
Transition Systems and

Service Composition

Giuseppe De Giacomo

Seminari di Ingegneria del Software
A.A. 2007/08

Transition Systems

Concentrating on behaviors:
SUM two integers

• Consider a program for computing the sum of two integers.

• Such a program has essentially two states

– the state S0 of the memory before the computation: including
the two number to sum

– the state S1 of the memory after the computation: including the
result of the computation

• Only one action, i.e. “sum”, can be performed

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08 Giuseppe De Giacomo 3

S1S0

sum

Concentrating on behaviors:
CheckValidity

• Consider a program for computing the validity of a FOL
formula:

• Also such a program has essentially two states

– the state S1 of the memory before the computation: including

the formula to be checked

– the state S2 of the memory after the computation: including

“yes”, “no”, “time-out”

• Only one action, i.e. “checkValidity”, can be performed

Giuseppe De Giacomo 4

S1S0

checkValidity

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Concentrating on behaviors

• The programs SUM and CheckValidity are very different from
a computational point of view.

– SUM is trivial

– CheckValidity is a theorem prover hence very complex

• However they are equally trivial from a behavioral point of
view:

– two states S1 and S2

– a single action ! causing the transition

Giuseppe De Giacomo 5

S1S0

!

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Concentrating on behaviors:
RockPaperScissor

• Consider the program RockPaperScissor that allows to play
two players the the well-known game.

• The behavior of this program is not trivial:

Giuseppe De Giacomo 6

2rock

2paper

2scissor

2wins

1wins

tie

2rock

2paper

2scissor

tie

2wins

1wins

2rock

2paper

2scissor

1wins

tie

2wins

1r
oc

k

1scissor

1paper

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Concentrating on behaviors:
RockPaperScissor (automatic)

• Consider a variant of the program RockPaperScissor that
allows one players to play against the computer.

• The behavior of this program is now nondeterministic:

Giuseppe De Giacomo 7

2rock

2paper

2scissor

2wins

1wins

tie

2rock

2paper

2scissor

tie

2wins

1wins

2rock

2paper

2scissor

1wins

tie

2wins

1c
ho

os
es

1chooses

1chooses

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Concentrating on behaviors:
WebPage

Giuseppe De Giacomo 8

A web page can have a complex behavior!

http://www.informatik.uni-trier.de/~ley/db/

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Concentrating on behaviors:
Vending Machine

Giuseppe De Giacomo 9

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Concentrating on behaviors:
Another Vending Machine

Giuseppe De Giacomo 10

20c 10c

collectb collects

big small

S0

S1

S4

10c

big

S0

S1 S2

S3

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Concentrating on behaviors:
Vending Machine with Tilt

Giuseppe De Giacomo 11

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

tilt

tilt

20c

10c

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Transition Systems

• A transition system TS is a tuple T = < A, S, S0, !, F> where:

– A is the set of actions

– S is the set of states

– S0 ! S is the set of initial states

– ! ! S " A " S is the transition relation

– F ! S is the set of final states

• Variants:

– No initial states

– Single initial state

– Deterministic actions

– States labeled by propositions other than Final/¬Final

Giuseppe De Giacomo 12

(c.f. Kripke Structure)

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Process Algebras are
Formalisms for Describing TS

• Trans (a la CCS)

– Ven = 20c.Venb + 10c.Vens

– Venb = big.collectb.Ven

– Venl = small.collects.Ven

• Final

– # Ven

Giuseppe De Giacomo 13

20c 10c

collectb collects

big small

Ven

Venb Vens

 collectb.Ven collects.Ven

• TS may have infinite states - e.g., this happens when generated by

 process algebras involving iterated concurrency

• However we have good formal tools to deal only with finite states TS

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example (Clock)

Giuseppe De Giacomo 14

tick

S0

TS may describe (legal) nonterminating processes

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example (Slot Machine)

Giuseppe De Giacomo 15

collectwin 1$

play

play

S0

S1

S2

Nondereminisic transitions express
 choice that is not under the control of clients

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example
(Vending Machine - Variant 1)

Giuseppe De Giacomo 16

20c 10c

collectb

collects

big small

S0

S1 S2

S3 S4

20c

10c

S5

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example
(Vending Machine - Variant 2)

Giuseppe De Giacomo 17

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

S’1

S’3

20c

big

collectb

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Inductive vs Coinductive Definitions:
Reachability, Bisimilarity, …

Reachability

• A binary relation R is a reachability-like relation iff:

– (s,s) $ R

– if % a. s’. s &a s’ ' (s’,s’’) $ R then (s,s’’)$ R

• A state s_0 of transition system S is reachable-from a state sf iff for all a

reachability-like relations R we have (s0, sf)$ R.

• Notably that

– reachable-from is a reachability-like relation itself

– reachable-from is the smallest reachability-like relation

Note it is a inductive definition!

Giuseppe De Giacomo 19Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Computing Reachability on
Finite Transition Systems

Algorithm ComputingReachability

Input: transition system TS

Output: the reachable-from relation (the smallest reachability-like relation)

Body

 R = (

 R’ = {(s,s) | s $ S}

 while (R ! R’) {

 R := R’

 R’ := R’) {(s,s’’) | % s’,a. s &a s’ ' (s’,s’’)$ R }

 }

 return R’

YdoB

Giuseppe De Giacomo 20Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Bisimulation

• A binary relation R is a bisimulation iff:

 (s,t) $ R implies that

– s is final iff t is final

– for all actions a

• if s &a s’ then % t’ . t &a t’ and (s’,t’)$ R

• if t &a t’ then % s’ . s &a s’ and (s’,t’)$ R

• A state s0 of transition system S is bisimilar, or simply equivalent,
to a state t0 of transition system T iff there exists a bisimulation

between the initial states s0 and t0.

