~x, ~y, ~x′, ~y′).

With the formal notion of games at hand, let us next define the corresponding dy-
namics and the notion of winning in a game. A game state 〈~x′, ~y′〉 is a successor
of a state 〈~x, ~y〉 iff ρs(~x, ~y, ~x′) and ρc(~x, ~y, ~x′, ~y′). A game play starting from state
〈~x0, ~y0〉 ∈ V is an infinite sequence of states η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · such that for
each j ≥ 0, 〈~xj+1, ~yj+1〉 is a successor of 〈~xj , ~yj〉. Clearly, by the infinite-play as-
sumption, every game always admits at least a play. Intuitively, plays capture (infinite)
sequences of game states obtained by alternating system moves and controller replies.
A play is said winning (for the controller) if it satisfies the winning condition 2ϕ, that
is, 〈~xi, ~yi〉 |= ϕ, for all i ≥ 0. The intuition is that the play remains within a set of safe
states, i.e., which satisfy the invariant property.

A (controller) strategy is a partial function f : (X × Y) × X+ 7→ Y
such that for every (finite) sequence of game states λ : 〈~x0, ~y0〉 · · · 〈~xn, ~yn〉
and for every system state ~x′ ∈ X such that ρs(~xn, ~yn, ~x′), it is the case that
ρc(~xn, ~yn, ~x

′, f(〈~x0, ~y0〉, ~x1 · · · ~xn~x′)) holds. A play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · is com-
pliant with a strategy f if ~y` = f(〈~x0, ~y0〉, ~x1 · · · ~x`), for all ` > 0, that is, intuitively,
all controller replies in the play match those the strategy prescribes. A strategy f is
winning from a state ~s if all plays starting from ~s and compliant with f are winning.
A strategy f is winning for a game G if f is winning from all of G’s initial states. We
say that a game is winning (for the controller) if there exists a winning strategy for it,
and that a game state is winning if there exists a winning strategy from that state. The
winning set of a game G is the set of all winning states of that game.

Intuitively, a game is winning if the controller can control the game evolution,
through a winning strategy that affects only Y variables, so as to guarantee that the
winning condition ϕ holds along all game plays, no matter how the system moves
happen to be. In order to prove that a game is winning, one thus needs to prove the
existence of a winning strategy, which is clearly equivalent to show that the set of
game’s initial states is a subset of the winning set.

Next, we show how one can compute the winning set of a given safety-game
structure G = 〈V,X ,Y,Θ, ρs, ρc,2ϕ〉. The key ingredient is the following opera-
tor π : 2V −→ 2V (see [5, 67]):

π(P)
.
= {〈~x, ~y〉 ∈ V | ∀ ~x′.ρs(~x, ~y, ~x′)→ ∃ ~y′.ρc(~x, ~y, ~x′, ~y′) ∧ 〈~x′, ~y′〉 ∈ P}.

Intuitively, given a set of game states P ⊆ V , π(P) denotes the set of P ’s controllable
predecessors, that is, the set of all game states from which the controller can force the
play to reach a state in P , no matter how the system happens to move. Using this
operator, Algorithm 3 can be applied to compute the set of all G’s winning states, as
proven by Theorem 9 below.
The algorithm essentially computes a fixpoint, starting from the set of all game states
that satisfy the goal formula ϕ. After the first iteration, W ′ (the next “candidate”

31

Algorithm 3: WIN – Computes a safety-game structure’s winning set

W ′ := {〈~x, ~y〉 ∈ V | 〈~x, ~y〉 |= ϕ};1

repeat2

W := W ′ ; // current candidate set3

W ′ := W ∩ π(W) ; // compute next candidate set4

until (W = W ′) ;5

return W ;6

set) contains all those game states that satisfy ϕ, and from which the controller has a
strategy to force, in one step, the game to a state that satisfies ϕ. The process is then
iterated, by refining the current candidate set W , ruling out all those states that are not
controllable predecessors of W . At the end of the n-th iteration, set W contains all
those game states from which the controller has a strategy to make the game traverse n
states satisfying ϕ, independently of system moves. When a fixpoint is reached, n can
be replaced by ∞. Termination of the algorithm is evident, as no new states are ever
added to W . The following theorem proves that the obtained set is indeed the winning
set.

Theorem 9. Let G = 〈V,X ,Y,Θ, ρs, ρc,2ϕ〉 be a safety-game structure as above,
and letW be obtained by running Algorithm 3 onG. Given a game state 〈~x0, ~y0〉 ∈ V ,
there exists a winning strategy from 〈~x0, ~y0〉 if and only if 〈~x0, ~y0〉 ∈W .

Proof. (IF PART) When the algorithm returns, it is the case that W ′ = W . Being
W ′ = W ∩ π(W), we have that W = W ∩ π(W) and therefore W ⊆ π(W). Hence,
by definition of π(W), the following holds:

∀〈~x, ~y〉 ∈W, ∀~x′ ∈ X.ρs(~x, ~y, ~x′)→ Φ(~x, ~y, ~x′) 6= ∅, (1)

where Φ(~x, ~y, ~x′) = {~y′ | ρc(~x, ~y, ~x′, ~y′) ∧ 〈~x′, ~y′〉 ∈ W} represents, informally, the
set of all “good” moves when the system has just played ~x′ from game state 〈~x, ~y〉.

Using set Φ, we consider next any strategy f(〈~x, ~y〉, λ) satisfying the following
constraint (here ` ≥ 1):

f(〈~x0, ~y0〉, ~x1 · · · ~x`) ∈ Φ(~x`−1, ~y`−1, ~x`), whenever Φ(~x`−1, ~y`−1, ~x`) 6= ∅,

where ~y`−1 = f(〈~x0, ~y0〉, ~x1 · · · ~x`−1), when ` > 1 (when ` = 1, ~y`−1 = ~y0).
Next, let us prove that strategy f is indeed a winning strategy from the ini-

tial game state. To that end, all we have to do is to show that for any game play
η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · from game state 〈~x0, ~y0〉 and compliant with strategy f , it is
the case that 〈~xi, ~yi〉 ∈W , for all i ≥ 0. Observe that for any game state 〈~x, ~y〉 ∈W , it
is the case that 〈~x, ~y〉 |= ϕ. This is because the algorithm starts exactly with the game
states that satisfy ϕ (line 1) and only removes states from the candidate set (line 4). So,
let us prove that 〈~xi, ~yi〉 ∈W , for all i ≥ 0, by induction on the index i. The base case
when i = 0 is trivial, as 〈~x0, ~y0〉 ∈W holds by assumption.

Next, suppose that for 〈~xi, ~xi〉 ∈ W , for all i ≤ k, for some k ≥ 0. Because η
is a game play, it is the case that ρs(~xk, ~yk, ~xk+1). Also, by the induction hypothesis,

32

〈~xk, ~yk〉 ∈W . Therefore, by applying equation (1), we have that Φ(~xk, ~yk, ~xk+1) 6= ∅.
From this—together with the fact that ~yk = f(〈~x0, ~y0〉, ~x1 · · · ~xk) when k > 0,
as play η is complaint with f—it follows that f(〈~x0, ~y0〉, ~x1 · · · ~xk+1) = ~yk+1 ∈
Φ(~xk, ~yk, ~xk+1), and by definition of set Φ, 〈~xk+1, ~yk+1〉 ∈W follows.

(ONLY-IF PART) Let Wi be the version of W at i-th iteration (at line 5), where
1 ≤ i ≤ N , assuming the algorithm terminates in N iterations and hence it returns
WN . We show, by induction on index i, that for any game state 〈~x, ~y〉, if 〈~x, ~y〉 /∈ Wi,
and hence 〈~x, ~y〉 /∈WN , then the system can always force from state 〈~x, ~y〉 to reach, in
at most i steps, a state 〈~x′, ~y′〉 such that 〈~x′, ~y′〉 6|= ϕ.

For the base case, suppose that 〈~x, ~y〉 /∈ W1. Due to lines 1 and 3 of Algorithm 3,
set W1 is exactly those and only those states that satisfy ϕ, that is, 〈~x, ~y〉 6|= ϕ, and
the claim follows trivially. Now, assume the claim holds for all i ≤ k and consider
a game state 〈~x, ~y〉 /∈ Wk+1. If 〈~x, ~y〉 6∈ Wk, then the game state was removed at
some previous iteration j ≤ k, and by the induction hypothesis, the system can force
all plays to violate the goal in at most k (and hence k + 1) steps. So, suppose on the
other hand that 〈~x, ~y〉 ∈ Wk, that is, the game state was removed at the k + 1 iteration
(in line 4). From line 4 in the algorithm, we know that Wk+1 = Wk ∩ π(Wk). Since
〈~x, ~y〉 ∈ Wk but 〈~x, ~y〉 6∈ Wk+1, it follows that 〈~x, ~y〉 6∈ π(Wk). By definition of
π, there the system has a move ~x′ ∈ X , with ρs(~x, ~y, ~x′), such that for all controller
replies ~y′ ∈ Y with ρc(~x, ~y, ~x′, ~y′), it is the case that 〈~x′, ~y′〉 6∈ Wk. By the induction
hypothesis, the system can always force from game state 〈~x′, ~y′〉 to reach, in at most
k steps, a state that violates ϕ. Thus, by playing ~x′ from the initial state 〈~x, ~y〉, the
system is always able to force violating ϕ in at most k + 1 steps.

Now, suppose that there exits a winning strategy f from state 〈~x0, ~y0〉, but on the
contrary, that 〈~x0, ~y0〉 6∈W , or what is the same, that 〈~x0, ~y0〉 6∈WN . By our reasoning
above, the system can always force the game to violate ϕ in at most N steps. This im-
plies that there exits a game play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · (i.e., starting from 〈~x0, ~y0〉)
and complaint with f such that for some i < N , 〈~x1, ~y1〉 6|= ϕ applies. Hence, f would
not be a winning strategy from 〈~x0, ~y0〉, a contradiction is reached, and it follows then
that 〈~x0, ~y0〉 ∈W must apply.

