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Concentrating on behaviors: 
SUM two integers 

•  Consider a program for computing the sum of two integers. 
•  Such a program has essentially two states 

–  the state S0 of the memory before the computation: including 
the two number to sum 

–  the state S1 of the memory after the computation: including the 
result of the computation 

•  Only one action, i.e. “sum”, can be performed 
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Concentrating on behaviors: 
CheckValidity 

•  Consider a program for computing the validity of a FOL 
formula: 

•  Also such a program has essentially two states 
–  the state S1 of the memory before the computation: including 

the formula to be checked 
–  the state S2 of the memory after the computation: including 
“yes”, “no”, “time-out” 

•  Only one action, i.e. “checkValidity”, can be performed 
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Concentrating on behaviors 

•  The programs SUM and CheckValidity are very different from 
a computational point of view. 

–  SUM is trivial 
–  CheckValidity is a theorem prover hence very complex 

•  However they are equally trivial from a behavioral point of 
view: 

–  two states S1 and S2 
–  a single action ! causing the transition 
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Concentrating on behaviors: 
RockPaperScissor 

•  Consider the program RockPaperScissor that allows to play 
two players the the well-known game. 

•  The behavior of this program is not trivial: 
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Concentrating on behaviors: 
RockPaperScissor (automatic) 

•  Consider a variant of the program RockPaperScissor that 
allows one players to play against the computer. 

•  The behavior of this program is now nondeterministic: 
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Concentrating on behaviors: 
WebPage 
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A web page can have a complex behavior! 

http://www.informatik.uni-trier.de/~ley/db/ 
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Concentrating on behaviors: 
Vending Machine 
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Concentrating on behaviors: 
Another Vending Machine 
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Concentrating on behaviors: 
Vending Machine with Tilt 
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Transition Systems 

•  A transition system TS is a tuple T = < A, S, S0, !, F> where: 
–   A is the set of actions 
–   S is the set of states  
–   S0 ! S is the set of initial states 
–   ! ! S " A " S is the transition relation 
–   F ! S is the set of final states 
  

•  Variants: 
–  No initial states 
–  Single initial state 
–  Deterministic actions 
–  States labeled by propositions other than Final/¬Final 
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(c.f. Kripke Structure) 
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Process Algebras are 
Formalisms for Describing TS 

•  Trans (a la CCS) 
–  Ven = 20c.Venb + 10c.Vens 
–  Venb = big.collectb.Ven 
–  Venl = small.collects.Ven 

•  Final 
–   # Ven 
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•  TS may have infinite states -  e.g., this happens when generated by  
                                                         process algebras involving iterated concurrency 
 
•  However we have good formal tools to deal only with finite states TS 
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Example (Clock) 
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TS may describe (legal) nonterminating processes 
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Example (Slot Machine) 
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Nondereminisic transitions express 
                     choice that is not under the control of clients 
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Example 
(Vending Machine - Variant 1) 
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Example  
(Vending Machine - Variant 2) 
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Inductive vs Coinductive Definitions: 
Reachability, Bisimilarity, … 

 
 



Reachability 

•  A binary relation R is a reachability-like relation iff: 

–  (s,s) $ R  
–  if % a, s’. s &a s’ ' (s’,s’’) $  R then (s,s’’)$ R  

 
•  A state s0 of transition system S reaches a state sf iff for all a 

reachability-like relations  R we have (s0, sf)$ R. 
 

•  Notably that  
–  reaches is a reachability-like relation itself 
–  reaches  is the smallest reachability-like relation 

 
Note it is a inductive definition! 
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Computing Reachability on 
Finite Transition Systems 
Algorithm ComputingReachability 
 
Input: transition system TS   
Output: the reachable-from relation (the smallest reachability-like relation) 
 
Body 

 R = ( 
 R’ = {(s,s) | s $ S} 
 while (R ! R’) { 
  R := R’ 
  R’ := R’ ) {(s,s’’) | % s’,a. s &a s’ ' (s’,s’’)$ R } 
 } 
 return R’ 

YdoB 
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Bisimulation 

•  A binary relation R is a bisimulation iff: 
 
     (s,t) $ R implies that  

–  s is final   iff   t is final 
–  for all actions a 

•  if s &a s’  then % t’ . t &a t’  and (s’,t’)$ R  
•  if t &a t’  then % s’ . s &a s’  and (s’,t’)$ R 

 
•  A state s0 of transition system S is bisimilar, or simply equivalent, 

to a state t0 of transition system T iff there exists a bisimulation 
between  the initial states s0 and t0. 
 

•  Notably  
–  bisimilarity is a bisimulation 
–  bisimilarity is the largest bisimulation 

 
Note it is a co-inductive definition! 
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Computing Bisimilarity on 
Finite Transition Systems 
Algorithm ComputingBisimulation 
Input: transition system TSS = < A, S, S0, !S, FS> and   
           transition system TST = < A, T, T0, !T, FT>  
Output: the bisimilarity relation (the largest bisimulation) 
 
Body 

 R = S " T  
 R’ = S " T - {(s,t) | ¬(s $ FS  *  t $  FT)} 
 while (R ! R’) { 
  R := R’ 
  R’ := R’ - ({(s,t) | % s’,a. s &a s’  ' ¬% t’ . t &a t’ ' (s’,t’) $ R’ } 

                               {(s,t) | % t’,a. t &a t’  ' ¬% s’ . s &a s’ ' (s’,t’) $ R’ }) 
 } 
 return R’ 

Ydob 
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Example of Bisimulation 
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Example of Bisimulation 
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Automata vs.Transition Systems 

•  Automata 
–  define sets of runs (or traces or strings): (finite) length sequences of 

actions 
•  TSs 

–  … but I can be interested also in the alternatives “encountered” during 
runs, as they represent client’s “choice points” 
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Different as 
TSs 

As automata they 
recognize the 
same language:  
abc* + ade* 
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