• Notably

– bisimilarity is a bisimulation

– bisimilarity is the largest bisimulation

Note it is a co-inductive definition!Giuseppe De Giacomo 21Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Computing Bisimilarity on
Finite Transition Systems

Algorithm ComputingBisimulation

Input: transition system TSS = < A, S, S0, !S, FS> and

 transition system TST = < A, T, T0, !T, FT>

Output: the bisimilarity relation (the largest bisimulation)

Body

 R = (

 R’ = S " T - {(s,t) | ¬(s $ FS * t $ FT)}

 while (R ! R’) {

 R := R’

 R’ := R’ - ({(s,t) | % s’,a. s &a s’ ' ¬% t’ . t &a t’ ' (s’,t’) $ R’ }

 {(s,t) | % t’,a. t &a t’ ' ¬% s’ . s &a s’ ' (s’,t’) $ R’ })

 }

 return R’

Ydob

Giuseppe De Giacomo 22Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example of Bisimulation

Giuseppe De Giacomo 23

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

20c 10c

collectb

collects

big small

S0

S1 S2

S3 S4

20c

10c

S5

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example of Bisimulation

Giuseppe De Giacomo 24

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

20c 10c

collectb collects

big small

S0

S1 S2

S3 S4

S’1

S’3

20c

big

collectb

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Automata vs.Transition Systems

• Automata
– define sets of runs (or traces or strings): (finite) length sequences of

actions

• TSs
– … but I can be interested also in the alternatives “encountered” during

runs, as they represent client’s “choice points”

Giuseppe De Giacomo 25

a

b

c e

d

a

b

c e

d

a

Different as

TSs

As automata they

recognize the

same language:

abc* + ade*

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Logics of Programs

Logics of Programs

• Are modal logics that allow to describe properties of
transition systems

• Examples:

– HennesyMilner Logic

– Propositional Dynamic Logics

– Modal (Propositional) Mu-calculus

• Perfectly suited for describing transition systems: they can
tell apart transition systems modulo bisimulation

Giuseppe De Giacomo 27Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

HennessyMilner Logic

• " := P | (atomic propositions)

 ¬ " | "1 ' "2 | "1 + "2 | (closed under boolean operators)

 [a]" | <a>" (modal operators)

• Propositions are used to denote final states

• <a>" means there exists an a-transition that leads to a state
where " holds; i.e., expresses the capability of executing
action a bringing about "

• [a]" means that all a-transitions lead to states where "
holds; i.e., express that executing action a brings about "

Giuseppe De Giacomo 28Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Logics of Programs: Examples

• Usefull abbreviation:

– <any> " stands for <a1>" + ! + <an>"

– [any] " stands for [a1]" ' ! ' [an]"

– <any - a1> " stands for <a2>" + ! + <a#>"

– [any –a1] " stands for [a2]" ' ! ' [a#]"

• Examples:

– <a>true cabability of performing action a

– [a]false inability of performing action a

– ¬Final ' <any>true ' [any-a]false

 necessity/inevitability of performing action a

 (i.e., action a is the only action

possible)

– ¬Final ' [any]false deadlock!

Giuseppe De Giacomo 29Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Propositional Dynamic Logic

• " := P | (atomic propositions)

 ¬ " | "1 ' "2 | "1 + "2 | (closed under boolean operators)

 [r]" | <r>" (modal operators)

 r := a | r1 + r2| r1;r2| r* | P? (complex actions as regular expressions)

• Essentially add the capability of expressing partial correctness assertions via
formulas of the form

– "1 &[r]"2 under the conditions "1 all possible executions of r that terminate
 reach a state of the TS where "2 holds

• Also add the ability of asserting that a property holds in all nodes of the
transition system

– [(a1+ ! + a#)*]" in every reachable state of the TS " holds

• Useful abbereviations:

– any stands for (a1+ ! + a#) Note that + can be expressed also in HM Logic

– u stands for any* This is the so called master/universal modality

Giuseppe De Giacomo 30Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Modal Mu-Calculus

• " := P | (atomic propositions)

 ¬ " | "1 ' "2 | "1 + "2 | (closed under boolean operators)

 [r]" | <r>" (modal operators)

 µ X."(X) | # X."(X) (fixpoint operators)

• It is the most expressive logic of the family of logics of programs.

