
Rome - June, 2008

Service composition via

simulation

Seminari di Ingegneria del SW

Slides by Fabio Patrizi and Giuseppe De Giacomo

DIS, Sapienza – Università di Roma

Rome - June, 2008 Web service composition via simulation and TLV 2

Essential overview

! Computing composition via simulation

! Using an LTL synthesis tool, TLV, for
computing composition via simulation

Rome - June, 2008 Web service composition via simulation and TLV 3

The Problem

Given:

! a community of available services

C = {S1,…,Sn};

! a target service

T;

Find a composition (or orchestrator) s.t.

C mimics T

Rome - June, 2008 Web service composition via simulation and TLV 4

The Problem (cont.)

We model services as transition systems:

! A TS is a tuple T = < A, S, s0, ! , F> where:

! A is the set of actions

! S is the set of states

! s0 ! S is the set of initial states

! ! " S # A # S is the transition relation

! F " S is the set of final states

Rome - June, 2008 Web service composition via simulation and TLV 5

Finding a composition

Strategies for computing compositions:

! Reduction to PDL

! Simulation-based

Rome - June, 2008 Web service composition via simulation and TLV 6

Simulation Relation

Intuition:

 a service T can be simulated by community C

if C can reproduce T’s behavior over time.

Rome - June, 2008 Web service composition via simulation and TLV 7

Simulation Relation (cont.)

! Given two transition systems T = < A, T, t0, !T, FT> and

C= < A, S, sC
0, !C, FC> a simulation relation on T # C is a binary

relation on the states t ! T an s of C such that:

! (t,s) ! R implies that

! t is final implies that s is final

! for all actions a

if t $a t’ then % s’ . s $a s’ and (t’,s’)! R

! If exists a simulation relation R (such that (t0, sC
0) ! R, then

we say that or T is simulated by C (or C simulates T).

! Simulated by is (i) a simulation; (ii) the largest simulation

! NB1: Simulated by is a co-inductive definition!

! NB2: A simulation is just one of the two directions of a bisimulation

Rome - June, 2008 Web service composition via simulation and TLV 8

Simulation Relation (cont.)

Algorithm ComputingSimulation

Input: transition system T = <A, T, t0, !T, FT> and

 transition system C= <A, S, sC
0, !C, FC>

Output: the simulated-by relation (the largest simulation)

Body

 R = &

 R’ = T # S - {(t,s) | t ! Ft ' ¬(s ! FC)}

 while (R " R’) {

 R := R’

 R’ := R’ - {(t,s) | % t’,a. t $a t’ ' ¬% s’ . s $a s’ ' (t’,s’) ! R’ }

 }

 return R’

Ydob

!

Rome - June, 2008 Web service composition via simulation and TLV 9

Simulation relation (cont.)

a

b

a

b

b

a

T:

c

C:

Can C simulate T?

YES!

Rome - June, 2008 Web service composition via simulation and TLV 10

Computing composition via simulation

Idea:

 A service community can be seen as the
(possibly N-DET) asynchronous product of
available services…

Rome - June, 2008 Web service composition via simulation and TLV 11

Computing composition via simulation

Let S1,... ,Sn be the TSs of the component services.

The Community TS C = < A, SC, sC
0, !C, FC> is the

asynchronous product of S1,...,Sn where:

• A is the set of actions

• SC = S1 #...# Sn

• sC
0 = (s0

1,..., s0
m)

• F " F1 #...# Fn

• !C " SC # A # SC is defined as follows:

 (s1 #...# sn) $a (s’1 #...# s’n) iff

• % i. si $a s’i ! !i

• (j"i. s’j = sj

Rome - June, 2008 Web service composition via simulation and TLV 12

Computing composition via simulation

(cont.)

Available services Community TS

a:

b:

c:

Rome - June, 2008 Web service composition via simulation and TLV 13

Computing composition via simulation

(cont.)

Idea:

 A service community can be seen as the
(possibly N-DET) asynchronous product of
available services…

 ...including all behaviors of any feasible
service compositions…

… thus, the problem becomes:
“Can the community TS C simulate

target service T?”

Theorem:
A composition exists if and only if

C simulates T

Rome - June, 2008 Web service composition via simulation and TLV 14

Computing composition via simulation

(cont.)

