
A Very Short Introduction
to Web Services

Massimo Mecella
Dipartimento di Informatica e Sistemistica ANTONIO RUBERTI

SAPIENZA Università di Roma
mecella@dis.uniroma1.it

BASIC CONCEPTS

2

3

e-Services, Web Services,
Services … (1) - Historically
• An e-Service is often defined as an application accessible via the Web, that

provides a set of functionalities to businesses or individuals. What makes the e-
Service vision attractive is the ability to automatically discover the e-Services
that fulfill the users’ needs, negotiate service contracts, and have the services
delivered where and when users needs them

Guest editorial. In [VLDBJ01]

• e-Service: an application component provided by an organization in order to be
assembled and reused in a distributed, Internet-based environment; an application
component is considered as an e-Service if it is: (i) open, that is independent, as
much as possible, of specific platforms and computing paradigms; (ii) developed
mainly for inter-organizations applications, not only for intra-organization
applications; (iii) easily composable; its assembling and integration in an inter-
organizations application does not require the development of complex adapters.
e-Application: a distributed application which integrates in a cooperative way the e-
Services offered by different organizations

M. Mecella, B. Pernici: Designing Wrapper Components for e-Services in
Integrating Heterogeneous Systems. In [VLDBJ01]

4

e-Services, Web Services,
Services … (2) - Historically

A Web service is a software system identified
by a URI, whose public interfaces and bindings
are defined and described using XML. Its
definition can be discovered by other software
systems. These systems may then interact with
the Web service in a manner prescribed by its
definition, using XML based messages conveyed
by Internet protocols

Web Services Architecture Requirements,
W3C Working Group Note, 11 Feb. 2004,
http://www.w3.org/TR/wsa-reqs/

5

e-Services, Web Services,
Services … (3) - Historically
• Services are self-describing, open components that support rapid, low-cost

composition of distributed applications. Services are offered by service providers
— organizations that procure the service implementations, supply their service
descriptions, and provide related technical and business support.
Since services may be offered by different enterprises and communicate over the
Internet, they provide a distributed computing infrastructure for both intra and
cross-enterprise application integration and collaboration.
Service descriptions are used to advertise the service capabilities, interface,
behavior, and quality. Publication of such information about available services
provides the necessary means for discovery, selection, binding, and composition of
services. In particular, the service capability description states the conceptual
purpose and expected results of the service (by using terms or concepts defined in
an application-specific taxonomy). The service interface description publishes the
service signature (its input/output/error parameters and message types). The
(expected) behavior of a service during its execution is described by its service
behavior description. Finally, the Quality of Service (QoS) description publishes
important functional and nonfunctional service quality attributes […]. Service
clients (end-user organizations that use some service) and service aggregators
(organizations that consolidate multiple services into a new, single service offering)
utilize service descriptions to achieve their objectives.

• The application on the Web (including several aspects of the SOA) is manifested
by Web services

Guest editorial. In [CACM03]

And Today ?

• e-Service
– e-Service is the provision of a service via the Internet (the

prefix “e” standing for “electronic”)
– True Web jargon, meaning just about anything done online
– Basically whichever Web application usable by a human,

through a user interface
• Web service

– software component available on the Web, to be invoked by
some other client application/component

– A way of building Web-scale component-based distributed
systems

• For building an e-Service, a designer may need to
use/invoke many Web services

6

7

internal
service logic

internal
service logic

Company A
(provider)

Web service interface

Logic for accessing to
internal systems

internal
architecture &

middleware

Web service

client

Company D
(client)

Web
service

Web
service

Web
service

Web
service

Web
service

external
architecture &

middleware

Company B
(provider)

Company C
(provider)

Two Architectures
(and Middlewares) (1)

[from ACKM04]

Two Architectures
(and Middlewares) (2)

Web service client

Company A (service requester)

other tiers

Web service

other tiers

Company B (service provider)

Company C (directory service provider)

service descriptions

1. publish the service description2. find

3. interact

the abstraction
and
infrastructure
provided by the
registry are part
of the external
middleware

Web services middleware
(internal)

Web services middleware
(internal)

Web services middleware
(internal)

Web services middleware
(internal)

8

9

Two Architectures
(and Middlewares) (3)

Web service
client

other tiers

Web service

other tiers

Company A
(service requester)

Company B
(service provider)

internal
middleware

transaction
mgmt internal

middleware

C
om

pany C

(directory
service

provider)

service descriptions

composition
engine

other protocol
infrastructure

transaction
mgmt

composition
engine

other protocol
infrastructure

external middleware

[from ACKM04]

10

Services

• … and possibly by constraints on
the possible conversations
– Using a service typically involves

performing sequences of
operations in a particular order
(conversations)

– During a conversation, the client
typically chooses the next
operation to invoke (on the basis
of previous results, etc.) among
the ones that the service allows
at that point