• It subsumes
– PDL (modalities involving complex actions are translated into fomulas involving fixpoints)

– LTL (linear time temporal logic),

– CTS, CTS* (branching time temporal logics)

• Examples:

• [any*]" can be expressed as # X. " ' [any]X

• µ X. " + [any]X along all runs eventually "

• µ X. " + <any>X along some run eventually "

• # X. [a](µ Y. <any>true ' [any-b]Y) ' X

 every run that that contains a contains
later b

Giuseppe De Giacomo 31Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Model Checking

• Model checking is polynomial in the size of the TS for

– HennessyMilner Logic

– PDL

– Mu-Calculus

• Also model checking is wrt the formula

– Polynomial for HennessyMiner Logic

– Polynomial for PDL

– Polynomial for Mu-Calculus with bounded alternation of fixpoints
and NP,coNP in general

Giuseppe De Giacomo 32Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Model Checking

• Given a TS T, one of its states s, and a formula " verify whether the
formula holds in s. Formally:

 T,s ! "

• Examples (TS is our vending machine):

– S0 ! Final

– S0 ! <10c>true capability of performing action 10c

– S2 ! [big]false inability of performing action big

– S0 ! [10c][big]false after 10c cannot execute big

– Si ! µ X. Final + [any] X eventually a final state is reached

– S0! # Z. (µ X. Final + [any] X) ' [any] Z or equivalently

 S0 ! [any*](µ X. Final + [any] X) from everywhere eventually final

Giuseppe De Giacomo 33Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

AI Planning as Model Checking

• Build the TS of the domain:
– Consider the set of states formed all possible truth value of the

propositions (this works only for propositional setting).
– Use Pre’s and Post of actions for determining the transitions

Note: the TS is exponential in the size od the description.

• Write the goal in a logic of program
– typically a single least fixpoint formula of Mu-Calculus (compute

reachable states intersection states where goal true)

• Planning:
– model check the formula on the TS starting from the given initial state.

– use the path (paths) used in the above model checking for returning the
plan.

• This basic technique works only when we have complete information (or at least total
observability on state):

– Sequiential plans if initial state known and actions are deterministic

– Conditional plans if many possible initial states and/or actions are nondeterministic

Giuseppe De Giacomo 34Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example

• Operators (Services + Mappings)
– Registered ' ¬FlightBooked & [S1:bookFlight] FlightBooked

– ¬Registered & [S1:register] Registered

– ¬HotelBooked & [S2:bookHotel] HotelBooked

• Additional constraints (Community Ontology):
– TravelSettledUp *

 FlightBooked ' HotelBooked ' EventBooked

• Goals (Client Service Requests):
– Starting from the state

Registered ' ¬FlightBooked ' ¬ HotelBooked ' ¬EventBooked
check <any*>TravelSettedUp

– Starting from all states such that
 ¬FlightBooked ' ¬ HotelBooked ' ¬EventBooked
 check <any*>TravelSettledUp

Giuseppe De Giacomo 35Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example

Giuseppe De Giacomo 36

S1:fR

Ss:h

S1:r

Ss:h

S1:r

Ss:h
S1:f

H

R,H

R,H,F,T

R,F

Starting from the state

 Registered ' ¬ FlightBooked ' ¬ HotelBooked ' ¬ EventBooked

check

 <any*>TravelSettledUp

Plan:
 S1:bookFlight;

 S2:bookHotel

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example

Giuseppe De Giacomo 37

S1:fR

Ss:h

S1:r

Ss:h

S1:r

Ss:h
S1:f

H

R,H

R,H,F,T

R,F

Starting from all states where

 ¬ FlightBooked ' ¬ HotelBooked ' ¬ EventBooked

check

 <any*>TravelSettledUp

Plan:
 if(¬Registered) {

 S1:register;

 }
 S1:bookFlight;

 S2:bookHotel

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Satisfiability

• Observe that a formula " may be used to select among all TS

T those such that for a given state s we have that T,s ! "

• SATISFIABILITY: Given a formula " verify whether there

exists a TS T and a state s such that. Formally:

 check whether exists T, s such that T,s ! "

• Satisfiability is:

– PSPACE for HennesyMilner Logic

– EXPTIME for PDL

– EXPTIME for Mu-Calculus

Giuseppe De Giacomo 38Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

References

[Stirling Banff96] C. Stirling: Modal and temporal logics for processes. Banff Higher Order
Workshop LNCS 1043, 149-237, Springer 1996

[Bradfield&Stirling HPA01] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook
of Process Algebra, 293-332, Elsevier, 2001.

[Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer
Science, Springer 2001

[Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical
Computer Science, Vol. B, 789–840. North Holland, 1990.

[HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.

[Clarke& Schlingloff HAR01] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of
Automated Reasoning 2001: 1635-1790

[CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.

[Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical
Computer Science, Vol B: 995-1072. North Holland, 1990.

[Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive Systems.
Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996

[Vardi CST] M. Vardi: Alternating automata and program verification. Computer Science
Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.

[Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic Approach
to Branching-Time Model Checking (full version of CAV'94 paper).

[Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.

Giuseppe De Giacomo 39Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition: the “Roman” Approach

Name by

Rick Hull

The Roman Approach

Giuseppe De Giacomo 41

Community Ontology

Service1 Service2 ServiceN

Mapping1 Mapping2 MappingN

Client-tailored!

