
Foundations of Relational Artifacts Verification

Babak Bagheri Hariri1, Diego Calvanese1,
Giuseppe De Giacomo2, Riccardo De Masellis2, and Paolo Felli2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
(bagheri|calvanese)@inf.unibz.it

2 Sapienza Università di Roma, Via Ariosto, 25, 00185 Rome, Italy
(degiacomo|demasellis|felli)@dis.uniroma1.it

Abstract. Artifacts are entities characterized by data of interest (con-
stituting the state of the artifact) in a given business application, and a
lifecycle, which constraints the artifact’s possible evolutions. In this paper
we study relational artifacts, where data are represented by a full fledged
relational database, and the lifecycle is described by a temporal/dynamic
formula expressed in µ-calculus. We then consider business processes,
modeled as a set of condition/action rules, in which the execution of
actions (aka tasks, or atomic services) results in new artifact states. We
study conformance of such processes wrt the artifact lifecycle as well
as verification of temporal/dynamic properties expressed in µ-calculus.
Notice that such systems are infinite-state in general, hence undecidable.
However, inspired by recent literature on database dependencies devel-
oped for data exchange, we present a natural restriction that makes such
systems finite-state, and the above problems decidable.

1 Introduction

The artifact-centric approach to design and development of business processes
is emerging as an interesting alternative to the traditional methods that focus
mainly on processes [19, 13, 9, 21, 1, 12]. This approach focuses simultaneously
on data and processes. Data correspond to key business-relevant entities, which
are seen as evolving over time following a so-called lifecycle. Processes compose
into a workflow atomic tasks or services that are available and of interest. The
artifact-centric approach provides a simple and robust structure for business
process development, which has been advocated to enhance efficiency, especially
in dealing with business transformations [4, 5].

The interest on both data and processes as first-class citizens in artifact-centric
systems deeply challenges the research community in verification. Indeed, on the
one hand, such systems deal with full-fledged processes, which require analysis
in terms of sophisticated temporal properties [8, 14]. On the other hand, the
presence of data makes the whole system becomes infinite-state in general, and
hence the usual verification techniques based on model checking of finite-state
systems cannot be applied [8].

In this paper, we study the foundations of artifact-centric systems that
use relational databases for their data component. Specifically, we consider
several artifacts (fixed in advance) forming a so called relational artifact system,

each constituted by a relational database evolving over time. To characterize
such an evolution, we rely on a very rich notion of lifecycle, directly based on
stating dynamic properties in terms of intra-artifact and inter-artifact dynamic
constraints. (This generalized form of lifecycle has emerged in the research done
within the project ACSI, see http://www.acsi-project.eu/.) We express such
constraints, and other dynamic properties of interest, in a suitable variant of
µ-calculus, one of the most expressive temporal logics used in verification [18, 10].

We consider processes over artifacts constituted by a set of actions (aka
atomic tasks, atomic services) and a set of condition-action rules, which specify
when such actions can be executed. The action specification is possibly the most
characterizing part of our framework. Following [7], actions are specified in terms
of preconditions and postconditions on artifacts’ databases. Such a specification
is strongly influenced by the notion of mappings in the recent literature on data
exchange and data integration [11, 17]. In a nutshell, our actions specification
considers the current state of the database, and the one obtained by executing
an action as two databases related through a set of mappings. In the literature,
mappings typically establish correspondences between conjunctive queries, also
called tuple-generating dependencies (TGDs) in the database jargon [2]. However
here, differently from [7], we do use negation and more generally full first-order
queries in defining the preconditions of actions. Technically speaking, this choice
requires us to abandon the theory of conjunctive queries and homomorphisms at
the base of the results in [7, 11, 17].

We are interested in two main reasoning tasks. The first one is conformance
of a process to an artifact system, which consists in checking whether a given
process generates the correct lifecycle for the various artifacts and, more generally,
whether it satisfies all intra-artifact and inter-artifact constraints. The second
reasoning task is process verification, that is checking whether a process (over
an artifact system) verifies general dynamic properties of interest. Both these
reasoning tasks in principle can be based on model checking, though, in our
setting, one has to deal with potentially infinite states.

We show that both reasoning tasks are undecidable even for very simple
artifact systems and processes. We then introduce a very interesting class of
processes for which decidability is granted. We call such processes weakly acyclic,
since they satisfy a condition analogous to weak acyclicity of a set of mappings in
data exchange [11]. Under such a restriction, we are guaranteed that the number
of new objects introduced by the execution of actions is finite, and hence, the
whole process is finite-state.

The rest of the paper is organized as follows. Sections 2, 3, and 4 introduce
the framework and illustrate it through a running example. Section 5 reports the
undecidability of conformance and verification in our framework even for simple
cases. Section 6 introduces the notion of weakly acyclic processes, and shows that
such a restriction makes both conformance and verification decidable. Section 7
discusses briefly further works.

2 Relational Artifacts Systems

In this section, we start the description of our framework by introducing relational
artifact systems. In the following, we assume the reader to be familiar with

2

standard relational databases, and their connection with first-order logic (FOL).
In particular, queries are seen as (possibly open) FOL formulas. Also, we consider
as special FOL queries conjunctive queries (CQs), i.e., formulas formed only by
conjunctions and existential quantifications, and their unions (UCQs) [2].

A relational artifact systems RAS is constituted by a set of artifacts, each
formed by a relational database evolving over time under restrictions imposed
by certain dynamic constraints. We deal with two types of constraints: the
intra-artifact dynamic constraints, that involve each artifact in isolation, and the
inter-artifact dynamic constraints, taking into account relations between artifacts.
In this section we introduce such systems.