Client Service

requestQuote

orderGoods

confirmOrder

makePayment

QuoteRequested

[requestQuote]

GoodsOrdered

[orderGoods]

[confirmOrder(FALSE)]

OrderConfirmed

[confirmOrder(TRUE)]

[makePayment]

• A service is characterized by the
set of (atomic) operations that it
exports …

(1)
(2)

(3)

(4)

11

Choreography: Coordination of
Conversations of N Services

• Global specification of the conversations of N
peer services (i.e., multi-party conversations)
– Roles
– Message exchanges
– Constraints on the order in which such exchanges

should occur

suppliercustomer

1:requestQuote

2:orderGoods

5:makePayment

warehouse

3:checkShipAvailable
7:getShipmentDetail

8:confirmShipment 9:confirmShipment

6:orderShipment

4:confirmOrder

12

Choreography: Coordination of
Conversations of N Services

requestQuote
(to supplier)

checkShipAvailable
(to warehouse)

confirmOrder
(to customer)

orderGoods
(to supplier)

cancelOrder
(to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

getShipmentDetails
(to customer)

confirmShipment
(to warehouse)

confirmShipment
(to supplier)

supplier warehousecustomer

warehouse
confirms

warehouse
cancels

requestQuote

orderGoods

confirmOrder

getShipmentDetail

confirmShipment

suppliercustomer warehouse

checkShipAvailable

makePayment

orderShipment

confirmShipment

[from ACKM04]

13

Composition

• Deals with the implementation of an
application (in turn offered as a service)
whose application logic involves the
invocation of operations offered by other
services
– The new service is the composite service
– The invoked services are the component

services

14

The Composition
Engine/Middleware

development
environment

composite service
execution data

schema
definitions

House hunting
service

Packaging service Flight reservation
service

Shipment service
Phone line

installation service

Internet DSL line
installation service

run-time environment
(orchestration engine)

composition
schema
designer

Orchestration: the run-time environment
executes the composite service business
logic by invoking other services (through
appropriate protocols)

Web service composition middleware

other Web Services middleware
(e.g., SOAP invocation engine)

Supplier WS

Component
services offered
by other
providers

Warehouse WS

Accounting WS

Through the development environment, a composition schema is
synthesized, either manually or
(semi-)automatically. A service composition model and a language
(maybe characterized by a graphical and a textual
representation) are adopted

composition
schema

[from ACKM04]Composite service provider

15

Synthesis and Orchestration

• (Composition) Synthesis: building the
specification of the composite service (i.e.,
the composition schema)
– Manual
– Automatic

• Orchestration: the run-time management of
the composite service (invoking other
services, scheduling the different steps,
etc.)
– Composition schema is the “program” to be

executed
– Similarities with WfMSs (Workflow

Management Systems)

16

Composition Schema

• A composition schema specifies the
“process” of the composite service
– The “workflow” of the service

• Different clients, by interacting with the
composite service, satisfy their specific
needs (reach their goals)
– A specific execution of the composition

schema for a given client is an orchestration
instance

17

Choreography (Coordination) vs.
Composition (Orchestration)
• Composition is about implementing new services

– From the point of view of the client, a composite service and a
basic (i.e., implemented in a traditional programming language)
one are indistinguishable

• Choreography is about global modeling of N peers, for
proving correctness, design-time discovery of possible
partners and run-time bindings

• N.B.: There is a strong relationship between a service
internal composition and the external choreographies it
can participate in
– if A is a composite service that invokes B, the A’s composition

schema must reflect the coordination protocol governing A – B
interactions

– in turn, the composition schema of A determines the
coordination protocols that A is able to support (i.e., the
choreographies it can participate in)

Services Mash-up (1)

Web application that combines data from one or more sources
into a single integrated tool

18

• easy, fast integration, frequently
done by access to open APIs and data
sources to produce results that were
not the original reason for producing
the raw source data.

• E.g., cartographic data from Google
Maps to add location information to
real estate data, thereby creating a
new and distinct e-Service that was
not originally provided by either
source

• Bottom-up, developers-driven
approach

D. Benslimane, S. Dustdar, A. Sheth
(eds.). Services Mashups – Special
Issue. IEEE Internet Computing, vol.
12, no. 5, 2008.