Community ontology: just a

set of actions

Client formulates the
service it requires as a TS
using the actions of the
common ontology

Available services: described

in terms of a TS using actions

of the community ontology

The community realizes the

client’s target service by

“reversing” the mapping and

hence using fragments of the

computation of the the

available services

Client

Service request

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

(Target & Available) Service TS

• We model services as finite TS T = ($, S, s0, !, F) with

– single initial state (s0)

– deterministic transitions (i.e., ! is a partial function from S"$
to S)

Note: In this way the client entirely controls/chooses the transition to
execute

Giuseppe De Giacomo 43

b

c
S0

a

Example:

a: “search by author (and select)”

b: “search by title (and select)”

c: “listen (the selected song)”

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition: an Example

Giuseppe De Giacomo 44

available service 1

available service 2

target service (virtual!)

b

c

a

a

c

b

c

Lets get some intuition of what a composition is
through an example

orchestrator

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition: an Example

Giuseppe De Giacomo 45

target service

b

c

a

a

c

b

c

A sample run
action request:

orchestrator

available service 1

available service 2

orchestrator response:

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition: an Example

Giuseppe De Giacomo 46

a

target service

b

c

a

c

b

c

a

a,1

A sample run

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition: an Example

Giuseppe De Giacomo 47

a

a

target service

b

c
c

b

c

c

a

a,1

A sample run

c,1

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition: an Example

Giuseppe De Giacomo 48

b

b

c

a

a

target service

c

c

c

a

b,2 a,1

A sample run

c,1

b

orchestrator

action request:

available service 1

available service 2

orchestrator response:

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition: an Example

Giuseppe De Giacomo 49

b

b

c

a

a

target service

c

c

c

a

b,2 a,1

A sample run
c …

c,1 c,2

b

orchestrator

action request:

orchestrator response:

available service 1

available service 2

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

A orchestrator program realizing the
target behavior

Giuseppe De Giacomo 50

target service

b

c

a

a

c

b

c

orchestrator program

a,1

b,2

c,1

c,2

orchestrator

available service 1

available service 2

Orchestrator programs

• Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

• A history is the sequence of actions done so far:

 h = a1 a2 … ak

• Observe that to take a decision P has full access to the past, but no
access to the future

– Note given an history h = a1 a2 … ak an the function P we can reconstruct the state

of the target service and of each available service

• a1 a2 … ak determines the state of the target service

• (a1 ,P([] ,ak))(a2 ,P([a1], a2)) … (ak ,P([a1 a2 … ak-1],ak)) determines the state

of of each available service

• Problem: synthesize a orchestrator program P that realizes the
target service making use of the available services

Giuseppe De Giacomo 51Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Service Execution Tree

• Nodes: history i.e., sequence of actions
executed so far

• Root: no action yet performed

• Successor node x!a of x: action a can
be executed after the sequence of
action x

• Final nodes: the service can terminate

Giuseppe De Giacomo 52

S0

a b

c c

a b a b

c c c c

...

...

...

...

By “unfolding” a (finite) TS one gets an (infinite) execution tree
-- yet another (infinite) TS which bisimilar to the original one)

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Alternative (but Equivalent)
Definition of Service Composition

Composition:
– coordinating program …
– … that realizes the target service …

– … by suitably coordinating available services

 - Composition can be seen as:
– a labeling of the execution tree of the target service such that

…

– … each action in the execution tree is labeled by the available
service that executes it …

– … and each possible sequence of actions on the target service
execution tree corresponds to possible sequences of actions on
the available service execution trees, suitably interleaved

Giuseppe De Giacomo 53Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example of Composition

54

a

c

S

1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...
S0 = orch(S1 || S2)

b

c
S0

a

Example of Composition

55

a

c

S

1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

All services start from their starting state

S0 = orch(S1 || S2)

Example of Composition (5)

56

a

c

S

1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

Each action of the target service is executed by at least one of the component services

S0 = orch(S1 || S2)

Example of composition (6)

57

a

c

S

1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a

When the target service can be left, then all component services must be in a final state

S0 = orch(S1 || S2)

Example of composition (7)

Giuseppe De Giacomo 58

a

c

S

1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a S0 = orch(S1 || S2)

Example of composition (8)

Giuseppe De Giacomo 59

a

c

S

1

b

c

S2

c

a b

c c

a b a b

c c c

...

...

...

...

b

c
S0

a S0 = orch(S1 || S2)

Observation

• This labeled execution tree has a finite representation as
a finite TS …

• …with transitions labeled by an action and the service
performing the action

Giuseppe De Giacomo 60

a,1

c,1

b,2

c,2

Is this always the case when we deal with services expressible as finite

TS? See later…

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Questions

Assume services of community and target service are finite
TSs

– Can we always check composition existence?

– If a composition exists there exists one which is a finite
TS?

– If yes, how can a finite TS composition by computed?

To answer ICSOC’03 exploits PDL SAT

Giuseppe De Giacomo 61Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Answers

Reduce service composition synthesis to satisfability in
(deterministic) PDL

– Can we always check composition existence?

Yes, SAT in PDL is decidable in EXPTIME

– If a composition exists there exists one which is a finite
TS?

Yes, by the small model property of PDL

– How can a finite TS composition be computed?

From a (small) model of the corresponding PDL formula

Giuseppe De Giacomo 62Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Encoding in PDL

Basic idea:

• A orchestrator program P realizes the target service T iff at each point:

– . transition labeled a of the target service T …

– … % an available service Bi (the one chosen by P) that can make an a-

transition, realizing the a-transition of T

• Encoding in PDL:

– . transition labeled a …
 use branching

– % an available service Bi that can make an a-transition …

 use underspecified predicates assigned through SAT

Giuseppe De Giacomo 63Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Structure of the PDL Encoding

" = Init % [u]("0 % %i=1,…,n"i % "aux)

Giuseppe De Giacomo 64

PDL encoding is polynomial in the size of the service TSs

Initial states of all

services

PDL encoding of

target service

PDL encoding of i-

th component

service

PDL additional

domain-

independent

conditions

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

PDL Encoding

• Target service S0 = ($, S0, s
0
0, !0, F0) in PDL we define "0 as

the conjunction of:

– s & ¬ s' for all pairs of distinct states in S0

service states are pair-wise disjoint

– s & <a> T % [a]s' for each s'=!0(s,a)

target service can do an a-transition going to state s’

– s & [a] ' for each !0(s,a) undef.

target service cannot do an a-transition

– F0 () s * F0 s

denotes target service final states

• …
Giuseppe De Giacomo 65Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

PDL Encoding (cont.d)

• available services S
i
= ($, Si, s

0
i, !i, Fi) in PDL we define "i as

the conjunction of:

– s & ¬ s' for all pairs of distinct states in Si

Service states are pair-wise disjoint

– s & [a](movedi % s') ¬ movedi % s) for each s'=!i(s,a)

if service moved then new state, otherwise old state

– s & [a](¬ movedi % s) for each !i(s,a) undef.

if service cannot do a, and a is performed then it did not move

– Fi () s * Fi s

denotes available service final states

• …

Giuseppe De Giacomo 66Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

PDL Encoding (cont.d)

• Additional assertions "aux

– <a>T & [a]) i=1,…,n movedi for each action a

at least one of the available services must move at each step

– F0 & % i=1,…,n Fi

when target service is final all comm. services are final

– Init (s0
0 % i=1....n s

0
i

Initially all services are in their initial state

PDL encoding: " = Init % [u]("0 % i=1,…,n "i % "aux)

Giuseppe De Giacomo 67Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Results

Thm[ICSOC’03,IJCIS’05]:
Composition exists iff PDL formula " SAT

From composition labeling of the target service one can build a

tree model of the PDL formula and viceversa

Information on the labeling is encoded in predicates movedi

Corollary [ICSOC’03,IJCIS’05]:
Checking composition existence is decidable in EXPTIME

Thm[Muscholl&Walukiewicz FoSSaCS’07]:
Checking composition existence is EXPTIME-hard

Giuseppe De Giacomo 68Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Results on TS Composition

Thm[ICSOC’03,IJCIS’05]:
If composition exists then finite TS composition exists.

From a small model of the PDL formula ",

one can build a finite TS machine

Information on the output function of the machine is encoded in

predicates movedi

- finite TS composition existence of services expressible as

finite TS is EXPTIME-complete

Giuseppe De Giacomo 69Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example (1)

Giuseppe De Giacomo 70

a

c

S

1

b

c

S2

b

c
S0

a

…

…

…

s0
0 % s1

0 % s2
0

<a> T & [a] (moved1) moved2)

 T & [b] (moved1) moved2)

<c> T & [c] (moved1) moved2)

F0 & F1 % F2

Target service

Available services

PDL

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example (2)

s0
0 & ¬ s0

1

s0
0 & <a> T % [a] s0

1

s0
0 & T % [b] s0

1

s0
1 & <c> T % [c] s0

0

s0
0 & [c] '

s0
1 & [a] '

s0
1 & [b] '

F0(s0
0

…

…

…
Giuseppe De Giacomo 71

b

c
S0

a

Target service

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example (3)

…

s1
0 & ¬ s1

1

s1
0 & [a] (moved1 % s1

1
) ¬moved1 % s1

0)

s1
0 & [c] ¬moved1 % s1

0

s1
0 & [b] ¬moved1 % s1

0

s1
1 & [a] ¬moved1 % s1

1

s1
1 & [b] ¬moved1 % s1

1

s1
1 & [c] (moved1 % s1

0
) ¬moved1 % s1

0)

F1(s1
0

s2
0 & ¬ s2

1

s2
0 & [b] (moved2 % s2

1
) ¬moved2 % s2

0)

s2
0 & [c] ¬moved2 % s2

0

s2
0 & [a] ¬moved2 % s2

0

s2
1 & [b] ¬moved2 % s2

1

s2
1 & [a] ¬moved2 % s2

1

s2
1 & [c] (moved2 % s2

0
) ¬moved2 % s2

0)

F2(s2
0

Giuseppe De Giacomo 72

Available services

a

c

S

1

b

c

S2

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example (4)

Check: run SAT on PDL formula "

Giuseppe De Giacomo 73Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example

Check: run SAT on PDL formula "

Yes + (small) model

Giuseppe De Giacomo 74

a b

c ca b

s0
0, s

0
1,

s0
2, F0, F1,

F2, Init

s0
0
, s0

1, s
0
2
,

F0, F1, F2,

moved2

s1
0
, s1

1
, s0

2,

F2, moved1

s1
0
, s0

1
, s1

2,

F1, moved2

s0
0
, s0

1
, s0

2,

F0, F1, F2,

moved1

b a

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example

Check: run SAT on PDL formula "

Yes + (small) model

+ extract finite TS

Giuseppe De Giacomo 75

a,1 b,2

c,1 c,2
a,1

b,2
b,2

a,1

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example

Check: run SAT on PDL formula "

Yes + (small) model

+ extract finite TS

+ minimize finite TS

 (similar to Mealy machine minimization)

Giuseppe De Giacomo 76

c,1 c,2

a,1 b,2

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Results on Synthesizing
Composition

• Using PDL reasoning algorithms based on model
construction (cf. tableaux), build a (small) model

Exponential in the size of the PDL encoding/services finite TS

Note: SitCalc, etc. can compactly represent finite TS,

PDL encoding can preserve compactness of representation

• From this model extract a corresponding finite TS

Polynomial in the size of the model

• Minimize such a finite TS using standard techniques (opt.)

