Essential overview

Service Composition Via Computing composition via simulation

simulation Using an LTL synthesis tool, TLV, for

computing composition via simulation
|

Seminari di Ingegneria del SW
——1] Slides by Fabio Patrizi and Giuseppe De Giacomo
DIS, Sapienza — Universita di Roma

Rome - June, 2008 Rome - June, 2008 Web service composition via simulation and TLV

The Problem The Problem (cont.)
Given: We model services as transition systems:
a community of available services
C= {31’___’Sn}; ATSisatupleT=<A,S, so, 0, F> where:

a target service A is the set of actions

. S is the set of states
T, '

. - so € S is the set of initial states
Find a composition (or orchestrator) s.t. I ———

— C mimics T — F C S is the set of final states

Rome - June, 2008 Web service composition via simulation and TLV 3 Rome - June, 2008 Web service composition via simulation and TLV

Finding a composition Simulation Relation

Strategies for computing compositions: Intuition:

a service T can be simulated by community C

Reduction to PDL if C can reproduce T’s behavior over time.

Simulation-based PR

Rome - June, 2008 Web service composition via simulation and TLV 5 Rome - June, 2008 Web service composition via simulation and TLV 6

Simulation Relation (cont.) Simulation Relation (cont.)

Given two transition systems 7= < A, T, t°, dr, Fr> and

C= <A, S, sc® 8¢, Fc> a simulation relation on TxC is a binary Algorithm ComputingSimulation ,
relation on the states t € Tan s of C such that: Input: transition system T = <A, T, t°, dr, Fr> and
) i transition system C= <A, S, sc°, &¢, F¢>
(58) & R ImpEs Uxis Output: the simulated-by relation (the largest simulation)
tis final implies that s is final
for all actions a Body
ift 5at’ then3s’.s —as’ and (ts")e R R=190
R'=TxS-{(ts)|teFcAn-(se Fe)}
If exists a simulation relation R (such that (t, sc°) € R, then Wh”eR(R-—*RR’I) {
we say that or T is simulated by C (or C simulates T). R 1= R'- {(t,5) | 3t)a. t sat’ A -3 .5 a5 A(ths) €R'}
¥
Simulated by is (i) a simulation; (ii) the largest simulation return R’

Ydob
NB1: Simulated by is a co-inductive definition!
NB2: A simulation is just one of the two directions of a bisimulation

Rome - June, 2008 Web service composition via simulation and TLV 7 Rome - June, 2008 Web service composition via simulation and TLV 8

Simulation relation (cont.) Computing composition via simulation

Idea:
T C: A service community can be seen as the
(possibly N-DET) asynchronous product of
available services...

Can C simulate T?
YES!
: .. . : Computing composition via simulation
Computing composition via simulation
(cont.)
Let S1,... ,Sn be the TSs of the component services.) i
Available services Community TS
The Community TS C = < A, S¢, sc®, 3¢, Fc> is the a it e i fench
asynchronous product of Si,...,S, where: ' _ T e ()
* Ais the set of actions /\[‘ _ @ "

&)
$% o/ owtputtaian
. W/

input_french

0 o 0 b- g inpm’jench Q& \
.SC:(S1,...,Sm) . /\) W \
" input_german - F)
~ e
*«FCFix.xFn e~ pan (o ED) T () () e (i
= . output_italian < output_italian < e
—

*Sc =51 X..x Sn

* O¢ C Sc x A x Sc is defined as follows: . .) <
output_italian % output_itall :‘”eip output_italian §w“ «
. @, a, 8
(S1 X...X Sn) —ra (St X...x s'n) iff %, %, & o
N \ S)
e Ji @ A . C: input_french N . & §
Ji.si—=asi € Oi O | pgerman = 7N N
j#i 1 inpt_ S0801) | | | sosist & %”V
Vij#i.si=g %4~"‘ @ . oupu_alin 4 &
O -
Rome - June, 2008 Web service composition via simulation and TLV 1" Rome - June, 2008 Web service composition via simulation and TEW- ~ 12

Computing composition via simulation
(cont.)