Relational artifact. A relational artifact is a relational database evolving over
time. Hence, it is characterized by the usual notions of database schema, giving
the structure of the database, and database instance, detailing the actual data
contained in it, and it is furthermore augmented by a set of intra-artifact dynamic
constrains. These are temporal constraints expressed in the temporal logic µL
introduced later, which allows us to express various constraints over the database:
we can assert the usual ones, such as inclusion dependencies, which now become
safety temporal constrains, and also what is typically called the artifact lifecycle,
namely, dynamic constrains on the sequencing of configurations the database
may pass through. More formally, a relational artifact is a tuple A = 〈R, I0, Φ〉
where:

– R = {R1, . . . , Rn} is a database schema, constituted by a set of relation
schemas;

– I0 is a database instance, compliant with the schema R, that represents the
initial state of the artifact;

– Φ is a µL formula over R constituted by the conjunction of all intra-artifact
dynamic constraints of A.

Notice that if we project the dynamic formula Φ over the initial artifact
instance I0, we may get (depending on the structure of Φ) static, i.e., local,
constraints on I0. From now on, we assume to deal with well formed artifacts,
namely, artifacts whose initial instance satisfies such local constraints.

Relational artifact system. A relational artifact system is composed by several
relational artifacts in execution at the same time, each consisting of a database
and a set of intra-artifact dynamic constraints. The dynamic interaction between
them is regulated through additional constraints, also expressed in µL, which we
call inter-artifact-dynamic constraints.

In this paper, we make the assumption that artifacts cannot be created or
destroyed during the evolution of the system. Under such an assumption we
get quite interesting undecidability and decidability results. We are indeed very
interested in dropping these limitations in future works, starting from the results
presented here. For this reason we start with a finite set of artifacts, and over
the whole evolution of the system these will remain the only ones of interest. If
an artifact has a terminating lifecycle it becomes dormant, but it will persist in
the system.

3

Formally, an artifact system is a pair A = 〈{A1, . . . , An}, Φinter 〉, where
{A1, . . . , An} is the finite set of artifacts of the system (each with its own
database and intra-artifact dynamic constraints expressed in µL), and Φinter is a
µL formula expressing the conjunction of inter-artifact dynamic constraints. To
distinguish relations of various artifacts in A, we use the usual dot notation of
object-orientation, hence, a relation Rj of artifact Ai of A is denoted by Ai.Rj .
When clear from the context, we drop the artifact Ai and we use Rj for the
relation. We denote by I0 the disjoint union of all initial instances of the artifacts
in A, i.e., I0 =

⋃
i=1,...,n I0,i. More generally, I represents the instance obtained

by the (disjoint) union of the current instances of each artifact in A.
Given a database instance I, we denote by CI the active domain of I, i.e., the

set of individuals (typically constants) appearing in I. Hence, the active domain
of I0 is CI0 , which is made up by all constants appearing in the initial instances
of the various artifacts in A.

Notice that, while artifact systems evolve over time, they do not include a
predefined mechanism for progression. Progression is due to the execution of
actions, tasks, or services over the system, according to a given process that
we will introduce later on. Here it is sufficient to assume that a progression
mechanism exists, and its execution results in moving from the initial state, given
by the instance I0, to the next one, and so on.

In this way we build a transition system [8] A, whose states represent possible
system instances, and each transition an atomic step in the progression mechanism
(whatever it is). In principle, we can model-check such a transition system to
verify dynamic properties [8], that is exactly what we are going to do next.
However, one has to consider that, in general, A is infinite, hence the classical
results on model checking [8, 10], which are developed for finite transition systems,
do not apply. The main goal of this paper is to find interesting conditions under
which such a transition system is finite.

Example 1. We model the process of purchasing items within a company. In particular,
when a company’s employee, that assumes the role of a requester, wants to purchase
some items, he has to turn to a buyer, also internal to the company, who is responsible for
purchasing such items from external suppliers. In our scenario, we have five actors: two
requesters (Bob and Alice), a buyer (Trudy) and two suppliers (SupplierA and SupplierB).
The whole purchasing process works as follows: in a first phase, the requester has
to fill a so-called requisition order with some line items chosen from a catalogue. In
our simple example the catalogue contains only a monitor, a mouse and a keyboard.
Once the requester has completed this process, he sends the order to the buyer, which
extracts the line items from it, and purchases each of them separately. In particular, the
buyer groups together into a procurement order line items (belonging to a requisition
order) that will be purchased from a particular supplier. As a result of this phase, we
get different procurement orders, each containing line items that the buyer requests
from a single supplier. Then the supplier ships back to the buyer the items included in
the procurement order he received, and finally, the items are delivered to the original
requester. Of course, we can have many orders processed simultaneously in the system,
although we will impose some restrictions.

In this example, we consider the relational artifact system A =
〈{ReqOrders,ProcOrders}, Φinter 〉 containing two relational artifacts, holding all
relevant data about requisition orders and procurement orders in the system.

ReqOrders = 〈RRO , I0,RO , ΦRO〉

4

All
items

requested

All req.
OR

purchased

All purch.
OR

shipped

Empty

All
purchasedAll

shipped

A

F E D

CB

(a)

Unique

(b)

Fig. 1. Informal representation of dynamic intra-artifact constraints

– RRO = {RO(RoCode,ReqName,BuName), ROItem(RoCode,ProdName,Status),
Requester(ReqName), LineItem(ProdName,Price),
Buyer(BuName), Status(StatusName) }

A requisition order is meant to hold the data associated to every pending req-
uisition order: indeed, as soon as the items are delivered to the corresponding
requester, each information associated to them is removed from the system. Re-
lation RO(RoCode,ReqName,BuName) holds basic information associated to a
single order i.e., order’s code and both requester’s and buyer’s names. The re-
quested items are kept in the relation ROItem(RoCode,ProdName,Status), whose
attribute Status keeps track of the status of each line item included in the order
(it can be either requested, purchased or shipped). Relations Requester(ReqName),
LineItem(ProdName,Price), Buyer(BuName) and Status(StatusName) are included
in the schema for technical convenience; in particular, the relation Status is needed
in order to easily bind values of the attribute Status of each line item in an order.

