

# Service composition via simulation

Seminari di Ingegneria del SW  
Slides by Fabio Patrizi and Giuseppe De Giacomo  
DIS, Sapienza – Università di Roma

Rome - June, 2008

## Essential overview

- Computing composition via simulation
- Using an LTL synthesis tool, TLV, for computing composition via simulation

# The Problem

---

Given:

- a community of available services

$$\mathcal{C} = \{S_1, \dots, S_n\};$$

- a target service

$$T;$$

Find a *composition* (or *orchestrator*) s.t.

$$\mathcal{C} \text{ mimics } T$$

# The Problem (cont.)

---

We model services as transition systems:

- A TS is a tuple  $T = \langle A, S, s_0, \delta, F \rangle$  where:
  - $A$  is the set of actions
  - $S$  is the set of states
  - $s_0 \in S$  is the set of initial states
  - $\delta \subseteq S \times A \times S$  is the transition relation
  - $F \subseteq S$  is the set of final states

# Finding a composition

Strategies for computing compositions:

- Reduction to PDL
- Simulation-based 

## Simulation Relation

Intuition:

*a service  $\mathcal{T}$  can be simulated by community  $\mathcal{C}$  if  $\mathcal{C}$  can reproduce  $\mathcal{T}$ 's behavior over time.*

# Simulation Relation (cont.)

- Given two transition systems  $\mathcal{T} = \langle A, T, t^0, \delta_T, F_T \rangle$  and  $\mathcal{C} = \langle A, S, s_C^0, \delta_C, F_C \rangle$  a **simulation** relation on  $T \times C$  is a binary relation on the states  $t \in T$  and  $s$  of  $C$  such that:
  - $(t, s) \in R$  implies that
    - $t$  is *final* implies that  $s$  is *final*
    - for all actions  $a$   
if  $t \xrightarrow{a} t'$  then  $\exists s' . s \xrightarrow{a} s'$  and  $(t', s') \in R$
  - If **exists a simulation** relation  $R$  (such that  $(t^0, s_C^0) \in R$ , then we say that or **T is simulated by C** (or **C simulates T**).
  - **Simulated by** is (i) a simulation; (ii) the largest simulation
- *NB1: Simulated by is a co-inductive definition!*
- *NB2: A simulation is just one of the two directions of a bisimulation*

# Simulation Relation (cont.)

## Algorithm ComputingSimulation

**Input:** transition system  $T = \langle A, T, t^0, \delta_T, F_T \rangle$  and transition system  $C = \langle A, S, s_C^0, \delta_C, F_C \rangle$

**Output:** the **simulated-by** relation (the largest simulation)

### Body

$R = \emptyset$

$R' = T \times S - \{(t, s) \mid t \in F_T \wedge \neg(s \in F_C)\}$

while ( $R \neq R'$ ) {

$R := R'$

$R' := R' - \{(t, s) \mid \exists t', a. t \xrightarrow{a} t' \wedge \neg \exists s' . s \xrightarrow{a} s' \wedge (t', s') \in R'\}$

}

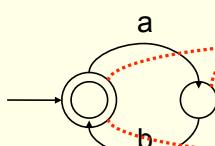
return  $R'$

### Ydob

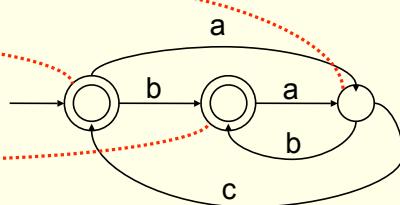
■

## Simulation relation (cont.)

T:



C:



Can  $\mathcal{C}$  simulate T?

**YES!**

## Computing composition via simulation

Idea:

A service community can be seen as the (possibly N-DET) *asynchronous product* of available services...

# Computing composition via simulation

Let  $S_1, \dots, S_n$  be the TSs of the component services.

The **Community TS**  $\mathcal{C} = \langle A, S_{\mathcal{C}}, s_{\mathcal{C}}^0, \delta_{\mathcal{C}}, F_{\mathcal{C}} \rangle$  is the **asynchronous product** of  $S_1, \dots, S_n$  where:

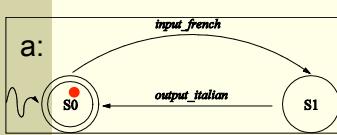
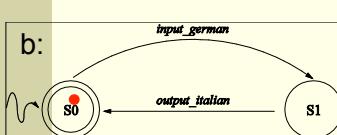
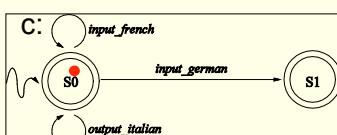
- $A$  is the set of actions
- $S_{\mathcal{C}} = S_1 \times \dots \times S_n$
- $s_{\mathcal{C}}^0 = (s_1^0, \dots, s_n^0)$
- $F \subseteq F_1 \times \dots \times F_n$
- $\delta_{\mathcal{C}} \subseteq S_{\mathcal{C}} \times A \times S_{\mathcal{C}}$  is defined as follows:

$(s_1 \times \dots \times s_n) \xrightarrow{a} (s'_1 \times \dots \times s'_n)$  iff

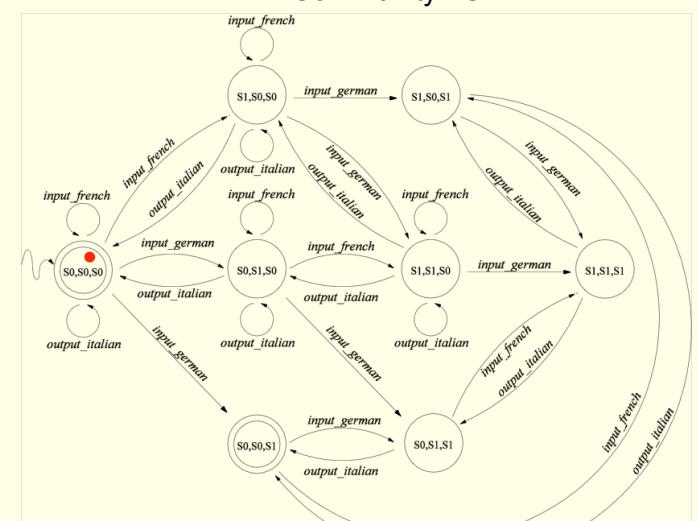
- $\exists i. s_i \xrightarrow{a} s'_i \in \delta_i$
- $\forall j \neq i. s'_j = s_j$

# Computing composition via simulation (cont.)

## Available services



## Community TS



# Computing composition via simulation (cont.)

Idea:

Theorem:

A composition exists if and only if  
 $\mathcal{C}$  simulates T

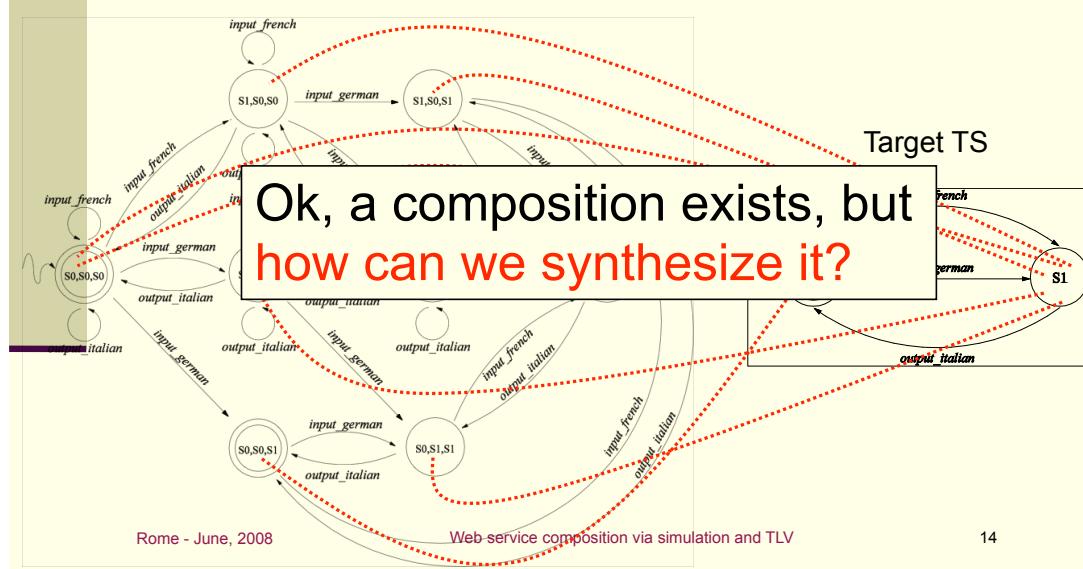
including all behaviors of any feasible

... thus, the problem becomes:

“Can the community TS  $\mathcal{C}$  simulate  
target service T?”

# Computing composition via simulation (cont.)

Community TS



# The orchestrator generator

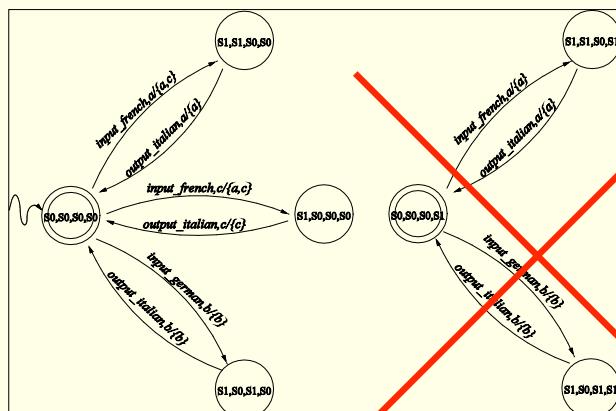
- Given the largest simulation  $\mathbf{S}$  from  $TSt$  to  $TS_c$  (which include the initial states), we can build the **orchestrator generator**.
- This is an orchestrator program that can change its behavior reacting to the information acquired at run-time.