Theorem:
A composition exists if and only if
C simulates T

incliidina all hahavinre nf anv faacihla

... thus, the problem becomes:
“Can the community TS C simulate
target service T?”

Rome - June, 2008 Web service composition via simulation and TLV 13

The orchestrator generator

Given the largest simulation S form TSt to TSc(which include the initial states), we
can build the orchestrator generator.

This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

Def: OG = < A, [1,...,n], St, s, +, r, Fr> with
* A : the actions shared by the community
* [1,..,n]: the identifiers of the available services in the community
* Sr = Six S1 x...x Sn: the states of the orchestrator program
e 59 = (s% s%, ..., %) : the initial state of the orchestrator program
*F-C{(st,s1,...,5n) | steFt: the final states of the orchestrator program
* wr: Srx Ar— [1,..,n] : the service selection function, defined as follows:

¢ If st —a, S'tthen choose k s.t. 3 sk. sk —a, Sk’ A (St (S1, ..., Sk, ..., Sn) JES

¢ dr C SrxArx[1,.,n] = Sr: the state transition function, defined as follows:

e Let wr(St, S1, ...; Sk, .., Sn, @) = k then
(St, St «evy Sk -eey Sn)—rak (St S1, ..y Sk, -+, Sn) Where sk —a, S’k
Rome - June, 2008 Web service composition via simulation and TLV 15

Computing composition via simulation
(cont.)

Community TS

input_french

Ok,
./ how ca

———ompurmarmr

n we synthesize it?

Rome - June, 2008

The orchestrator generator (cont.)

From the maximal simulation, we can easily
derive an orchestrator generator, e.g.:

topwt_french,c/{a.c}

o palamclle} —

Rome - June, 2008 Web service composition via simulation and TLV 16

The orchestrator generator (cont.)

Computing composition via simulation
(cont.)

From OG, one can select services to perform
client actions.

>

Rome - June, 2008 Web service composition via simulation and TLV 17

On-the-fly failure recovery with OG
[KROS]

Summing up:
Compute community TS C;
Compute the maximal simulation of 7 by C;

If simulation exists, compute OG;
else return “unrealizable”;

Exploit OG for available service selection,
even in a just-in-time fashion.

Rome - June, 2008 Web service composition via simulation and TLV 18

Parsimonious failure recovery with OG
[KRO8]

OG already solves:
Temporary freezing of an available service k
Stop selecting k in OG until service k comes back!

Unexpected state change of an available service

Recompute OG / simulated-by from new initial
state ...

... but OG / simulated-by independent from initial
state!

Simply use old OG / simulated-by from the new
state!!

Rome - June, 2008 Web service composition via simulation and TLV 19

Algorithm ComputingSimulation - parametrized version
Input: transition system T = <A, T, t° &r, Fr> and
transition system C= <A, S, sc°, d¢, Fc>
relation Rinit including then simulated-by
relation included then simulated-by
Output: the simulated-by relation (the largest simulation)

Body
R=10
R’ = Rinit- {(t,s) | te Ft A =(s € Fo)}
while (R # R") {
R:=R’
R :=R"-{(t,s) | Itha. t »at’ A-Is".s —sas"A(t)s") eRU
}
return R'U
Ydob

Rome - June, 2008 Web service composition via simulation and TLV 20

Parsimonious failure recovery with OG
(cont.) [KR08]

Let [1,.., n] = WUF be the available services.
Let R = Rwur be the simulated-by relation of target by services WUF.
Then consider the following relations [KR08]:

Rw ¢ mw(Rwur)

(Tw(R) is not a simulation of target by services W)

Tw(RwuF) is the projection on W of a relation: easy to compute

Rw x F ¢ Rwur

(Rw x F is a simulation of target by services WUF
Rw x F is the cartesian product of 2 relations (F is trivial): easy to compute

Rome - June, 2008 Web service composition via simulation and TLV 21

Comments

Full observability is crucial for OG to work properly. In
fact, in order to propose services for action execution,
state of each available service needs to be known.
Partial observability possible through knowledge
operator [to be done]

Interesting extension: dealing with nondeterministic
(devilish) available services (a slightly different notion
of simulation is needed). [KR08]

OG allows for failure tolerance! [KR08]

Rome - June, 2008 Web service composition via simulation and TLV 23

Parsimonious failure recovery with OG
(cont.) [KRO8]

When services F die

compute simulated-by Rw starting TTw(Rwur) !