Polynomial in the size of the TS

Note: finite TS extracted from the model is not minimal

because encodes output in properties of individuals/states

Giuseppe De Giacomo 77Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Tools for Synthesizing
Composition

• In fact we use only a fragment of PDL in particular we use
fixpoint (transitive closure) only to get the universal
modality …

• … thanks to a tight correspondence between PDLs and
Description Logics (DLs), we can use current highly
optimized DL reasoning systems to do synthesis …

• … when the ability or returning models will be added …

• … meanwhile we developed a prototype tool on this idea
(see possibly Mecella’s lectures)

Giuseppe De Giacomo 78

Pellet already has this ability, and we are exploring its use

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition via Simulation

Bisimulation

• A binary relation R is a bisimulation iff:

 (s,t) $ R implies that

– s is final iff t is final

– for all actions a

• if s &a s’ then % t’ . t &a t’ and (s’,t’)$ R

• if t &a t’ then % s’ . s &a s’ and (s’,t’)$ R

• A state s0 of transition system S is bisimilar, or simply equivalent, to a

state t0 of transition system T iff there exists a bisimulation between the

initial states s0 and t0.

• Notably
– bisimilarity is a bisimulation

– bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Giuseppe De Giacomo 80Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Computing Bisimilarity on
Finite Transition Systems

Algorithm ComputingBisimulation

Input: transition system TSS = < A, S, S0, !S, FS> and

 transition system TST = < A, T, T0, !T, FT>

Output: the bisimilarity relation (the largest bisimulation)

Body

 R = (

 R’ = S " T - {(s,t) | ¬(s $ FS * t $ FT)}

 while (R ! R’) {

 R := R’

 R’ := R’ - ({(s,t) | % s’,a. s &a s’ ' ¬% t’ . t &a t’ ' (s’,t’) $ R’ }

 {(s,t) | % t’,a. t &a t’ ' ¬% s’ . s &a s’ ' (s’,t’) $ R’ })

 }

 return R’

Ydob

Giuseppe De Giacomo 81Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Simulation

• A binary relation R is a simulation iff:

 (s,t) $ R implies that

– s is final implies that t is final

– for all actions a

• if s &a s’ then % t’ . t &a t’ and (s’,t’)$ R

• A state s0 of transition system S is simulated by a state t0 of transition

system T iff there exists a simulation between the initial states s0 and t0.

• Notably
– simulated-by is a simulation

– simulated-by is the largest simulation

Note it is a co-inductive definition!

• NB: A simulation is just one of the two directions of a bisimulation

Giuseppe De Giacomo 82Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Computing Simulation on
Finite Transition Systems

Algorithm ComputingSimulation

Input: transition system TSS = < A, S, S0, !S, FS> and

 transition system TST = < A, T, T0, !T, FT>

Output: the simulated-by relation (the largest simulation)

Body

 R = (

 R’ = S " T - {(s,t) | s $ FS ' ¬(t $ FT)}

 while (R ! R’) {

 R := R’

 R’ := R’ - {(s,t) | % s’,a. s &a s’ ' ¬% t’ . t &a t’ ' (s’,t’) $ R’ }

 }

 return R’

Ydob

Giuseppe De Giacomo 83Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Potential Behavior of the
Whole Community

• Let TS1, ! ,TSn be the TSs of the component services.

• The Community TS is defined as
the asynchronous product of TS1, ! ,TSn, namely:

TSc = < A, Sc, Sc
0, !c, Fc> where:

– A is the set of actions

– Sc = S1 "!" Sn

– Sc
0 = {(s0

1,!, s0
m)}

– F ! F1 "!" Fn

– !c ! Sc " A " Sc is defined as follows:

 (s1 " ! " sn) &a (s’1 " ! " s’n) iff

– % i. si &a s’i $!i

– . j!i. s’j = sj

Giuseppe De Giacomo 84Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example of Composition

Giuseppe De Giacomo 85

a

c

TS1

b

c

TS2

b

c
TS0

a

• Available Services

•Target Service

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example of Composition

Giuseppe De Giacomo 86

a

c

TSc

b

c
TS0

a

Community TS

Target Service

b

c

c

a

b

c

Composition exists!

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition via Simulation

• Thm[IJFCS08]
A composition realizing a target service TS TSt exists if there exists a
simulation relation between the initial state st

0 of TSt and the initial state
(s1

0, .., sn
0) of the community TS TSc.

• Notice if we take the union of all simulation relations then we get the largest
simulation relation S, still satisfying the above condition.

• Corollary[IJFCS08]
A composition realizing a target service TS TSt exists
iff (st

0 , (s1
0, .., sn

0)) $ S.

• Thm[IJFCS08]
Computing the largest simulation S is polynomial in the size of the
target service TS and the size of the community TS…

• ... hence it is EXPTIME in the size of the available services.

Giuseppe De Giacomo 87Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition via Simulation

• Given the largest simulation S form TSt to TSc(which include the initial states), we can
build the orchestrator generator.