– I0,RO = {Requester(Bob), Requester(Alice), Buyer(Trudy),
Status(requested),Status(purchased),Status(shipped),
LineItem(keyboard, 20), LineItem(mouse, 10), LineItem(monitor, 200) }

According to the previous description of this example scenario, in the initial instance
we only have data referred to existing requesters, buyers, suppliers and the catalogue,
featuring three line items. There are no pending orders.

– As for intra-artifact constraints, here we only give an intuition of what will be
presented formally later. We want to trace the status of an ordered line item
through the attribute ROItem.Status, so we express constraints on the evolutions
of all orders in the system by relying on this attribute, as informally depicted in
Figure 1(a). Intuitively, at the beginning, we do not have any order placed by
requesters: in the current situation (henceforth called phase) the relations RO and
ROItem are empty [A]. As orders are placed, and new requisition orders are created,
we will have a phase in which all currently pending orders have status requested
[B], and such condition will hold until, eventually, some item in such status will
be purchased by the buyer by creating procurement orders to send to suppliers,
hence changing status to purchased. At this point, we will be in a phase such that
all items belonging to existing orders are either requested or purchased [C] and
finally, at some point, all orders will be purchased [D]. Having all procurement
orders sent to suppliers, some of them will be shipped back, i.e., setting the status
of corresponding items to shipped [E], and at the end, all of them will be shipped
back to the buyer [F]. Finally, as the items are delivered to the requester, they will
be removed from the system and the initial condition will be eventually met again.

5

Notice that we are imposing some restrictions over the evolution of the artifact:
for instance, we won’t allow for creating new requisition orders (for ordering new
line items) as soon as all the existing ones have been purchased [D]. Notice also
that we will need a way to force the system to eventually exit self-loops. Moreover,
in addition to such dynamic constraints, we also have some static ones, such as
inclusion dependencies.

ProcOrders = 〈RPO , I0,PO , ΦPO〉

– RPO = {PO(PoCode,RoCode,SupName), POItem(PoCode,RoCode,ProdName),
Supplier(SupName), LineItem(ProdName,Price)}.

Recall that all line items assigned to the same procurement order must belong to
the same requisition order. Hence, similarly to requisition orders, a procurement
order’s schema includes a relation PO(PoCode,RoCode,SupName) holding its code,
the code of the corresponding requisition order and the name of the chosen sup-
plier. Relation POItem(PoCode,RoCode,ProdName) holds instead the set of line
items in each procurement order. Attribute RoCode is replicated in this relation
for convenience. Supplier(SupName) keeps the set of existing suppliers whereas
LineItem(ProdName,Price) is the same as the one in requisition order artifact.

– I0,PO = {LineItem(keyboard, 20), LineItem(mouse, 10), LineItem(monitor, 200),
Supplier(SupplierA), Supplier(SupplierB)}.

– In this example we don’t want to constrain the dynamic evolution of the artifact
so, informally, the only intra-artifact constraints we will consider are those needed
for consistency.

3 Dynamic Constraints Formalism

We turn to the dynamic constraints formalism, used both to specify intra and
inter dynamic constraints of artifact systems (including artifact lifecycles) to
specify dynamic properties of processes running over relational artifact systems.
Several choices are possible: here we focus on a variant of µ-calculus [10], which
is one of the most powerful temporal logics, which subsumes both linear time
logics, such as LTL and PSL, and branching time logics such as CTL and CTL*
[8]. In particular, we introduce a variant of µ-calculus, called µL that conforms
with the basic assumption of our formalism, namely the use of range-restricted
FOL queries, i.e., open formulas over a fixed set of constants, to talk about the
information contained in the instances.

Formally, µL formulas over A have the form

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | ∃x ∈ CI0 .Φ | ∀x ∈ CI0 .Φ |
2Φ | 3Φ | µZ.Φ | νZ.Φ | Z,

where Q is a possibly open FOL formula over the relations in the artifacts of
A, and Z is a second order predicate variable. The symbols µ and ν can be
considered as quantifiers, and we make use of the notions of scope, bound and
free occurrences of variables, closed formulas, etc. Definitions of these notions
are as in FOL, treating µ and ν as quantifiers. In fact, we are interested only in
closed formulas as specifications of temporal properties to verify.

For formulas of the form µZ.Φ and νZ.Φ, we require the syntactic monotonicity
of Φ wrt Z: every occurrence of the variable Z in Φ must be within the scope

6

(¬Φ)AV = ΣA − (Φ)AV
(Φ1 ∧ Φ2)AV = (Φ1)AV ∩ (Φ2)AV
(Φ1 ∨ Φ2)AV = (Φ1)AV ∪ (Φ2)AV
(∃x ∈ CI0 .Φ)AV =

⋃
{(Φ)AV[x/c] | c ∈ CI0}

(∀x ∈ CI0 .Φ)AV =
⋂
{(Φ)AV[x/c] | c ∈ CI0}

(Z)AV = ZV ⊆ ΣA

(Q)AV = {I ∈ ΣA | ans (QV, I)}
(3Φ)AV = {I ∈ ΣA | ∃I′. I ⇒A I′ and I′ ∈ (Φ)AV}
(2Φ)AV = {I ∈ ΣA | ∀I′. I ⇒A I′ implies I ′ ∈ (Φ)AV}
(µZ.Φ)AV =

⋂
{E ⊆ ΣA | (Φ)AV[Z/E] ⊆ E}

(νZ.Φ)AV =
⋃
{E ⊆ ΣA | E ⊆ (Φ)AV[Z/E]}

Fig. 2. Semantics of µL formulas

of an even number of negation signs. In µL, given the requirement of syntactic
monotonicity, the least fixpoint µZ.Φ and the greatest fixpoint νZ.Φ always exist.

