Service composition via
simulation

Seminari di Ingegneria del SW
Slides by Fabio Patrizi and Giuseppe De Giacomo

DIS, Sapienza — Universita di Roma

Rome - June, 2008

Essential overview

Computing composition via simulation

Using an LTL synthesis tool, TLV, for
computing composition via simulation

Rome - June, 2008 Web service composition via simulation and TLV 2

The Problem

Given:
a community of available services
C={S,.-,S};

a target service

T
Find a composition (or orchestrator) s.t.
Cmimics T
Rome - June, 2008 Web service composition via simulation and TLV

The Problem (cont.)

We model services as transition systems:

ATSisatupleT= <A, S, so, 0, F> where:

A is the set of actions

S is the set of states

so € S is the set of initial states

0 C S x A xS is the transition relation
F C S is the set of final states

Rome - June, 2008 Web service composition via simulation and TLV

Finding a composition

Strategies for computing compositions:
Reduction to PDL

Simulation-based PR

Rome - June, 2008 Web service composition via simulation and TLV 5

Simulation Relation

Intuition:

a service T can be simulated by community C
if C can reproduce T’s behavior over time.

Rome - June, 2008 Web service composition via simulation and TLV 6

Simulation Relation (cont.)

Given two transition systems 7= < A, T, t°, dr, Fr> and
C= <A, S, sc% d¢, Fc> a simulation relation on T xC is a binary
relation on the states t € 7an s of C such that:

(t,s) € R implies that
tis final implies that s is final

for all actions a
ift wat’' then3ds'.s —as’ and (t,s")e R

If exists a simulation relation R (such that (t° sc®) € R, then
we say that or T is simulated by C (or C simulates T).

Simulated by is (i) a simulation; (ii) the largest simulation

NB1: Simulated by is a co-inductive definition!

NB2: A simulation is just one of the two directions of a bisimulation

Rome - June, 2008 Web service composition via simulation and TLV 7

Simulation Relation (cont.)

Algorithm ComputingSimulation

Input: transition system T = <A, T, t°, dr, Fr> and
transition system C= <A, S, sc°, d¢, Fc>

Output: the simulated-by relation (the largest simulation)

Body
R=90
R =TxS-{(t,s)|te Ft A=(se Fo)}
while (R # R") {
R:=R’
R':=R'-{(ts) |Itha.t =at' A=-3s".s—=as"A(t's")eR"}
b
return R’
Ydob

Rome - June, 2008 Web service composition via simulation and TLV 8

Simulation relation (cont.)

Can C simulate T?
YES!

Rome - June, 2008 Web service composition via simulation and TLV 9

Computing composition via simulation

|dea:

A service community can be seen as the
(possibly N-DET) asynchronous product of
available services...

Rome - June, 2008 Web service composition via simulation and TLV 10

Computing composition via simulation

Let Si,... ,Sn be the TSs of the component services.

The Community TS C = < A, S¢, sc?, d¢, Fe> is the
asynchronous product of S;y,...,5n where:

* A is the set of actions

*Sc = S1 x...x Sn

. SCO = (5011---/ Som)

*F CF1 x...x Fn

« O¢c C Sc x A x Sc is defined as follows:

(S1 X...X Sn) —*a (S'1 X...x S'n) iff
*Ji.si—asi €0

* V j#i. s'j = sj

Rome - June, 2008 Web service composition via simulation and TLV 1

Computing composition via simulation
(cont.)

Available services Community TS

input_french input _french

a: /\)
/\f‘ output_italian . s1,50,0 | —mput_german (g3 coq1 | s
SR—c e O
" N S
T~ .
») . 4
§qf‘,° g N _ '2%’ \ ?6@
.\‘\Q‘)\' _\o\»\o '/ output_italian "%, N 0% \‘i;z
7 o %, \ X
input h % input_french % @\ in ench R 2
Tnput_german Input_ frenc & putfre % P fr %,
b.) 0 \ £3 \ %
" - 8 . -~ h -~ \
) « input_german input_french / TN
N \ = / .
/\[‘ outprat_italian $0,50,50) | | sos1s0 | < | sisi,s0 | Iput_german | g 5151
-—_— S1 \\ / - o \ y 5 = \ / \ /
7\ output_italian —— _ output_italian — S~
<\ < N\ & >
—— output_italian 2% output_italian N output_italian & &
- &, %) Qﬁ o
e, %, A
<) & s
C - " . N $
" input_frencl , \ input_german / . S

(\ « | \ VAR
) 50,50,81) | | sos1s1 | & Ry
/v‘ . oulput_italian / &

Qautput_italian
Rome - June, 2008

Web service composition via simulation and TLV- —_ 12

Computing composition via simulation
(cont.)