Importantly, once the winning set is computed, it can be used to define a winning strat-
egy. To see this, assume that η = 〈~x0, ~y0〉 . . . 〈~xn, ~yn〉 is the prefix of a play executed
up to some point. For each next system move ~x′ ∈ X (such that ρs(~xn, ~yn, ~x′)), one
can define f(〈~x0, ~y0〉, ~x1 . . . ~xn~x′) = ~y′, by taking any reply ~y′ such that 〈~x′, ~y′〉 ∈W
(and ρc(~xn, ~yn, ~x′, ~y′)). Indeed, such a condition guarantees that the controller has a
winning strategy from 〈~x′, ~y′〉, informally meaning that it can force the (future exten-
sion of the) play to maintain ϕ.

5.2. From Composition to Safety Games

Next, we show how the behavior composition problem can be reduced in practice
to the problem of synthesizing a winning strategy in a safety-game structure. In order
to do so, we need to identify which place each component of a composition problem
–target behavior, available behaviors, environment, and composition controller– occu-
pies in the game representation, that is, players controller and system need to be defined

33

for the particular setting. Generally speaking, when composing behaviors, a controller
can be seen as a strategy, i.e., a function of system histories that returns decisions, so,
from this perspective, it seems very natural representing the composition as the (syn-
thesized strategy for) controller player, and all other components combined together as
the system player.

Let S = 〈B1, . . . ,Bn, E〉 be a system and BT a target behavior over E , where
Bi = 〈Bi, bi0, Gi, Fi, %i〉, for i = 1, . . . , n, T , and E = 〈A, E, e0, ρ〉. We derive
a safety-game structure G = 〈V,X ,Y,Θ, ρs, ρc,2ϕ〉 that captures the relationship
between the target behavior and the system, as follows:

1. V = {b1, . . . , bn, e, bT , a, ind}, where:

• bi ranges over B̂i = Bi ∪ {]}, for each for i ∈ {1, . . . , n, T};
• e ranges over Ê = E ∪ {]};
• a ranges over Â = A ∪ {]};
• ind ranges over {1, . . . , n} ∪ {]}.

2. X = {b1, . . . , bn, e, bT , a} is the set of player system variables, and X = B̂1 ×
· · ·×B̂n×Ê×B̂T×Â represents the set of all possible corresponding valuations.

3. Y = {ind} is the (singleton) set of player controller variables, and Y =
{1, . . . , n,]} represents the set of all possible corresponding valuations.

4. Θ =
∧
i∈{1,...,n,T}(bi =]) ∧ (a =]) ∧ (ind =]) ∧ (e =]).

5. ρs ⊆ X×Y×X is such that 〈〈b1, . . . , bn, e, bT , a〉, ind, 〈b′1, . . . , b′n, e′, b′T , a′〉〉 ∈
ρs iff one of the following cases applies:

(a) b1, . . . , bn, e, bT , a =], ind =], and b′i = bi0, for each i ∈ {1, . . . , n, T},
and e′ = e0;

(b) ind 6=] and
i. there exists a transition bT

gT ,a−→ b′T in BT such that gT (e) = >;
ii. there exists a transition bind

g,a−→ b′ind in Bind such that g(e) = >;
iii. bi = b′i, for all i ∈ {1, . . . , n} \ {ind};
iv. there exists a transition e a−→ e′ in E ; or

(c) e′ = e, and b′i = bi, for each i ∈ {1, . . . , n, T}, and either ind =] but
b1, . . . , bn, e, bT , a 6=], or ind 6=] and one of the following holds:

i. there is no transition bT
gT ,a−→ b′′T in BT such that gT (e) = >;

ii. there is no transition bind
g,a−→ b′ind in Bind such that g(e) = >;

iii. bi 6= b′i, for some i ∈ {1, . . . , n} \ {ind};
iv. there is no transition e a−→ e′′ in E ;

and either a′ =] or there exists a transition b′T
g′,a′−→ b′′T in BT , for some b′′T ∈ BT ,

such that g′(e′) = > and a transition e′ a′−→ e′′ in E , for some e′′ ∈ E.
6. 〈〈b1, . . . , bn, e, bT , a〉, ind, 〈b′1, . . . , b′n, e′, b′T , a′〉, ind′〉 ∈ ρc iff ind′ 6=].
7. Formula ϕ is defined depending on current system, target, and environment state,

current requested action and current behavior selection:

ϕ(b1, . . . , bn, e, bT , a, ind)
.
= Θ ∨ [(

n∧
i=1

¬ faili) ∧ (finalT →
n∧
i=1

finali)],

where for each i ∈ {1, . . . , n, T}:

34

• faili
.
= ind = i ∧

∧
〈bi,g,a,s′〉∈%i g(e) = ⊥;10

• finali
.
=

∨
b∈Fi

(bi = b).

Intuitively, the system player represents all possible evolutions of S generated by
legal executions of BT , which are indeed the only evolutions relevant to our problem.
Each complete valuation of variables in V captures the current state of both the system
(variables b1, . . . , bn, and e) and the target behavior (variable bT), the action to be
performed next (variable a), and the available behavior selected to perform the action
(variable ind). For technical convenience, a special value] is used, both for actions and
states, to represent a single, domain independent, initial game state 〈], . . . ,]〉 as well
as requests for no action (when a =]).

As for the evolution of the game, the player system’s transition relation ρs accounts
for the synchronous evolution of the system and the target behavior. Condition (5a)
states that from the initial distinguished state there exists one and only one transition,
leading the system player to the state representing S’s initial state. Condition (5b)
encodes the evolution of system S when the controller has instructed some behav-
ior to act, i.e., ind ∈ {1, . . . , n}. Basically, provided the delegation is feasible, the
new system player’s state encodes the correct evolution of the target (condition 5(b)i),
the selected available behavior (condition 5(b)ii), the non-selected behaviors (condi-
tion 5(b)iii), and the environment (condition 5(b)iv). When the behavior delegation is
not feasible with respect to the composition problem (e.g., the selected behavior cannot
perform the requested action or the action is not legal in current environment or target
state), behaviors and environment are assumed to stay still (condition 5c). Finally, the
last constraint in the definition of ρs states that the next requested action can either be
] (i.e., no request) or one that conforms with the target behavior logic. Observe that in
a certain game state, transition function ρs may allow several different system player’s
moves, thus reflecting the non-determinism coming from the available behaviors, the
environment, as well as from target action requests.

The rules for controller player’s moves are simpler, as such player is allowed to
arbitrarily assign any available behavior index in any of its moves (condition 6).

To fully comply with our definition of safety-game structures given in Section 5.1,
we need to show that G satisfies the infinite-play assumption. For legibility, from now
on, when ~xi = 〈b1i, . . . , bni, ei, bTi, ai〉 is a system player state in G, we will use
comT (~xi) = 〈bTi, ei〉 and comS(~xi) = 〈b1i, . . . , bni, ei〉 to project the enacted target
and the enacted system states encoded in ~xi, respectively, and a(~xi) = ai to project the
action request encoded in ~xi.

Lemma 10. Let G be the safety-game structure derived for a behavior composi-
tion problem, as above. Then, for each game state 〈~x, ~y〉, there exists ~x′ such that
ρs(~x, ~y, ~x

′), and for each such ~x′ there exists ~y′ such that ρc(~x, ~y, ~x′, ~y′).

Proof. Straightforward from the facts that: (i) if cases (5a) and (5b) do not account
for any system player’s move, then case (5c) will do and ρs(~x, ~y, ~x′) will hold with ~x′

10We assume an empty set of conjuncts is equal to ⊥.

35

matching ~x except, possibly, for a(~x′); and (ii) for every ~x, ~y and ~x′, ρc(~x, ~y, ~x′, ~y′)
holds, for ~y′ ∈ {1, . . . , n}.

Once proven that G is a legal safety-game structure, we prove a useful property of
(certain) successor game states. In words, Lemma 11 below says that, under particular
assumptions, a game successor captures a legal evolution of the enacted target behavior
TT and the enacted system TS . In addition, provided the successor game state encodes
an actual action request, such request conforms with the enacted target behavior.

Lemma 11. Let G be the safety-game structure derived for a behavior composition
problem, as above. Let 〈~x, ~y〉 be a (non-initial) game state of G such that 〈~x, ~y〉 6|= Θ,

~y 6=], and there exist transitions comS(~x)
a(~x),~y−→ sS in TS and comT (~x)

a(~x)−→ sT in TT ,
for some sS ∈ SS and sT ∈ ST . Then, 〈~x′, ~y′〉 is a successor state of 〈~x, ~y〉 iff

• comT (~x)
a(~x)−→ comT (~x′) in TT ;

• comS(~x)
a(~x),ind−→ comS(~x′) in TS ; and

• if a(~x′) 6=], then there exists s′T ∈ ST such that comT (~x′)
a(~x′)−→ s′T in TT .

Proof. All three claims follow directly from G’s ρc definition (see condition 5). The
first claim follows from conditions 5(b)i and 5(b)iv. The second one is a consequence
of conditions 5(b)ii, 5(b)iii, and 5(b)iv. Finally, the third claim follows from the con-
straint on a(~x′).

Finally, consider the goal formula ϕ. As for the first disjunct, it is trivially satisfied
by the initial state. Concerning the second one, it is better understood by looking at
subformulae faili and finali. The former holds if behavior Bi is selected (i.e., ind = i),
but cannot execute the requested action a, that is, each transition outgoing from its
current state bi for action a has its guard not satisfied by the current environment state
e. The latter holds if the target behavior is in a final state, but not all available behaviors
do. Essentially, ϕ requires that the controller player makes an adequate decision, in the
sense of never selecting a behavior that may not be able to execute the current requested
action.

Once the game structure is build, the problem we deal with is that of synthesizing a
(winning) strategy for the controller player that guarantees ϕ to hold along all possible
plays starting from the initial state 〈〈], . . . ,]〉,]〉. We shall demonstrate next that this
corresponds to synthesizing a composition. More specifically, we show that by com-
puting G’s winning set, one is able to derive the controller generator CG. Recall that,
in order to define the CG, one needs first to build the largest ND-simulation relation
(see Section 3). We start by showing that this is in fact equivalent to computing G’s
maximal winning set.

Theorem 12. Let S = 〈B1, . . . ,Bn, E〉 be a system and BT a target behavior over E .
Let G = 〈V,X ,Y,Θ, ρs, ρc,2ϕ〉 be a 2-GS derived as above from S and BT , and
let W ⊆ V be the maximal set of controller winning states for G. Then, 〈~x0, ~y0〉 =
〈〈b1, . . . , bn, e, bT , a〉, ind〉 ∈W if and only if 〈bT , e〉 � 〈b1, . . . , bn, e〉.