• This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

• Def: OG = < A, [1,…,n], Sr, sr
0, ,r, !r, Fr> with

– A : the actions shared by the community

– [1,…,n]: the identifiers of the available services in the community

– Sr = St" S1 "!" Sn : the states of the orchestrator program

– sr
0 = (s0

t, s
0
1, ..., s

0
m) : the initial state of the orchestrator program

– Fr ! { (st , s1 , ..., sn) | st $ Ft : the final states of the orchestrator program

– ,r : Sr " Ar & [1,…,n] : the service selection function, defined as follows:

• If st &a, s’t then

chose k s.t. % sk’. sk &a, sk’ ' (st’, (s1 , ..., s’k , ..., sn))$ S

– !r ! Sr " Ar " [1,…,n] & Sr : the state transition function, defined as follows:

• Let ,r(st, s1 , ..., sk , ..., sn, a) = k then

 (st, s1 , ..., sk , ..., sn)&a,k (st’, s1 , ..., s’k , ..., sn) where sk &a, s’k

Giuseppe De Giacomo 88Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition via Simulation

• For generating OG we need only to compute S and then
apply the template above

• For running an orchestrator from the OG we need to store
and access S (polynomial time, exponential space) …

• … and compute ,r and !r at each step (polynomial time and space)

Giuseppe De Giacomo 89Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Extension to the Roman Model

Extensions

• Nondeterministic (angelic) target specification
– Loose specification in client request

– Angelic (don’t care) vs devilish (don’t know) nondeterminism

– See [ICSOC’04]

• Nondeterministic (devilish) available services
– Incomplete specification in available services

– Devilish (don’t know) vs angelic (don’t care) nondeterminism

– See below & [IJCAI’07]

• Distributing the orchestration
– Often a centralized orchestration is unrealistic: eg. services deployed on mobile devices

• too tight coordination

• too much communication

• orchestrator cannot be embodied anywhere

– Drop centralized orchestrator in favor of independent controllers on single available services
(exchanging messages)

– Under suitable conditions: a distributed orchestrator exists iff a centralized one does

– Still decidable (EXPTIME-complete)

– See [AAAI’07]

• Dealing with data
– This is the single most difficult issue to tackle

• First results: actions as DB updates, see [VLDB’05]

• Literature on Abstraction in Verification

– From finite to infinite transition systems!

• Security and trust aware composition [SWS’06]

• Automatic Workflows Composition of Mobile Services [ICWS’07] 91

See later

Nondeterministic Available Services

Nondeterminism in
Available Services

• Nondeterministic available services
– Incomplete information on the actual behavior

– Mismatch between behavior description (which is in
terms of the environment actions) and actual behavior of
the agents/devices

• Deterministic target service

– it’s a spec of a desired service: (devilish) nondeterminism is
banned

Giuseppe De Giacomo 93

Devilish (don’t know)!

In general, devilish nondeterminism difficult to cope with
eg. nondeterminism moves AI Planning from PSPACE (classical planning) to EXPTIME
(contingent planning with full observability [Rintanen04])

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example: Nondeterministic
Available Services

Giuseppe De Giacomo 94

a

a

service 1

service 2

target servce

a

b

b

b

S10 S11

S20

Available services represented as nondeterministic transition systems

orchestrator

Devilish nondeterminism!

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example: Nondeterministic
Available Services

Giuseppe De Giacomo 95

a

a

service 1

service 2

target service

a

b

b

b

S10 S11

S20

orchestrator

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example: Nondeterministic
Available Services

Giuseppe De Giacomo 96

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

orchestrator

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example: Nondeterministic
Available Services

Giuseppe De Giacomo 97

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

observe the
actual state!

orchestrator

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example: Nondeterministic
Available Services

Giuseppe De Giacomo 98

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

observe the
actual state!

orchestrator

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example: Nondeterministic
Available Services

Giuseppe De Giacomo 99

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

observe the
actual state!

orchestrator

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

An Orchestrator Program Realizing
the Target Service

Giuseppe De Giacomo 100

orchestrator

a

a

service 1

service 2

target service

a

b

b

b

S10 S11

S20

orchestrator program

True? a,1

S11? b,1

S10? b,2

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Orchestrator Programs

• Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

• A history is a sequence of the form:

(s1
0,s2

0,…,sn
0,e0) a1 (s1

1,s2
1,…,sn

1,e1) … ak (sk
1,s2

k,…,sn
k,ek)

• Observe that to take a decision P has full access to the past, but no
access to the future

• Problem: synthesize a orchestrator program P that realizes the target
service making use of the available services

Giuseppe De Giacomo 101

contains all the observable
information up the current situation

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Technique: Reduction to PDL

Basic idea:

• A orchestrator program P realizes the target service T iff at each point:

– . transition labeled a of the target service T …

– … % an available service Bi (the one chosen by P) which can make an a-

transition …

– … and . a-transition of Bi realize the a-transition of T

• Encoding in PDL:

– . transition labeled a …
 use branching

– % an available service Bi …

 use underspecified predicates assigned through SAT

– . a-transition of Bi … :

 use branching again

Giuseppe De Giacomo 102Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Technical Results: Theoretical

Thm[IJCAI’07] Checking the existence of orchestrator
program realizing the target service is EXPTIME-complete.

Thm [IJCAI’07] If a orchestrator program exists there
exists one that is finite state.

Giuseppe De Giacomo 103

EXPTIME-hardness due to Muscholl&Walukiewicz07
for deterministic services

Exploits the finite model property of PDL

Note: same results as for deterministic
services!