To define the meaning of a µL formula over an artifact system, we resort to
transition systems. Let A be a transition system generated by a given progression
mechanism over the artifact system A. We denote by ΣA the states of A, and by
CA all terms (which are in general infinite) occurring in any state of A. Notice
that trivially CI0 ⊆ CA.

Let V be a predicate and individual variable valuation on A, i.e., a mapping
from the predicate variables Z to subsets of the states ΣA, and from individ-
ual variables to constants in CA. Then, we assign meaning to µL formulas by
associating to A and V an extension function (·)AV , which maps µL formulas to
subsets of ΣA. The extension function (·)AV is defined inductively as shown in
Figure 2, where QV (resp., ZV) denotes the application of variable valuation V
to query Q (resp., variables Z), and ans (QV, I) denotes the result of evaluating
the (boolean) query QV over the instance I. Moreover, I ⇒A I ′ holds iff the
progression mechanism allows to progress from I to I ′.

Intuitively, the extension function (·)AV assigns to the various µL constructs
the following meanings: The boolean connectives have the expected meaning,
while (individual) quantification involving transitions from some state to the next
is restricted to constants of CI0 . The extension of 3Φ consists of the states I
such that for some state I ′ with I ⇒A I ′, we have that Φ holds in I ′, while the
extension of 2Φ consists of the states I such that for all states I ′ with I ⇒A I ′,
we have that Φ holds in I ′. The extension of µX.Φ is the smallest subset Eµ
of ΣA such that, assigning to Z the extension Eµ, the resulting extension of Φ
is contained in Eµ. That is, the extension of µX.Φ is the least fixpoint of the
operator (Φ)AV[Z/E] (here V[Z/E] denotes the predicate valuation obtained from

V by forcing the valuation of Z to be E). Similarly, the extension of νX.Φ is the
greatest subset Eν of ΣA such that, assigning to X the extension Eν , the resulting
extension of Φ contains Eν . That is, the extension of νX.Φ is the greatest fixpoint
of the operator (Φ)AV[X/E]. When Φ is a closed formula, (Φ)AV does not depend on

V, and we denote it by ΦA.
We say that a closed µL formula Φ holds for A, denoted as A |= Φ, iff I0 ∈ ΦA.

We call model checking verifying whether A |= Φ holds.

Example 2 (Continues from Example 1). Now that we have defined our constraints
formalism, we are in the position to express the constraints informally discussed in
Example 1.

7

For ReqOrders, we first define formulas corresponding to the phases of the diagram
in Figure 1(a):

ψA = ¬∃x, y, z.ROItem(x, y, z)
ψB = ∀x, y, z.(ROItem(x, y, z)→ z = requested) ∧ ∃x, y.ROItem(x, y, requested)
ψC = ∀x, y, z.(ROItem(x, y, z)→ (z = requested ∨ z = purchased)) ∧

∃x, y.ROItem(x, y, requested) ∧ ∃x, y.ROItem(x, y, purchased)
ψD = ∀x, y, z.(ROItem(x, y, z)→ z = purchased) ∧ ∃x, y.ROItem(x, y, purchased)
ψE = ∀x, y, z.(ROItem(x, y, z)→ (z = purchased ∨ z = shipped)) ∧

∃x, y.ROItem(x, y, purchased) ∧ ∃x, y.ROItem(x, y, shipped)
ψF = ∀x, y, z.(ROItem(x, y, z)→ z = shipped) ∧ ∃x, y.ROItem(x, y, shipped).

Then, the dynamic constraints of ReqOrders are captured by the formula

ΦRO = ψA ∧ νZ.(
∧

i=1,...,11 Φi ∧ 2Z).

It requires that in the initial state of A there are not any items included in any pending
order, i.e., the relation ROItem is empty, and that all formulas Φi listed below hold
in every state. Each of Φ1 to Φ6 corresponds to a single transition as in Figure 1(a),
expressing the constraint that the artifact remains in its current phase until it reaches
the following one, also requiring that such a phase is eventually reached in a finite
number of steps, and that no other phase is reached until then:

Φ1 = ψA → µZ.(ψB ∨ (ψA ∧ 2Z))
Φ2 = ψB → µZ.(ψC ∨ (ψB ∧ 2Z))
Φ3 = ψC → µZ.(ψD ∨ (ψC ∧ 2Z))

Φ4 = ψD → µZ.(ψE ∨ (ψD ∧ 2Z))
Φ5 = ψE → µZ.(ψF ∨ (ψE ∧ 2Z))
Φ6 = ψF → µZ.(ψA ∨ (ψF ∧ 2Z)).

The remaining formulas express static constraints, specifically inclusion dependencies
and range restrictions:

Φ7 = ∀x, y, z.(ROItem(x, y, z)→ ∃u, v.RO(x, u, v))
Φ8 = ∀x, y, z.(ROItem(x, y, z)→ Status(z))
Φ9 = ∀x.(Status(x)→ (x = requested ∨ x = purchased ∨ x = shipped))
Φ10 = ∀x, y, z.(ROItem(x, y, z)→ ∃wLineItem(y, w))
Φ11 = ∀x, y, z.(RO(x, y, z)→ (Requester(y) ∧ Buyer(z)).

For ProcOrders, we just need to express some static specifications over instances.
Hence, ΦPO is the conjunction of the following formulas, expressing inclusion dependency
constraints:

νZ.(∀x, y, z.(PO(x, y, z)→ Supplier(z)) ∧ 2Z)
νZ.(∀x, y, z.(POItem(x, y, z)→ ∃u.PO(x, y, u)) ∧ 2Z)
νZ.(∀x, y, z.(POItem(x, y, z)→ ∃u.LineItem(u, z)) ∧ 2Z).