Services Mash-up (2)

• Based on various technologies
– Web services

• SOAP
• RESTful
• Atom/RSS

• Basically a lightweight form of
composition

19

RELEVANT TECHNOLOGIES
AND ABSTRACTIONS

20

21

The “Stacks” of Service
Technologies

Messaging

Single Service

Multiple Interacting
Services

WSDL-based Semantic-basedebXML-based

Registry/Repository
& Discovery

RESTful

22

WS-DL

The WSDL-based
“Stack”

WS-Policy, WSLA

WS Reliable Messaging

WS-Routing, WS-Addressing

XML Protocol – XMLP (SOAP)

XML & XML Schema, …

HTTP, SMTP, …

advanced messaging

basic messaging

content

transport

description (interface definition)

non-functional features, QoS

(i)
fo

rm
er

ly
 a

ls
o

W
S

E
L

(W
eb

 S
er

vi
ce

E

nd
po

in
t L

an
gu

ag
e)

 b
y

IB
M

(ii
)a

ls
o

th
e

re
se

ar
ch

/a
cc

ad
em

ic
 p

ro
po

sa
l

W
eb

 S
er

vi
ce

 O
ffe

rin
g

La
ng

ua
ge

 [W
S

O
L] WSCL, CS-WS

conversation description /
interaction protocol

Both the Web Service Conversation
Language (WSCL, by HP) and
Conversation Support for Web Services
(CS-WS, by IBM) proposals are no
more supported

WS-BPEL orchestration

repository & discovery

WS-Transaction

WS-Coordination
transaction management

WS Composite
Application Framework
(WS-CAF)

WS-CDL choreography

WSFL, XLANG

WSCI

BPML

UDDI

Fo
rm

er
ly

 B
P

E
L4

W
S

(B

P
E

L
fo

r s
ho

rt)

Includes 3 specifications:
(i) Web Service Context (WS-CTX)
(ii) Web Service Coordination Framework

(WS-CF)
(iii) Web Service Transaction Management

(WS-TXM)

service providerservice requestor

application object
(client)

application object
(service provider)

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

exchanged on top of,
HTTP, SMTP, or other
transport

converts procedure calls to/from XML
messages sent through HTTP or other
protocols.

A Minimalist Infrastructure for Web
Service

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

WSDL of
service provider

WSDL compiler
(server side)

WSDL compiler
(client side)

<operation name="orderGoods">
<input message = "OrderMsg"/>

</operation>

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

From Interfaces to
Stub/Skeleton

service descriptions

SOAP-based middleware

UDDI registry

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

SOAP messages
(to look for services)

SOAP messages
(to publish service description)

service descriptions

SOAP-based middleware

UDDI registry

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

SOAP messages
(to look for services)

SOAP messages
(to publish service description)

Registry

26

Web Service Definition
Language (WS-DL)
• WS-DL provides a framework for defining

– Interface: operations and input/output formal parameters
– Access specification: protocol bindings (e.g., SOAP)
– Endpoint: the location of service

provide
Service

1..n

implement
1

Binding

Endpoint

specify (how to invoke)

1..n

support
Interface

Message

consist ofextend

consist of

Part

1..n

1..2

1..n

0..n
Operation

Service implementation
(concrete definition)

Service interface
(abstract definition)

27

Message Exchange Patterns
(1)

Client Service

input

in-only (no faults)

Client Service
output

out-only (no faults)

Client Service

input

robust in-only (message triggers fault)

fault

Client Service
output

robust out-only (message triggers fault)

fault

28

Message Exchange Patterns
(2)

in-out (fault replaces message)

Client Service

(1) input

(2) output
(2’) fault

Client Service

(2) input

(1) output

(2’) fault

out-in (fault replaces message) out-optional-in
(message triggers fault)

Client Service

(?) input

output

fault

in-optional-out
(message triggers fault)

Client Service

input

(?) output

fault

29

An Example (1)
<definitions … >

<types>
<element name="ListOfSong_Type">

<complexType><sequence>
<element minOccurs="0" maxOccurs="unbound“

name="SongTitle" type="xs:string"/>
</sequence></complexType>

</element>
<element name="SearchByTitleRequest">

<complexType><all>
<element name="containedInTitle“

type="xs:string"/>
</all></complexType>

</element>
<element name="SearchByTitleResponse">

<complexType><all>
<element name="matchingSongs“

xsi:type="ListOfSong_Type"/>
</all></complexType>

</element>

Definition of a
message and its
formal
parameters

30

An Example (2)
<element name="SearchByAuthorRequest">

<complexType><all>
<element name="authorName“

type="xs:string"/>
</all></complexType>

</element>
<element name="SearchByAuthorResponse">

<complexType><all>
<element name="matchingSongs“

xsi:type="ListOfSong_Type"/>
</all></complexType>

</element>
<element name="ListenRequest">

<complexType><all>
<element name="selectedSong“

type="xs:string"/>
</all></complexType>

</element>

31

An Example (3)

<element name="ListenResponse">

<complexType><all>
<element name="MP3fileURL" type="xs:string"/>

</all></complexType>
</element>
<element name="ErrorMessage">

<complexType><all>
<element name="cause" type="xs:string"/>

</all></complexType>
</element>

</types>

32

An Example (4)
<interface name="MP3ServiceType">

<operation name="search_by_title" pattern="in-out">
<input message="SearchByTitleRequest"/>
<output message="SearchByTitleResponse"/>
<outfault message="ErrorMessage"/>