Theorem:
A composition exists if and only if
C simulates T

inchiidinna all hahavinre nf anv faacihla

... thus, the problem becomes:
“Can the community TS C simulate

— target service T?”

Rome - June, 2008 Web service composition via simulation and TLV 13

Computing composition via simulation
(cont.)

Community TS

........
......................

sition exists, but =
.| how can we synthesize it?

........

~——ompurTraTT =
7\ P | '
/% \% _/ o/ [R S
output_italiarv, % output_italian /u's‘w‘& Y [e
o By & e
RRTANNCY Al ARt LLL o o
B CLTTTIVOPPEE) S [
N / g X/ .t
S
. S/ & & e
input_german ‘3 § o e
o &) s
. DA e
output_ital I 3?”"
o e ¢‘.
s e et &
\k '.}.. s
Rome - June, 2008 ", Web-service composition via simulation and TLV 14

The orchestrator generator

Given the largest simulation S form TSt to TSc(which include the initial states), we
can build the orchestrator generator.

This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

Def: OG = < A, [1,...,n], Sr, Sro, By @y Fr> with
* A : the actions shared by the community
* [1,...,n]: the identifiers of the available services in the community
* Sr = Six S1 x...x Sp: the states of the orchestrator program
e 59 = (s%, s%, ..., s%) : the initial state of the orchestrator program
*FrC{(st,St, ..., Sn) | ste Ft: the final states of the orchestrator program
* Wr: Srx Ar > [1,...,] : the service selection function, defined as follows:

e If st —a, S'tthen choose k s.t. 3 sk’ sk —a, Sk’ A (St, (S1, «.., S’k, +..y Sn))E S

* O CSrxArx[1,..,n] — Sr: the state transition function, defined as follows:

e Let wr(st, S1, ..., Sk, ..+, Sn, @) = k then
(St, S1, «ee) Sk, «eey Sn)—ak (St S1, ..., S’k, ..., Sn) Where sk —a, Sk

Rome - June, 2008 Web service composition via simulation and TLV 15

The orchestrator generator (cont.)

From the maximal simulation, we can easily
derive an orchestrator generator, e.g.:

ﬁewhd(mc}

Rome - June, 2008 Web service composition via simulation and TLV 16

The orchestrator generator (cont.)

From OG, one can select services to perform
client actions

5. S
0©’é
7N

3
5
K]

O
;
;
Q

o 00 9

Rome - June, 2008 Web service composition via simulation and TLV 17

Computing composition via simulation
(cont.)

Summing up:
Compute community TS C;
Compute the maximal simulation of 7 by C;

If simulation exists, compute OG;
else return “unrealizable’;

I Exploit OG for available service selection,
even in a just-in-time fashion.

Rome - June, 2008 Web service composition via simulation and TLV 18

On-the-fly failure recovery with OG
[KRO8]

OG already solves:
Temporary freezing of an available service k
Stop selecting k in OG until service k comes back!

Unexpected state change of an available service

Recompute OG / simulated-by from new initial
state ...

... but OG / simulated-by independent from initial
state!

Simply use old OG / simulated-by from the new
state!!

Rome - June, 2008 Web service composition via simulation and TLV 19

Parsimonious failure recovery with OG
[KRO8]

Algorithm ComputingSimulation - parametrized version
Input: transition system T = <A, T, t% dr, Fr> and
transition system C= <A, S, sc°, d¢, Fc>
relation Rinit including then simulated-by
relation included then simulated-by
Output: the simulated-by relation (the largest simulation)

Body
R=10
R" = Rinit- {(t,s) | te Ft A =(s € F¢)}
while (R # R") {

R:=R'

R :=R -{(t,s) |Itha.t =at’ A—-Is".s —sas"A(t)s") eRU
b
return R'U

Ydob

Rome - June, 2008 Web service composition via simulation and TLV 20

Parsimonious failure recovery with OG
(cont.) [KR08]

Let[1,.., n] = WUF be the available services.
Let R = Rwur be the simulated-by relation of target by services WUF.
Then consider the following relations [KRO8]:

Rw < Tmw(RwuF)

(mw(R) is not a simulation of target by services W)

TTw(RwuF) is the projection on W of a relation: easy to compute

Rw x F € Rwur

(Rw x F is a simulation of target by services WUF
Rw % F is the cartesian product of 2 relations (F is trivial): easy to compute

Rome - June, 2008 Web service composition via simulation and TLV 21

Parsimonious failure recovery with OG
(cont.) [KR08]

When services F die

compute simulated-by Rw starting TTw(Rwur) !