 Community TS

Target TS

Ok, a composition exists, but
how can we synthesize it?

Rome - June, 2008 Web service composition via simulation and TLV 15

The orchestrator generator

! Given the largest simulation S form TSt to TSc(which include the initial states), we

can build the orchestrator generator.

! This is an orchestrator program that can change its behavior reacting to the

information acquired at run-time.

Def: OG = < A, [1,…,n], Sr, sr
0, r, r, Fr> with

• A : the actions shared by the community

• [1,…,n]: the identifiers of the available services in the community

• Sr = St# S1 #...# Sn : the states of the orchestrator program

• sr
0 = (s0

t, s0
1, ..., s0

m) : the initial state of the orchestrator program

• Fr " { (st , s1 , ..., sn) | st ! Ft : the final states of the orchestrator program

• #r: Sr # Ar $ [1,…,n] : the service selection function, defined as follows:

• If st $a, s’t then choose k s.t. % sk’. sk $a, sk’ ' (st’, (s1 , ..., s’k , ..., sn))! S

• !r " Sr # Ar # [1,…,n] $ Sr : the state transition function, defined as follows:

• Let #r(st, s1 , ..., sk , ..., sn, a) = k then

 (st, s1 , ..., sk , ..., sn)$a,k (st’, s1 , ..., s’k , ..., sn) where sk $a, s’k

!

Rome - June, 2008 Web service composition via simulation and TLV 16

The orchestrator generator (cont.)

! From the maximal simulation, we can easily
derive an orchestrator generator, e.g.:

Rome - June, 2008 Web service composition via simulation and TLV 17

The orchestrator generator (cont.)

From OG, one can select services to perform
client actions.

Rome - June, 2008 Web service composition via simulation and TLV 18

Computing composition via simulation

(cont.)

Summing up:

! Compute community TS C;

! Compute the maximal simulation of T by C;

!

! If simulation exists, compute OG;

! else return “unrealizable”;

! Exploit OG for available service selection,
even in a just-in-time fashion.

Rome - June, 2008 Web service composition via simulation and TLV 19

On-the-fly failure recovery with OG
[KR08]

OG already solves:

! Temporary freezing of an available service k

! Stop selecting k in OG until service k comes back!

! Unexpected state change of an available service

! Recompute OG / simulated-by from new initial

state ...

! ... but OG / simulated-by independent from initial

state!

! Simply use old OG / simulated-by from the new

state!!

Rome - June, 2008 Web service composition via simulation and TLV 20

Parsimonious failure recovery with OG

[KR08]

Algorithm ComputingSimulation - parametrized version

Input: transition system T = <A, T, t0, !T, FT> and

 transition system C= <A, S, sC
0, !C, FC>

 relation Rinit including then simulated-by

 relation Rsure included then simulated-by

Output: the simulated-by relation (the largest simulation)

Body

 R = &

 R’ = Rinit - {(t,s) | t ! Ft ' ¬(s ! FC)}

 while (R " R’) {

 R := R’

 R’ := R’ - {(t,s) | % t’,a. t $a t’ ' ¬% s’ . s $a s’ ' (t’,s’) ! R’!Rsure }

 }

 return R’!Rsure

Ydob

Rome - June, 2008 Web service composition via simulation and TLV 21

Parsimonious failure recovery with OG

(cont.) [KR08]

Let [1,.., n] = W!F be the available services.

Let R = RW!F be the simulated-by relation of target by services W!F.

Then consider the following relations [KR08]:

! RW " !W(RW!F)

! (!W(R) is not a simulation of target by services W)

! !W(RW!F) is the projection on W of a relation: easy to compute

! RW " F " RW!F

! (RW " F is a simulation of target by services W!F

! RW " F is the cartesian product of 2 relations (F is trivial): easy to compute

Rome - June, 2008 Web service composition via simulation and TLV 22

Parsimonious failure recovery with OG

(cont.) [KR08]

When services F die

compute simulated-by RW starting !W(RW!F) !

If dead services F come back

compute simulated-by RW!F starting RW " F !