</operation>
<operation name="search_by_author" pattern="in-out">

<input message="SearchByAuthorRequest"/>
<output message="SearchByAuthorResponse"/>
<outfault message="ErrorMessage"/>

</operation>
<operation name="listen" pattern="in-out">

<input message="ListenRequest"/>
<output message="ListenResponse"/>
<outfault message="ErrorMessage"/>

</operation>
</interface>

</definitions>

Definition of an
operation and its
message exchange
pattern

Definition of a
service interface

33

Transition Systems

• A transition system (TS)
is a tuple
T = < A, S, S0, , F >
where:
– A is the set of actions
– S is the set of states
– S0  S is the set of initial

states
–   S x A x S is the

transition relation
– F  S is the set of final

states

Ven

2pInserted

ChoiceB

ChoiceL

1pInserted

2p

1p

collectB
collectL

big

little

34

Automata vs.
Transition Systems
• Automata

– define sets of runs (or traces or strings): (finite)
length sequences of actions

• TSs
– … but I can be interested also in the alternatives

“encountered” during runs, as they represent client’s
“choice points”

a

b

c e

d

a

b

c e

d

a
Different as
TSs

As automata they
recognize the
same language:
abc* + ade*

35

WS-DL is the Set of
Actions

• A message exchange pattern (and the
related operation) represents an
interaction with the service client
– an action that the service can perform by

interacting with its client
• Abstracting from formal parameters, we

can associate a different symbol to each
operation …

• … thus obtaining the alphabet of actions

36

An Example

• The
MP3ServiceInterface
defines 3 actions:
– search_by_title / st
– search_by_author / sa
– listen / l

• Formally A = {st,sa,l}

start

readyToPlay

st sal

service provider service
implementation

HTTP engine

server stub

SOAP router

WSDL
generator

1

Inquiry API

UDDI registry

WSDL service
descriptions

WSDL compiler
2

UDDI publisher

3

Publishers API

tModel

businessEntity
businessService

bindingTemplate

service provider service
implementation

HTTP engine

server stub

SOAP router

WSDL
generator

1

Inquiry API

UDDI registryUDDI registry

WSDL service
descriptions

WSDL compiler
2

UDDI publisher

3

Publishers API

tModeltModel

businessEntity
businessService

bindingTemplatebindingTemplatebindingTemplate

Putting All Together

38

Business Process Execution Language
for Web Services (WS-BPEL)

• Allows specification of
composition schemas of Web
Services
– Business processes as coordinated

interactions of Web Services
– Business processes as Web

Services
• Allows abstract and executable

processes
• Influenced from

– Traditional flow models
– Structured programming
– Successor of WSFL and XLANG

• Component Web Services
described in WS-DL (v1.1)

Activity A

Activity B

Activity C

Client of the com
posite service

WS-BPEL Specification
An XML document specifying
• Roles exchanging messages with the

composite service/process
• The (WSDL) interfaces supported

by such roles

invoke
checkLocalStock

invoke
checkShipAvailable

invoke confirmOrderinvoke cancelOrder

receive orderGoods

supplier

customer

warehouse

local service
offered by the

supplier

interfaces

Orchestration
- variables and data transfers,
- exception handling,
- correlation information (for instance routing)

Variables:
warehouse: URI
inStock, shippingAvail: bool
customer: String
…

roles

• The
orchestration of
the process
– Variables and

data transfer
– Exception

handling
– Correlation

information

39

40

Process Model
(Activities)
• Primitive

– invoke: to invoke a Web Service (in-out) operation
– receive: to wait for a message from an external source
– reply: to reply to an external source message
– wait: to remain idle for a given time period
– assign: to copy data from one variable to another
– throw: to raise exception errors
– empty: to do nothing

• Structured
– sequence: sequential order
– switch: conditional routing
– while: loop iteration
– pick: choices based on events
– flow: concurrent execution (synchronized by links)
– scope: to group activities to be treated “transactionally”

(managed by the same fault handler, within the same
transactional context)

A link connects exactly one source
activity S to exactly one target
activity T; T starts only after S ends.
An activity can have multiple incoming
(possibly with join conditions) and
outgoing links. Links can be guarded

41

Process Model
(Data Manipulation and Exception Handling)

• Blackboard approach
– a blackboard of variables is associated to each

orchestration instance (i.e., a shared memory within
an orchestration instance)

– variables are not initialized at the beginning; they
are modified (read/write) by assignments and
messages

– manipulation through XPath
• Try-catch-throw approach

– definition of fault handlers
– … but also event handlers and compensation handlers

(for managing transactionality as in the SAGA
model)