If dead services F come back

compute simulated-by Rwur starting Rw x F !

Remember:

Rw ¢ tw(Rwur)

(TTw(R) is not a simulation of target by services W)
Rw x F ¢ Rwur
(Rw x F is a simulation of target by services WUF)

Rome - June, 2008 Web service composition via simulation and TLV 22

Comments

Full observability is crucial for OG to work properly. In
fact, in order to propose services for action execution,
state of each available service needs to be known.

Partial observability possible through knowledge
operator [to be done]

Interesting extension: dealing with nondeterministic
(devilish) available services (a slightly different notion
of simulation is needed). [KR08]

OG allows for failure tolerance! [KR08]

Rome - June, 2008 Web service composition via simulation and TLV 23

Tools for computing composition
based on simulation

Use simulation computing tools for
composition [to be done]

Use LTL-based syntesis tools, like TLV, for
indirectly computing composition via
simulation [Patrizi PhD08] <«

Rome - June, 2008 Web service composition via simulation and TLV 24

Composing services via TLV

The environment TLV (Temporal Logic Verifier)
[Pnueli and Shahar, 1996] is a useful tool that
can be used to

automatically compute the orchestrator
generator,

given a problem instance.

Rome - June, 2008

Web service composition vi

ia simulation and TLV 25

Composing services via TLV (cont.)

file .smv:
Community
J’_
Target

Comp-inv.pf

How to write this?

N

Synth-inv.tlv

TLV

Web service composition vi

OG or
‘“unrelizable”

Given

ia simulation and TLV 26

Composing services via TLV (cont.)

We provide TLV a file written in (a flavour of)
SMV, a language for specifying TSs.

SMV specifications are typically composed of
modules, properly interconnected;

Intuitively, a module is a sort of TS which may
share variables with other modules;

A module may contain several submodules,
properly synchronized;

Module main is mandatory and contains all
relevant modules, properly interconnected and
synchronized.
Rome - June, 2008 Web service composition via simulation and TLV 27
Composing services via TLV (cont.)
Alname M\e\ _ - - parameter(s)
- — MODULE BT1 (act)
|n|t|aI|zatlon e womizr —m === === internal variable(s)
T ~< . ASSIGN
= init(loc) := 0;
.y R init(act) := nil;
transition relation | jext(10c) :=
S~ o loc = 0 & act = search : 1;
S loc = 1 & act = display : 0;
N Sa TRUE :locs
next (act) := e
I o act = nil : {search};
loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE : {act};
DEFINE o
_ final = (loc = 0)j qm === == ===~ boolean expression

Rome - June, 2008 Web service composition via simulation and TLV 28

Composing services via TLV (cont.)

We introduce SMV formalization by means of
the following example, proceeding top-down:

search
/_ display
return

@
= Q 1 /Qm ©

= @'a/)/
(a) Available service S (l Available service

search

//é\/ \\(f \)
' Q) U
. dplay

(c) Target service T

Rome - June, 2008 Web service composition via simulation and TLV 29

Composing services via TLV (cont.)

The application is structured as follows:
1 module main

1 module Output, representing OG service
selection

1 module Input, representing the
(synchronous) interaction community-target

1 module mT1 representing the target service
1 module mSi per available service

Rome - June, 2008 Web service composition via simulation and TLV 30

Module interconnections

main
Output ’,,*"— Inp_ug(;_ndex)
index -~ ~ ; e -
S2(index, action)« - - + - = = action
-]
ll e - 1
s \
; J '
T T
1 1 \\
y ! \
S1(index, actidn) T1(action)

Rome - June, 2008

Web service composition via simulation and TLV

The module main

31

Instance independent
Includes synchronous submodules In and

Out.
Community + } Keyword
Target TSs N MDDULE maliln ,,
s\[AR)/ 5

Service selection

Expression:
condition of
“good” composition

l”