36

Proof. (IF PART) We show that a winning strategy f from the (unique) game’s
initial state does exist. This, along with Theorem 9, is enough to show that
〈〈b1, . . . , bn, e, bT , a〉, ind〉 ∈W . So, consider a strategy f(〈~x, ~y〉, λ) such that (k ≥ 1)

f(〈~x0, ~y0〉, ~x1 · · · ~xk) ∈ ω(〈comT (~xk), comS(~xk)〉, a(~xk)),

whenever a(~xk) 6=] and comT (~xk) � comS(~xk) hold, where ω(·, ·) is the output
function of the controller generator of S for BT (see page 17).

Let us prove that for any f -complaint game play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · , it is the
case that comT (~xi) � comS(~xi) (i.e., 〈bTi, ei〉 � 〈b1i, . . . , bni, ei〉), for all i ≥ 1.

So, the base case (i.e., when i = 1) is trivial: by condition 5a inG’s definition, ~x1 =
〈b10, . . . , bn0, e0, bT0, a0〉 (for some a0 ∈ Â), and 〈bT0, e0〉 � 〈〈b10, . . . , bn0〉, e0〉 is
true by assumption.

Consider now game state 〈~xk+1, ~yk+1〉. By induction hypothesis, we know that
previous game state 〈~xk, ~yk〉 is such that comT (~xk) � comS(~xk). If a(~xk) =],
case 5c ought to apply for the step between the k and k + 1 game step, which im-
plies that comT (~xk+1) = comT (~xk) and comS(~xk+1) = comS(~xk), and therefore
comT (~xk+1) � comS(~xk+1). Observe that cases 5a and 5b may not apply, because
the game initial state may never repeat itself in any game play (see no game variable bi
can ever take value] again) and no behavior can ever make a transition wrt “action”]
(condition 5(b)ii will always be false in this case).

Assume next that a(~xk) 6=]. Since comT (~xk) � comS(~xk),
〈comT (~xk), comS(~xk)〉 ∈ Σ is a state in the controller generator CG (see page 3).
Also, by construction of f , we have that ~yk ∈ ω(〈comT (~xk), comS(~xk)〉, a(~xk)). By

definition of CG’s output function ω, we have that 〈comT (~xk), comS(~xk)〉 a(~xk),~yk−→
〈s′T , s′S〉 in CG, for some s′T ∈ ST and sS ∈ S′S . By CG’s transition relation ϑ,

this means that comT (~xk)
a(~xk)−→ s′T and comS(~xk)

a(~xk),~yk−→ s′S . Then, by applying
Lemma 11, we have:

comS(~xk)
a(~xk),~yk−→ comS(~xk+1); (2)

comT (~x)
a(~x)−→ comT (~xk+1). (3)

From (2) and the third condition in CG’s transition relation, it follows that
〈s′T , comS(~xk+1)〉 ∈ Σ is a state in CG, and thus s′T � comS(~xk+1). Due
to the first requirement of ND-simulations, env(s′T) = env(comS(~xk+1)) applies.
Beacuse env(comS(~xk+1)) = env(comT (~xk+1)), we then get that env(s′T) =
env(comT (~xk+1)). Putting this together with (3) and the fact that the target be-
havior BT is deterministic, we conclude that s′T = comT (~xk+1), and as a result,
comT (~xk+1) � comS(~xk+1) follows.

So, we have proven that for any f -complaint game play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · , it
is the case that comT (~xi) � comS(~xi), for all i ≥ 1. Let us show, by induction on index
`, that 〈~x`, ~y`〉 |= ϕ, for all ` ≥ 0. First, 〈~x0, ~y0〉 |= Θ holds trivially. Consider game
state 〈~x`+1, ~y`+1〉. Because of the above proven fact that comT (~x`+1) � comS(~x`+1)
and requirement 2 of ND-simulations, we get that 〈~x`+1, ~y`+1〉 |= finalT → finali, for
each i ∈ {1, . . . , n}. Now, if a(~x`+1) =], then 〈~x`+1, ~y`+1〉 |= ¬ faili, for each i ∈

37

{1, . . . , n}, since] 6= i. If, on the other hand, a(~x`+1) ∈ A, that is, an actual action has
been requested in ~x`+1, then due to the f ’s definition and the fact that comT (~x`+1) �
comS(~x`+1), we know that ~y`+1 ∈ ω(〈comT (~x`+1), comS(~x`+1)〉, a(~x`+1)). This

means that there exists a transition 〈comT (~x`+1), comS(~x`+1)〉 a(~x`+1),~y`+1−→ σ′ in con-
troller generator CG, for some σ′ ∈ Σ. By CG’s transition relation definition, there

exists a transition comS(~x`+1)
a(~x`+1),~y`+1−→ s′S in TS , which—by the notion of en-

acted system—implies that behavior B~y`+1
can make a transition on action a(~x`+1) and

〈~x`+1, ~y`+1〉 |= ¬ fail~y`+1
holds. (See 〈~x`+1, ~y`+1〉 |= ¬ faili trivially when i 6= ~y`+1).

(ONLY-IF PART) Due to Theorem 9 and the fact that 〈〈], . . . ,]〉,]〉 ∈ W , there
exists a winning strategy f . Using such strategy, we define relation R ⊆ ST × SS as
follows: 〈sT , sS〉 ∈ R iff there exists a game play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · compliant
with f and such that comT (~x`) = sT and comS(~x`) = sS , for some ` ≥ 1.

Let us prove that R is indeed an ND-simulation relation and that
〈〈bT0, e0〉, 〈b10, . . . , bn0, e0〉〉 ∈ R. The latter claim follows from the fact that η =
〈~x0, ~y0〉〈~x, f(〈~x0, ~y0〉, ~x)〉〈~x, f(〈~x0, ~y0〉, ~x~x)〉 · · · where ~x = 〈b10, . . . , bn0, e0, bT0,]〉
is an f -complaint play and comT (~x) = 〈bT0, e0〉 and comS = 〈b10, . . . , bn0, e0〉.

To prove that R is an ND-simulation of TT by TS we are to prove the three re-
quirements of ND-simulations (see page 12). To that end, assume 〈sT , sS〉 ∈ R.
By construction of R, requirement 1 is satisfied trivially and there exists a game
play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · complaint with f such that comT (~xk) = sT and
comS(~xk) = sS , for some k ≥ 1 and a ∈ Â. Since f is a winning strategy,
〈~xk, ~yk〉 |= ϕ. Also, since 〈~xk, ~yk〉 6= 〈~x0, ~y0〉, 〈~xk, ~yk〉 6|= Θ and hence 〈~xk, ~yk〉 |=
(finalT →

∧n
i=1 finali), which yields requirement 2. Finally, for the third requirement

of ND-simulations, consider a transitions sT
a′−→ s′T in TT . First, from conditions

5(b)i and 5(b)iv in G’s definition, it follows that there exists an f -complaint game play
η′ = 〈~x′0, ~y′0〉〈~x′1, ~y′1〉 · · · such that ~xi = ~x′i and ~yi = ~y′i, for all i ∈ {0, . . . , k − 1},
and comT (~xk) = comT (~x′k) = sT and comS(~xk) = comS(~x′k) = sS—play η′ is ex-
actly like η up to game state 〈~xk, ~yk〉, except that ~x′k may (possibly) encode a different
requested action. In addition, due to conditions 5(b)iv and 5(b)i in G’s definition, we
can assume that η′ is such that comT (~xk+1) = s′T . Because 〈~x′k, ~y′k〉 |= ¬ fail~y′k , f
is winning, and η′ is complaint with f , it follows—from conditions 7, 5(b)ii, 5(b)iii,

and 5(b)iv in G’s definition—that comS(~x′k)
a(~x′k),~y

′
k−→ comS(~x′k+1), and therefore con-

dition 3a of ND-simulations holds true. Finally, consider any sS
a′−→ s′S in TS with

env(s′S) = env(s′T). Again, since every possible evolution of the enacted system is
accounted by some successor game states (Lemma 11), we can assume that η′ is such
that comS(~x′k+1) = s′S . Thus, by R’s definition (see η′ is complaint with f too), it
follows that R(s′T , s

′
S) and condition 3b of ND-simulation applies.

As a straightforward consequence of this result and Theorem 1, we have that 2-GS
G is winning (i.e., 〈〈], . . . ,]〉,]〉 ∈ W) if and only if there exists a composition of the
target in the system (i.e., 〈bT0, e0〉 � 〈b10, . . . , bn0, e0〉).

In addition, addition to this, the following result holds, which gives us an actual
procedure to build a controller generator and, hence, all possible compositions.

38

Theorem 13. Let S = 〈B1, . . . ,Bn, E〉 be a system and BT a target behavior over E .
LetG = 〈V,X ,Y,Θ, ρs, ρc,2ϕ〉 be the corresponding 2-GS derived as above, for BT
and S, and let W be the maximal set of winning states such that 〈〈], . . . ,]〉,]〉 ∈ W .
Then, CG = 〈Σ,A, {1, . . . , n}, ∂, ω〉 is the controller generator of S for BT , where:

• Σ ⊆ ST ×SS is such that 〈〈bT , eT 〉, 〈b1, . . . , bn, eS〉〉 ∈ Σ iff eT = eS and there
exists 〈〈b1, . . . , bn, eT , bT , a〉, ind〉 ∈W , for some a ∈ A and ind ∈ {1, . . . , n}.

• ∂ ⊆ Σ × A × {1, . . . , n} × Σ is such that 〈σ, a, k, σ′〉 ∈ ∂, where σ =
〈〈bT , e〉, 〈b1, . . . , bn, e〉〉 and σ′ = 〈〈b′T , e′〉, 〈b′1, . . . , b′n〉, e′〉, if and only if

– 〈〈b1, . . . , bn, e, bT , a〉, k〉 ∈W ; and

– ρs(〈b1, . . . , bn, e, bT , a〉, k, 〈b′1, . . . , b′n, e′, b′T , a′〉), for some a′ ∈ A∪{]}.

