

Logics of Programs

Service Integration Giuseppe De Giacomo 1

Logics of Programs

- Are modal logics that allow to describe properties of transition systems
- Examples:
 - HennesyMilner Logic
 - Propositional Dynamic Logics
 - Modal (Propositional) Mu-calculus
- Perfectly suited for describing transition systems: they can tell apart transition systems modulo bisimulation

HennessyMilner Logic

HM Logic aka (multi) modal logic Ki

Syntax:

- Propositions are used to denote final states and other TS atomic properties
- <a> Φ means there exists an a-transition that leads to a state where Φ holds; i.e., expresses the capability of executing action a bringing about Φ
- [a] Φ means that all a-transitions lead to states where Φ holds; i.e., express that executing action a brings about Φ

Service Integration Giuseppe De Giacomo

HennessyMilner Logic

- Semantics: assigns meaning to the formulas.
- Given a TS T = < A, S, S⁰, δ , F>, a state s \in S, and a formula Φ , we define (by structural induction) the "truth relation"

```
T,s \models \Phi
```

```
T,s ⊨ Final
                          if s \in F (similarly T, s \models P if s \in P);
                          if for all s' such that s \rightarrow_a s' we have T,s' \models \Phi;
- T,s ⊨ [a] Φ
- T,s \models \langle a \rangle \Phi
                          if exists s' such that s \rightarrow_a s' and T,s' \models \Phi;
- T,s ⊨ ¬Φ
                          if it is not the case that T,s \models \Phi;
- T,s \models \Phi_1 \lor \Phi_2
                          if T,s \models \Phi_1 or T,s \models \Phi_2;
- T_1s \models \Phi_1 \land \Phi_2
                          if T,s \models \Phi_1 and T,s \models \Phi_2;
T,s ⊨ true
                           always;
T,s ⊨ false
                          never.
```

HennessyMilner Logic

- Another way to give the same semantics to formulas: formulas extension in a transition system assigns meaning to the formulas.
- Given a TS T = < A, S, S⁰, δ , F> "the extension of a formula Φ in T", denote by $(\Phi)^{\mathsf{T}}$, is defined as follows:

```
- (Final)<sup>T</sup>
                                                       F (similarly P^T = \{s \mid s \in P\});
                                                      \{s \mid \forall s'. \ s \rightarrow_a s' \text{ implies } s' \in (\Phi)^T \};
- ([a] \Phi)^{T}
                                                      \{s \mid \exists s'. s \rightarrow_a s' \text{ and } s' \in (\Phi)^T\};
- (\langle a \rangle \Phi)^T
- (\neg \Phi)^{\mathsf{T}}
                                                      S - (\Phi)^{T};
- (\Phi_1 \lor \Phi_2)^T
                                                       (\Phi_1)^{\mathsf{T}} \cup (\Phi_2)^{\mathsf{T}};
                                   =
                                                       (\Phi_1)^{\mathsf{T}} \cap (\Phi_2)^{\mathsf{T}};
- (\Phi_1 \wedge \Phi_2)^T
− (true) <sup>T</sup>
                                                       S;
- (false) <sup>⊤</sup> =
                                       Ø.
```

Note: $T, s \models \Phi$ now written as $s \in (\Phi)^T$

Service Integration

Giuseppe De Giacomo 5

Model Checking

• Given a TS T, one of its states s, and a formula Φ verify whether the formula holds in s. Formally:

$$T,s \models \Phi$$
 or $s \in (\Phi)^T$

- Examples (TS is our vending machine):
 - $S_0 \models Final$

- $S_0 \models <10c>true$ capability of performing action 10c

- $S_2 \models [big]false$ inability of performing action big

- $S_0 \models [10c][big][false]$ after 10c cannot execute big

Model checking variant (aka "query answering"):

- the database - Given a TS T ...

– ... compute the extension of Φ - the query

Formally: compute the set $(\Phi)^T$ which is equal to $\{s \mid T, s \models \Phi\}$

Satisfiability

• Satisfiability: given a formula Φ verify whether there exists a (finite/infinite) TS T and a state of T such that the formula holds in s.

SAT: check the existence of T,s such that T,s $\models \Phi$

• Validity: given a formula Φ verify whether in every (finite/infinite) TS T and in every state of T the formula holds in s.

VAL: check the non existence of T,s such that T,s $\vdash \neg \Phi$

Note: VAL = non SAT

Examples: check the satisfiability / validity of the following formulas:

- <10p><small><collect_s>Final
- Final →
 - $((<10p><small><collect_s>Final) \land (<20p><big><collect_b>Final))$
- <10p><small><collect_s>Final ∧ [10p]false

Service Integration Giuseppe De Giacomo

HennessyMilner Logic and Bisimulation

- Consider two TS, $T = (A,S,s_0,\delta, F)$ and $T' = (A,S',t_0,\delta', F')$.
- Let L be the language formed by all HennessyMilner Logic formulas.
- We define:
 - $-\sim_L = \{(s,t) \mid \text{ for all } \Phi \text{ of } L \text{ we have } T,s \models \Phi \text{ iff } T',t \models \Phi\}$
 - $\sim = \{(s,t) \mid \text{ exists a bisimulation } R \text{ s.t., } R(s,t)\}$
- Theorem: s ~ t iff s ~ t
- Proof: we show that
 - s ~ t implies s ~, t by structural induction on formulas of L.
 - $s \sim_1 t$ implies $s \sim t$ by coinduction showing that $s \sim_1 t$ is a bisimulation.

