
Using TLV for Service Composition

Elective in Software and Services

Fabio Patrizi
DIS – SAPIENZA, Università di Roma

fabio.patrizi@dis.uniroma1.it

www.dis.uniroma1.it/~patrizi

May, 2012 1 Fabio Patrizi - Using TLV for Service
Composition

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

2

Using TLV for Service Composition

1.  How to represent a service composition
problem instance as a safety game?

2.  Using TLV to solve the safety game.

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

3

Reduction to Safety-Games

PROBLEM
INPUT: an instance of the service composition problem
  Community of available services: C={S1,…, Sn}
  Target service specification: St
OUPUT: Safety-game G “equivalent” to above instance

Equivalence: OG extracted from G’s WINNING set.

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

4

Reduction to Safety-Games (2)
Assumption: TSs have infinite runs

States always have a successor!

a b

a b nop

If not…

… do this

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

5

Reduction to Safety-Games (3)
GAME STATE VARIABLES

  V={st, s1,..., sn,o,ind}
-  st: (over St) target service state
-  si: (over Si) i-th service state
-  ind: (over {1,…n}) selected service

•  X={st, s1,..., sn,o} (environment)
•  Y={ind} (system)

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

6

Reduction to Safety-Games (4)

INITIALIZATION

•  £ states that all services are in their initial state
•  An init state is introduced

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

7

Reduction to Safety-Games (5)
GAME STATE TRANSITIONS

  ½e() defines how, given a complete current state,
  The community changes state
  The target service changes state and selects next op

st, s1,..., sind ,..., sn,o,ind

s’t, s1,..., s’ind ,..., sn,o’

½e()

Current Community State

Target Service Current Service Selection

Move

Still

Changes

s’t, s1,..., s’ind ,..., sn,o’’

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

8

Reduction to Safety-Games (6)
GAME STATE TRANSITIONS

  ½s() defines how, given a complete previous state and a current
environment state (community + target service), the system chooses next
“ind”.

Object of synthesis!

st, s1,..., sind ,..., sn,o,ind

s’t, s1,..., s’ind ,..., sn,o’

½e()

s’t, s1,..., s’ind ,..., sn,o’’

,ind’

,ind’’

½s()

½s()

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

9

Reduction to Safety-Games (7)
  ½s() defines how, given a complete previous state and a

current environment state (community + target service), the
system chooses next “ind”

  ½s() can choose any ind at each step
  The goal of synthesis is to restrict ½s() so that the system wins

the game, i.e., satisfies the invariant formula

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

10

Reduction to Safety-Games (8)

GAME INVARIANT

faili holds if Si is selected but
is not able to perform the
requested operation

If the target service is in a final state
then all the other available services do

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

11

Reduction to Safety-Games (9)
GAME STATE TRANSITIONS

Observation: target operations are moved into states

S0 S1 S2
a b c

S0, a

S1,b

S2,c

S2,d

d

b
S0, b

init

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

12

Reduction to Safety-Games (11)
Once we have encoded the service composition problem in a

safety-game:

Theorem:
 1. A composition exists iff the maximal winning set contains
all the initial game states

 2. From the maximal winning set one can derive the
composition generator, i.e., the set of all possible
compositions

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

13

Reduction to Safety-Games (12)
“2. From the maximal winning set one can derive the composition

generator, i.e., the set of all possible compositions”
Great! But…
… how to compute the maximal winning

set?
Use TLV!

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

14

TLV

TLV (Temporal Logic Verifier) [Pnueli and Shahar, 1996] is
a useful tool that can be used to

automatically compute the orchestrator generator,
given a problem instance.

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

15

TLV (2)

Synth-inv.tlv

 file .smv:
Community

+
Target

Comp-inv.pf CG or
“unrelizable”

TLV

Given

Instance dependent
How to write this?

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

16

TLV and SMV

•  TLV is the software system
•  SMV is the language used to write input

specifications
•  SMV-BASIC is the language used to write TLV

algorithms

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

17

SMV Specifications

•  SMV specs are composed of modules:
-  modules are sorts of TS which may share

variables with other modules
-  modules may contain submodules, running in

parallel
-  special module main is mandatory and contains

all relevant modules

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

18

MODULE Target(op)

VAR

state : {start_st,t0,t1,t2};

INIT

state = start_st & op = start_op

TRANS

case

state = start_st & op = start_op : next(state) = t0 & next(op) in {a};

state = t0 & op = a : next(state) = t1 & next(op) in {b};

state = t1 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = c: next(state) = t0 & next (op) in {a};

esac

DEFINE

initial := state=start_st & op=start_op;

final := state in {t0,t2};

SMV Modules

A module:
name parameter(s)

internal variable(s)

transition relation

boolean expressions

initialization

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

19

SMV specification structure

  Our specifications are structured as follows:
-  1 module main representing the specification
-  1 module Sys representing the orchestrator
-  1 module Env combining C and St
-  1 module Target representing the target service
-  1 module Servicei per available service Si