• ω(σ, a) = {k | ∃ σ′ ∈ Σ s.t. σ
a,k−→ σ′ is in CG}.

Proof. We show that CG satisfies all requirements of a controller generator (see
Section 3; page 17). First, by Theorem 12, 〈〈bT , eT 〉, 〈b1, . . . , bn, eS〉〉 ∈ Σ iff
〈bT , eT 〉 � 〈b1, . . . , bn, eS〉. Second, suppose that 〈σ, a, k, σ′〉 ∈ ∂, as defined above.
From 〈〈b1, . . . , bn, e, bT , a〉, k, 〈b′1, . . . , b′n, e′, b′T , a′〉〉 ∈ ρc, together with the fact that
a 6=] and ind 6=], it follows that comT (σ)

a−→ comT (σ′) in TT . Also, since
〈〈b1, . . . , bn, e, bT , a〉, k〉 ∈W , we know that 〈〈b1, . . . , bn, e, bT , a〉, k〉 |= ¬ failk, and

therefore, comS(σ)
a,k−→ comS(σ′) in TS . Now consider any transition comS(σ)

a,k−→
s′′S = 〈b′′1 , . . . , b′′n, e′〉 in TS . Due to Lemma 11, game state 〈〈b1, . . . , bn, e, bT , a〉, k〉
ought to have a successor state of the form 〈〈b′′1 , . . . , b′′n, e′, b′T , a′′〉, k′′〉. More-
over, since the latter state is in the winning set, there is at least one k′′ such that
〈〈b′′1 , . . . , b′′n, e′, b′T , a′′〉, k′′〉 ∈ W , and thus 〈〈b′T , e′〉, 〈b′′1 , . . . , b′′n, e′〉〉 ∈ Σ follows.
By following the same reasoning, but backwards, it is straightforward to prove that
if the three transition requirements in a controller generator are satisfied, then such
transition will be accounted by the above ∂ relation. So, the above transition relation
∂ coincides with that of the controller generator. Finally, function ω above coincides
with the controller generator’s output function by definition.

The above theorems show how one can exploit tools from reactive system synthe-
sis for computing all compositions of a given target behavior. In details, starting from
S = 〈B1, . . . ,Bn, E〉 and BT , one can build the corresponding game structure G, then
compute the winning set W , and, if it contains G’s initial state, use W to generate the
controller generator. In fact, this last step is not really needed. It is not hard to see that
given a system state 〈b1, . . . , bn, e, bT , a〉 (including action a ∈ A to be executed next),
a behavior selection ind is “good” (i.e, the selected behavior can actually execute the
action and the whole system can still ND-simulate the target behavior) if and only ifW
contains a tuple 〈〈b1, . . . , bn, e, bT , a〉, ind〉. Consequently, at each step, based on (cur-
rent) target behavior state bT , available behaviors’ states b1, . . . , bn, environment state
e, and requested action a, one can select a tuple from W , extract its ind component,
and use it to select the next behavior.

39

Finally, note that the time complexity of Algorithm 3 is polynomial in |V |, the
size of the input 2-GS state space. Since, in our encoding, |V | is polynomial in
|B1|, . . . , |Bn|, |BT |, |E|, and |A|, and exponential in n, we get the following result:

Theorem 14. Let S = 〈B1, . . . ,Bn, E〉 be a system and BT a target behavior over E .
Checking the existence of compositions by reduction to safety games can be done in
polynomial time wrt |B1|, . . . , |Bn|, |BT |, |E|, and |A|, and exponential time in n.

Such a result says that computing a composition using safety games has the same com-
putational complexity as computing the ND-simulation relation for solving behavior
composition problems (cf. Theorem 2). Since the composition problem is EXPTIME-
hard [59], the technique based on safety games is actually optimal with respect to
worst-case time complexity.

6. Implementing Behavior Composition in TLV

With the behavior composition problem formally reduced to that of synthesizing
a winning strategy in a special safety-game, one can appeal to existing implemented
systems that are capable of searching for winning strategies in game structures, such as
TLV [69], ANZU [43], LILY [42], and MOCHA [4]. Although we shall focus on TLV,
all basic concepts discussed here remain valid for all other tools.

TLV (Temporal Logic Verifier) is a (generic) software for verification and synthesis
of LTL specifications, which exploits Binary Decision Diagrams (BDDs) for symbolic
state manipulation, in order to contain state explosion. Generally speaking, TLV takes
two inputs: (i) a synthesis procedure; and (ii) an LTL specification, encoded in SMV
language [57], to be processed by the input procedure. In particular, for (i), we consider
a specific procedure for dealing with safety games and refer to the so-obtained system
as TLV2.11 Essentially, TLV2 takes as input an LTL specification encoding a 2-GS and
derives from the game’s maximal winning set, if non empty, a structure representing
the controller generator, as shown in Theorem 13. We refer to [69] for further details
on TLV and the input language SMV, here introducing some essentials only.

Our approach consists in: (i) building, as described in Section 5.2, the 2-GS corre-
sponding to a given behavior composition problem; (ii) deriving the SMV encoding for
the obtained 2-GS; and (iii) executing the encoding in TLV2, to both check whether
the composition problem is solvable and, if so, compute the controller generator. Next,
we detail (ii).

In the SMV encoding, every aspect of a 2-GS, e.g., the available behaviors or the
controller, is modelled as a so-called “module.” Figure 6 shows the basic blocks of the
encoding for our painting world running example (see Figure 1; page 6). Modules,
e.g., ArmSys, can be built from submodules, by declaring these in the VAR section,
which is what we actually do in our construction. When doing so, according to the
SMV semantics, the execution of the composite module corresponds to the synchronous
execution of its submodules. In our encoding, however, asynchrony is often needed,

11This specific procedure for safety games was originally coded by Amir Pnueli.

40

MODULE System(a1op, a2op, a3op)
VAR

asys : ArmSys(client.req,a1op,a2op,a3op);
client : Client(asys.envstate);

DEFINE
initial:= asys.initial & client.initial;
failfinal := client.final & !asys.final;
failure := asys.fail | failfinal;
req := client.req;

MODULE ArmSys(req, a1op, a2op, a3op)
VAR

env : Environment(req);
a1 : ArmA(a1op, env.state);
a2 : ArmB(a2op, env.state);
a3 : ArmC(a3op, env.state);

DEFINE
initial := env.initial &

a1.initial & a2.initial & a3.initial;
fail := a1.fail | a2.fail | a3.fail;
final := s1.final & s2.final & s3.final;
envstate := env.state;

MODULE Client(env)
VAR

target : Target(env, req);
req: {start,none,prepare,clean,...};

INIT
req = start
TRANS
case
next(target.state) = t2 :

next(req) in {paint,clean};
...
TRUE : next(req) = none;

esac
DEFINE

...

MODULE Controller(req)
VAR
a1op: {start,none,prepare,

clean,paint,dispose,recharge};
a2op: {start,none,prepare,

clean,paint,dispose,recharge};
a3op: {start,none,prepare,

clean,paint,dispose,recharge};
INIT
a1op = start & a2op = start &

a3op = start
TRANS
!initial ->
(
-- start action only at initially
(a1op != start) & (a2op != start) &
(a3op != start)

&
-- Some behavior does the req. action
(req = a1op | req = a2op | req = a3op)

& -- Behaviors do actions requested
(a1op != none -> a1op = req) &
(a2op != none -> a2op = req) &
(a3op != none -> a3op = req)

& -- One behavior acts at a time
(a1op != none ->

a2op = none & a3op = none) &
(a2op != none ->

a1op = none & a3op = none) &
(a3op != none ->

a1op = none & a2op = none)
)
DEFINE
initial := a1op= start & a2op = start

& a3op = start;

MODULE main
VAR
sys: system System(contr.a1op,contr.a2op,contr.a3op);
contr: system Controller(sys.req);
DEFINE
good := (contr.initial & sys.initial) | !(sys.failure);

Figure 6: A TLV sample fragment encoding.

which we emulate by forcing each submodule that represents an available behavior to
loop at each step, unless “selected.”

Module Main, consisting of submodules sys and contr, wraps all the other
modules, and represents the whole game structure. In particular, module sys captures
the system player, by encoding the enacted system behavior (asys) together with the
enacted target behavior (client), i.e., informally, the external uncontrollable system.
Module contr, on the other hand, encodes the constraints on the controller player
in the game structure, that is, the module to be synthesized. Finally, variable good
encodes the goal invariant property to be respected, which states that a game state
(including both player states) is “good” if and only if either both players are at their
dummy initial states or the external system—the system player—has not been brought
into a failure state. The external system may reach a failure state, for instance, if an
available behavior is requested an action it cannot perform in its current state, or if the

41

target behavior is in a final state but some available behavior does not.
Modules sys and contr are meant to evolve synchronously, the former choosing

the next requested action to be performed and the latter selecting the available behavior
for its execution. Consequently, the requested action (sys.req) is passed as an input
argument to the contrmodule, and the chosen available behavior is passed as an input
to the sys module. Notice that instead of merely returning just the index of the avail-
able behavior meant to execute the currently requested action (as in the game structure
previously defined), the contr module outputs one action per available behavior—
e.g., a2op denotes the action assigned to behavior arm a2, using the distinguished
action constant none to state that no action is requested. This approach enables the
encoding of settings were more than one behavior may execute at the same time, like
in [77]. We refer to this encoding as, while being clearly more general, it introduces no
additional difficulty.

Next, we detail the submodules representing the two players of the game structure.
As for contr, which is an instance of Controller, the transition relation defined by
the constraints in the INIT and TRANS sections encodes an unconstrained controller,
which assigns, at each step, one action to each available behavior, by assigning values
to the state variables a1op, a2op, and a3op. The synthesis goal is to restrict such a
relation so as to obtain a winning strategy. In particular, the constraints enforced on
the controller player’s state are as follows. According to the INIT section, in its initial
state (where variable initial holds true) the controller must instruct every behavior
to initialize itself by performing the dummy action start (all behaviors initialize
simultaneously). As for non-initial states, the TRANS section defines the following
constraints: (i) no initialization action can be assigned to any behavior; (ii) the current
action request must match at least one of the behavior actions; (iii) a behavior can be
instructed to execute an action only if that action is the one currently requested; and
(iv) at most one behavior can be instructed to act at a time.

