
Composition: the “Roman” Approach

Name by
Rick Hull

The Roman Approach

Community Ontology

Service1 Service2 ServiceN

Mapping1 Mapping2 MappingN

Client-tailored!
Community ontology: just a
set of actions

Client formulates the
service it requires as a TS
using the actions of the
common ontology
Available services: described
in terms of a TS using actions
of the community ontology

The community realizes the
client’s target service by
“reversing” the mapping and
hence using fragments of the
computation of the the
available services

Client

Service request

Giuseppe De Giacomo 2 Service Integration – aa 2010/11

Community of Services

•  A community of Services is

–  a set of services …

–  … that share implicitly a common understanding on a common
set of actions (common ontology limited to the alphabet of
actions)…

–  … and export their behavior using (finite) TS over this common

set of actions

•  A client specifies needs as a service behavior, i.e, a (finite) TS
using the common set of actions of the community

Giuseppe De Giacomo 3 Service Integration – aa 2010/11

(Target & Available) Service TS

•  We model services as finite TS T = (!, S, s0, ", F) with
–  single initial state (s0)
–  deterministic transitions (i.e., ! is a partial function from S!"

to S)

Note: In this way the client entirely controls/chooses the transition to
execute

b

c
S0

a

Example:

a: “search by author (and select)”
b: “search by title (and select)”
c: “listen (the selected song)”

Giuseppe De Giacomo 4 Service Integration – aa 2010/11

Composition: an Example

available service 1

available service 2

target service (virtual!)

b

c

a

a

c

b

c

Lets get some intuition of what a composition is
through an example

orchestrator

Giuseppe De Giacomo 5 Service Integration – aa 2010/11

Composition: an Example
target service

b

c

a

a

c

b

c

A sample run
action request:

orchestrator

available service 1

available service 2

orchestrator response:

Giuseppe De Giacomo 6 Service Integration – aa 2010/11

Composition: an Example

a

target service

b

c

a

c

b

c

a

a,1

A sample run

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Giuseppe De Giacomo 7 Service Integration – aa 2010/11

Composition: an Example

a

a

target service

b

c
 c

b

c

c

a

a,1

A sample run

c,1

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Giuseppe De Giacomo 8 Service Integration – aa 2010/11

Composition: an Example

b

b

c

a

a

target service

c

c

c

a

b,2

a,1

A sample run

c,1

b

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Giuseppe De Giacomo 9 Service Integration – aa 2010/11

Composition: an Example

b

b

c

a

a

target service

c

c

c

a

b,2

a,1

A sample run
c …

c,1 c,2

b

orchestrator

action request:

orchestrator response:

available service 1

available service 2

Giuseppe De Giacomo 10 Service Integration – aa 2010/11

A orchestrator program realizing the
target behavior

target service

b

c

a

a

c

b

c

orchestrator program

a,1

b,2

c,1

c,2

orchestrator

available service 1

available service 2

Giuseppe De Giacomo 11 Service Integration – aa 2010/11

Orchestrator programs

•  Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

•  A history is the sequence of actions done so far:

 h = a1 a2 … ak

•  Observe that to take a decision P has full access to the past, but no
access to the future
–  Note given an history h = a1 a2 … ak an the function P we can reconstruct the state

of the target service and of each available service
•  a1 a2 … ak determines the state of the target service
•  (a1 ,P([] ,a1))(a2 ,P([a1], a2)) … (ak ,P([a1 a2 … ak-1],ak)) determines the state

of of each 1vailable service

•  Problem: synthesize a orchestrator program P that realizes the
target service making use of the available services

Giuseppe De Giacomo 12 Service Integration – aa 2010/11

Service Execution Tree

•  Nodes: history i.e., sequence of actions
executed so far

•  Root: no action yet performed

•  Successor node x!a of x: action a can
be executed after the sequence of
action x

•  Final nodes: the service can terminate

S0
a b

c c

a b a b

c c c c

...

...

...

...

By “unfolding” a (finite) TS one gets an (infinite) execution tree
-- yet another (infinite) TS which bisimilar to the original one)

Giuseppe De Giacomo 13 Service Integration – aa 2010/11

Alternative (but Equivalent)
Definition of Service Composition

Composition:
–  coordinating program …
–  … that realizes the target service …
–  … by suitably coordinating available services

 ! Composition can be seen as:
–  a labeling of the execution tree of the target service such that

…
–  … each action in the execution tree is labeled by the available

service that executes it …
–  … and each possible sequence of actions on the target service

execution tree corresponds to possible sequences of actions on
the available service execution trees, suitably interleaved

Giuseppe De Giacomo 14 Service Integration – aa 2010/11

Example of Composition

a

c
S1

b

c
S2

c

a b

c c

a b a b

c c c

...

...

...