Finally, the set of inter-artifact dynamic constraints Φinter is the conjunction of the
following formulas:

νZ.(∀x, y.(ReqOrders.LineItem(x, y)↔ ProcOrders.LineItem(x, y)) ∧ 2Z)
νZ.(∀x, y, z.(POItem(x, y, z)→ ROItem(y, z, purchased)) ∧ 2Z)
νZ.(∀x, y, z.(PO(x, y, z)→ ∃w, k.RO(y, w, k)) ∧ 2Z).

The first formula requires that the LineItem relations in both artifacts have the same
set of tuples, the second one that every item belonging to a procurement order is also
included in some requisition order, and the third one that every procurement order
corresponds to a requisition order.

8

4 Processes over Artifact Systems

We now concentrate on progression mechanisms for relational artifact systems.
In particular, we specify such a mechanism in terms of one or more processes
that use actions as atomic steps. Actions represent atomic tasks or services that
act over the artifacts and make them evolve.

Actions. We give a formal specification of actions in terms of preconditions
and postconditions [14], inspired by the notion of mapping in the literature on
data exchange [16]. However, we generalize such a notion in order to include
negation, arbitrary quantification in preconditions, and the generation of new
terms, through the use of Skolem functions in postconditions. Notice that, while
it is conceivable that most of the actions will act on one artifact only, we do not
make such a restriction. Indeed our actions are generally inter-artifact, which lets
us easily account for synchronisation between artifacts.

An action ρ for A has the form

ρ(p1, . . . , pm) : {e1, . . . , em} where:

– ρ(p1, . . . , pm) is the signature of the action, constituted by a name ρ and
a sequence p1, . . . , pm of input parameters that need to be substituted by
constants for the execution of the action, and

– {e1, . . . , em} is a set of effects, called the effects’ specification.

We denote by σ a (ground) substitution for the input parameters with terms
not involving variables. Given such a substitution σ, we denote by ρσ the action
with actual parameters. All effects in the effects’ specification are assumed to
take place simultaneously. Specifically, an effect ei has the form

q+i ∧Q
−
i I ′i where:

– q+i ∧ Q
−
i is a query whose terms are variables x, action parameters, and

constants from CI0 . The query q+i is a UCQ, and the query Q−i , is an arbitrary
FOL formula whose free variables are included in those of q+i . Intuitively, q+i
selects the tuples to instantiate the effect, and Q−i filters away some of them.

– I ′i is a set of facts for the artifacts in A, which includes as terms: terms in
CI0 , input parameters, free variables of q+i , and in addition terms formed by
applying an arbitrary Skolem function to one of the previous kinds of terms.
Such Skolem terms are used as witnesses of values chosen by the external
user/environment when executing the action. Notice that different effects can
share a same Skolem function.

Given an instance I of A, an effect ei as above, and a substitution σ for
the parameters of ei, the effect ei extracts from I the set ans ((q+i ∧Q

−
i)σ, I) of

tuples of terms, and for each such tuple θ asserts the set I ′iσθ of facts obtained
from I ′iσ by applying the substitution θ for the free variables of q+i . In particular,
in the resulting set of facts we may have terms of the form f(t)σθ where t is a set
of terms that may be either free variables in x, parameters, or terms in CI0 . We
denote by eiσ(I) the overall set of facts, i.e., eiσ(I) =

⋃
θ∈ans ((q+i ∧Q

−
i)σ,I) I

′
iσθ.

9

The overall effect of the action ρ with parameter substitution σ over I is a new
instance I ′ = do(ρσ, I) =

⋃
1≤i≤m eiσ(I) for A.

Some observations are in order: (i) In the formalization above actions are
deterministic, in the sense that, given an instance I of A and a substitution σ
for the parameters of an action ρ, there is a single instance I ′ that is obtained
as the result of executing ρ in I. (ii) The effects of an action are naturally a
form of update of the previous state, and not of belief revision [15]. That is, we
never learn new facts on the state in which an action is executed, but only on the
state resulting from the action execution. (iii) We do not make any persistence
(or frame) assumption in our formalization [20]. In principle at every move we
substitute the whole old state, i.e., instance, I, with a new one, I ′. On the other
hand, it should be clear that we can easily write effect specifications that copy
big chunks of the old state into the new one. For example, Ri(x) Ri(x) copies
the entire set of assertions involving the relation Ri.

Processes. Essentially processes are (possibly nondeterministic) programs that
use artifacts in A to store their (intermediate and final) computation results, and
use actions in ρ as atomic instructions. We assume that at every time the current
instance I can be arbitrarily queried through the query answering services, while
it can be updated only through the actions in ρ. Notice that, while we require
the execution of actions to be sequential, we do not impose any such constraints
on processes, which in principle can be formed by several concurrent branches,
including fork, join, and so on. Concurrency is to be interpreted by interleaving,
as often done in formal verification [8, 10]. There can be many ways to provide
the control flow specification for processes for A. Here we adopt a very simple
rule-based mechanism. Notice, however, that our results can be immediately
generalized to any process formalism whose processes control flow is finite-state.
Notice also that the transition system associated to a process over an artifact
might not be finite-state, since its state is formed by both the control flow state of
the process and the data in the artifact system, which are in general unbounded.

Formally, a process Π over a relational artifact system A is a pair 〈ρ,π〉,
where ρ is a finite set of actions and π is a finite set of condition-action rules.