Concerning module sys, which is an instance of System, it essentially captures,
as said above, all the aspects of the system player. Precisely, sys is the synchronous
product of the enacted available system (submodule asys) and the client issuing the
action requests (submodule client). On the one hand, submodule asys accounts for
the available behaviors running in the environment, according to both the currently re-
quested action (variable req) and the controller assignment to variables a1op, a2op,
and a3op; on the other hand, submodule client provides, at every game state, the
requested action (variable req), which is, of course, required to be compliant with the
target behavior. Observe that client requests action none (last rule) only when no
other legal action can be requested anymore. Since the execution of none yields no
change in the current game state, it turns out that once executed, none remains the
only action available to the target, from that point on.

Distinguished abbreviations are used to define, in the DEFINE section, initial, fi-
nal, and failure states. In particular, the enacted system behavior (ArmSys) fails
(failure) when any of the available behaviors does, an available behavior failing
when instructed to perform an action it cannot execute, depending on its and the en-
vironment’s current state. Avoiding such situations, by properly constraining sys’s
transition relation, is exactly the synthesis procedure’s aim. Clearly, the only way to
achieve this is by suitably assigning sys’s controllable input variables a1op, a2op,

42

and a3op, that is, ultimately, by suitably “crafting” the contr module (while respect-
ing its constraints). Finally, the whole enacted system does not respect the final-state
condition (failfinal) when the client is in a state where it may legally terminate its
execution but the available system does not.

We encoded our running example for TLV2 and run it so as to compute the cor-
responding winning set, along with the controller generator. The result obtained was
an automaton with 16 states and 21 transitions, from where controllers can be easily
extracted. We report three sample states of the automaton:

State 3
sys.asys.env.state = e2, sys.asys.a1.state = a1,
sys.asys.a2.state = b2, sys.asys.a3.state = c1,
sys.client.target.state = t2, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 15
sys.asys.env.state = e2, sys.asys.a1.state = a1,
sys.asys.a2.state = b3, sys.asys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 16
sys.asys.env.state = e2, sys.asys.a1.state = a1,
sys.asys.a2.state = b1, sys.asys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

In state 3, for instance, the environment is in state e2, the available arms are in
states a1, b2, and c1, the target behavior is in state t2, the action requested next is
paint, and the controller has selected arm B2 for carrying out the action. States 15 and
16 are the possible successor states that the game can be in, depending on how the
non-deterministic transition in behavior B2 turns out.

The complete TLV specification for our example can be found in Appendix A.

7. Related Work

The framework developed in this paper can be seen as a core account for behav-
ior composition, and can be extended in a number of directions. In [77], a distributed
version of the problem is presented, where instead of a central entity that embodies the
controller, a set of local controllers, one per available behavior, are meant to jointly re-
alize the target behavior, by exploiting an underlying, shared communication channel.
Another extension involves realizing not one but several target behaviors concurrently,
using the same available system [75]. Composition under partial observability was
also explored by De Giacomo et al. [24], whereas composition with data exchange was
investigated by Berardi et al. [12] in the context of web-services. Finally, [76, 27]
propose two frameworks (and corresponding techniques) for composing agent high-
level programs. The techniques for all these extensions vary, from PDL satisfiability

43

([77, 12]) to LTL/ATL synthesis ([24, 75, 27]), to computation of specific fix-points
([76]). Also, a direct search-based technique for the core composition account was re-
cently proposed by Stroeder and Pagnucco [83], which could turn out to be promising
when it comes to applying heuristics.

The composition technique we proposed here is related to synthesis of reactive
systems from LTL temporal specifications [68, 67, 45], which is proven 2EXPTIME-
complete, in general [68]. In our particular case, however, we can restrict to a class
of specifications, namely GR(1), for which the problem is EXPTIME-complete [67].
Though a subclass of full LTL, GR(1) type formulas are expressive enough to deal with
many, if not most, realistic applications. They, for instance, have been used to support
advanced forms of path planning in robots [47, 46, 11, 31]. Notably, a work that is
inspired by our behavior composition is that of Lustig and Vardi [52], where the prob-
lem of synthesizing LTL specifications by coordinating given modules from an existing
library is studied (and proven 2EXPTIME-complete). In turn, De Giacomo and Felli
[25] showed how to solve the behavior composition problem by ATL model checking.
ATL (Alternating-time Temporal Logic) [3] is a logic especially aimed for reasoning
about multi-player games, where players can form coalitions to satisfy certain formu-
lae. The result is important in that it gives access to some of the state-of-the-art model
checking techniques and tools, such as MCMAS,12 that have been recently developed
within the agent community. Since the behavior composition task can be seen as win-
ning a special kind of game (see Section 5), it would be interesting to explore whether
the heuristic-based techniques developed in the context of General-Game Playing [33]
can be applied for “playing” composition games that are either too difficult to solve at
the outset or directly unsolvable.

Our work directly relates to several others (e.g., [36, 19, 13, 30, 12, 15, 35, 71])
on Service Oriented Computing (SOC) [2]. Indeed, available behaviors, ultimately
transition systems, can be seen as the conceptual model for conversational, or state-
ful, (web) services. By taking this perspective, many results presented here become
applicable, almost off-the-shelf, in the SOC area. One line of research that is quite
related to our is that reported in [63, 64, 66, 16] which exploits techniques for condi-
tional planning for temporally extended goals. Starting from a set of conversational
available services, specified in BPEL4WS (Business Process Execution Language for
Web Services), and a goal specified as a branching temporal formulae (in the language
EAGLE, a suitable extension of CTL [22]), conditional planning techniques are ex-
ploited to find an interleaved execution of available services, so as to satisfy the desired
goal. Roughly speaking, a goal represents a main, finite, desired path of states, plus
some secondary paths to be followed when “exceptions” (i.e., deviation from the main
path) arise. This technique, actually implemented in the system ASTRO13 based on the
Model Based Planner (MBP 3) [21], exploits Model Checking technology (ultimately,
BDDs) to control the state space explosion. Two main features differentiate such work
from ours. Firstly, our goals are actually new services (behaviors), rather than desired
executions, which, once realized, can be executed as any other one. What is more, the

12http://www-lai.doc.ic.ac.uk/mcmas/
13http://astroproject.org

44

http://www-lai.doc.ic.ac.uk/mcmas/
http://astroproject.org

behaviors we synthesize are really intended to interact with some executor, instead of
executing on their own, like plans do. So, from a high-level perspective, we aim at
extending the set of services offered by a given system, whereas the work above fo-
cuses more on serving particular requests by taking advantage of the existing system.
A research line on services that adopts the same approach as ours is that in [8, 9, 10].
Like ours, these works rely on techniques borrowed from controller synthesis, though
the approach therein is more theoretical. In contrast, we fully take advantage of such
results for practical reasons, by (i) exploiting controller synthesis techniques to build
flexible solutions, and (ii) by showing how to use the actual existing technology, based
on a symbolic approach, for effective solution construction.

In the series of works [55, 56, 81], the Situation Calculus logical framework is
adopted as a theoretical framework for composing semantic Web services (specified
in the OWL-S process ontology [54]). Available and goal services are modeled as
(complex) GOLOG programs, and the objective is to find a terminating execution of
the available services that corresponds to an execution of the goal service. Based on
the same Situation Calculus semantics, Sirin et al. [80] exploits Hierarchical Task Net-
works (HTN) to model available (OWL-S) services, and then uses an HTN planner [60]
to build a plan representing an actual, finite, execution of a desired target service. All
such works share the idea of achieving a desired goal—being it a state or a situation—
by executing a terminating plan or program. Our approach is different, and, in a sense,
more general, essentially due to two major differences: first, we consider realization
of infinite target behavior executions; second, a solution to our composition problem is
required to realize all possible behavior service executions, rather than just one.

Behavior composition is also related to several forms of automated planning in AI,
in particular, to planning for temporally extended goals (as mentioned above in the
context of services), which investigate techniques for building finite or infinite plans
that satisfy linear- or branching-time specifications [7, 65, 44]. Indeed, our problem
requires an advanced conditional plan (with loops) that always guarantees all possible
target requests to be served, which is, ultimately, a (temporal) invariant property. More
specifically, the solutions obtained via the simulation technique developed in this work
are akin to the so-called universal plans [79], i.e., plans representing every possible so-
lution. A further recent work about planning, where temporal fairness constraints are
explicitly stated so as to capture long-term effects of action executions is [28]. We con-
jecture that some of the concepts there can be exploited in our context to sophisticate
the notion of behaviors to be composed.

Composing behaviors can also be linked to (multi-)agent systems in natural ways.
For instance, a Belief-Desire-Intention agent operates on the coordinated execution of
pre-defined non-deterministic plans—the available behaviors—in order to achieve its
goals [73, 34]. One could then imagine composing such available plans so as to bring
about another non-available plan—the target behavior—that represents all the goals of
the agent. Similarly, composing behaviors can be seen as realizing a “team-oriented”
behavior (e.g., a RoboCup sophisticated abstract “team” player), represented by the tar-
get behavior, from the behavior of single agents (e.g., a set of actual RoboCup robotic
players with different capabilities), represented by the various available behaviors. Of
course, the core composition framework as presented here lacks, so far, convenient
features for programming team agent systems [70, 41], such as roles, holons, commu-

45

nication channels, etc.
Finally, behavior composition, as studied in this paper, is tightly related to the prob-

lem of integrating simple functionalities to implement advanced (intelligent) behaviors
in the context of robot-ecologies [74, 18, 17]. The idea of leveraging on the capa-
bilities of many simple robotic devices (e.g., vacuum cleaners, blinds, cameras, robot
arms, etc.) in order to achieve complex tasks has attracted much attention lately given
the marked tendency toward the embedding of intelligent, networked robotic devices in
our homes and offices. While very close in “spirit,” the work done in robot ecologies so
far focuses on differs aspects. Most of the work in “composing” functionalities within
an ecology of robots is devoted to the generation of adequate ways of connecting exist-
ing functionalities via so-called configurations in order to be able to carry a particular
task, such as making the output of a video camera the input of a moving robot lacking
visual capabilities. Instead of dealing explicitly with such connectivity issues (except
for the interaction with the environment), our work focuses on how each component
needs to be actually operated in order to achieve the target process. Also, the integra-
tion of functionalities is either done fully by hand (e.g., [74, 18]) or semi-automatically
through hand-tailored planning techniques (e.g., [50, 51]) in the style of HTN plan-
ning. In the latter case, one is meant to define standard “recipes” to describe ways to
combine functionalities for specific purposes. Our approach is more of a first-principle
one, no domain information is available on how available behaviors can or should be
combined. More importantly, while we took a high-level perspective on agents and
shared devices, and focused on the synthesis problem only, the aforementioned work
on robot ecologies deals better with many other practical aspects of concern when it
comes to implementing the solution. For instance, how to design such devices so that
they can easily interoperate among themselves, as we assume here, and how such inter-
operability is actually realized, via an appropriate middleware [17]. In fact, we expect
a fruitful cross-fertilization between the theoretical studies on automated synthesis of
agents, as the one in the present paper, and practical work on experimenting device
integration in robot ecologies and ambient intelligence.