Remember:

! RW " !W(RW!F)

! (!W(R) is not a simulation of target by services W)

! RW " F " RW!F

! (RW " F is a simulation of target by services W!F)

Rome - June, 2008 Web service composition via simulation and TLV 23

Comments

! Full observability is crucial for OG to work properly. In
fact, in order to propose services for action execution,
state of each available service needs to be known.

! Partial observability possible through knowledge
operator [to be done]

! Interesting extension: dealing with nondeterministic
(devilish) available services (a slightly different notion
of simulation is needed). [KR08]

! OG allows for failure tolerance! [KR08]

Rome - June, 2008 Web service composition via simulation and TLV 24

Tools for computing composition

based on simulation

! Computing composition via simulation

! Use simulation computing tools for
composition [to be done]

! Use LTL-based syntesis tools, like TLV, for
indirectly computing composition via
simulation [Patrizi PhD08]

Rome - June, 2008 Web service composition via simulation and TLV 25

Composing services via TLV

The environment TLV (Temporal Logic Verifier)
[Pnueli and Shahar, 1996] is a useful tool that
can be used to

automatically compute the orchestrator
generator,

given a problem instance.

Rome - June, 2008 Web service composition via simulation and TLV 26

Composing services via TLV (cont.)

Synth-inv.tlv

 file .smv:

Community

+

Target

Comp-inv.pf OG or

“unrelizable”
TLV

Given

Instance dependentHow to write this?

Rome - June, 2008 Web service composition via simulation and TLV 27

Composing services via TLV (cont.)

We provide TLV a file written in (a flavour of)
SMV, a language for specifying TSs.
! SMV specifications are typically composed of

modules, properly interconnected;

! Intuitively, a module is a sort of TS which may
share variables with other modules;

! A module may contain several submodules,
properly synchronized;

! Module main is mandatory and contains all
relevant modules, properly interconnected and
synchronized.

Rome - June, 2008 Web service composition via simulation and TLV 28

Composing services via TLV (cont.)

A module:name
parameter(s)

internal variable(s)

transition relation

boolean expression

initialization

Rome - June, 2008 Web service composition via simulation and TLV 29

Composing services via TLV (cont.)

We introduce SMV formalization by means of
the following example, proceeding top-down:

Rome - June, 2008 Web service composition via simulation and TLV 30

Composing services via TLV (cont.)

! The application is structured as follows:

! 1 module main

! 1 module Output, representing OG service

selection

! 1 module Input, representing the

(synchronous) interaction community-target

! 1 module mT1 representing the target service

! 1 module mSi per available service

Rome - June, 2008 Web service composition via simulation and TLV 31

Module interconnections

Input(index)

action

Output

index

T1(action)

…

S1(index, action)

…

S2(index, action)

…

main

Rome - June, 2008 Web service composition via simulation and TLV 32

The module main

! Instance independent

! Includes synchronous submodules In and

Out.
Keyword

Parameter:

variable index of

submodule Out

Expression:
condition of
“good” composition

(depends on In)

Community +
Target TSs

Service selection

In and Out evolve
synchronously

Rome - June, 2008 Web service composition via simulation and TLV 33

The module Output

! Depends on number of available services. In
this case: 2

Number of
available
services

Only for init

Rome - June, 2008 Web service composition via simulation and TLV 34

The module Output (cont.)

Index=0

Index=2

Index=1

The goal is computing a restriction

on Output’s transition relation such

that good is satisfied. RECALL that

In is affected by Out through

parameter Out.index

Synchronized

Rome - June, 2008 Web service composition via simulation and TLV 35

The module Input

Action alphabet +
special action

nil (used for init)

Target service

Available service 1

Available service 2

Fail if:

• S1 or S2 (… or SN) fail, OR

• T1 can be in a final state when S1 or S2 (… or SN) are not.

Rome - June, 2008 Web service composition via simulation and TLV 36

The target module mT1

! Think of mT1 as an action producer
TS States

Init Transition function
(deterministic, in general)

Output relation
(non-deterministic,
in general)

State 0 is final

Rome - June, 2008 Web service composition via simulation and TLV 37

The target module mT1 (cont.)

Rome - June, 2008 Web service composition via simulation and TLV 38

The target module mT1 (cont.)

loc=0
act=nil

loc=0
act=search

loc=1
act=display

Rome - June, 2008 Web service composition via simulation and TLV 39

The available service module mS1

next(action)
missing!