42

From a TS to WS-BPEL
(1)

<process name = “…”>

</process>

<partnerLinks>
…

</partnerLinks>

<flow>
<links>

…
</links>
<!-- state skel. -->
…
<!-- state skel. -->

</flow>

<variables>
…

</variables>

Transition
Skeletons

State
Skeletons

WS-BPEL Specification
Skeleton

Transition
System

Mapping transitions

Mapping states

Connecting state
skeletons on the
basis of the graph

43

From a TS to WS-BPEL
(2)
Intuition [Baina etal CAISE04, Berardi etal VLDB-TES04]

1. Each transition corresponds to a WS-BPEL pattern consisting of (i)
an <onMessage> operation (in order to wait for the input from the
client of the composite service), (ii) followed by the effective logic
of the transition, and then (iii) a final operation for returning the
result to the client. Of course both before the effective logic and
before returning the result, messages should be copied forth and
back in appropriate variables

2. All the transitions originating from the same state are collected in
a <pick> operation, having as many <onMessage> clauses as
transitions originating from the state

3. The WS-BPEL file is built visiting all the nodes of the graph,
starting from the initial state and applying the previous rules.

N.B.: (1) and (2) works for in-out interactions (the ones shown in the following).
Simple modifications are needed for in-only, robust-in-only and in-optional-out.
The other kinds of interactions implies a proactive behaviour of the composite
service, possibly guarded by <onAlarm> blocks.

44

Transition Skeletons
<onMessage … >

<sequence>
<assign>

<copy>
<from variable="input" ... />
<to variable=“transitionData“ ... />

</copy>
</assign>
< !-- logic of the transition -->
<assign>

<copy>
<from variable=“transitionData" ... />
<to variable="output" ... />

</copy>
</assign>
<reply ... />

</sequence>
</onMessage>

45

State Skeletons

• N transitions from state Si are mapped
onto:

<pick name = “Si”>
<!-- transition #1 -->
<onMessage … >

<!-- transition skeleton -->
</onMessage>
… … …
<!-- transition #N -->
<onMessage … >

<!-- transition skeleton -->
</onMessage>

</pick>

46

Mapping the TS

• All the <pick> blocks are enclosed in a
surrounding <flow>; the dependencies are
modeled as <link>s
– <link>s are controlled by specific variables Si-to-
Sj that are set to TRUE iff the transition Si ! Sj is
executed

– Each state skeleton has many outgoing <link>s as
states connected in output, each going to the
appropriate <pick> block

– Transitions going back into the initial state should
not be considered, as they can be represented as
the start of a new instance

47

An Example (1)

<partnerLinks>
<!-- The “client” role represents the requester of this composite service -->

<partnerLink name="client"
partnerLinkType="tns:Transition"
myRole="MP3ServiceTypeProvider"
partnerRole="MP3ServiceTypeRequester"/>

<partnerLink name="service"
partnerLinkType="nws:MP3CompositeService"
myRole="MP3ServiceTypeRequester"
partnerRole="MP3ServiceTypeProvider"/>

</partnerLinks>

st

sa

l

l

start

2

1

48

An Example (2)
<variables>

<variable name="input" messageType="tns:listen_request"/>
<variable name="output“ messageType="tns:listen_response"/>
<variable name=“dataIn" messageType="nws:listen_request"/>
<variable name=“dataOut" messageType="nws:listen_response"/>

</variables>

<pick>
<onMessage partnerLink="client"

portType="tns:MP3ServiceType"
operation="listen"
variable="input">
<sequence>

<assign>
<copy>

<from variable="input" part="selectedSong"/>
<to variable=“dataIn" part="selectedSong"/>

</copy>
</assign>
… …
<assign>

<copy>
<from variable=“dataOut" part="MP3FileURL"/>
<to variable="output" part="MP3FileURL"/>

</copy>
</assign>
<reply name="replyOutput"

partnerLink="client"
portType="tns:MP3ServiceType"
operation="listen"
variable="output"/>

</sequence>
</onMessage>

… …
</pick>

49

An Example (3)
<process suppressJoinFailure = “no”>

<flow>
<links>

<link name=“start-to-1”/>
<link name=“start-to-2”/>

</links>

<pick createInstance = “yes”>
<onMessage=“sa">

<sequence>
<copy>...</copy>
… …
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<onMessage=“st">

<sequence>
<copy>...</copy>
… …
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<source linkName=“start-to-1” transitionCondition = “bpws:getVariableData(‘start-to-1’) = ‘TRUE’ “ />
<source linkName=“start-to-2” transitionCondition = “bpws:getVariableData(‘start-to-2’) = ‘TRUE’ “ />

</pick>

The <sa> transition skeleton
should set variables:
start-to-1 = TRUE
start-to-2 = FALSE

