

Transition Systems and Bisimulation

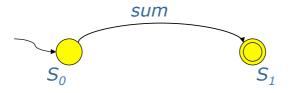
Giuseppe De Giacomo

Service Integration A.A. 2011/12

Transition Systems

Concentrating on behaviors: SUM two integers

- Consider a program for computing the sum of two integers.
- Such a program has essentially two states
 - the state S0 of the memory before the computation: including the two number to sum
 - the state S1 of the memory after the computation: including the result of the computation
- Only one action, i.e. "sum", can be performed



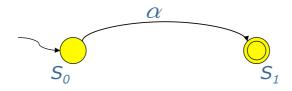
Service Integration Giuseppe De Giacomo

Concentrating on behaviors: CheckValidity

- Consider a program for computing the validity of a FOL formula:
- Also such a program has essentially two states
 - the state S_1 of the memory before the computation: including the formula to be checked
 - the state S_2 of the memory after the computation: including "yes", "no", "time-out"
- Only one action, i.e. "checkValidity", can be performed

Concentrating on behaviors

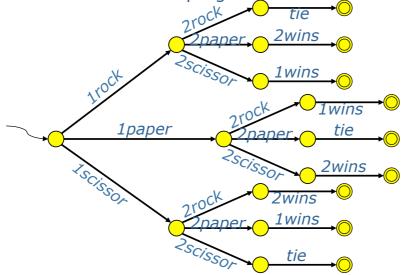
- The programs SUM and CheckValidity are very different from a computational point of view.
 - SUM is trivial
 - CheckValidity is a theorem prover hence very complex
- However they are equally trivial from a behavioral point of view:
 - two states S_1 and S_2
 - a single action α causing the transition



Service Integration Giuseppe De Giacomo

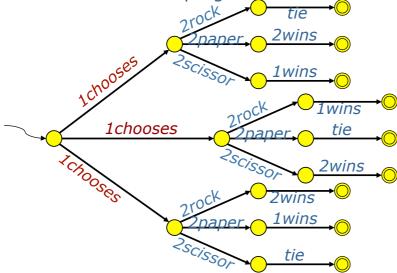
Concentrating on behaviors: RockPaperScissor

- Consider the program RockPaperScissor that allows to play two players the the well-known game.
- The behavior of this program is not trivial:



Concentrating on behaviors: RockPaperScissor (automatic)

- Consider a variant of the program RockPaperScissor that allows one players to play against the computer.
- The behavior of this program is now nondeterministic:



Service Integration Giuseppe De Giacomo

Concentrating on behaviors: WebPage

http://www.informatik.uni-trier.de/~ley/db/

A web page can have a complex behavior!

dblp.uni-trier.de

COMPUTER SCIENCE BIBLIOGRAPHY

UNIVERSITÄT TRIER

maintained by Michael Ley - Welcome - FAO

Mirrors: ACM SIGMOD - VLDB Endow. - SunSITE Central Europe

Search

. Author - Title - Advanced - New: Faceted search (L38 Research Center, U. Hannover)

Bibliographies

- Conferences: SIGMOD, VLDB, PODS, ER, EDBT, ICDE, POPL, ...
 Journals: CACM, TODS, TOIS, TOPLAS, DKE, VLDB J, Inf. Systems, TPLP, TCS, ...
 Series: LNCS/LNAI, IFIP
 Books: Collections DB Textbooks
 By Subject: Database Systems, Logic Prog., IR, ...