Def: **OG** =  $\langle A, [1, \dots, n], S_r, S_r^0, \omega_r, F_r \rangle$  with

- $A$  : the **actions** shared by the community
- $[1, \dots, n]$ : the **identifiers** of the available services in the community
- $S_r = S_{t_1} \times \dots \times S_{t_n}$  : the **states** of the orchestrator program
- $S_r^0 = (s_{t_1}^0, s_{t_2}^0, \dots, s_{t_n}^0)$  : the **initial state** of the orchestrator program
- $F_r \subseteq \{ (s_{t_1}, s_{t_2}, \dots, s_{t_n}) \mid s_{t_i} \in F_{t_i} \}$  : the **final states** of the orchestrator program
- $\omega_r: S_r \times A_r \rightarrow [1, \dots, n]$  : the **service selection function**, defined as follows:
  - If  $s_{t_i} \rightarrow_a s'_{t_i}$  then **choose**  $k$  s.t.  $\exists s_k. s_k \rightarrow_a s'_k \wedge (s'_{t_i}, (s_1, \dots, s'_k, \dots, s_n)) \in \mathbf{S}$
- $\delta_r \subseteq S_r \times A_r \times [1, \dots, n] \rightarrow S_r$  : the **state transition function**, defined as follows:
  - Let  $\omega_r(s_{t_1}, s_{t_2}, \dots, s_{t_n}, a) = k$  then  
 $(s_{t_1}, s_{t_2}, \dots, s_{t_n}) \rightarrow_{a,k} (s'_{t_1}, s'_{t_2}, \dots, s'_{t_n})$  where  $s_k \rightarrow_a s'_k$

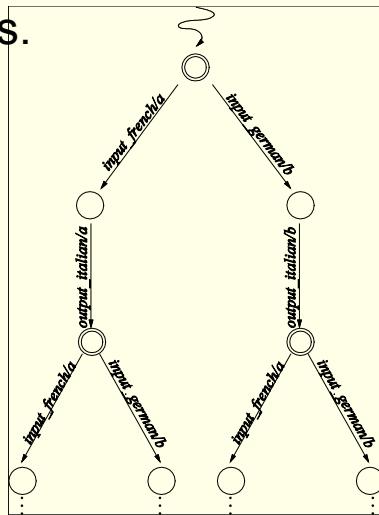
## The orchestrator generator (cont.)

- From the maximal simulation, we can easily derive an **orchestrator generator**, e.g.:



## The orchestrator generator (cont.)

From OG, one can select services to perform client actions.



Rome - June, 2008

Web service composition via simulation and TLV

17

## Computing composition via simulation (cont.)

Summing up:

- Compute community TS  $\mathcal{C}$ ;
- Compute the maximal simulation of  $\mathcal{T}$  by  $\mathcal{C}$ ;
- - If simulation exists, compute OG;
  - else return “unrealizable”;
- Exploit OG for available service selection, even in a *just-in-time* fashion.

Rome - June, 2008

Web service composition via simulation and TLV

18

# On-the-fly failure recovery with OG [KR08]

OG already solves:

- **Temporary freezing** of an available service  $k$ 
  - Stop selecting  $k$  in OG until service  $k$  comes back!
- **Unexpected state change** of an available service
  - Recompute OG / simulated-by from new initial state ...
  - ... but OG / simulated-by independent from initial state!
  - Simply use old OG / simulated-by from the new state!!

# Parsimonious failure recovery with OG [KR08]

**Algorithm** ComputingSimulation - parametrized version

**Input:** transition system  $T = \langle A, T, t^0, \delta_T, F_T \rangle$  and

transition system  $C = \langle A, S, sc^0, \delta_C, F_C \rangle$

relation  $R_{init}$  including then simulated-by

relation  $R_{sure}$  included then simulated-by

**Output:** the **simulated-by** relation (the largest simulation)

## Body

$R = \emptyset$

$R' = R_{init} - \{(t, s) \mid t \in F_t \wedge \neg(s \in F_C)\}$

while ( $R \neq R'$ ) {

$R := R'$

$R' := R' - \{(t, s) \mid \exists t', a. t \rightarrow_a t' \wedge \neg \exists s'. s \rightarrow_a s' \wedge (t', s') \in R' \cup R_{sure}\}$

}

    return  $R' \cup R_{sure}$

## Ydob

## Parsimonious failure recovery with OG (cont.) [KR08]

Let  $[1, \dots, n] = WUF$  be the available services.