Transition relation
(ND, in general)

Check whether
assigned action
is actually
executable.
Directly derived from
transition relation.

service
selection

If service is not
selected…
… remain still!

externally
controlled
(input parameters)

Sets, instead of
elements.

Rome - June, 2008 Web service composition via simulation and TLV 40

The available service module mS2

Stateless system:
neither states nor
transition relation
needed

Rome - June, 2008 Web service composition via simulation and TLV 41

Putting things together

MODULE main
 VAR
 In: system Input(Out.index);
 Out: system Output;
 DEFINE
 good := !In.failure;

MODULE Output
 VAR
 index:0..2;
 ASSIGN
 init(index) := 0;
 next(index) := 1..2;

Never changes

Number of
available
services

Rome - June, 2008 Web service composition via simulation and TLV 42

Putting things together (cont.)

MODULE Input(index)
 VAR
 action : {nil,search,display,return};
 T1 : mT1(action);
 S1 : mS1(index,action);
 S2 : mS2(index,action);
 DEFINE
 failure := (S1.failure | S2.failure) |
 !(T1.final -> (S1.final & S2.final));

Whole shared action
alphabet plus special

action nil

Never changes

Index changes, add one
module per available service

Index changes, add one
conjunct/disjunct per available service

Rome - June, 2008 Web service composition via simulation and TLV 43

Putting things together (cont.)

MODULE mT1(act)
 VAR
 loc : 0..1;
 ASSIGN
 init(loc) := 0;
 init(act) := nil;
 next(loc) :=
 case
 loc = 0 & act = search : 1;
 loc = 1 & act = display : 0;
 TRUE : loc;
 esac;
 next(act) :=
 case
 act = nil : {search};
 loc = 0 & act = search : {display};
 loc = 1 & act = display : {search};
 TRUE : {act};
 esac;
 DEFINE
 final := (loc = 0);

Target service states

Never changes

Depends on service,
see general rules.

List final states using either logical OR ‘|’
(e.g., (loc=0|loc=1|loc=3)) or set

construction (e.g., (loc={0,1,3})).

Rome - June, 2008 Web service composition via simulation and TLV 44

Putting things together (cont.)

MODULE mS1(index,action)
 VAR
 loc : 0..1;
 ASSIGN
 init(loc) := 0;
 next(loc) :=
 case
 index != 1 : loc;
 loc=0 & action in {search} : {0,1};
 loc=1 & action in {display,return} : {0};
 TRUE : loc;
 esac;
 DEFINE
 failure :=
 index = 1 &
 !(
 (loc = 0 & action in {search})|
 (loc = 1 & action in {display, return})
);
 final := (loc = 0);

Available service states

Never changes

Depends on service,
see general rules.

Index changes. Same
as module name

Rome - June, 2008 Web service composition via simulation and TLV 45

Putting things together (cont.)

MODULE mS2(index,action)
 DEFINE
 failure :=
 index = 2 & !(action in {display});
 final := TRUE;

Rome - June, 2008 Web service composition via simulation and TLV 46

Running the specification

State 1
In.action = nil, In.T1.loc = 0, In.S1.loc = 0, Out.index = 0,

State 2
In.action = search, In.T1.loc = 0, In.S1.loc = 0, Out.index = 1,

State 3
In.action = display,In.T1.loc = 1, In.S1.loc = 0, Out.index = 2,

State 4
In.action = display,In.T1.loc = 1, In.S1.loc = 1, Out.index = 1,

Automaton Transitions

From 1 to 2
From 2 to 3 4
From 3 to 2
From 4 to 2

Running TLV with our specification as input…

1

3

2
4

Rome - June, 2008 Web service composition via simulation and TLV 47

Running the specification (cont.)

That is, the following OG:

1:
In.action=nil
In.T1.loc=0
In.S1.loc=0

Out.index=0

2:
In.action=search

In.T1.loc=0
In.S1.loc=0

Out.index=1 3:
In.action=display

In.T1.loc=1
In.S1.loc=0

Out.index=2

4:
In.action=display

In.T1.loc=1
In.S1.loc=1

Out.index=1