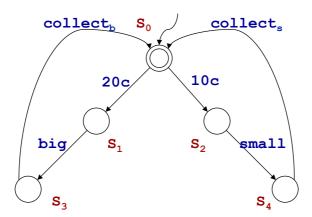
Full Text: ACM SIGMOD Anthology

Links

- Computer Science Organiz. (DL), IEEE Xplore, IFIP, nizations: ACM (DL / SIGMOD / SIGIR), IEEE Computer Society

Giuseppe De Giacomo

Concentrating on behaviors: Vending Machine

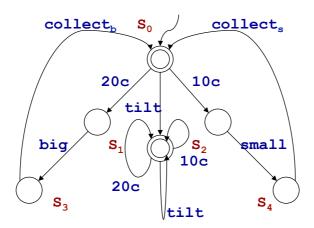


Service Integration Giuseppe De Giacomo

Concentrating on behaviors: Another Vending Machine



Concentrating on behaviors: Vending Machine with Tilt



Service Integration Giuseppe De Giacomo 1

Transition Systems

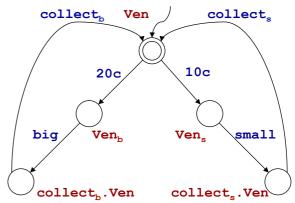
- A transition system TS is a tuple $T = \langle A, S, S^0, \delta, F \rangle$ where:
 - A is the set of actions
 - S is the set of states
 - $S^0 \subseteq S$ is the set of initial states
 - $\delta \subseteq S \times A \times S$ is the transition relation
 - $F \subset S$ is the set of final states
- Variants:
 - No initial states

(c.f. Kripke Structure)

- Single initial state
- Deterministic actions
- States labeled by propositions other than Final/ \neg Final

Process Algebras are Formalisms for Describing TS

- Trans (a la CCS)
 - $Ven = 20c.Ven_b + 10c.Ven_s$
 - Ven_b = big.collect_b.Ven
 - Ven_I = small.collect_s.Ven
- Final
 - √ Ven



- TS may have infinite states e.g., this happens when generated by process algebras involving iterated concurrency
- However we have good formal tools to deal only with finite states TS

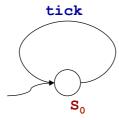
Service Integration

Giuseppe De Giacomo

12

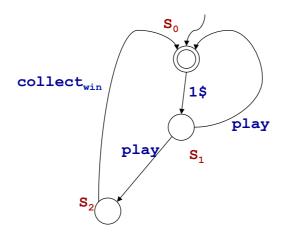
Example (Clock)

TS may describe (legal) nonterminating processes



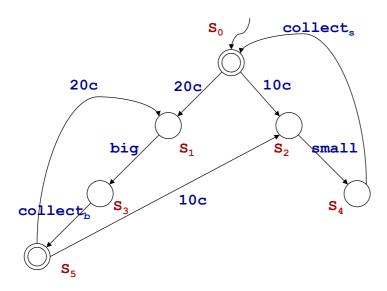
Example (Slot Machine)

Nondereminisic transitions express choice that is not under the control of clients

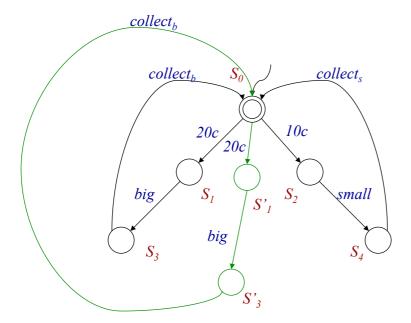


Service Integration Giuseppe De Giacomo 1.

Example (Vending Machine - Variant 1)



Example (Vending Machine - Variant 2)



Service Integration Giuseppe De Giacomo 1

Inductive vs Coinductive Definitions: Reachability, Bisimilarity, ...

Reachability

• A binary relation R is a **reachability-like relation** iff:

```
- (s,s) \in R
- if ∃ a, s'. s \rightarrow_a s' \land (s',s'') \in R then (s,s'') \in R
```

- A state s₀ of transition system S reaches a state s_f iff for all a reachability-like relations R we have (s₀, s_f)∈ R.
- Notably that
 - reaches is a reachability-like relation itself
 - reaches is the smallest reachability-like relation

Note it is a inductive definition!