A condition-action rule π in π is an expression of the form

Q 7→ ρ,

where ρ is an action in ρ and Q is a FOL formula over artifacts’ relations whose
free variables are exactly the parameters of ρ, and whose other terms can be
either quantified variables or terms in CI0 . Such a rule has the following semantics:
for each tuple σ for which condition Q holds, the action ρ with actual parameters
σ can be executed. If ρ has no parameters then Q will be a boolean formula.
Observe that processes don’t force the execution of actions but constrain them:
the user of the process will be able to choose any of the actions that the rules
forming the process allow.

The execution of a process Π over a relational artifact system A is defined as
follows: we start from I0, and for each rule Q 7→ ρ in Π, we evaluate Q, and for
each tuple σ returned, we execute ρσ, obtaining a new instance I ′ = do(ρσ, I0),
and so on. In this way we build a transition system Υ (Π,A) whose states represent

10

possible system instances, and where each transition represents the execution
of an instantiated action that is allowed according to the process. A transition
I ⇒Υ (Π,A) I ′ holds iff there exists a rule Q 7→ ρ in Π such that there exists a
σ ∈ ans (Q, I) and I ′ = do(ρσ, I). That is, there exist a rule in Π that can fire
on I and produce an instantiated action ρσ, which applied on I, results in I ′.

The transition system Υ (Π,A) captures the behavior of the process Π over
the whole system A. We are interested in formally verifying properties of processes
over artifact-based systems, in particular we are interested in conformance and
verification, defined as follows:

Conformance. Given a process Π and an artifact system A, the process is said
to be acceptable if it fulfills all intra-artifact and inter-artifact dynamic
constraints. In this case, we say that Π conforms to A. In order to formally
check conformance, we can resort to model checking and verify that:

Υ (Π,A) |= Φinter ∧
∧
i=1,...,n Φi.

Verification. Apart from intra-artifacts and inter-artifact dynamic constraints,
we are interested in other dynamic properties of the process over the artifact
system. We say that a process Π over an artifact system A verifies a dynamic
property Φ expressed in µL if

Υ (Π,A) |= Φ.

It becomes evident that model checking of the transition system Υ (Π,A) gener-
ated by a process over an artifact system is the critical form of reasoning needed
in our framework. We are going to study such a reasoning task next.

Example 3 (Continues from Example 2). We consider a process Π = 〈ρ,π〉 consti-
tuted by the following actions ρ and conditions-action rules π. When specifying an
action, we will use [. . .] to delimit each of the two parts q+i and Q−i of the formula
q+i ∧Q

−
i in the left-hand side of an effect specification. Note that in such a formula the

part corresponding to Q−i might be missing.

Actions. The set ρ of actions is the following. Action RequestItem(r, i, b) is used by the
requester r to request a new line item i to buyer b. Such an action results in adding i
to the requisition order of r. Notice that the RoCode denoting the requisition order
is computed as a function of r and b only: performing this action multiple times for
the same requester and buyer will result into adding line items to the same requisition
order.

RequestItem(r, i, b) : { [∃w.(Requester(r) ∧ LineItem(i, w) ∧ Buyer(b))]
{RO(f(r, b), r, b), ROItem(f(r, b), i, requested)},

CopyAll }

Action Purchase(r, i, b, s) is used by buyer b for purchasing an item i belonging to
requisition order r from supplier s, thus creating (or updating) procurement orders (i.e.,
the relation ProcOrders.PO) and updating the status of the corresponding items kept
by the relation ReqOrders.ROItem. Again, notice that PoCode is not a function of the
item i passed as parameter. By writing CopyAll \ ROItem we denote the copy of all

11

relations except ROItem.

Purchase(r, i, b, s) : { [∃w.RO(r, w, b) ∧ ROItem(r, i, requested) ∧ Supplier(s)]
{PO(g(r, b, s), r, s), POItem(g(r, b, s), r, i),
ROItem(r, i, purchased)},

[ROItem(x, y, z)] ∧ [¬ROItem(r, i, requested)]
{ROItem(x, y, z)},

CopyAll \ ROItem }

The following actions are used to ship all items included in a given procurement
order p, and to deliver items belonging to a requisition order r to the corresponding
requester, respectively. Notice that the first avoids copying all facts concerning p whereas
the latter does the same with all facts related to r.

Ship(p) : { [POItem(p, x, y) ∧ ∃z.ROItem(x, y, z)] {ROItem(x, y, shipped)},
[POItem(x, y, z)] ∧ [¬POItem(p, y, z)] {POItem(x, y, z)},
[PO(x, y, z)] ∧ [¬PO(p, y, z)] {PO(x, y, z)},
CopyAll \ (POItem and PO) }

Deliver(r) : { [ROItem(x, y, z)] ∧ [¬ROItem(r, y, z)] {ROItem(x, y, z)},
[RO(x, y, z)] ∧ [¬RO(r, y, z)] {RO(x, y, z)},
CopyAll \ (ROItem and RO) }

Condition-action rules. In each condition-action rule of our process, we instantiate the
parameters passed to the action, while simply checking that they are meaningful, i.e.,
that they are in the current instance. Hence:

π = {∃x.(Requester(r) ∧ LineItem(i, x) ∧ Buyer(b)) 7→ RequestItem(r, i, b),
∃x.(RO(r, x, b) ∧ ROItem(r, i, requested) ∧ Supplier(s)) 7→ Purchase(r, i, b, s),
∃x, y.PO(p, x, y) 7→ Ship(p),
∃x, y.RO(r, x, y) 7→ Deliver(r) }

We close our example by observing that the process we have specified conforms to
the lifecycle in Example 2.

5 Undecidability of Conformance and Verification

Next, we consider conformance and verification over relational artifact systems.
We show that they are both undecidable in general, even in simple cases. The
undecidability result does not come as a surprise, since the transition system
of a process over an artifact system can easily be infinite-state. Moreover, our
framework is so general that it does not force the infinite state space regularity
usually needed to apply known results on model checking on infinite state systems.
However, we show that the undecidability holds even in a very simple case.