This theorem says that HennessyMilner Logic has exactly the same distinguishing power of bisimulation.

So L is the right logic to predicate on transition systems.

An same results holds also for the PDL and Modal Mu-Calculus introduced below.

Service Integration

Examples

- Usefull abbreviation (let actions A = {a₁,..., a_n}):
 - <any> Φ stands for <a₁> $\Phi \lor \cdots \lor$ <a_n> Φ
 - [any] Φ stands for $[a_1]\Phi \wedge \cdots \wedge [a_n]\Phi$
 - <any $a_1 > \Phi$ stands for $< a_2 > \Phi \lor \cdots \lor < a_n > \Phi$
 - [any -a₁] Φ stands for [a₂] $\Phi \wedge \cdots \wedge [a_n]\Phi$
- Examples:
 - <a>true capability of performing action a
 - [a]false inability of performing action a
 - ¬Final ∧ <any>true ∧ [any-a]false

necessity/inevitability of performing action a (i.e., action a is the only action

possible)

¬Final ∧ [any]false deadlock!

Service Integration Giuseppe De Giacomo

Propositional Dynamic Logic

- $\Phi := P \mid \qquad \qquad (atomic propositions) \\ \neg \Phi \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \qquad (closed under boolean operators) \\ [r]\Phi \mid < r > \Phi \qquad (modal operators)$
 - $r := a | r_1 + r_2 | r_1; r_2 | r^* | P?$ (complex actions as regular expressions)
- Essentially add the capability of expressing partial correctness assertions via formulas of the form
 - $\Phi_1 \rightarrow [r]\Phi_2$ under the conditions Φ_1 all possible executions of r that terminate reach a state of the TS where Φ_2 holds
- Also add the ability of asserting that a property holds in all nodes of the transition system
 - $[(a_1 + \cdots + a_v)^*]\Phi$ in every reachable state of the TS Φ holds
- Useful abbereviations:
 - any stands for $(a_1 + \cdots + a_v)$ Note that + can be expressed also in HM Logic u stands for any* Note that + can be expressed also in HM Logic This is the so called master/universal modality

Modal Mu-Calculus

- $\Phi := P \mid$ (atomic propositions) $\neg \Phi \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid$ (closed under boolean operators) $[r]\Phi \mid \langle r \rangle \Phi$ (modal operators) $\mu X.\Phi(X) \mid \nu X.\Phi(X)$ (fixpoint operators)
- It is the most expressive logic of the family of logics of programs.
- It subsumes
 - PDL (modalities involving complex actions are translated into formulas involving fixpoints)
 - LTL (linear time temporal logic),
 - CTS, CTS* (branching time temporal logics)
- Examples:
- [any*]Φ can be expressed as v X. Φ ∧ [any]X
- $\begin{array}{ll} \bullet & \mu \; X. \; \Phi \; \vee \; [any] X & \textit{along all runs eventually } \Phi \\ \bullet & \mu \; X. \; \Phi \; \vee \; \langle any \rangle X & \textit{along some run eventually } \Phi \end{array}$
- v X. [a](μ Y. <any>true ∧ [any-b]Y) ∧ X

every run that contains a contains later b

Service Integration Giuseppe De Giacomo 1.

Modal Mu-Calculus

- To understand fixpoint operators one has to consider them as fixpoint of equations:
- Namely given $\mu X.\Phi(X)$ and $\nu X.\Phi(X)$ consider the equation

```
X \equiv \Phi(X)
```

Then:

- $\mu X.\Phi(X)$ stands for the smallest predicate X such that $X \equiv \Phi(X)$ or $\Phi(X) \to X$
- $\nu X.\Phi(X)$ stands for the largest predicate X such that $X \equiv \Phi(X)$ or $X \to \Phi(X)$

Notice:

- $-\mu X.\Phi(X)$ is defined by induction and computed by least fixpoint algorithm over the TS
- $\nu X.\Phi(X)$ is defined by coinduction and computed by greatest fixpoint algorithm over the TS
- Examples:

Examples of Modal Mu-Calculus

- Examples (TS is our vending machine):
 - S_0 ⊨ Final

- $S_0 \models <10c>$ true capability of performing action 10c

 $-S_2 \models [big]$ false inability of performing action big

- $S_0 \models [10c][big]$ false after 10c cannot execute big

- $S_i \models \mu X$. Final \lor [any] X eventually a final state is reached

- $S_0 \models v Z$. (μ X. Final \vee [any] X) \wedge [any] Z or equivalently $S_0 \models [any^*](\mu$ X. Final \vee [any] X) from everywhere eventually final