(depends on In)

Rome - June, 2008

Parameter:
4 variable index of

7 | submodule Out

‘Inusystem Input(Out index)

“>0Out . system Output
DEFINE TTee-Irsa
_~»good := !In.failure;

7

Web service composition via simulation and TLV

3 synchronously

In and Out evolve

32

The module Output

Depends on number of available services. In

this case: 2
MODULE Output | Slumbor of
VAR T -7 services
indeX:O..QE’
ASSTGN . Only for init
L init(index) := 0%

next (index) := 1..2;

Rome - June, 2008 Web service composition via simulation and TLV 33

The module Output (cont.)

MODULE Output

VAR
index:0..2;

ASSIGN
init(index) := 0;
next (index) := 1..2;

.]
MOngE e Synchronized
~ouem Input(Out.index)
Out: system Output;
DEFINE
good := !In.failure;

The goal is computing a restriction

on Output’s transition relation such

that good is satisfied. RECALL that
In is affected by Out through
parameter Out.index

Rome - June, 2008 Web service composition via simulation and TLV 34

The module Input

Action alphabet +
special action
nil (used for init)

—
-
-~

MODULE Input(index)
VAR _ _
S action {nil,search,display,return};
Available service 1 \::Tl : mTi(action);
S1 : mS1(index,action);
Available service 2|-»S2 : mS2(index,action);
DEFINE
failure := (Si1.failure | S2.failure) |
EE— -7 ' (T1.final -> (S1.final & S2.final));

Target service |«

Fail if:
*S1orS2(...or SN) fail, OR
* T1 can be in a final state when S1 or S2 (... or SN) are not.

Rome - June, 2008 Web service composition via simulation and TLV 35

The target module mT1

Think of mT1 as an action producer

MODULE mT1 (act) search
TS States |~ <R P
loc : 0..1; @
ASSIGN AV .
it ="~~~ » init(loc) := 0; ‘\dﬂ e -
n_ _ - __ » init(act) := nil; Transition function
next(loc) := ST
case (deterministic, in general)
. loc = 0 & act = search : 1; -
OUtpUt relatlf)r.]) loc = 1 & act = display : 0; -~
(non-deterministic, TRUE : loc;
. esac;
n general) next (act) :=
S~ o case
— S~o act = nil : {search};
I loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE : {act};
esac;
DEFINE

_ final := (loc = 0); <= - State O is final

Rome - June, 2008 Web service composition via simulation and TLV 36

The target module mT1 (cont.)

1. A statement of the form:

next(loc) :=
case
case_1;

case_n;
TRUE : loc;
esac;

is included for defining next loc value. Each case_i expression refers to a
different pair < s,a >& S; x A; such that d¢(s.) is defined (order does not
) and assumes the form:

loc = ind(s) & act = a :0,(s,a)

&

A statement of the form:

next(act) :=
case
case_0;
case_1;
case_n;
TRUE : act;

esac;

is included for defining next act assignment. Let act : S, — 24t be defined
asact(s) = {a € A, | 35" € S; s.t. & = dy(s.a)}. Then, case_0 assumes the
form:

act = nil : act(sp)

For i > 0, each case, ion refers to a different pair < s.a >e
such that act(d;(s.a)) # 0 (order does not matter) and assumes the fo

i expl

loc = ind(s) & act = a : act(d¢(s,a))

Rome - June, 2008 Web service composition via simulation and TLV

37

The target module mT1 (cont.)

MODULE nT1 (act) search
VAR
loc : 0..1;
ASSIGN
init(loc) H M
init(act) 1115 ‘\dlS_W
next (loc)
case
loc = 0 & act = search : 1;
loc = 1 & act = display : 0;
TRUE : loc;
esz 1
next(act) :=
case
act = nil : {search};
loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE o {act};
esac;
DEFINE
final := (loc = 0);

MODULE Input(index)
VAR
action : {nil,search,display,return};
T1 : mTi(action);
S1 : mS1(index,action);
S2 : mS2(index,action);

DEFINE
failure := (S1.failure | S2.failure) |
! (T1.final -> (S1.final & S2.final));

Rome - June, 2008 Web service composition via simulation and TLV

38

The available service module mS1

eXternaIIy : : -~ search
controlled MODULE mS1(Thdex, attion)