The <st> transition skeleton
should set variables:
start-to-1 = FALSE
start-to-2 = TRUE

A new instance is created in the initial
state. This resolve also the presence
of the cycles without the need of
enclosing <while>

50

An Example (4)
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
… …

<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<target linkName=“start-to-1” />

</pick>
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
… …

<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<target linkName=“start-to-2” />

</pick>
</process>

51

Choreography
(As Reported in Literature: Classical Ballet
Style)

• Consider a dance with more than one dancer
– Each dancer has a set of steps that they will

perform. They orchestrate their own steps because
they are in complete control of their domain (their
body)

– A choreographer ensures that the steps all of the
dancers make is according to some overall, pre-
defined scheme. This is a choreography

– The dancers have no control over the steps they
make: their steps must conform to the choreography

– The dancers have a single view-point of the dance
– The choreographer has a multi-party or global view-

point of the dance

52

Choreography
(A Possible Evolution: Jam Session Style)

• Consider a jazz band with many players
– There is a rhythm and a main theme. This is the

choreography
– Each player executes his piece by improvising

variations over the main theme and following the
given rhythm

– The players still have a single view-point of the
music; in addition they have full control over the
music they play

– There is a multi-party or global view-point of the
music, but this is only a set of “sketchy” guidelines

53

WS-BPEL vs. WS-CDL

• Orchestration/WS-BPEL is about
describing and executing a single peer

• Choreography/WS-CDL is about
describing and guiding a global model
(N peers)

• You should derive the single peer from
the global model by projecting based on
participant

54

The “Stacks” of Service
Technologies

Messaging

Single Service

Multiple Interacting
Services

WSDL-based Semantic-basedebXML-based

Registry/Repository
& Discovery

RESTful

RESTful Services (1)

• REST refers to simple application
interfaces transmitting data over HTTP
without additional layers as SOAP
– Web page meant to be consumed by program

as opposed to a Web browser or similar UI
tool

– require an architectural style to make sense
of them (the REST one), because there’s no
smart human being on the client end to keep
track

55

RESTful Services (2)

• Metaphor based on nouns and verbs
– URIs ~ nouns
– Verbs describe actions that are applicable to nouns

• GET -- retrieve information / READ, SELECT
• POST (PUT) – add/update new information / CREATE, INSERT,

UPDATE
• DELETE -- discard information / DELETE

• State means the application/session state,
maintained as part of the content transferred
(in XML) from client to server back to client

56

RESTful Services (3)

• REST is, in a sense, a kind of RPC, except
the methods have been defined in
advance
– Consider the stock example of a remote procedure

called “getStockPrice”
– It's not clear what what it means to GET, PUT, and

POST to something called "getStockPrice“
– But if we change the name from "getStockPrice" to

"CurrentStockPrice“ all is well !!

57

58

RESTful Services

RESTful Services (4)

• REST is incompatible with "end-point“
RPC -- Either you address data objects
or you address "software components“
– REST does the former
– End-point RPC does the latter

59

POST /purchase_orders HTTP/1.1
Host: accounting.mycompany.com
content-type:
application/purchase-order+xml
....
<po>...</po>

POST /generic_message_handler
content-type: application/SOAP+XML
<soap:envelope>

<soap:body>
<submit-purchase-order>
<destination>accounting.mycompany.com
</destination>
<po>...</po>

</submit-purchase-order>
</soap:body>

<soap:envelope>

Example (1)

60

Example (2)

61

Example (3)

62

Why so trendy ?

• Easy and lightweight
• Amazon, Yahoo, Google offer their Web

services as RESTful

• … but nothing really new for us, basically
the same abstractions apply, you can
consider the operations as a whole or you
can start modeling the data flowing
through the service

63

64

References
[ACKM04] - G. Alonso, F. Casati, H. Kuno, V. Machiraju: Web Services.

Concepts, Architectures and Applications. Springer-Verlag 2004
[VLDBJ01] - F. Casati, M.C. Shan, D. Georgakopoulos (eds.): Special Issue on

e-Services. VLDB Journal, 10(1), 2001
Based on the 1st International Workshop on Technologies for e-
Services (VLDB-TES 2001)

[CACM03] – M.P. Papazoglou, D. Georgakopoulos (eds.): Special Issue on
Service Oriented Computing. Communications of the ACM 46(10), 2003

[WSOL] - V.Tosic, B. Pagurek, K. Patel, B. Esfandiari, W. Ma: Management
Applications of the Web Service Offerings Language (WSOL). To be
published in Information Systems, Elsevier, 2004.