Service Integration Giuseppe De Giacomo

Model Checking/Satisfiability

- Model checking is polynomial in the size of the TS for
 - HennessyMilner Logic
 - PDL
 - Modal Mu-Calculus
- Also model checking is wrt the formula
 - Polynomial for HennessyMiner Logic
 - Polynomial for PDL
 - Polynomial for Modal Mu-Calculus with bounded alternation of nested fixpoints, and NP∩coNP in general
- Satisfiability is decidable for the three logics, and the complexity (in the size of the formula) is as follows:
 - HennessyMilner Logic: PSPACE-complete
 - PDL: EXPTIME-complete
 - Modal Mu-Calculus: EXPTIME-complete

AI Planning as Model Checking

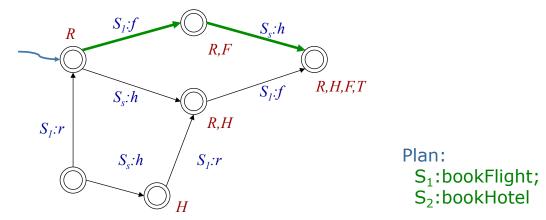
- Build the TS of the domain:
 - Consider the set of states formed all possible truth value of the propositions (this works only for propositional setting).
 - Use Pre's and Post of actions for determining the transitions Note: the TS is exponential in the size od the description.
- Write the goal in a logic of program
 - typically a single least fixpoint formula of Mu-Calculus (compute reachable states intersection states where goal true)
- Planning:
 - model check the formula on the TS starting from the given initial state.
 - use the path (paths) used in the above model checking for returning the plan.
- This basic technique works only when we have complete information (or at least total observability on state):
 - Sequential plans if initial state known and actions are deterministic
 - Conditional plans if many possible initial states and/or actions are nondeterministic

Service Integration Giuseppe De Giacomo 1:

Example

- Operators (Services + Mappings)
 - Registered $\land \neg FlightBooked$ → [S₁:bookFlight] FlightBooked
 - ¬Registered → [S₁:register] Registered
 - ¬HotelBooked → [S₂:bookHotel] HotelBooked
- Additional constraints (Community Ontology):
 - TravelSettledUp \equiv FlightBooked \land HotelBooked \land EventBooked
- Goals (Client Service Requests):
 - Starting from *the* state
 Registered ∧ ¬FlightBooked ∧ ¬ HotelBooked ∧ ¬EventBooked
 check <any*>TravelSettedUp
 - Starting from all states such that
 ¬FlightBooked ∧ ¬ HotelBooked ∧ ¬EventBooked
 check <any*>TravelSettledUp

Example



Starting from the state

Registered $\land \neg$ FlightBooked $\land \neg$ HotelBooked $\land \neg$ EventBooked check

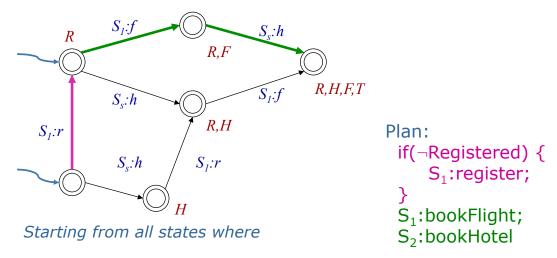
<any*>TravelSettledUp

Service Integration

Giuseppe De Giacomo

47

Example



¬ FlightBooked ∧ ¬ HotelBooked ∧ ¬ EventBooked

check

<any*>TravelSettledUp

Satisfiability

- Observe that a formula Φ may be used to select among all TS T those such that for a given state s we have that $T,s \models \Phi$
- SATISFIABILITY: Given a formula Φ verify whether there exists a TS T and a state s such that. Formally:

check whether exists T, s such that T,s $\models \Phi$

- Satisfiability is:
 - PSPACE for HennesyMilner Logic
 - EXPTIME for PDL
 - EXPTIME for Mu-Calculus

Service Integration

Giuseppe De Giacomo

References

[Stirling Banff96] C. Stirling: Modal and temporal logics for processes. Banff Higher Order Workshop LNCS 1043, 149-237, Springer 1996
[Bradfield&Stirling HPA01] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook of Process Algebra, 293-332, Elsevier, 2001.

[Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer Science, Springer 2001

[Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical Computer Science, Vol. B, 789–840. North Holland, 1990.
[HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.

[Clarke& Schlingloff HAR01] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of Automated Reasoning 2001: 1635-1790

[CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.

[Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science, Vol B: 995-1072. North Holland, 1990.
 [Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive Systems. Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996

[Vardi CST] M. Vardi: Alternating automata and program verification. Computer Science Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.

[Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic Approach to Branching-Time Model Checking (full version of CAV'94 paper).

[Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.