8. Conclusions

In this paper, we have carried out a deep investigation on the behavior composition
problem, that is, the problem of realizing a desired, but non-available, target behavior
by reusing and re-purposing accessible modules (devices, agents, plans, etc.), which
are the only behaviors actually available. In particular, we have proposed a technique,
based on the notion of simulation, for building a controller that coordinates the concur-
rent executions of the available behaviors so as to “mimic” the target behavior.

This work lays the basis for several further developments, some of which have
already been mentioned in the related work section. We would like to close the paper
by briefly discussing two of them that still require further study. The first one concerns
the possibility of interchanging actions. More precisely, in this work we have implicitly
assumed that two actions are equivalent if and only if they are named the same way,
and hence, they are exactly the same action. Clearly, there are situations requiring
a more flexible model, for instance when the domain includes actions with different
names that execute, in fact, the same task; or where some actions specialize some

46

other, more abstract, ones. For example, actions paint-red and paint-blue may stand for
specializations (or implementations) of the more abstract, and maybe not even directly
available, action paint. Both concrete actions, when abstracting from other details, may
be considered equivalent in terms of the effect of having an object painted. One natural
way to generalize the composition framework developed in this paper is to assume the
existence of an underlying compatibility relation� ⊆ A×A among actions: if a� â
(i.e., action â is compatible with action a), then an execution of action a can be satisfied
by the actual execution of action â. With a domain compatibility relation at hand, one
can then generalize the notion of ND-simulation from Section 3 to account for the fact
that whenever an action a is requested by the target (e.g., paint), a compatible action
â, i.e., a � â, can be carried out by some available behavior (e.g., paint-red). We
expect all results presented here to still hold in such a generalized case, though further
work is needed in order to formalize this intuition. While above we do not make any
assumption on relation�, in practice it may be natural to assume that it satisfies certain
properties. For instance, a reflexive compatibility relation captures the fact that every
action can be always replaced by itself; a partial order captures a hierarchy of actions,
where a general action a can be replaced by a more specific one, but not viceversa; and
finally an equivalence relation can be used to assert that some actions carry out the very
same task (relative to some features of interest). A further study of which properties of
relation� in specific applications is certainly of interest.

The second direction for further study stems from the observation that, when no
compositions exist, it may be of interest to approximate “solutions.” That is, if a com-
position does not exists, one may be interested in understanding which part of the target
cannot be realized and which can. Some compelling contribution in this direction can
be found in the area of supervisory control of deterministic discrete event systems [72].
In particular, there is a foundational result of great interest: given a specification of the
allowed behavior in terms of a language, i.e., a possibly infinite set of runs that are
deemed as “allowed,” it is always possible to find a single maximal subset of such runs
that can be obtained by controlling a given system, the so called “supremal controllable
sublanguage” [88]. It would be quite interesting to understand if, at least in certain
cases, an analogous property holds for behavior composition as well. The question
then is what an “optimal” controller amounts to. Besides some domain-independent
criteria (e.g., number of transitions realized), allowing the specification of additional
domain information could help define what such best controllers are, such as quanti-
fying all or some non-deterministic transitions and specifying preferences over target
actions or available behaviors. A first step toward such direction is taken in the recent
work of Yadav and Sardina [89], which proposes a decision-theoretic version of the
composition problem studied in this article.

References

[1] Abadi, M., Lamport, L., Wolper, P., 1989. Realizable and unrealizable specifi-
cations of reactive systems. In: Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP). pp. 1–17. 2

47

[2] Alonso, G., Casati, F., Kuno, H., Machiraju, V., 2004. Web Services. Concepts,
Architectures and Applications. Springer. 2, 44

[3] Alur, R., Henzinger, T. A., Kupferman, O., 2002. Alternating-time Temporal
Logic. Journal of the ACM 49 (5), 672–713. 2, 3, 44

[4] Alur, R., Henzinger, T. A., Mang, F. Y. C., Qadeer, S., Rajamani, S. K., Tasiran,
S., 1998. MOCHA: Modularity in model checking. In: Proceedings of the In-
ternational Conference Computer Aided Verification (CAV). pp. 521–525. 29,
40

[5] Asarin, E., Maler, O., Pnueli, A., 1995. Symbolic controller synthesis for discrete
and timed systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (Eds.),
Hybrid Systems II. Vol. 999 of LNCS. Springer, pp. 1–20. 29, 31

[6] Asarin, E., Maler, O., Pnueli, A., Sifakis, J., 1998. Controller Synthesis for Timed
Automata. In: IFAC Symposium on System Structure and Control. Elsevier Sci-
ence Publishers Ltd., pp. 469–474. 29

[7] Bacchus, F., Kabanza, F., 1998. Planning for temporally extended goals. Annals
of Mathematics and Artificial Intelligence 22 (1-2), 5–27. 45

[8] Balbiani, P., Cheikh, F., Feuillade, G., 2008. Composition of interactive web ser-
vices based on controller synthesis. In: Proceedings of the IEEE Congress on
Services (SERVICES). pp. 521–528. 45

[9] Balbiani, P., Cheikh, F., Feuillade, G., 2009. Algorithms and complexity of au-
tomata synthesis by asynhcronous orchestration with applications to web ser-
vices composition. Electronic Notes in Theoretical Computer Science (ENTCS)
229 (3), 3–18. 45

[10] Balbiani, P., Cheikh, F., Feuillade, G., 2010. Controller/orchestrator synthesis via
filtration. Electronic Notes in Theoretical Computer Science (ENTCS) 262, 33–
48. 45

[11] Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G. J., Mar.
2007. Symbolic planning and control of robot motion: State of the art and grand
challenges. IEEE Robotics and Automation Magazine 14 (1), 61–70. 44

[12] Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M., 2005. Au-
tomatic Composition of Transition-based Semantic Web Services with Messag-
ing. In: Proceedings of the International Conference on Very Large Databases
(VLDB). pp. 613–624. 43, 44

[13] Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., 2003.
Automatic composition of e-Services that export their behavior. In: Proceedings
of the International Joint Conference on Service Oriented Computing (ICSOC).
pp. 43–58. 2, 13, 44

48

[14] Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., 2005.
Automatic service composition based on behavioural descriptions. International
Journal of Cooperative Information Systems 14 (4), 333–376. 2, 21

[15] Berardi, D., Cheikh, F., De Giacomo, G., Patrizi, F., 2008. Automatic service
composition via simulation. International Journal of Foundations of Computer
Science 19 (2), 429–451. 2, 11, 44

[16] Bertoli, P., Pistore, M., Traverso, P., 2010. Automated composition of web
services via planning in asynchronous domains. Artificial Intelligence Journal
174 (3-4), 316–361. 2, 44

[17] Bordignon, M., Rashid, J., Broxvall, M., Saffiotti, A., 2007. Seamless integration
of robots and tiny embedded devices in a PEIS-ecology. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 3101–3106. 2, 46

[18] Broxvall, M., Gritti, M., Saffiotti, A., Seo, B.-S., Cho, Y.-J., 2006. PEIS ecol-
ogy: Integrating robots into smart environments. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). pp. 212–218. 46

[19] Bultan, T., Fu, X., Hull, R., Su, J., 2003. Conversation specification: a new ap-
proach to design and analysis of e-service composition. In: Proceedings of the
International Conference on World Wide Web (WWW). pp. 403–410. 44

[20] Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., Patrizi, F., 2008.
Automatic service composition and synthesis: The roman model. IEEE Data En-
gineering Bulletin 31 (3), 18–22. 2

[21] Cimatti, A., Pistore, M., Roveri, M., Traverso, P., 2003. Weak, strong, and
strong cyclic planning via symbolic model checking. Artificial Intelligence Jour-
nal 147 (1-2), 35–84. 44

[22] Clarke, E., Emerson, E., 1982. Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (Ed.), Logics of Programs.
Vol. 131 of LNCS. Springer, Berlin/Heidelberg, Ch. 5, pp. 52–71. 44

[23] Clarke, E. M., Grumberg, O., Peled, D., 1999. Model Checking. The MIT Press.
2, 29

[24] De Giacomo, G., De Masellis, R., Patrizi, F., 2009. Composition of partially ob-
servable services exporting their behaviour. In: Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS). pp. 90–97. 43, 44

[25] De Giacomo, G., Felli, P., 2010. Agent composition synthesis based on ATL. In:
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS). pp.
499–506. 44

[26] De Giacomo, G., Patrizi, F., Felli, P., Sardina, S., 2010. Two-player game struc-
tures for generalized planning and agent composition. In: Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI). pp. 297–302. 3

49

[27] De Giacomo, G., Patrizi, F., Sardina, S., May 2010. Agent programming via plan-
ning programs. In: Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS). pp. 491–498. 43, 44

[28] De Giacomo, G., Patrizi, F., Sardina, S., 2010. Generalized planning with loops
under strong fairness constraints. In: Proceedings of Principles of Knowledge
Representation and Reasoning (KR). pp. 351–361. 45

[29] De Giacomo, G., Sardina, S., 2007. Automatic Synthesis of New Behaviors from
a Library of Available Behaviors. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI). pp. 1866–1871. 1, 2, 16, 21

[30] Deutsch, A., Sui, L., Vianu, V., 2007. Specification and verification of data-driven
web applications. Journal of Computer and System Sciences 73 (3), 442–474. 44