An early version of this paper was published in Proc. of CAiSE'03,
LNCS 2681, pp. 468-484, 2003

[Benatallah etal IJCIS04] - B. Benatallah, F. Casati, H. Skogsrud, F. Toumani:
Abstracting and Enforcing Web Service Protocols, International Journal
of Cooperative Information Systems (IJCIS), 13(4), 2004

65

References
[Baina etal CAISE04] K. Baina, B. Benatallah, F. Casati, F. Toumani: Model-

driven Web Service Development, Proc. of CAiSE'04, LNCS 3084, 2004
[Berardi etal ICSOC03] - D. Berardi, D. Calvanese, G. De Giacomo, M.

Lenzerini, M. Mecella: Proc. of ICSOC'03, LNCS 2910, 2004
[ebpml] - Jean-Jacques Dubray: the ebPML.org Web Site,

http://www.ebpml.org/
[DAML-S] – DAML Semantic Web Services, http://www.daml.org/services

66

References
[WS-Policy] - Web Services Policy Framework (WS-Policy), September 2004,

http://www-106.ibm.com/developerworks/library/specification/ws-
polfram/

[WSCL] - Web Services Conversation Language (WSCL) 1.0. W3C Note, 14
March 2002, http://www.w3.org/TR/wscl10/

[WSLA] - A. Dan, D. Davis et al: Web Services On Demand: WSLA-driven
Automated Management. IBM Systems Journal, 43(1), 2004

[ebXML] - Electronic Business using eXtensible Markup Language,
http://www.ebxml.org/

[OASIS] - Organization for the Advancement of Structured Information
Standards, http://www.oasis-open.org/home/index.php

[WSDL] - R. Chinnici, M. Gudgin, J.J. Moreau, J. Schlimmer, and S.
Weerawarana, Web Services Description Language (WSDL) 2.0, Available
on line: http://www.w3.org/TR/wsdl20, 2003, W3C Working Draft.

[BPEL4WS] - T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S.
Weerawarana, Business Process Execution Language for Web Services
(BPEL4WS) -Version 1.1, http://www-
106.ibm.com/developerworks/library/ws-bpel/, 2004

67

References
[WS-CDL] - N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon: Web Services

Choreography Description Language (WS-CDL) Version 1.0, Available on
line at: http://www.w3.org/TR/ws-cdl-10/, W3C Working Draft.

[UDDI] – Universal Discovery, Description and Integration,
http://www.uddi.org/

[WS-C] – Web Services Coordination (WS-C), http://www-
106.ibm.com/developerworks/library/ws-coor/

[WS-T] - Web Services Transaction (WS-Transaction), http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/

[WS-CAF] – Web Services Composite Application Framework,
http://developers.sun.com/techtopics/webservices/wscaf/

PRACTICAL DEVELOPMENT

68

69

JAX-WS 2.0 – Java API
for XML Web Services

• Specifica basata su annotazioni
• Applicata su classi ed interfacce in modo da definire e

gestire automaticamente
– il protocollo di comunicazione remota

• SOAP
– il marshalling

• XML
– lo scambio di messaggi previsto

• WSDL / XML-Schema

• Condiziona anche la codifica client (se Java)
• Alternativa a JAX-RPC (Java API for XML Remote

Procedure Calls)
– basata su file di mapping e descrittori XML

70

Premesse ed osservazioni

• Il file WSDL verrà automaticamente generato dal
framework
– JBossWS

• Non è previsto il mantenimento di alcuno stato
conversazionale !!
– I Web Service, per propria natura, sono stateless

• La realizzazione di Web Service conversazionali è ottenibile tramite
estensioni dello standard

– WS-Addressing

• Occorre ricordare che i Web Service sono creati per
essere platform-independent
– Moduli client e server possono essere codificati in linguaggi differenti
– Non è richiesta alcuna importazione di file bytecode nel client che

siano residenti nel server

71

Implementazione basata
su POJO/Servlet
1. Creare un'interfaccia che dichiari le operazioni offerte

dal Web Service

package it.uniroma1.dis.pseudoinfostud.control;

public interface ElencoUtentiAttiviService {
public String[] getElencoUtentiAttivi();

}

72

Implementazione basata
su POJO/Servlet
2. Dichiarare, per mezzo di annotazioni, le caratteristiche

del Web Service
package it.uniroma1.dis.pseudoinfostud.control;

import javax.jws.WebMethod;
import javax.jws.WebResult;
import javax.jws.WebService;

@WebService(targetNamespace =
"http://www.dis.uniroma1.it/master/pseudoinfostud/ElencoUtenti")

public interface ElencoUtentiAttiviService {

@WebMethod(operationName="getElencoUtentiAttivi")
@WebResult(name="elencoUtentiAttivi")

public String[] getElencoUtentiAttivi();
}

73

Implementazione basata
su POJO/Servlet
3. Codificare una classe che implementi quei metodi