Let  $R = R_{WUF}$  be the **simulated-by** relation of target by services  $WUF$ .

Then consider the following relations [KR08]:

- $R_W \subseteq \pi_W(R_{WUF})$ 
  - $(\pi_W(R))$  is not a simulation of target by services  $W$ )
  - $\pi_W(R_{WUF})$  is the **projection on  $W$**  of a relation: easy to compute
- $R_W \times F \subseteq R_{WUF}$ 
  - $(R_W \times F)$  is a simulation of target by services  $WUF$
  - $R_W \times F$  is the **cartesian product** of 2 relations ( $F$  is trivial): easy to compute

## Parsimonious failure recovery with OG (cont.) [KR08]

When **services  $F$  die**

compute simulated-by  $R_W$  starting  $\pi_W(R_{WUF})$  !

If **dead services  $F$  come back**

compute simulated-by  $R_{WUF}$  starting  $R_W \times F$  !

Remember:

- $R_W \subseteq \pi_W(R_{WUF})$ 
  - $(\pi_W(R))$  is not a simulation of target by services  $W$ )
- $R_W \times F \subseteq R_{WUF}$ 
  - $(R_W \times F)$  is a simulation of target by services  $WUF$ )

## Comments

- *Full observability* is crucial for OG to work properly. In fact, in order to propose services for action execution, state of each available service *needs* to be known.
- *Partial observability* possible through knowledge operator **[to be done]**
- Interesting extension: dealing with nondeterministic (devilish) available services (a slightly different notion of simulation is needed). **[KR08]**
- OG allows for failure tolerance! **[KR08]**

## Tools for computing composition based on simulation

- Computing composition via simulation
- Use simulation computing tools for composition **[to be done]**
- Use LTL-based synthesis tools, like TLV, for indirectly computing composition via simulation **[Patrizi PhD08]** 

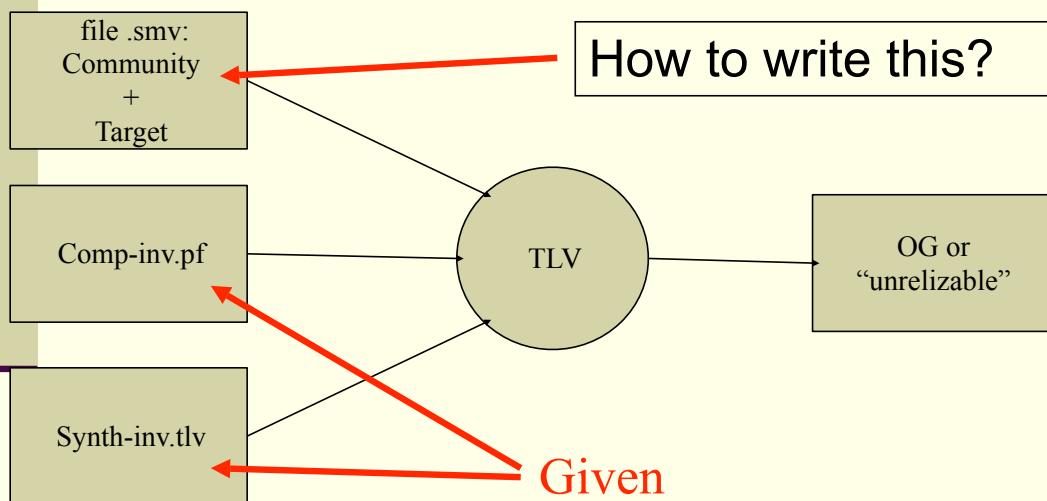
# Composing services via TLV

The environment TLV (Temporal Logic Verifier) [Pnueli and Shahar, 1996] is a useful tool that can be used to

automatically compute the orchestrator generator,

given a problem instance.