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

20

Module Interconnections

Env(index)

operation

Sys

index

Target(operation)

state …

Service1(index, operation)

state …

main

state …

Service2(index, operation)

st, s1,..., sind ,..., sn,o,ind

main state:

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

21

Module Transitions

•  All submodules of main run in parallel
•  At each clock tick they all move, according to their

current state and specification
•  We constrain non-selected modules to loop on their

current state
•  main is a (compound) transition system itself

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

22

SMV encoding by examples

s10

s12

s11 b

b,c

b

a

a
c

s20 s21

b

a

c

c

t0

t1

t2

a

b

b

c

C

St

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

23

MODULE main

VAR

 env: system Env(sys.index);

 sys: system Sys;

DEFINE

 good := (sys.initial & env.initial)|!(env.failure); 	

Module main

Keywords
Parameter:
variable index of
submodule sys

condition of “good” state

Community +
Target TSs

Orchestrator

  Instance independent

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

24

MODULE Sys

VAR

 index : 0..2;

INIT

 index = 0

TRANS

 case

index=0 : next(index)!=0;

index!=0 : next(index)!=0;

 esac

DEFINE

 initial := (index=0);

Module Sys

  Depends on number of available services.

Number of
available
Services

0 used for init

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

25

MODULE main

VAR

 env: system Env(sys.index);

 sys: system Sys;

DEFINE

 good := (sys.initial & env.initial)|!(env.failure); 	

Module Sys (2)
MODULE Sys

VAR

 index : 0..2;

INIT

 index = 0

TRANS

 case

index=0 : next(index)!=0;

index!=0 : next(index)!=0;

 esac

DEFINE

 initial := (index=0);

Index=0

Index=2

Index=1

The goal is to restrict sys transition
relation so that “good” is always
satisfied.
env is affected by sys through
parameter sys.index

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

26

MODULE Env(index)

VAR

 operation : {start_op,a,b,c};

 target : Target(operation); -- "produces" operations

 s1 : Service1(index,operation); -- "consumes" current index and operation

 s2 : Service2(index,operation); -- same as above

DEFINE

 initial := (s1.initial & s2.initial & target.initial & operation=start_op);

 failure := (s1.failure | s2.failure) |

 (target.final & !(s1.final & s2.final));

Module Env

Operation alphabet + special
operation start_op used for init Target

service

Available
services

Fail if:
•  S1 or S2 (… or SN) fail, OR
•  T1 is in a final state when S1 or S2 (… or SN) are not.

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

27

MODULE Target(op) --op is an output parameter

VAR

state : {start_st,t0,t1,t2};

INIT

state = start_st & op = start_op

TRANS

case

state = start_st & op = start_op : next(state) = t0 & next(op) in {a};

state = t0 & op = a : next(state) = t1 & next(op) in {b};

state = t1 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = c: next(state) = t0 & next (op) in {a};

esac

DEFINE

initial := state=start_st & op=start_op;

final := state in {t0,t2}; -- final state(s)

Module Target

  Think of Target as an operation “producer”

State

Init section

Next state
(deterministic)

Next operation
(non-deterministic)

Initial/final
states

t0

t1

t2

a
b

b

c

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

28

Module Target (2)
MODULE Target(op) --op is an output parameter

VAR

state : {start_st,t0,t1,t2};

INIT

state = start_st & op = start_op

TRANS

case

state = start_st & op = start_op : next(state) = t0 & next(op) in {a};

state = t0 & op = a : next(state) = t1 & next(op) in {b};

state = t1 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = c: next(state) = t0 & next (op) in {a};

esac

DEFINE

initial := state=start_st & op=start_op;

final := state in {t0,t2}; -- final state(s)

t0

t1

t2

a
b

b

c start_st, start_op

t0,a

t1,b

t2,c

t2,b

MODULE Env(index)

VAR

 operation : {start_op,a,b,c};

 target : Target(operation);

 s1 : Service1(index,operation);

 s2 : Service2(index,operation);

DEFINE

 initial := (s1.initial & s2.initial & target.initial & operation=start_op);

 failure := (s1.failure | s2.failure) |

 (target.final & !(s1.final & s2.final));

Controlled by
System

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

29

Available Service Modules

•  Depend on problem instance (same as target)
•  Nondeterministic in general

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

30

MODULE Service1(index,operation)

VAR

 state : {start_st,s10,s11,s12};

INIT

state=start_st

TRANS

 case

state=start_st & operation=start_op & index=0: next(state)=s10;

(index != 1) : next(state) = state; -- if not selected, remain still

(state=s10 & operation = a) : next(state) in {s11,s12};

(state=s10 & operation = b) : next(state) in {s10};

(state=s11 & operation=b) : next(state) in {s10};

(state=s11 & operation=c) : next(state) in {s10};

(state=s12 & operation=c) : next(state) in {s12};