(endpoint)
package it.uniroma1.dis.pseudoinfostud.control;

public class ElencoUtentiAttiviEndpoint
implements ElencoUtentiAttiviService {

@Override
public String[] getElencoUtentiAttivi() {

List<String> utentiAttivi =
new ArrayList<String>();

...
return utentiAttivi.toArray();

}
}

74

Implementazione basata
su POJO/Servlet
4. Dichiarare, per mezzo di annotazioni, le caratteristiche

dell'endpoint
package it.uniroma1.dis.pseudoinfostud.control;

import javax.jws.WebService;

@WebService(
name = "ElencoUtentiAttiviEndpoint",
serviceName = "ElencoUtentiAttivi",
targetNamespace = "http://www.dis.uniroma1.it/asos/pseudoinfostud/ElencoUtenti",
endpointInterface = "it.uniroma1.dis.pseudoinfostud.control.ElencoUtentiAttiviService")

public class ElencoUtentiAttiviEndpoint implements ElencoUtentiAttiviService {
public String[] getElencoUtentiAttivi() {
// ...
}

}

75

Implementazione basata
su POJO/Servlet
5. Impostare, su web.xml, i riferimenti remoti verso

l'endpoint
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5">
<display-name>PseudoInfostudWSServer</display-name>
<servlet>
<display-name>ElencoUtentiAttiviEndpoint</display-name>
<servlet-name>ElencoUtentiAttiviEndpoint</servlet-name>
<servlet-class>

it.uniroma1.dis.pseudoinfostud.control.ElencoUtentiAttiviEndpoint
</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>ElencoUtentiAttiviEndpoint</servlet-name>
<url-pattern>/ElencoUtentiAttivi</url-pattern>

</servlet-mapping>
</web-app>

76

6. Dispiegare sull'Application Server il WAR contenente
bytecode e metadati creati

Implementazione basata
su POJO/Servlet

77JAX-WS

Implementazione basata
su POJO/Servlet

78

Osservazioni POJO /
Servlet
• Sebbene si compili un'applicazione web basata su

Servlet, la classe che implementa il Web Service non
deve dichiarare esplicitamente l'estensione della
classe javax.servlet.GenericServlet

• L'implementazione è estremamente semplice
• Qualunque classe può divenire l'endpoint di un Web

Service, una volta apposte opportunamente le
annotazioni

79

Il client
• Non è necessario che il client sia codificato in Java

– Esula dagli scopi di questo corso l'integrazione con altre tecnologie...
• ... dunque nel resto della lezione considereremo la codifica in Java!

• Occorre ricordare che non solo i valori e le istanze, ma
anche la definizione degli stessi, sono basati su XML
– WSDL contiene tutte le informazioni, con riferimenti a XML-Schema

interni o esterni

• Nel progetto client, anche se codificato in Java, non si
devono importare direttamente le classi definite sul
server!
– L'esperienza insegna che, provando, si ottengono a run-time errori

alquanto criptici...
com.sun.xml.ws.model.RuntimeModelerException: runtime modeler
error: Wrapper class bla.bla.bla.Bla is not found. Have you run APT to
generate them?

80

Gli stub

• Occorre generare gli stub delle classi presenti sul
server
– Gli stub devono essere prodotti sulla base del solo WSDL

• Il comando per ottenere da shell (prompt) la codifica e
la compilazione di tali stub è wsimport
– Esempio d'uso

wsimport
-d ‹directory_destinazione_file_compilati›
-s ‹directory_destinazione_file_sorgente_generati›
-keep
-p ‹package_classi_stub›
‹uri_wsdl›

81

Gli stub

• Occorre generare gli stub delle classi presenti sul
server
– Gli stub devono essere prodotti sulla base del solo WSDL

• Il comando per ottenere da shell (prompt) la codifica e
la compilazione di tali stub è wsimport
– Caso reale

wsimport
-d /home/mobidis/workspace/SimpleWSClient/bin
-s /home/mobidis/workspace/SimpleWSClient/src
-keep
-p stub
http://127.0.0.1:8080/ElencoUtentiAttivi/ElencoUtentiAttivi?wsdl

82

Gli stub
• Le classi di Stub vanno

aggiunte al progetto
Java del client
– Il mantenimento dei sorgenti

è opzionale...
– ... ma molto utile a scopo

didattico

• Attenzione: sono classi
diverse dalla controparte
sul server

83

Invocazione di
operazioni del WS
• Dati gli stub (importati nella classe client), per ottenere

un riferimento locale all'endpoint (proxy):
‹EndpointInterfaceName› endpoint =

new ‹ServiceName›()
.get‹ServicePortName›();

84

Invocazione di
operazioni del WS
• Su tale classe, potranno essere invocati i metodi

dichiarati tramite annotazione @WebService
– Il nome dei metodi corrisponderà al nome specificato come attributo

name dell'annotazione, se presente!

Web Services and WS-BPEL

85

