
Transition Systems and
Bisimulation
Giuseppe De Giacomo

Service Integration
A.A. 2010/11

Transition Systems

Concentrating on behaviors:
SUM two integers

•  Consider a program for computing the sum of two integers.
•  Such a program has essentially two states

–  the state S0 of the memory before the computation: including
the two number to sum

–  the state S1 of the memory after the computation: including the
result of the computation

•  Only one action, i.e. “sum”, can be performed

Service Integration – aa 2010/11 Giuseppe De Giacomo 3

S1 S0

sum

Concentrating on behaviors:
CheckValidity

•  Consider a program for computing the validity of a FOL
formula:

•  Also such a program has essentially two states
–  the state S1 of the memory before the computation: including

the formula to be checked
–  the state S2 of the memory after the computation: including
“yes”, “no”, “time-out”

•  Only one action, i.e. “checkValidity”, can be performed

Giuseppe De Giacomo 4

S1 S0

checkValidity

Service Integration – aa 2010/11

Concentrating on behaviors

•  The programs SUM and CheckValidity are very different from
a computational point of view.

–  SUM is trivial
–  CheckValidity is a theorem prover hence very complex

•  However they are equally trivial from a behavioral point of
view:

–  two states S1 and S2
–  a single action ! causing the transition

Giuseppe De Giacomo 5

S1 S0

!

Service Integration – aa 2010/11

Concentrating on behaviors:
RockPaperScissor

•  Consider the program RockPaperScissor that allows to play
two players the the well-known game.

•  The behavior of this program is not trivial:

Giuseppe De Giacomo 6

2paper
2wins

1wins

tie

2paper
tie

2wins

1wins

2paper
1wins

tie

2wins

1paper

Service Integration – aa 2010/11

Concentrating on behaviors:
RockPaperScissor (automatic)

•  Consider a variant of the program RockPaperScissor that
allows one players to play against the computer.

•  The behavior of this program is now nondeterministic:

Giuseppe De Giacomo 7

2paper
2wins

1wins

tie

2paper
tie

2wins

1wins

2paper
1wins

tie

2wins

1chooses

Service Integration – aa 2010/11

Concentrating on behaviors:
WebPage

Giuseppe De Giacomo 8

A web page can have a complex behavior!

http://www.informatik.uni-trier.de/~ley/db/

Service Integration – aa 2010/11

Concentrating on behaviors:
Vending Machine

Giuseppe De Giacomo 9

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

Service Integration – aa 2010/11

Concentrating on behaviors:
Another Vending Machine

Giuseppe De Giacomo 10

20c 10c

collectb collects

big small

S0

S1

S4

10c

big

S0

S1 S2

S3

Service Integration – aa 2010/11

Concentrating on behaviors:
Vending Machine with Tilt

Giuseppe De Giacomo 11

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

tilt

tilt

20c

10c

Service Integration – aa 2010/11

Transition Systems

•  A transition system TS is a tuple T = < A, S, S0, !, F> where:
–  A is the set of actions
–  S is the set of states
–  S0 ! S is the set of initial states
–  ! ! S " A " S is the transition relation
–  F ! S is the set of final states

•  Variants:
–  No initial states
–  Single initial state
–  Deterministic actions
–  States labeled by propositions other than Final/¬Final

Giuseppe De Giacomo 12

(c.f. Kripke Structure)

Service Integration – aa 2010/11

Process Algebras are
Formalisms for Describing TS

•  Trans (a la CCS)
–  Ven = 20c.Venb + 10c.Vens
–  Venb = big.collectb.Ven
–  Venl = small.collects.Ven

•  Final
–  # Ven

Giuseppe De Giacomo 13

20c 10c

collectb collects

big small

Ven

Venb Vens

 collectb.Ven collects.Ven

•  TS may have infinite states - e.g., this happens when generated by
 process algebras involving iterated concurrency

•  However we have good formal tools to deal only with finite states TS

Service Integration – aa 2010/11

Example (Clock)