...
S0 = orch(S1 || S2)

b

c
S0

a

Giuseppe De Giacomo 15 Service Integration – aa 2010/11

Example of Composition

a

c
S1

b

c
S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

All services start from their starting state

S0 = orch(S1 || S2)

Giuseppe De Giacomo 16 Service Integration – aa 2010/11

Example of Composition (5)

a

c
S1

b

c
S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

Each action of the target service is executed by at least one of the component services

S0 = orch(S1 || S2)

Giuseppe De Giacomo 17 Service Integration – aa 2010/11

Example of composition (6)

a

c
S1

b

c
S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

When the target service can be left, then all component services must be in a final state

S0 = orch(S1 || S2)

Giuseppe De Giacomo 18 Service Integration – aa 2010/11

Example of composition (7)

a

c
S1

b

c
S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a S0 = orch(S1 || S2)

Giuseppe De Giacomo 19 Service Integration – aa 2010/11

Example of composition (8)

a

c
S1

b

c
S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a S0 = orch(S1 || S2)

Giuseppe De Giacomo 20 Service Integration – aa 2010/11

Observation
•  This labeled execution tree has a finite representation as

a finite TS …
•  …with transitions labeled by an action and the service

performing the action

a,1

c,1

b,2

c,2

Is this always the case when we deal with services expressible as finite
TS? See later…

Giuseppe De Giacomo 21 Service Integration – aa 2010/11

Questions

Assume services of community and target service are finite
TSs

–  Can we always check composition existence?

–  If a composition exists there exists one which is a finite
TS?

–  If yes, how can a finite TS composition by computed?

To answer ICSOC’03 exploits PDL SAT

Giuseppe De Giacomo 22 Service Integration – aa 2010/11

Answers

Reduce service composition synthesis to satisfability in
(deterministic) PDL

–  Can we always check composition existence?
Yes, SAT in PDL is decidable in EXPTIME

–  If a composition exists there exists one which is a finite
TS?

Yes, by the small model property of PDL
–  How can a finite TS composition be computed?

From a (small) model of the corresponding PDL formula

Giuseppe De Giacomo 23 Service Integration – aa 2010/11

Encoding in PDL

Basic idea:
•  A orchestrator program P realizes the target service T iff at each point:

‒  " transition labeled a of the target service T …

–  … # an available service Bi (the one chosen by P) that can make an a-
transition, realizing the a-transition of T

•  Encoding in PDL:
‒  " transition labeled a …

 use branching
‒  # an available service Bi that can make an a-transition …

 use underspecified predicates assigned through SAT

Giuseppe De Giacomo 24 Service Integration – aa 2010/11

Structure of the PDL Encoding

= Init $ [u](#0 $ $i=1,…,n#i $ #aux)

PDL encoding is polynomial in the size of the service TSs

Initial states of all
services

PDL encoding of
target service

PDL encoding of i-
th component
service

PDL additional
domain-
independent
conditions

Giuseppe De Giacomo 25 Service Integration – aa 2010/11

PDL Encoding

•  Target service S0 = (!, S0, s0
0, "0, F0) in PDL we define #0 as

the conjunction of:
%
–  s & ¬ s' for all pairs of distinct states in S0

service states are pair-wise disjoint

–  s & <a> T $ [a]s' for each s'="0(s,a)

target service can do an a-transition going to state s’

–  s & [a] ' for each "0(s,a) undef.

target service cannot do an a-transition
–  F0 () s * F0 s

denotes target service final states
•  …

Giuseppe De Giacomo 26 Service Integration – aa 2010/11

PDL Encoding (cont.d)

•  available services Si = (!, Si, s0
i, "i, Fi) in PDL we define #i as

the conjunction of:

–  s & ¬ s' for all pairs of distinct states in Si

Service states are pair-wise disjoint

–  s & [a](movedi $ s') ¬ movedi $ s) for each s'="i(s,a)
if service moved then new state, otherwise old state

–  s & [a](¬ movedi $ s) for each "i(s,a) undef.
if service cannot do a, and a is performed then it did not move

–  Fi () s * Fi s

denotes available service final states
•  …

Giuseppe De Giacomo 27 Service Integration – aa 2010/11

PDL Encoding (cont.d)

•  Additional assertions #aux
–  <a>T & [a]) i=1,…,n movedi for each action a

at least one of the available services must move at each step

–  F0 & $ i=1,…,n Fi
when target service is final all comm. services are final

–  Init (s0
0 $ i=1....n s0

i
Initially all services are in their initial state

PDL encoding: # = Init $ [u](#0 $ i=1,…,n #i $ #aux)

Giuseppe De Giacomo 28 Service Integration – aa 2010/11

Results

Thm[ICSOC’03,IJCIS’05]:
Composition exists iff PDL formula # SAT

From composition labeling of the target service one can build a
tree model of the PDL formula and viceversa

Information on the labeling is encoded in predicates movedi

Corollary [ICSOC’03,IJCIS’05]:

Checking composition existence is decidable in EXPTIME

Thm[Muscholl&Walukiewicz FoSSaCS’07]:
Checking composition existence is EXPTIME-hard

Giuseppe De Giacomo 29 Service Integration – aa 2010/11

Results on TS Composition

Thm[ICSOC’03,IJCIS’05]:
If composition exists then finite TS composition exists.