(state=s12 & operation=b) : next(state) in {s10};

esac

DEFINE

initial := state=start_st & operation=start_op & index = 0;

failure :=

index = 1 & !((state = s10 & operation in {a,b})|

(state = s11 & operation in {b,c})|

(state = s12 & operation in {b,c})

);

 final := state in {s10};

Available Service Modules (2)

s10

s12

s11 b

b,c

b

a

a
c

Initialization

If not selected,
remain still

ND state transition

Fail if selected and
operation not
executable

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

31

Encoding summary
MODULE main

VAR

 env: system Env(sys.index);

 sys: system Sys;

DEFINE

 good := (sys.initial & env.initial)|!(env.failure); 	

MODULE Sys

VAR

 index : 0..2;

INIT

 index = 0

TRANS

 case

index=0 : next(index)!=0;

index!=0 : next(index)!=0;

 esac

DEFINE

 initial := (index=0);

MODULE Env(index)

VAR

 operation : {start_op,a,b,c};

 target : Target(operation);

 s1 : Service1(index,operation);

 s2 : Service2(index,operation);

DEFINE

 initial := (s1.initial & s2.initial & target.initial

& operation=start_op);

 failure := (s1.failure | s2.failure) |

 (target.final & !(s1.final & s2.final));

Always the same

Number of available services

• Operation alphabet
• Available services
• Initial expression
• Failure expression

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

32

Encoding summary (2)
• Keep name and interface
• Change states and transitions
• Define final/init expr’s

MODULE Target(op) --op is an output parameter

VAR

state : {start_st,t0,t1,t2};

INIT

state = start_st & op = start_op

TRANS

case

state = start_st & op = start_op : next(state) = t0 & next(op) in {a};

state = t0 & op = a : next(state) = t1 & next(op) in {b};

state = t1 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = b : next(state) = t2 & next(op) in {b,c};

state = t2 & op = c: next(state) = t0 & next (op) in {a};

esac

DEFINE

initial := state=start_st & op=start_op;

final := state in {t0,t2}; -- final state(s)

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

33

MODULE Service1(index,operation)

VAR

 state : {start_st,s10,s11,s12};

INIT

state=start_st

TRANS

 case

state=start_st & operation=start_op & index=0: next(state)=s10;

(index != 1) : next(state) = state; -- if not selected, remain still

(state=s10 & operation = a) : next(state) in {s11,s12};

(state=s10 & operation = b) : next(state) in {s10};

(state=s11 & operation=b) : next(state) in {s10};

(state=s11 & operation=c) : next(state) in {s10};

(state=s12 & operation=c) : next(state) in {s12};

(state=s12 & operation=b) : next(state) in {s10};

esac

DEFINE

initial := state=start_st & operation=start_op & index = 0;

 failure :=

index = 1 & !((state = s10 & operation in {a,b})|

(state = s11 & operation in {b,c})|

(state = s12 & operation in {b,c})

);

 final := state in {s10};

Encoding summary (3)
• Keep interface
• Define name
• States and transitions
• Define final, init and failure

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

34

Running TLV

Synth-inv.tlv

Comp-inv.pf

TLV

MODULE main	
…	
MODULE Sys	
…	
MODULE Env	
…	
MODULE Target	
…	
MODULE Service1	
…	
MODULE Service2	
…	

State 1

env.operation = start_op,

env.target.state = start_st,

env.s1.state = start_st,

env.s2.state = start_st,

sys.index = 0,

State 2

env.operation = a,

env.target.state = t0,

env.s1.state = s10,

env.s2.state = s20,

sys.index = 1,

…

 Automaton Transitions

From 1 to 2

From 2 to 3 4

From 3 to 5 6 7

…

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

35

Running TLV (2)
Automaton States

State 1

env.operation = start_op, env.target.state = start_st,

env.s1.state = start_st, env.s2.state = start_st,

sys.index = 0,

State 2

env.operation = a, env.target.state = t0,

env.s1.state = s10, env.s2.state = s20,

sys.index = 1,

State 3

env.operation = b, env.target.state = t1,

env.s1.state = s12, env.s2.state = s20,

sys.index = 1,

State 4

env.operation = b, env.target.state = t1,

env.s1.state = s11, env.s2.state = s20,

sys.index = 1,

…

 Automaton Transitions

From 1 to 2

From 2 to 3 4

From 3 to 5 6 7

…

From this structure,
We can generate

All possible compositions!

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

36

Exercise 1
Encode in SMV and run with TLV the following specification

s10

s12

s11 b

b,c

b

a

a
c

s20 s21

b

a

c

c

t0

t1

t2

a

b

b

c C St

May, 2012 Fabio Patrizi - Using TLV for Service
Composition

37

Exercise 2
Check whether there exists a composition for the following specification. If not,

propose a (minimal) modification of the available services such that a
composition exists.

s10 s11

a
b

a

s20

c

t0

t1

t3

a b

b
b C

St

s10 s11

b
a

b
t2

a