We consider a relational artifact system of the form Au = 〈{A}, true〉 with
A = 〈R, I0, true〉. That is Au is formed by a single artifact A with no intra-artifact
or inter-artifact dynamic constraints. In addition, we consider processes with
only one action ρu and only one condition-action rule true 7→ ρu that has a true
condition and hence allows the execution of the action ρu at every moment. The
action ρu is without parameters, its effects have the form

q+i I ′i,

12

where q+i is a CQ (hence without any form of negation and of universal quantifi-
cation), and it includes CopyAll effects. We call these kinds of relational artifact
systems and processes simple. Next lemma shows that it is undecidable to verify
in such cases the µL formula µZ.(q∨3Z), expressing that there exists a sequence
of action executions that leads to an instance where a boolean CQ q holds.

Lemma 1. Verifying whether the µL formula µZ.(q ∨3Z) holds for a simple
process over a simple artifact is undecidable.

Proof (sketch). We observe that we can use the set of effects of ρu to encode a
set of tuple-generating dependencies (TGDs) [2]. Hence we can reduce to the
above verification problem the problem of answering boolean CQs in a relational
database under a set of TGDs, which is undecidable [3]. (In fact, special care is
needed because of the use of Skolem terms instead of labeled nulls.) ut

Theorem 1. Conformance checking and verification are both undecidable for
processes over relational artifacts systems.

Proof (sketch). Lemma 1 gives us undecidability of verification, already for simple
relational artifact systems and processes. To get undecidability of conformance it
is sufficient to consider the simple process Πu over relational artifact systems of
the form Acu = 〈{Ac}, true〉, with Ac = 〈R, I0, µZ.(q ∨3Z)〉. Note that Acu is a
variant of simple artifact systems Au in which the artifact has as intra-artifact
dynamic constraint exactly µZ.(q ∨3Z). The claim follows again from Lemma 1,
considering that, by definition, checking conformance of the simple process Πu

wrt Acu is equivalent to checking whether Υ (Πu,Au) |= µZ.(q ∨3Z). ut

6 Decidability of Weakly Acyclic Processes

Next we tackle decidability, and, inspired by the recent literature on data ex-
change [16], we isolate a notable case of processes over relational artifact systems
for which both conformance and verification are decidable. Our results rely on
the possibility of building a special process that we call “positive approximate”.
For such a process there exists a tight correspondence between the application of
an action and a step in the chase of a set of TGDs [2, 16]

Given a process Π = 〈ρ,π〉, the positive approximate of Π is the process
Π+ = 〈ρ+,π+〉 obtained from Π as follows. For each action ρ in ρ, there is an
action ρ+ in ρ+, obtained from ρ by

– removing all input parameters from the signature, and
– substituting each effect q+i ∧Q

−
i I ′i with the one that uses only the positive

part of the head of the effect specification, i.e., with q+i I ′i.

Note that the variables in q+i that used to be parameters in ρ, become free
variables in ρ+. Then, for each condition-action rule Q 7→ ρ in π, there is a rule
true 7→ ρ+ in π+. Hence, Π+ allows for executing every action at every step.

Now, relying again on the parallelism between chase in data exchange and
action execution in artifact systems, we take advantage of the notion of weak
acyclicity in data exchange [16] to devise an interesting class of processes which

13

are guaranteed to generate a finite-state transition system, when run over a
relational artifact system. This in turn guarantees decidability of conformance
and verification.

Let Π be a process over an artifact system A, and Π+ = 〈ρ+,π+〉 its positive
approximate. We call dependency graph of Π+ the following (edge labeled)
directed graph:

Nodes: for every artifact A = 〈R, I0, Φ〉 of A, every relation symbol Ri ∈ R, and
every attribute att or Ri, there is a node (Ri, att) representing a position;

Edges: for every action ρ+ of ρ+, every effect q+i (t) I ′i(t
′, f1(t1), . . . , fn(tn))

of ρ+ (where for convenience we have made explicit the terms occurring in
q+i and I ′i, and where consequently t′, t1, . . . , tn ⊆ t are either constants or
variables), every variable x ∈ t, and every occurrence of x in q+i in position
p, there are the following edges:
– for every occurrence of x in I ′i in position p′, there is an edge p→ p′;
– for every Skolem term fk(tk) such that x ∈ tk occurs in I ′i in position p′′,

there is a special edge (i.e., one labeled by ∗) p ∗−→ p′′.

We say that Π is weakly acyclic if the dependency graph of Π+ has no cycle
going through a special edge.

Intuitively, ordinary edges keeps track of the fact that a value may propagate
from position p to position p′ in a possible trace. Moreover, special edges keeps
track of the fact that a value in position p can be taken as parameter of a Skolem
function, thus contributing to the creation of a (not necessarily new) value in any
position p′′. If a cycle goes through a special edge, then a new value appearing
in a certain position may determine the creation of another one, in the same
position, later during the execution of actions. Since this may happen again and
again, no bound can be put on the number of newly generated Skolem terms,
and thus on the number of new values appearing in the instance. Note that the
definition allows for cycles as long as they do not include special edges.

Lemma 2. Let Π be a weakly acyclic process over a relational artifact system
A with initial instance I0, and let Π+ be the positive approximate of Π. Then
there exists a polinomial in the size of I0 that bounds the size of every instance
generated by Π+.