Service Integration Giuseppe De Giacomo 1

Computing Reachability on Finite Transition Systems

Algorithm ComputingReachability

Input: transition system TS

Output: the **reachable-from** relation (the smallest reachability-like relation)

Body

```
\begin{array}{l} R = \emptyset \\ R' = \{(s,s) \mid s \in S\} \\ \text{while } (R \neq R') \{ \\ R := R' \\ R' := R' \cup \{(s,s'') \mid \exists \, s' \, , a. \, s \rightarrow_a \, s' \, \land \, (s',s'') \in R \, \} \\ \} \\ \text{return } R' \end{array}
```

Bisimulation

A binary relation *R* is a **bisimulation** iff:

```
(s,t) \in R implies that
- sis final iff tis final

    for all actions a

      • if s \rightarrow_a s' then \exists t' . t \rightarrow_a t' and (s',t') \in R
      • if t \rightarrow_a t' then \exists s' . s \rightarrow_a s' and (s',t') \in R
```

- A state s₀ of transition system S is **bisimilar**, or simply **equivalent**, to a state to of transition system T iff there exists a bisimulation between the initial states s_0 and t_0 .
- Notably
 - bisimilarity is a bisimulation
 - **bisimilarity** is the **largest** bisimulation

Note it is a co-inductive definition!

Service Integration

Giuseppe De Giacomo

Computing Bisimilarity on


```
Finite Transition Systems
```

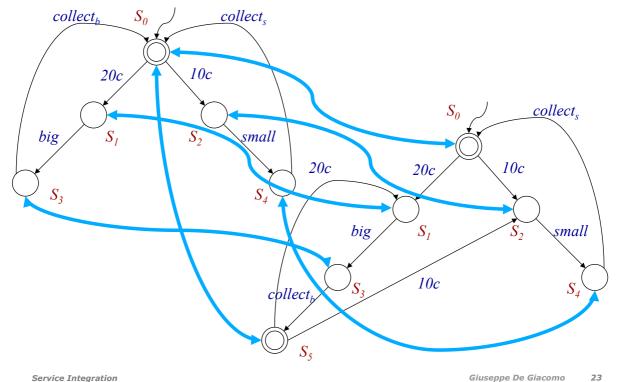
Algorithm ComputingBisimulation **Input:** transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$

Output: the **bisimilarity** relation (the largest bisimulation)

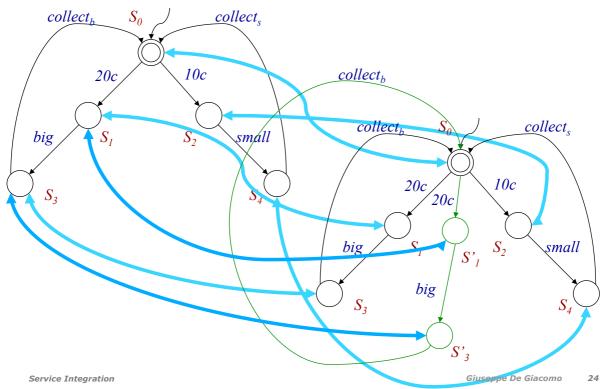
Body

```
R = S \times T
      R' = S \times T - \{(s,t) \mid \neg(s \in F_S \equiv t \in F_T)\}
      while (R \neq R') {
                 R := R'
                  R' := R' - (\{(s,t) \mid \exists s', a. s \rightarrow_a s' \land \neg \exists t' . t \rightarrow_a t' \land (s',t') \in R' \}
                                      \{(s,t) \mid \exists \ t', a. \ t \rightarrow_a t' \ \land \neg \exists \ s' \ . \ s \rightarrow_a s' \ \land (s',t') \in R' \ \})
      return R'
Ydob
```

Example of Bisimulation



Example of Bisimulation



Automata vs. Transition Systems

- Automata
 - define sets of runs (or traces or strings): (finite) length sequences of actions
- TSs
 - ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"