From a small model of the PDL formula #,
one can build a finite TS machine

Information on the output function of the machine is encoded in

predicates movedi

! finite TS composition existence of services expressible as
finite TS is EXPTIME-complete

Giuseppe De Giacomo 30 Service Integration – aa 2010/11

Example (1)

a

c
S1

b

c
S2

b

c
S0

a
…
…
…

s0
0 $ s1

0 $ s2
0

<a> T & [a] (moved1) moved2)

 T & [b] (moved1) moved2)

<c> T & [c] (moved1) moved2)

F0 & F1 $ F2

Target service

Available services

PDL

Giuseppe De Giacomo 31 Service Integration – aa 2010/11

Example (2)

s0
0 & ¬ s0

1

s0
0 & <a> T $ [a] s0

1

s0
0 & T $ [b] s0

1

s0
1 & <c> T $ [c] s0

0

s0
0 & [c] '

s0
1 & [a] '

s0
1 & [b] '

F0(s0
0

…
…
…

b

c
S0

a

Target service

Giuseppe De Giacomo 32 Service Integration – aa 2010/11

Example (3)
…
s1

0 & ¬ s1
1

s1
0 & [a] (moved1 $ s1

1
) ¬moved1 $ s1

0)
s1

0 & [c] ¬moved1 $ s1
0

s1
0 & [b] ¬moved1 $ s1

0

s1
1 & [a] ¬moved1 $ s1

1

s1
1 & [b] ¬moved1 $ s1

1

s1
1 & [c] (moved1 $ s1

0
) ¬moved1 $ s1

1)
F1(s1

0

s2

0 & ¬ s2
1

s2
0 & [b] (moved2 $ s2

1
) ¬moved2 $ s2

0)
s2

0 & [c] ¬moved2 $ s2
0

s2
0 & [a] ¬moved2 $ s2

0

s2
1 & [b] ¬moved2 $ s2

1

s2
1 & [a] ¬moved2 $ s2

1

s2
1 & [c] (moved2 $ s2

0
) ¬moved2 $ s2

1)

F2(s2
0

…

Available services

a

c
S1

b

c
S2

Giuseppe De Giacomo 33 Service Integration – aa 2010/11

Example (4)

Check: run SAT on PDL formula #%

Giuseppe De Giacomo 34 Service Integration – aa 2010/11

Example

Check: run SAT on PDL formula #
Yes + (small) model a b

c c a b

s0
0, s0

1, s0
2,

F0, F1, F2,
Init

s00, s0
1, s02,

F0, F1, F2,
moved2

s10, s11, s0
2,

F2, moved1

s10, s01, s1
2,

F1, moved2

s00, s01, s0
2,

F0, F1, F2,
moved1

b a

Giuseppe De Giacomo 35 Service Integration – aa 2010/11

Example

Check: run SAT on PDL formula #
Yes + (small) model

+ extract finite TS

a,1 b,2

c,1 c,2
a,1

b,2
b,2

a,1

Giuseppe De Giacomo 36 Service Integration – aa 2010/11

Example

Check: run SAT on PDL formula #
Yes + (small) model

+ extract finite TS
+  minimize finite TS
 (similar to Mealy machine minimization)

c,1 c,2
a,1 b,2

Giuseppe De Giacomo 37 Service Integration – aa 2010/11

Results on Synthesizing
Composition
•  Using PDL reasoning algorithms based on model

construction (cf. tableaux), build a (small) model
Exponential in the size of the PDL encoding/services finite TS

Note: SitCalc, etc. can compactly represent finite TS,

PDL encoding can preserve compactness of representation

•  From this model extract a corresponding finite TS

Polynomial in the size of the model

•  Minimize such a finite TS using standard techniques (opt.)

Polynomial in the size of the TS

Note: finite TS extracted from the model is not minimal
because encodes output in properties of individuals/states

Giuseppe De Giacomo 38 Service Integration – aa 2010/11

Tools for Synthesizing
Composition

•  In fact we use only a fragment of PDL in particular we use
fixpoint (transitive closure) only to get the universal
modality …

•  … thanks to a tight correspondence between PDLs and

Description Logics (DLs), lately highly optimized tableaux
based reasoning systems are available to:
–  check for composition existence
–  do composition synthesis (if the ability or returning models is present)

•  Among them we recall:

–  Racer (http://www.racer-systems.com/) based on DLs
–  Pellet (http://clarkparsia.com/pellet) based on DLs
–  Fact++ (http://owl.man.ac.uk/factplusplus/) based on DLs
–  PDL Tableaux (http://www.cs.manchester.ac.uk/~schmidt/pdl-tableau/) based on PDL
–  Tableaux Workbench (http://twb.rsise.anu.edu.au/) based on PDL
–  Lotrec (http://www.irit.fr/Lotrec/) based on PDL

Giuseppe De Giacomo 39 Service Integration – aa 2010/11