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Technical Results: Practical

• Use state-of-the-art tableaux systems for OWL-DL for checking SAT
of PDL formula " coding the composition existence

• If SAT, the tableau returns a finite model of "

• Project away irrelevant predicates from such model, and possibly
minimize

• The resulting structure is a finite orchestrator program that realizes
the target behavior

Giuseppe De Giacomo 104

Reduction to PDL provides also a practical sound and
complete technique to compute the orchestrator program
also in this case

polynomial in the size of the model

exponential in the size of the behaviors

eg, PELLET @ Univ. Maryland

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Nondeterministic Available Services:
Composition à la Simulation

Composition à la Simulation

• We consider binary relations R satisfying the following co-inductive condition:

 (s,(q1, .., qn)) $ R implies that

– if s is final then qi, with i=1, .., n, is final

– for all actions a

• if s &a s’ then % k $ 1..n.

– % qk’ . qk &a qk’

– . qk’. qk &a qk’ / (s’,(,q1,..,qk’, .., qn))$ R

Note similar in the spirit to simulation relation!

But more involved, since it deals with

• the existential choice (as the simulation) of the service, and

• the universal condition on the nondeterministic branches!

• A composition realizing a target service TS TSt exists if there exists a relation R satisfying the above
condition between the initial state st

0 of TSt and the initial state (s1
0, .., sn

0) of the community big TS
TSc.

• Notice if we take the union of all such relation R then we get the largest relation RR satisfying the
above condition.

• A composition realizing a target service TS T exists iff (st
0 , (s1

0, .., sn
0)) $ RR.

Giuseppe De Giacomo 106Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition à la Simulation

• Given RR form TSt to TSc(which include the initial states), we can build the
orchestrator generator.

• This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

• Def: OG = < A, [1,…,n], Sr, sr
0, ,r, !r, Fr> with

– A : the actions shared by the community

– [1,…,n]: the identifiers of the available services in the community

– Sr = St" S1 "!" Sn : the states of the orchestrator program

– sr
0 = (s0

t, s
0
1, ..., s

0
m) : the initial state of the orchestrator program

– Fr ! { (st , s1 , ..., sn) | st $ Ft : the final states of the orchestrator program

– ,r : Sr " Ar & [1,…,n] : the service selection function, defined as follows:

• If st &a, s’t then

chose k s.t. % sk’. sk &a, sk’ ' . sk’. sk &a, sk’ / (st’, (s1 , ..., s’k , ..., sn))$ RR

– !r ! Sr " Ar " [1,…,n] " Sr : the state transition relation, defined as follows:

• Let ,r(st, s1 , ..., sk , ..., sn, a) = k then

 (st, s1 , ..., sk , ..., sn)&a,k (st’, s1 , ..., s’k , ..., sn) for each sk &a, s’k

Giuseppe De Giacomo 107Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Composition à la Simulation

• Computing RR is polynomial in the size of the target service
TS and the size of the community TS…

• ... composition can be done in EXPTIME in the size of the
available services

• For generating OG we need only to compute RR and then
apply the template above

• For running the OG we need to store and access RR
(polynomial time, exponential space) …

• … and compute ,r and !r at each step (polynomial time and space)

Giuseppe De Giacomo 108Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example of Composition

Giuseppe De Giacomo 109

a

b

TS1 b
TS2

b
TSt

a

 Available Services

Target Service

a

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

Example of Composition

Giuseppe De Giacomo 110

b
TSt

a

Community TS

Target Service

Composition exists!

a

b

TSc

a b

b

Seminari di Ingegneria del Software: integrazione di dati e servizi –aa 2007/08

References
[ICSOC’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:

Automatic Composition of E-services That Export Their Behavior. ICSOC 2003: 43-58

[WES’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: A
Foundational Vision of e-Services. WES 2003: 28-40

[TES’04] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: : A
Tool for Automatic Composition ofServices Based on Logics of Programs. TES 2004: 80-94

[ICSOC’04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Diego Calvanese:
Synthesis of underspecified composite e-services based on automated reasoning. ICSOC 2004:
105-114

[IJCIS’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:
Automatic Service Composition Based on Behavioral Descriptions. Int. J. Cooperative Inf. Syst. 14(4):
333-376 (2005)

[VLDB’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, Massimo Mecella:
Automatic Composition of Transition-based Semantic Web Services with Messaging. VLDB 2005:
613-624

[ICSOC’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella: Composition of
Services with Nondeterministic Observable Behavior. ICSOC 2005: 520-526

[SWS’06] Fahima Cheikh, Giuseppe De Giacomo, Massimo Mecella: Automatic web services composition in
trustaware communities. Proceedings of the 3rd ACM workshop on Secure web services 2006. Pages:
43 - 52.

[AISC’06] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella. Automatic Web
Service Composition: Service-tailored vs. Client-tailored Approaches. In Proc. AISC 2006, International
Workshop jointly with ECAI 2006.

[FOSSACS’07] Anca Muscholl, Igor Walukiewicz: A lower bound on web services composition. Proceedings
FOSSACS, LNCS, Springer, Volume 4423, page 274--287 - 2007.

[IJCAI’07] Giuseppe De Giacomo, Sebastian Sardiña: Automatic Synthesis of New Behaviors from a Library
of Available Behaviors. IJCAI 2007: 1866-1871

[AAAI’07] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Automatic synthesis of a global behavior
from multiple distributed behaviors. In Proceedings of the Conference on Artificial Intelligence (AAAI),
Vancouver, Canada, July 2007.

111