If dead services F come back

compute simulated-by Rwur starting Rw x F !

Remember:

Rw < Tw(Rwur)

(Tw(R) is not a simulation of target by services W)
Rw xF < Rwur
(Rw % F is a simulation of target by services WUF)

Rome - June, 2008 Web service composition via simulation and TLV 22

Tools for computing composition
based on simulation

Use simulation computing tools for
composition [to be done]

Use LTL-based syntesis tools, like TLV, for
indirectly computing composition via
simulation [Patrizi PhD08] <«

Rome - June, 2008 Web service composition via simulation and TLV 24

Composing services via TLV Composing services via TLV (cont.)

The environment TLV (Temporal Logic Verifier)

i i file .smv: . .
[Pnueli and Shahar, 1996] is a useful tool that Commnty How to write this?
can be used to +
automatically compute the orchestrator foreet
generator,
given a problem instance. Comp'in“Pf‘ S
Synth-inv.tlv)
) Given
Composing services via TLV (cont.) Composing services via TLV (cont.)

We provide TLV a file written in (a flavour of) Anamejule: -

SMV, a language for specifying TSs. A caedd”
) g . g : p y g ﬁgm e - - — - - internal variable(s)
SMV specifications are typically composed of ~—._ Weemr---c
modules, properly interconnected; ey
" - - e
Intuitively, a module is a sort of TS which may -
share variables with other modules; RN loc = 1 act - atepiay © 0
A module may contain several submodules, e o o
. next (act =
properly synchronized; —
e act = nil : {search};
Module main is mandatory and contains all e e I
relevant modules, properly interconnected and TR ? e

SynChronized. DEFINE _
final = (266 = 0)jqm = = = === == = —_boolean expression

Rome - June, 2008 Web service composition via simulation and TLV 27 Rome - June, 2008 Web service composition via simulation and TLV 28

Composing services via TLV (cont.)

We introduce SMV formalization by means of

the following example, proceeding top-down:

search

Y\ e display
() feiun -
I\ search RN N /
P \u&n» ———(o 77—
b — u ‘
I display - / 4% \\““//
(a) Available service S (b) Available
Sy
search
~ N
o)) (o)
|| £
~ o
\dlsplay/

Rome - June, 2008

(c) Targe

Web service composition via simulation and TLV

Module interconnections

29

main
Output PPt Inp_ug(l_ndex)
index -~ ~ ;’ ias
S2(index, action)« - - 1 - -~ action
o™ 1
II -2 !
1 4 \
1 [/ \\
T [
1 1 \\
. y . - \\.
= S1(index, actidn) T1(action)

Rome - June, 2008

Web service composition via simulation and TLV

31

Composing services via TLV (cont.)

The application is structured as follows:
1 module main
1 module Output, representing OG service

selection

1 module Input, representing the
(synchronous) interaction community-target

1 module mT1 representing the target service

Rome - June, 2008

Web service composition via simulation and TLV

The module main

1 module mSi per available service

Instan

ce independent

Includes synchronous submodules In and

Out.