Proof (sketch). The proof follows the line of that in [16] on chase termination for
weakly acyclic TGDs. The difference here is that we use Skolem terms and don’t
have the inflationary behavior of TGDs in applying action effects. However, the
key notion of rank used in [16] can still be used to bound the number of terms
generated through the Skolem functions. ut

Notice that as a direct result of this lemma, the transition system generated
by the positive approximate over A has a number of states that is finite, and
in fact at most exponential in the size of the initial instance I0 of A. Now we
show that a similar result holds for the original process Π. The key to this is the
following observation that easily follows from the definition of ρ+ for an action ρ.

Lemma 3. For every action ρ over A, instances I1, I2 of A, and ground sub-
stitution σ for the parameters of ρ, if I1 ⊆ I2 then do(ρσ, I1) ⊆ do(ρ+, I2).

14

We can extend the result above to any sequence of actions, by induction on
the length of the sequence. Hence, we get that the instance obtained from the
initial instance by executing a sequence of actions of the original process Π is
contained in the instance obtained by executing the same sequence of actions
of Π+. From this observation, considering the bound in Lemma 2, we get the
desired result for the original process.

Lemma 4. Let Π be a weakly acyclic process over a relational artifact system
A with initial instance I0. Then there exists a polinomial in the size of I0 that
bounds the size of every instance generated by Π.

From this, we obtain our main result.

Theorem 2. Conformance and verification of µL formulas are decidable for
weakly acyclic processes over relational artifact systems.

Proof (sketch). From Lemma 4, it follows that the transition system generated
by a weakly acyclic process over a relational artifact system A has a number of
states that is at most exponential in the size of the initial instance I0 of A. The
claim then follows from known results on verification of µ-calculus formulas over
finite transition systems (see e.g., [10]). ut

From the exponential bound on the number of states of the generated tran-
sition system mentioned in the proof above, we get not only decidability of
verification and conformance, but also an ExpTime upper bound for its compu-
tational complexity (assuming a bound on the nesting of fixpoints).

7 Conclusions

In this paper we have looked at foundations of artifact-centric systems, and
we have shown that weakly acyclic processes over relational artifacts are very
interesting both from a formal point of view, since reasoning on them is decidable,
and from a practical point of view, since weak-acyclicity appears to be a quite
acceptable restriction.

Further research can take several directions. First, one can easily focus on
different temporal logics for specifying dynamic constraints, such as LTL or CTL.
Observe that the results presented here would apply, being mu-calculus more
expressive than both LTL and CTL, but certainly they can be refined. Second, we
may introduce special equality generating constraints to allow to equate different
terms, e.g., a Skolem term and a constant. We are particularly interested in how
to extend our decidability result to this case. Also we have assumed that no
artifacts are added or destroyed during the execution of a process. We are very
interested in overcoming this assumption. Notice that to do so we would need
to introduce Skolem terms to denote artifacts, and then extend the notion of
weakly acyclic process to block the infinite accumulation of new artifacts. Finally,
we are interested in moving from a relational setting to a semantic one, based on
ontologies for data access [6], believing that similar results apply.

Acknowledgments This work has been supported by the EU FP7-ICT Project
ACSI (grant no. 257593).

15

References

1. S. Abiteboul, P. Bourhis, A. Galland, and B. Marinoiu. The AXML artifact model.
In Proc. of TIME 2009, pages 11–17, 2009.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley
Publ. Co., 1995.

3. C. Beeri and M. Y. Vardi. The implication problem for data dependencies. In Proc.
of ICALP’81, volume 115 of LNCS, pages 73–85. Springer, 1981.

4. K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis
of artifact-centric business process models. In Proc. of BPM 2007, volume 4714 of
LNCS, pages 288–234. Springer, 2007.

5. K. Bhattacharya, R. Guttman, K. Lyman, F. F. Heath, S. Kumaran, P. Nandi,
F. Y. Wu, P. Athma, C. Freiberg, L. Johannsen, and A. Staudt. A model-driven
approach to industrializing discovery processes in pharmaceutical research. IBM
Systems Journal, 44(1):145–162, 2005.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, and D. F. Savo. The Mastro system for ontology-based
data access. Semantic Web Journal, 2011. To appear.

7. P. Cangialosi, G. De Giacomo, R. De Masellis, and R. Rosati. Conjunctive artifact-
centric services. In Proc. of ICSOC 2010, volume 6470 of LNCS, pages 318–333.
Springer, 2010.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press,
Cambridge, MA, USA, 1999.

9. D. Cohn and R. Hull. Business artifacts: A data-centric approach to modeling
business operations and processes. IEEE Bull. on Data Eng., 32(3):3–9, 2009.

10. E. A. Emerson. Automated temporal reasoning about reactive systems. In F. Moller
and G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata,
volume 1043 of LNCS, pages 41–101. Springer, 1996.

11. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. Theor. Comp. Sci., 336(1):89–124, 2005.

12. C. Fritz, R. Hull, and J. Su. Automatic construction of simple artifact-based
business processes. In Proc. of ICDT 2009, pages 225–238, 2009.

13. R. Hull. Artifact-centric business process models: Brief survey of research results
and challenges. In Proc. of ODBASE 2008, volume 5332 of LNCS, pages 1152–1163.
Springer, 2008.

14. M. R. A. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
About Systems. Cambridge University Press, 1999.

15. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In Proc. of KR’91, pages 387–394, 1991.

16. P. G. Kolaitis. Schema mappings, data exchange, and metadata management. In
Proc. of PODS 2005, pages 61–75, 2005.

17. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002,
pages 233–246, 2002.

18. D. C. Luckham, D. M. R. Park, and M. Paterson. On formalised computer programs.
J. of Computer and System Sciences, 4(3):220–249, 1970.

19. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational
specification. IBM Systems Journal, 42(3):428–445, 2003.

20. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. The MIT Press, 2001.

21. W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer. Proclets: A
framework for lightweight interacting workflow processes. Int. J. of Cooperative
Information Systems, 10(4):443–481, 2001.

16