[31] Fainekos, G. E., Girard, A., Kress-Gazit, H., Pappas, G. J., 2009. Temporal logic
motion planning for dynamic robots. Automatica 45 (2), 343–352. 44

[32] Gelfond, M., Lifschitz, V., 1998. Action languages. Electronic Transactions of AI
(ETAI) 2, 193–210. 4

[33] Genesereth, M., Love, N., 2005. General game playing: Overview of the AAAI
competition. AI Magazine 26, 62–72. 44

[34] Georgeff, M. P., Lansky, A. L., 1987. Reactive Reasoning and Planning. In: Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI). pp. 677–
682. 2, 45

[35] Gerede, C. E., Hull, R., Ibarra, O. H., Su, J., 2004. Automated composition of
e-services: Lookaheads. In: Proceedings of the International Joint Conference on
Service Oriented Computing (ICSOC). pp. 252–262. 44

[36] Gerede, C. E., Ibarra, O. H., Ravikumar, B., Su, J., 2005. Online and minimum-
cost ad hoc delegation in e-service composition. In: Proceedings of the IEEE
International Conference on Services Computing (SCC). pp. 103–112. 44

[37] Ghallab, M., Nau, D., Traverso, P., 2004. Automated Planning: Theory and Prac-
tice. Morgan Kauffman. 10

[38] Harding, A., Ryan, M., Schobbens, P.-Y., 2005. A New Algorithm for Strategy
Synthesis in LTL Games. In: Proceedings of Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). pp. 477–492. 3

[39] Henzinger, M. R., Henzinger, T. A., Kopke, P. W., 1995. Computing simulations
on finite and infinite graphs. In: Procedings of the Annual Symposium on Foun-
dations of Computer Science (FOCS). pp. 453–462. 3, 11

[40] Hull, R., 2005. Web services composition: A story of models, automata, and log-
ics. In: Proceedings of the IEEE International Conference on Services Computing
(SCC). pp. 18–19. 2

50

[41] Jarvis, B., Jarvis, D., Jain, L., 2007. Teams in multi-agent systems. In: Shi, Z.,
Shimohara, K., Feng, D. (Eds.), Intelligent Information Processing III. Vol. 228
of IFIP International Federation for Information Processing. Springer, Ch. 1, pp.
1–10. 45

[42] Jobstmann, B., Bloem, R., 2006. Optimizations for LTL synthesis. In: Proceed-
ings of the Formal Methods in Computer Aided Design (FMCAD). IEEE Com-
puter Society Press, pp. 117–124. 29, 40

[43] Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R., 2007. Anzu: A tool for
property synthesis. In: Proceedings of the International Conference Computer
Aided Verification (CAV). pp. 258–262. 29, 40

[44] Kabanza, F., Thiébaux, S., 2005. Search Control in Planning for Temporally Ex-
tended Goals. In: Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS). pp. 130–139. 45

[45] Kesten, Y., Piterman, N., Pnueli, A., Jul. 2005. Bridging the gap between fair
simulation and trace inclusion. Journal Information and Computation 200, 35–
61. 3, 44

[46] Kress-Gazit, H., Fainekos, G. E., Pappas, G. J., 2007. Where’s Waldo? Sensor-
based temporal logic motion planning. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp. 3116–3121. 44

[47] Kress-Gazit, H., Fainekos, G. E., Pappas, G. J., 2009. Temporal-logic-based reac-
tive mission and motion planning. IEEE Transactions on Robotics 25 (6), 1370–
1381. 44

[48] Kupferman, O., Vardi, M. Y., 1996. Module checking. In: Proceedings of the
International Conference Computer Aided Verification (CAV). pp. 75–86. 2

[49] Kupferman, O., Vardi, M. Y., 1999. Church’s problem revisited. The Bulletin of
Symbolic Logic 5 (2), 245–263. 2

[50] Lundh, R., Karlsson, L., Saffiotti, A., 2007. Plan-based configuration of an ecol-
ogy of robots. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). pp. 64–70. 46

[51] Lundh, R., Karlsson, L., Saffiotti, A., 2008. Automatic configuration of multi-
robot systems: Planning for multiple steps. In: Proceedings of the European Con-
ference in Artificial Intelligence (ECAI). pp. 616–620. 46

[52] Lustig, Y., Vardi, M. Y., 2009. Synthesis from component libraries. In: Proceed-
ings of the International Conference on Foundations of Software Science and
Computational Structures (FOSSACS). Vol. 5504 of LNCS. Springer, pp. 395–
409. 2, 44

[53] Marin, O., Bertier, M., Sens, P., 2003. DARX - a Framework for the Fault Toler-
ant Support of Agent Software. In: Proceedings of the IEEE International Sym-
posium on Software Reliability Engineering (ISSRE). pp. 406–418. 29

51

[54] Martin, D. L., Burstein, M. H., McDermott, D. V., McIlraith, S. A., Paolucci,
M., Sycara, K. P., McGuinness, D. L., Sirin, E., Srinivasan, N., 2007. Bring-
ing semantics to web services with OWL-S. In: Proceedings of the International
Conference on World Wide Web (WWW). pp. 243–277. 45

[55] McIlraith, S. A., Son, T. C., 2002. Adapting golog for composition of semantic
web services. In: Proceedings of Principles of Knowledge Representation and
Reasoning (KR). pp. 482–496. 45

[56] McIlraith, S. A., Son, T. C., Zeng, H., 2001. Semantic web services. IEEE Intel-
ligent Systems 16 (2), 46–53. 45

[57] McMillan, K. L., 1993. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell, MA, USA. 40

[58] Milner, R., 1971. An algebraic definition of simulation between programs. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI). pp. 481–489. 3, 11

[59] Muscholl, A., Walukiewicz, I., 2008. A lower bound on web services composi-
tion. Logical Methods in Computer Science 4 (2). 3, 16, 40

[60] Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., Yaman,
F., 2003. SHOP2: An HTN planning system. Journal of Artificial Intelligence
Research 20, 379–404. 45

[61] Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F., 2007. Service-oriented
computing: State of the art and research challenges. IEEE Computer 40 (11),
38–45. 2

[62] Pettersson, O., 2005. Execution monitoring in robotics: A survey. Robotics and
Autonomous Systems 53 (2), 73–88. 29

[63] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P., 2004. Planning
and monitoring web service composition. In: Proceedings of the Artificial Intelli-
gence: Methodology, Systems, and Applications (AIMSA). Vol. 3192 of LNCS.
Springer, pp. 106–115. 44

[64] Pistore, M., Marconi, A., Bertoli, P., Traverso, P., 2005. Automated composition
of web services by planning at the knowledge level. In: Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI). pp. 1252–1259.
44

[65] Pistore, M., Traverso, P., 2001. Planning as model checking for extended goals in
non-deterministic domains. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI). pp. 479–486. 45

[66] Pistore, M., Traverso, P., Bertoli, P., Marconi, A., 2005. Automated synthesis of
composite BPEL4WS web services. In: Proceedings of the IEEE International
Conference on Web Services (ICWS). pp. 293–301. 44

52

[67] Piterman, N., Pnueli, A., Sa’ar, Y., 2006. Synthesis of Reactive(1) Designs. In:
Proceedings of the International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI). pp. 364–380. 2, 3, 29, 31, 44

[68] Pnueli, A., Rosner, R., 1989. On the synthesis of a reactive module. In: Proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). pp. 179–190. 2, 44

[69] Pnueli, A., Shahar, E., 1996. A platform for combining deductive with algorith-
mic verification. In: Proceedings of the International Conference Computer Aided
Verification (CAV). pp. 184–195. 3, 4, 29, 40

[70] Pynadath, D. V., Tambe, M., Chauvat, N., Cavedon, L., 2000. Toward team-
oriented programming. In: Proceedings of the International Workshop on Agent
Theories, Architectures, and Languages (ATAL). Springer, pp. 233–247. 45

[71] Ragab Hassen, R., Nourine, L., Toumani, F., 2008. Protocol-based web service
composition. In: Proceedings of the International Joint Conference on Service
Oriented Computing (ICSOC). Vol. 5364 of LNCS. Springer, Ch. 7, pp. 38–53.
44

[72] Ramadge, P. J., Wonham, W. M., 1987. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization 25, 206–230. 47

[73] Rao, A. S., 1996. AgentSpeak(L): BDI agents speak out in a logical computable
language. In: Proceedings of the Seventh European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World. (Agents Breaking Away). Vol. 1038 of
LNCS. Springer, pp. 42–55. 2, 45

[74] Saffiotti, A., Broxvall, M., 2005. PEIS ecologies: Ambient intelligence meets
autonomous robotics. In: Proceedings of the International Conference on Smart
Objects and Ambient Intelligence. pp. 275–280. 2, 46

[75] Sardina, S., De Giacomo, G., 2008. Realizing multiple autonomous agents
through scheduling of shared devices. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS). pp. 304–312. 43, 44

[76] Sardina, S., De Giacomo, G., 2009. Composition of ConGolog programs. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
pp. 904–910. 43, 44

[77] Sardina, S., Patrizi, F., De Giacomo, G., 2007. Automatic synthesis of a global
behavior from multiple distributed behaviors. In: Proceedings of the National
Conference on Artificial Intelligence (AAAI). pp. 1063–1069. 1, 2, 16, 21, 42,
43, 44

[78] Sardina, S., Patrizi, F., De Giacomo, G., 2008. Behavior composition in the pres-
ence of failure. In: Proceedings of Principles of Knowledge Representation and
Reasoning (KR). pp. 640–650. 1

53

[79] Schoppers, M. J., 1987. Universal plans for reactive robots in unpredictable en-
vironments. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). pp. 1039–1046. 45

[80] Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D., Oct. 2004. HTN planning
for web service composition using SHOP2. Journal Web Semantics: Science,
Services and Agents on the World Wide Web 1 (4), 377–396. 45

[81] Sohrabi, S., Prokoshyna, N., McIlraith, S. A., 2006. Web service composition
via generic procedures and customizing user preferences. In: Proceedings of the
International Semantic Web Conference (ISWC). pp. 597–611. 45