Target TSs

Service selection

@ ity + . Keyword
omm Y T L MODULE main

~ (AR A
“~In- g,ysgem Input (Out
~>0ut « system Jutput;

DEFINE "“‘~~~-:_\

Expression:
condition of

“good” composition
(depends on In)

_»good := !In.failure;

-
lr

Rome - June, 2008

Web service composition via simulation and TLV

Parameter:
, variable index of
,7 | submodule Out

4
/

index)

In and Out evolve
3 synchronously

The module Output

Depends on number of available services. In
this case: 2

MODULE OQOutput

Rome - June, 2008

VAR

init (index)
next (index)

Web service composition via simulation and TLV

The module Input

index:O..Q?l
ASSIGN

Number of
- - available
services

Only for init

33

Action alphabet +
special action
nil (used for init)

MODULE Input (index)

~ VAR
Target servi TT--
AIOENSeIVICS \\ action ™ {nil,search,display,return};

Available service 1 ~ *T1
Available service 2| -»S2 :

“s1

DEFINE

: mT1(action);
: mS1(index,action);
mS2(index,action);

The module Output (cont.)

MODULE Output
VAR
index:0..2;
ASSIGN
init(index) := 0;

next (index) := 1..2; |

MODULE main .
VAR Synchronized
_ovem Input(Out.index
Out: system Output;
DEFINE
good := !In.failure;

The goal is computing a restriction
on Output’s transition relation such
that good is satisfied. RECALL that
In is affected by Out through
parameter Out.index

Rome - June, 2008 Web service composition via simulation and TLV 34

The target module mT1

Think of mT1 as an action producer

failure

:= (S1.failure |

S2.failure) |

1(T1.final -> (S1.final & S2.final));

Fail if:

*S1orS2(...or SN) fail, OR
* T1 can be in a final state when S1 or S2 (... or SN) are not.

Rome - June, 2008

Web service composition via simulation and TLV

35

TS States | MODULE nT1(act) “Scareh
~ YR _ p
loc : 0..1; 7D ‘)
ASSIGN N\ N
- > init(loc) := 0; N isplay
Init|_ _____ » init(act) := nil; Transition function
mextloe) = (deterministic, in general)
. loc = 0 & act = search : 1; -
Output relation loc = 1 & act = display : 0; - =~
(non-deterministic, TRUE : loc;
) esac;
n general) next(act) :=
~ -~ case
S~ act = nil : {search};
- loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE : {act};
esac;

DEFINE
~ final := (loc = 0); « - o State 0 is final

Web service composition via simulation and TLV

Rome - June, 2008

The target module mT1 (cont.) The target module mT1 (cont.)

1. A statement of the form: =
nexz:::c)ﬁ leioc :0..1;
case_1; ASSIGN (
init(loc) 5
iens init(act) i= 1 1; v display_~ loc=0
TRUE : loc; next(loc) := —— _ |
eoncs Y loc = 0 & act = search : 1; aCt_nI
is included for defining next loc value. Each case_i expression refers to a loc = 1 & act = display : 0;
different. pair < s,a =& S; % Ay such that 4(s.a) is defined (order does not TRUE : loc;
loc = ind(s) & act = a :dy(s,a) e = case
2. A statement of the form TN et - e | e
"“Z:;t)'; loc = 1 & act = display : i::l}rch}
case_0; esac;
Pt DEFINE
= final := (Euc =0);
T sets
esac; — MODULE Input (index)
is included for defining next act assignment. Let acl : S, — 2 he defined VAR)
et 2 a € Ay |3 o S o Thon, ense.0 Asumes the action : {nil,scarch,display,return};
Form: T1 : mTi(action);
EE30mL 5 i) S1 : mS1(index,action);
82 : mS2(index,action);
sion refers to a ditferent pair < s,a =€ 5, x A; DEFINE
der does not mafter) and assumes the form: failure := (Si.failure | S2.failure) |
Toc = ind(s) & act = a : act(s 1(T1.final -> (S1.final & S2.final));
Rome - June, 2008 Web service composition via simulation and TLV 37 Rome - June, 2008 Web service composition via simulation and TLV 38
externally T search
Te-~T3-- e
c_ontroIIed MODULE mS1(Thdex,action) \ /M\
(input parameters) VAR A carch
loc : 0..1; ‘\/‘\\1’/]\"/@
A ASSICN —_display A . i
If service is not e e(loe) i 0. &k Transiion reration MODULE mS2(index,action) N
.
selected... . _nixt(loc) ND. i | /DEFINE =
...remainstilll |--_-__ R =< (ND, in general) 4 . NG
index . loc; — ,/ failure := A\
: {0,133 s . _ . . . A
service loc=1 & actiqn in display,return}k Sots. instead of / index = 2 & !(action in {display});
selection [*« : loc; ets, instead o J final := TRUE;
CEXE elements
“DEFINE - Stateless system:
Check whether S gatlure : S~--. - ith)
assigned action Tt =~~~ | next(action) neither states nor
is actually 1 — . missing! = transition relation
executable. — == (loc = 1 & action in {display, return}) needed
q -)8
Directly derived from final := (loc = 0);
transition relation.
Rome - June, 2008 Web service composition via simulation and TLV 40