Giuseppe De Giacomo 14

tick

S0

TS may describe (legal) nonterminating processes

Service Integration – aa 2010/11

Example (Slot Machine)

Giuseppe De Giacomo 15

collectwin 1$

play

play

S0

S1

S2

Nondereminisic transitions express
 choice that is not under the control of clients

Service Integration – aa 2010/11

Example
(Vending Machine - Variant 1)

Giuseppe De Giacomo 16

20c 10c

collectb

collects

big small

S0

S1 S2

S3 S4

20c

10c

S5

Service Integration – aa 2010/11

Example
(Vending Machine - Variant 2)

Giuseppe De Giacomo 17

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

S’1

S’3

20c

big

collectb

Service Integration – aa 2010/11

Inductive vs Coinductive Definitions:
Reachability, Bisimilarity, …

Reachability

•  A binary relation R is a reachability-like relation iff:

–  (s,s) $ R
–  if % a, s’. s &a s’ ' (s’,s’’) $ R then (s,s’’)$ R

•  A state s0 of transition system S reaches a state sf iff for all a

reachability-like relations R we have (s0, sf)$ R.

•  Notably that
–  reaches is a reachability-like relation itself
–  reaches is the smallest reachability-like relation

Note it is a inductive definition!

Giuseppe De Giacomo 19 Service Integration – aa 2010/11

Computing Reachability on
Finite Transition Systems
Algorithm ComputingReachability

Input: transition system TS
Output: the reachable-from relation (the smallest reachability-like relation)

Body

 R = (
 R’ = {(s,s) | s $ S}
 while (R ! R’) {
 R := R’
 R’ := R’) {(s,s’’) | % s’,a. s &a s’ ' (s’,s’’)$ R }
 }
 return R’

YdoB

Giuseppe De Giacomo 20 Service Integration – aa 2010/11

Bisimulation

•  A binary relation R is a bisimulation iff:

 (s,t) $ R implies that

–  s is final iff t is final
–  for all actions a

•  if s &a s’ then % t’ . t &a t’ and (s’,t’)$ R
•  if t &a t’ then % s’ . s &a s’ and (s’,t’)$ R

•  A state s0 of transition system S is bisimilar, or simply equivalent,

to a state t0 of transition system T iff there exists a bisimulation
between the initial states s0 and t0.

•  Notably
–  bisimilarity is a bisimulation
–  bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

 Giuseppe De Giacomo 21 Service Integration – aa 2010/11

Computing Bisimilarity on
Finite Transition Systems
Algorithm ComputingBisimulation
Input: transition system TSS = < A, S, S0, !S, FS> and
 transition system TST = < A, T, T0, !T, FT>
Output: the bisimilarity relation (the largest bisimulation)

Body

 R = S " T
 R’ = S " T - {(s,t) | ¬(s $ FS * t $ FT)}
 while (R ! R’) {
 R := R’
 R’ := R’ - ({(s,t) | % s’,a. s &a s’ ' ¬% t’ . t &a t’ ' (s’,t’) $ R’ }

 {(s,t) | % t’,a. t &a t’ ' ¬% s’ . s &a s’ ' (s’,t’) $ R’ })
 }
 return R’

Ydob

Giuseppe De Giacomo 22 Service Integration – aa 2010/11

Example of Bisimulation

Giuseppe De Giacomo 23

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

20c 10c

collectb

collects

big small

S0

S1 S2

S3 S4

20c

10c

S5

Service Integration – aa 2010/11

Example of Bisimulation

Giuseppe De Giacomo 24

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4
20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

S’1

S’3

20c

big

collectb

Service Integration – aa 2010/11

a

b
c e

d

a

Automata vs.Transition Systems

•  Automata
–  define sets of runs (or traces or strings): (finite) length sequences of

actions
•  TSs

–  … but I can be interested also in the alternatives “encountered” during
runs, as they represent client’s “choice points”

Giuseppe De Giacomo 25

a

b
c e

d

Different as
TSs

As automata they
recognize the
same language:
abc* + ade*

Service Integration – aa 2010/11