(input parameters) wmoo /w'/earch\@

- ~ -
== return

s ASSIGN T display "
| service Is not mivioc) i O; Transition relation
selected... . next(loc) := >
remainstilll |- 3™ ===——____ R (ND, in general)
! Tocs L
: QLoc=0 & action in {search {0,1}; "
service loc=1 & actidn in {display,return} : {03 K
selection M TRUE : loc; Sets, instead of
AN = elements.
\DEFINE ~-—o_
Check whether \{‘ailure = T~a .
assigned action index = 1 & =~ ~] next(action)
i . missing!
is actually) 9
executable_ —_————p (loc = 1 & action in {display, return})
. .)g
Directly derived from final := (loc = 0);
transition relation.
Rome - June, 2008 Web service composition via simulation and TLV 39

The available service module mS2

MODULE mS2(index,action) ?"Sy
“DEFINE
’ failure := Qr‘
/ index = 2 & !(action in {display});

) final := TRUE;
Stateless system:
neither states nor

transition relation
needed

/

Rome - June, 2008 Web service composition via simulation and TLV 40

Putting things together

MODULE main
VAR
In: system Input(Out.index);

Out: system Output;
DEFINE
good := !In.failure;

MODULE Output
VAR
index:0..2;
ASSIGN
init(index) := 0;
next(index) := 1..2;

Rome - June, 2008 Web service composition via simulation and TLV

Never changes

41

Putting things together (cont.)

MODULE Input(index)
VAR

action : {nil,search,display,return};

Whole shared action
alphabet plus special
action nil

T1 : mT1(action); T ———————— 1 Never changes

S1: mS1l(index,action);

S2 : mS2(index,action);
DEFINE
failure := (S1.failure | S2.failure)

I(T1.final -> (S1.final & S2.final));

Rome - June, 2008 Web service composition via simulation and TLV

42

Putting things together (cont.)

MODULE mT1(act) Target service states
loc:0..1;

ASSIGN Never changes
init(loc) := 0; /
init(act) := nil;
next(loc) :=
case -
loc = 0 & act = search : 1; Depends on service,
loc = 1 & act = display : 0; see general rules.
TRUE : loc;
esac;
next(act) :=
case
— act = nil : {search};

loc = 0 & act = search : {display};
loc = 1 & act = display : {search};

esaTCBUE Hacty List final states using either logical OR ‘|’
DEFINE (e.g., (loc=0]loc=1[loc=3)) or set
final := (loc = 0); construction (e.g., (loc={0,1,3})).
Rome - June, 2008 Web service col TIon VI na TV I3

Putting things together (cont.)

MODULE mS1(index,action) Available service states
loc :/0..1;

Never changes

Depends on service,
see general rules.

Index changes. Same

as module name = 0 & action in {search})]|

= 1 & action in {display, return})

);
final := (loc = 0);

Rome - June, 2008 Web service composition via simulation and TLV 44

Putting things together (cont.)

MODULE mS2(index,action)

DEFINE
failure :=
index = 2 & l(action in {display});
final := TRUE;
Rome - June, 2008 Web service composition via simulation and TLV 45

Running the specification

Running TLV with our specification as input...

_,‘State 1
+ In.action = nil, In.Tl.loc =0, In.S1.loc = 0, Out.index = 0,
.,.~§tate 2
" In.action = search, In.T1.loc = 0, In.S1l.loc = 0, Out.index =1,
State 3<
In.action = display,In.T1.loc = 17 in.SLl.log = 0, Out.index = 2,
"~~.,..State 44 ..
....... I'ﬁ:ac_t.i.on = display,In.T1.loc = 1,

......
.......

From1lto 2
From 2 to 3
From 3 to 2
From 4 to 2
Rome - June, 2008 Web service composition via simulation and TLV 46

Running the specification (cont.)

That is, the following OG:

4.

In.action=display
In.T1l.loc=1
In.S1.loc=1

Out.index=1

1: 2:

In.action=nil

In.action=search
In.T1.loc=0 In.T1.loc=0
In.S1.loc=0 In.S1.loc=0

3:
In.action=display
In.T1l.loc=1
In.S1.loc=0
Out.index=2

Out.index=0 Out.index=1

Rome - June, 2008 Web service composition via simulation and TLV 47