Rome - June, 2008 Web service composition via simulation and TLV 39

Putting things together

MODULE main
VAR
In: system Input(Out.index);
Out: system Output;
DEFINE
good := !In.failure;

MODULE Output
VAR
index:0..2;
ASSIGN
init(index) := 0;
next(index) := 1..2;

Rome - June, 2008 Web service composition via simulation and TLV 41

Putting things together (cont.)

MODULE mT1(act) Target service states |
VAR
loc:0..1;
init(loc) := 0;

init(act) := nil;
next(loc) :=
case
loc = 0 & act = search : 1;
loc = 1 & act = display : 0;
TRUE : log;
esac;
next(act) :=
case
act = nil : {search};
loc = 0 & act = search : {display};
loc = 1 & act = display : {search};

ES::UE jicy; List final states using either logical OR ‘|’
DEFINE 1 (e.g., (loc=0[loc=1|loc=3)) or set
final := (loc = 0); construction (e.g., (loc={0,1,3})).
Rome - June, 2008 Web service L} ana o a3

Putting things together (cont.)

MODULE Input(index) Whole shared action
VAR)) } — 1 alphabet plus special
action : {nil,search,display,return}; action nil

T1 : mT1(action);
S1 : mS1(index,action); Nevorchandes

S2 : mS2(index,action);
DEFINE
failure := (S1.failure | S2.failure)

I(T1.final -> (S1.final &S2.final));

Rome - June, 2008 Web service composition via simulation and TLV 42

Putting things together (cont.)

MODULE ms1(index,acty| Available service states |
VAR
loc :/0..1;
__Never changes

index !=1:1

loc=0 & acgitn in {search}: {0,1};

Index changes. Same
as module name

);
final := (loc = 0);

0 & action in {search})|
1 & action in {display, return})

Rome - June, 2008 Web service composition via simulation and TLV 44

Putting things together (cont.)

MODULE mS2(index,action)

DEFINE
failure :=
index = 2 & !(action in {display});
final := TRUE;
Rome - June, 2008 Web service composition via simulation and TLV 45

Running the specification (cont.)

That is, the following OG:

4:

In.action=display
In.Tl.loc=1
In.S1.loc=1

Out.index=1

2:

1: :
In.action=search

In.action=nil

In.T1.loc=0 In.T1.loc=0
In.S1.loc=0 In.S1.loc=0
Out.index=0 Out.index=1 3:

In.action=display
In.Tl.loc=1
In.S1.loc=0

Out.index=2

Rome - June, 2008 Web service composition via simulation and TLV 47

Running the specification

Running TLV with our specification as input...

State 1

In.action = nil, In.Tl.loc =0, In.S1l.loc = 0, Out.index = 0,
,~§tate 2

~" In.action = search, In.T1.loc = 0, In.Sl.loc = 0, Out.index = 1,

State 3
In.action = display,In.T1.loc ="1;"in.SL.lag = O,

Out.index = 2,

From 1 to
From 2 to
From 3 to

From 4 to
Rome - June, 2008 Web service composition via simulation and TLV

46