## Composing services via TLV (cont.)

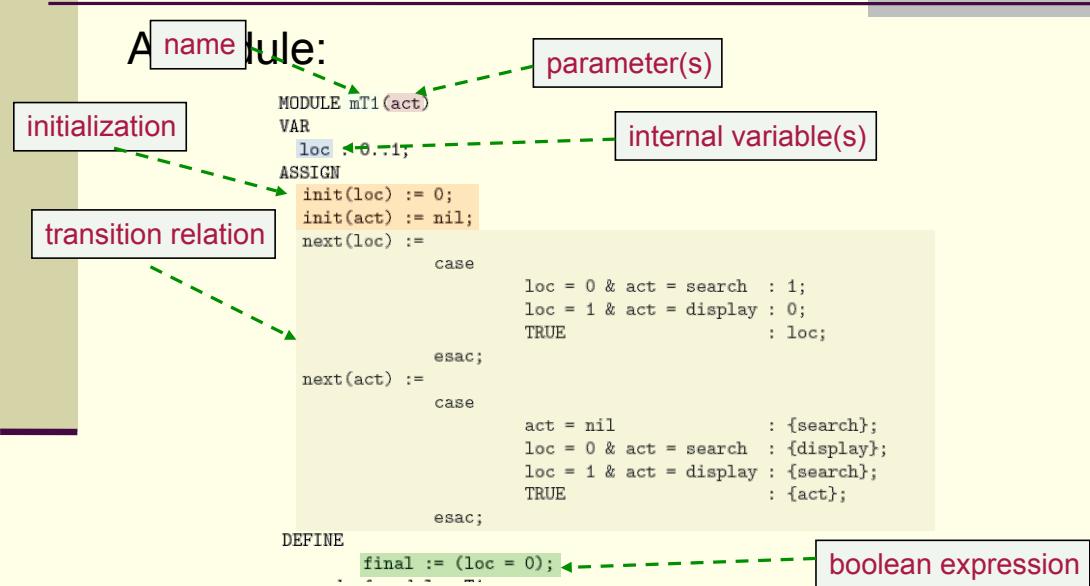


## Composing services via TLV (cont.)

We provide TLV a file written in (a flavour of) SMV, a language for specifying TSs.

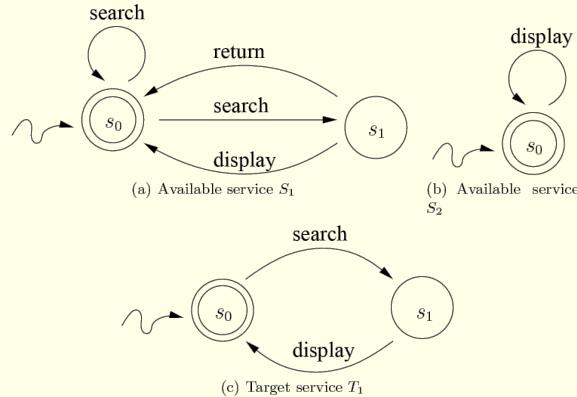
- SMV specifications are typically composed of *modules, properly interconnected*;
- Intuitively, a module is a *sort of TS* which may share variables with other modules;
- A module may contain several submodules, properly synchronized;
- Module **main** is mandatory and contains all relevant modules, properly interconnected and synchronized.

## Composing services via TLV (cont.)



## Composing services via TLV (cont.)

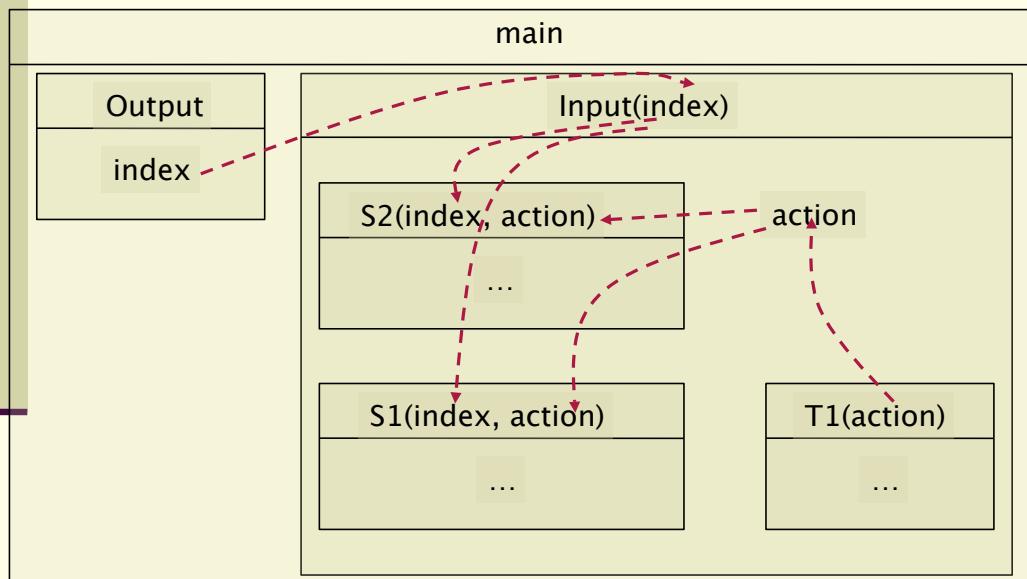
We introduce SMV formalization by means of the following example, proceeding top-down:



## Composing services via TLV (cont.)

- The application is structured as follows:
  - 1 module **main**
  - 1 module **Output**, representing OG service selection
  - 1 module **Input**, representing the (synchronous) interaction community-target
  - 1 module **mT1** representing the target service
  - 1 module **mSi** per available service