[82] Sohrabi, S., Prokoshyna, N., Mcilraith, S. A., 2009. In: Borgida, A. T., Chaudhri,
V. K., Giorgini, P., Yu, E. S. (Eds.), Conceptual Modeling: Foundations and
Applications. Springer, Ch. Web Service Composition via the Customization of
Golog Programs with User Preferences, pp. 319–334. 2

[83] Stroeder, T., Pagnucco, M., 2009. Realising deterministic behaviour from multi-
ple non-deterministic behaviours. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI). pp. 936–941. 44

[84] Su, J. (Ed.), Sep. 2008. IEEE Data Engineering Bulletin. Vol. 31. IEEE Computer
Society Press. 2

[85] Tan, L., Cleaveland, R., 2001. Simulation revisited. In: Proceedings of Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). pp. 480–495.
2

[86] Tripathi, A., Miller, R., 2001. Exception handling in agent-oriented systems. In:
Romanovsky, A., Dony, C., Knudsen, J., Tripathi, A. (Eds.), Advances in Excep-
tion Handling Techniques. Vol. 2022 of LNCS. Springer, pp. 128–146. 29

[87] Vardi, M. Y., 1995. An automata-theoretic approach to fair realizability and syn-
thesis. In: Proceedings of the International Conference Computer Aided Verifica-
tion (CAV). pp. 267–278. 2

[88] Wonham, W., Ramadge, P., 1987. On the supremal controllable sub-language of
a given language. SIAM Journal on Control and Optimization 25 (3), 637–659.
47

[89] Yadav, N., Sardina, S., 2011. Decision theoretic behavior composition. In: Pro-
ceedings of Autonomous Agents and Multi-Agent Systems (AAMAS). To appear.
47

54

A. TLV Implementation for the Painting Block Example

We list here the SMV code that completes the one presented in Figure 6. As for
module main, we refer the reader to Figure 6, where the full encoding is reported.
Concerning the code for module Environment, it is as follows:

MODULE Environment(act) -- Environment
VAR
st: {ini,e1,e2,e3,e4};
INIT
st = ini
TRANS
case
st = ini & act = start : next(st) = e1;
act = none : next(st) = st;
st = e1 & act = recharge : next(st) = e1;
st = e1 & act = prepare : next(st) = e2;
st = e2 & act in {paint,recharge} : next(st) = e2;
st = e2 & act = dispose : next(st) = e1;
st = e2 & act = clean : next(st) in {e2,e3}; -- nondet!
st = e3 & act in {paint,clean}: next(st) = e3;
st = e3 & act = dispose : next(st) = e4;
st = e3 & act = recharge : next(st) = e2;
st = e4 & act = prepare : next(st) = e3;
st = e4 & act = recharge : next(st) = e1;
TRUE : FALSE; -- no other transitions possible!
esac
DEFINE
initial := st = ini;

Observe that the environment has one dummy state ini and one dummy action
start, which, when executed in the initial state, makes the environment move to
state e1. Every line in the TRANS section encodes a transition, that is, it defines the
next state of the module (next(st)) given the environment’s current state (st) and
the action being performed, which is an input parameter (variable act).

We next list the code corresponding to the three available arms B1, B2, and B3.
Their encoding is similar to that of the environment, though with some differences.
Firstly, as the dynamics of each behavior—captured in the module’s TRANS section—
depends on both the action being performed by the behavior itself and the current en-
vironment state, both the action and the environment state appear as inputs (variables
act and env) in each behavior module. As for the TRANS section, similarly to the en-
vironment’s, each of its entries within the case body captures a behavior transition. In
particular, observe that every behavior may be instructed to execute the dummy action
none (second entry in TRANS), i.e., a no-op action that yields no state change in the
module. Through this mechanism we implement the asynchronous execution of avail-
able behavior modules, as explained in Section 6. Secondly, to account for guards, the
transitions occurring in a behavior module may contain (boolean) formulae involving
the current state of the environment. For example, the fourth transition in the ArmA
module states that the next state of the behavior is a2, provided: the current state is
a1, the behavior is executing action clean, and the environment is in either state e1
or e2. Finally, each behavior defines its initial, final, and failure conditions. In partic-
ular, behavior failure is accounted for by introducing the distinguished absorbing state
failed, that the module reaches whenever no transition rule applies for the current
action and environment state input, i.e., when the behavior cannot legally execute the
requested action.

55

MODULE ArmA(act, env)
VAR
st: {ini,failed,a1,a2};

INIT
st = ini

TRANS
case
st = ini & act = start :

next(st) = a1;
act = none : next(st) = st;
st = a1 & act in {dispose,recharge} :

next(st) = a1;
st = a1 & act=clean & env in {e1,e2}:

next(st) = a2;
st = a2 & act = recharge :

next(st) = a2;
st = a2 & act = dispose :

next(st) = a1;
TRUE : next(st) = failed;
esac

DEFINE
initial := st = ini;
final:= st = a1;
fail := state = failed;

MODULE ArmB(act, env)
VAR
st: {ini,failed,b1,b2,b3,b4};

INIT
st = ini
TRANS
case
st = ini & act = start :

next(st) = b1;
act = none : next(st) = st;
st = b1 & act = prepare :

next(st) = b2;
st = b2 & act = clean :

next(st) = b1;
st = b2 & act = paint :

next(st) in {b1,b3};
st = b3 & act = recharge :

next(st) = b1;
st = b3 & act = prepare :

next(st) = b4;
st = b4 & act = clean :
next(st) = b3;

TRUE : next(st) = failed;
esac
DEFINE
initial := st = ini;
final:= st = b1;
fail := state = failed;

MODULE ArmC(act, env)
VAR
st: {ini,failed,c1,c2};
INIT
st = ini
TRANS
case
st = ini & act = start : next(st) = c1;
act = none : next(st) = st;
st = c1 & act = recharge : next(st) = c2;
st = c2 & act = prepare : next(st) = c2;
st = c2 & act = paint : next(st) = c1;
TRUE : next(st) = failed; -- failed!

esac
DEFINE
initial := st = ini;
final:= st = c1;
fail := state = failed;

The target specification is even simpler, as the target may not include any non-
deterministic transition:
MODULE Target(env, req)
VAR

state: {ini,t1,t2,t3,t4,t5};
INIT

state = ini & req = start
TRANS
case
state = ini & req = start : next(state) = t1;
req = none : next(state) = state;
state = t1 & req = prepare : next(state) = t2;
state = t2 & req = paint : next(state) = t4;
state = t2 & req = clean : next(state) = t3;
state = t3 & req = paint : next(state) = t4;
state = t4 & req = dispose : next(state) = t5;
state = t5 & req = recharge : next(state) = t1;
esac

DEFINE
initial:= state = ini;
final:= state = t1;

56

Using the target, we can then specify the client, which is meant to issue the request
actions according, of course, to the target behavior:

MODULE Client(env)
VAR
target : Target(env, req);
req: {start,none,prepare,clean,paint,dispose,recharge};

INIT
req = start

TRANS
case
next(tst) = t1 : next(req) = prepare;
next(tst) = t2 : next(req) in {paint,clean} ;
next(tst) = t3 : next(req) = paint;
next(tst) = t4 : next(req) = dispose;
next(tst) = t5 : next(req) = recharge;
TRUE : next(req) = none;

esac
DEFINE
initial:= target.initial;
tst := target.state;
final:= target.final;

When the full specification is run against the TLV2 system, the following output is
obtained:

TLV version 4.18.4
...
Resources used: user time: 0.11 s
BDD nodes allocated: 125962
max amount of BDD nodes allocated: 125962
Bytes allocated: 2228288
...

Automaton States

State 1
sys.availsys.env.state = start_st, sys.availsys.a1.state = start_st,
sys.availsys.a2.state = start_st, sys.availsys.a3.state = start_st,
sys.client.target.state = start_st, sys.client.req = start_op,
contr.a1op = start_op, contr.a2op = start_op, contr.a3op = start_op,

State 2
sys.availsys.env.state = e1, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t1, sys.client.req = prepare,
contr.a1op = none, contr.a2op = prepare, contr.a3op = none,

State 3
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t2, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 4
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t2, sys.client.req = clean,
contr.a1op = clean, contr.a2op = none, contr.a3op = none,

State 5
sys.availsys.env.state = e2, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t3, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 6

57

sys.availsys.env.state = e3, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t3, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 7
sys.availsys.env.state = e3, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 8
sys.availsys.env.state = e3, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 9
sys.availsys.env.state = e4, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = recharge, contr.a2op = none, contr.a3op = none,

State 10
sys.availsys.env.state = e4, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = none, contr.a2op = recharge, contr.a3op = none,

State 11
sys.availsys.env.state = e2, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 12
sys.availsys.env.state = e2, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 13
sys.availsys.env.state = e1, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = recharge, contr.a2op = none, contr.a3op = none,

State 14
sys.availsys.env.state = e1, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = none, contr.a2op = recharge, contr.a3op = none,

State 15
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 16
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

Automaton Transitions

58

From 1 to 2
From 2 to 3 4
From 3 to 15 16
From 4 to 5 6
From 5 to 11 12
From 6 to 7 8
From 7 to 10
From 8 to 9
From 9 to 2
From 10 to 2
From 11 to 14
From 12 to 13
From 13 to 2
From 14 to 2
From 15 to 14
From 16 to 13

Automaton has 16 states, and 21 transitions

The output states that an automaton with 16 states and 21 transition was
successfully synthesized. Observe that the automaton encodes and accounts
for the constraints of both the whole system and the client running the tar-
get, as well as the controller performing the composition. In fact, the ob-
tained result can be regarded as a representation of the controller generator for
the painting blocks example. States can be read as follows: an assignment
to variables sys.availsys.env.state, sys.availsys.a1.state,
sys.availsys.a2.state, sys.availsys.a3.state, and
sys.client.target.state, forms the current state of the enacted sys-
tem; an assignment to sys.client.req represents the action currently requested;
and an assignment to contr.a1op, contr.a2op, and contr.a3op, represents
a possible action delegations to available behaviors for fulfilling the current request.

59

	Introduction
	The Framework
	Composition via Simulation
	On Behavior Failures
	Reactive Adaptability
	Parsimonious Refinement

	Simulation and Safety Games
	Safety-Game structures
	From Composition to Safety Games

	Implementing Behavior Composition in tlv
	Related Work
	Conclusions
	tlv Implementation for the Painting Block Example