# Module interconnections



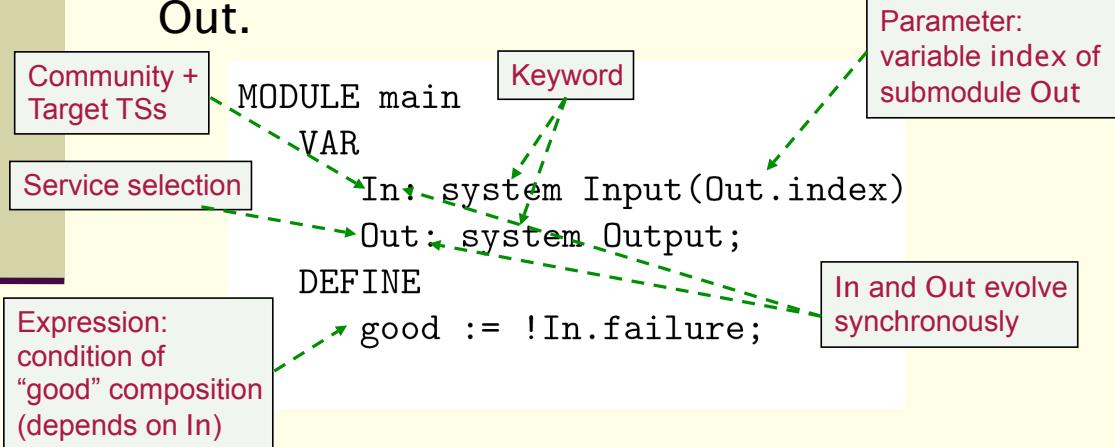
Rome - June, 2008

Web service composition via simulation and TLV

31

## The module main

- Instance independent
- Includes synchronous submodules In and Out.



Rome - June, 2008

Web service composition via simulation and TLV

32

# The module Output

- Depends on number of available services. In this case: 2

```
MODULE Output
VAR
    index:0..2;
ASSIGN
    init(index) := 0;
    next(index) := 1..2;
```

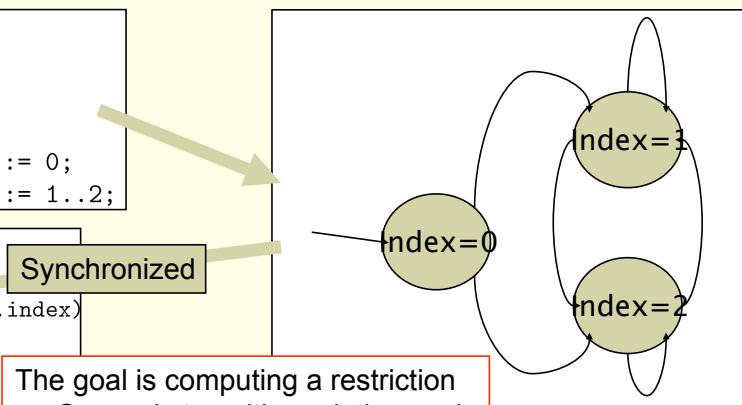
Number of available services

Only for init

# The module Output (cont.)

```
MODULE Output
VAR
    index:0..2;
ASSIGN
    init(index) := 0;
    next(index) := 1..2;
```

```
MODULE main
VAR
    In: system Input(Out.index);
    Out: system Output;
DEFINE
    good := !In.failure;
```



# The module Input

Action alphabet +  
special action  
nil (used for init)

Target service

Available service 1

Available service 2

```
MODULE Input(index)
VAR
  action : {nil,search,display,return};
  T1 : mT1(action);
  S1 : mS1(index,action);
  S2 : mS2(index,action);
DEFINE
  failure := (S1.failure | S2.failure) |
    !(T1.final -> (S1.final & S2.final));
```

Fail if:

- S1 or S2 (... or SN) fail, OR
- T1 can be in a final state when S1 or S2 (... or SN) are not.

# The target module mT1

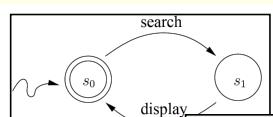
■ Think of mT1 as an action producer

TS States

Init

Output relation  
(non-deterministic,  
in general)

```
MODULE mT1(act)
VAR
  loc : 0..1;
  ASSIGN
    init(loc) := 0;
    init(act) := nil;
    next(loc) := case
      esac;
    next(act) := case
      esac;
  DEFINE
```



Transition function  
(deterministic, in general)

State 0 is final

# The target module mT1 (cont.)

1. A statement of the form:

```
next(loc):=
  case
    case_1;
    ...
    case_n;
    TRUE : loc;
  esac;
```

is included for defining next loc value. Each `case_i` expression refers to a different pair  $s, a \in S_t \times A_t$  such that  $\delta_t(s, a)$  is defined (order does not matter) and assumes the form:

$loc = ind(s) \ \& \ act = a : \delta_t(s, a)$

2. A statement of the form:

```
next(act):=
  case
    case_0;
    case_1;
    ...
    case_n;
    TRUE : act;
  esac;
```

is included for defining next act assignment. Let  $act : S_t \rightarrow 2^{A_t}$  be defined as  $act(s) = \{a \in A_t \mid \exists s' \in S_t \text{ s.t. } s' = \delta_t(s, a)\}$ . Then, `case_0` assumes the form:

$act = nil : act(s_0)$

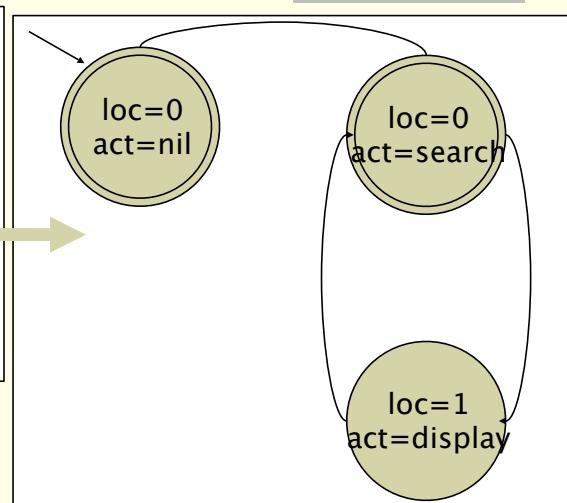
For  $i > 0$ , each `case_i` expression refers to a different pair  $s, a \in S_t \times A_t$  such that  $act(\delta_t(s, a)) \neq \emptyset$  (order does not matter) and assumes the form:

$loc = ind(s) \ \& \ act = a : act(\delta_t(s, a))$

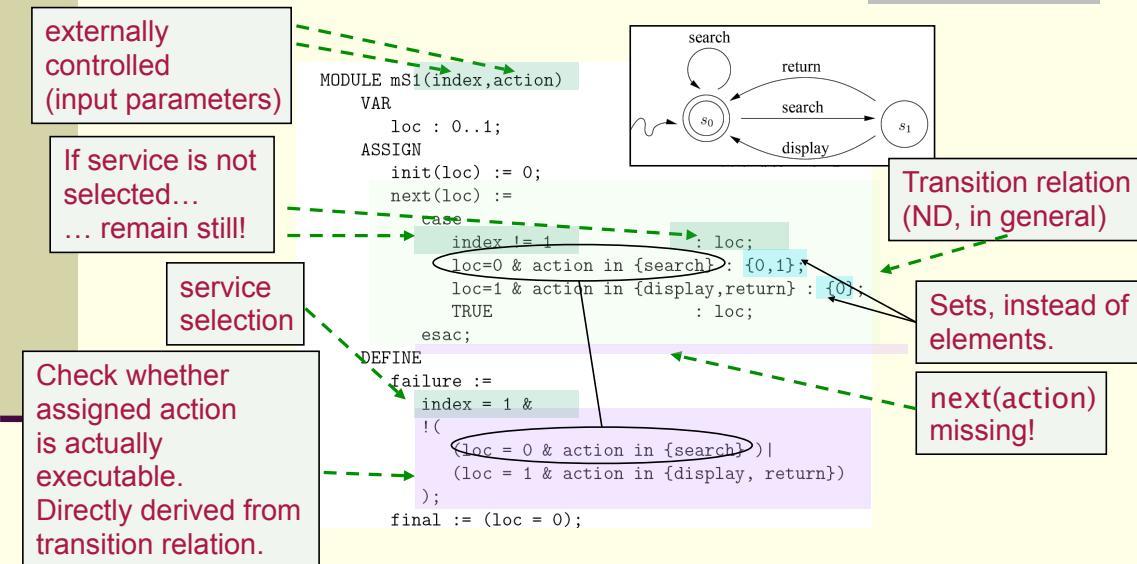
# The target module mT1 (cont.)

```
MODULE mT1(act)
VAR
  loc : 0..1;
ASSIGN
  init(loc) := 1;
  init(act) := nil;
  next(loc) := 
    CASE
      loc = 0 & act = search : 1;
      loc = 1 & act = display : 0;
      TRUE : loc;
    esac;
  next(act) := 
    CASE
      act = nil : {search};
      loc = 0 & act = search : {display};
      loc = 1 & act = display : {search};
      TRUE : {act};
    esac;
  DEFINE
    final := (loc = 0);
  END

MODULE Input(index)
VAR
  action : {nil,search,display,return};
  T1 : mT1(action);
  S1 : mS1(index,action);
  S2 : mS2(index,action);
  DEFINE
    failure := (S1.failure | S2.failure) |
      !(T1.final & (S1.final & S2.final));
```



# The available service module mS1

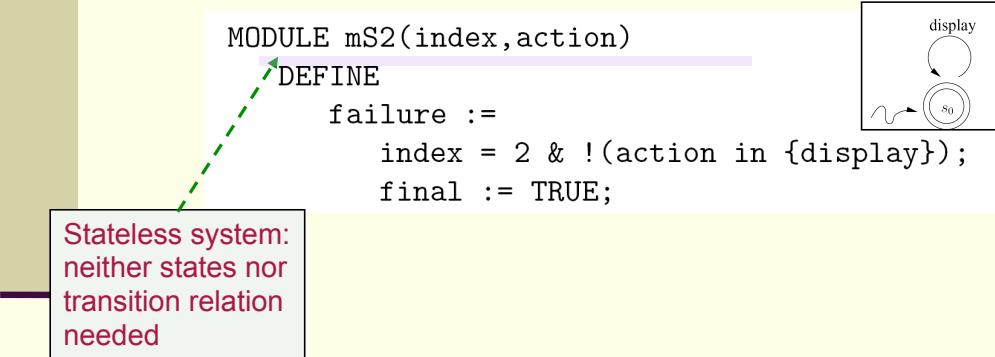


Rome - June, 2008

Web service composition via simulation and TLV

39

# The available service module mS2



Rome - June, 2008

Web service composition via simulation and TLV

40

# Putting things together

```
MODULE main
VAR
  In: system Input(Out.index);
  Out: system Output;
DEFINE
  good := !In.failure;
```

Never changes

```
MODULE Output
VAR
  index:0..2;
ASSIGN
  init(index) := 0;
  next(index) := 1..2;
```

Number of available services

# Putting things together (cont.)

```
MODULE Input(index)
VAR
  action : {nil,search,display,return};
  T1 : mT1(action);
  S1 : mS1(index,action);
  S2 : mS2(index,action);
DEFINE
  failure := (S1.failure | S2.failure) |
  !(T1.final -> (S1.final & S2.final));
```

Whole shared action alphabet plus special action nil

Never changes

Index changes, add one module per available service

Index changes, add one conjunct/disjunct per available service

## Putting things together (cont.)

```

MODULE mT1(act)
  VAR
    loc : 0..1;
  ASSIGN
    init(loc) := 0;
    init(act) := nil;
    next(loc) :=
      case
        loc = 0 & act = search : 1;
        loc = 1 & act = display : 0;
        TRUE : loc;
      esac;
    next(act) :=
      case
        act = nil : {search};
        loc = 0 & act = search : {display};
        loc = 1 & act = display : {search};
        TRUE : {act};
      esac;
  DEFINE
    final := (loc = 0);

```

Target service states

Never changes

Depends on service, see general rules.

List final states using either logical OR '||'  
(e.g., (loc=0||loc=1||loc=3)) or set construction (e.g., (loc={0,1,3})).

Rome - June, 2008

Web service composition via simulation and TLV

43

## Putting things together (cont.)

```

MODULE mS1(index,action)
  VAR
    loc : 0..1;
  ASSIGN
    init(loc) := 0;
    next(loc) :=
      case
        index != 1 : loc;
        loc=0 & action in {search} : {0,1};
        loc=1 & action in {display,return} : {0};
        TRUE : loc;
      esac;
  DEFINE
    failure :=
      index = 1 &
      (index = 0 & action in {search} ) ||
      (index = 1 & action in {display, return});
    final := (loc = 0);

```

Available service states

Never changes

Depends on service, see general rules.

Index changes. Same as module name

Rome - June, 2008

Web service composition via simulation and TLV

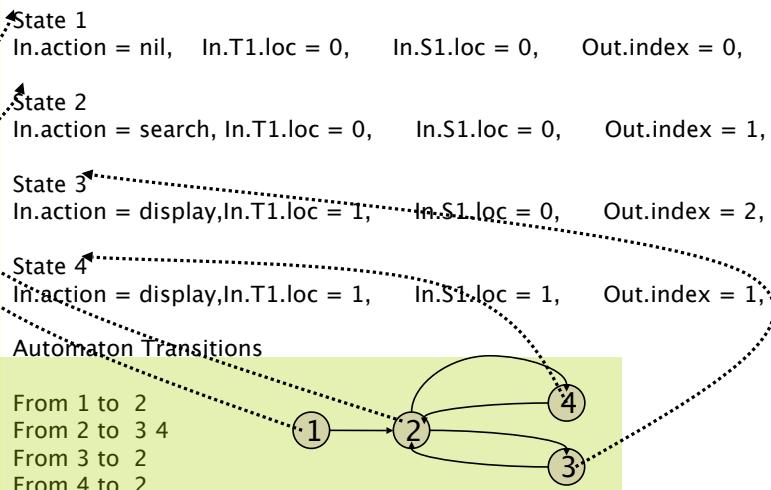
44

# Putting things together (cont.)

```
MODULE mS2(index,action)
  DEFINE
    failure :=
      index = 2 & !(action in {display});
    final := TRUE;
```

# Running the specification

Running TLV with our specification as input...



# Running the specification (cont.)

That is, the following OG:

