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Abstract

A number of ideas concerning information-integration tools can be thought of as construct-
ing answers to queries using views that represent the capabilities of information sources. We
review the formal basis of these techniques, which are closely related to containment algo-
rithms for conjunctive queries and=or Datalog programs. Then we compare the approaches taken
by AT&T Labs’ “Information Manifold” and the Stanford “Tsimmis” project in these terms.
c© 2000 Elsevier Science B.V. All rights reserved.

1. Theoretical background

Before addressing information-integration issues, let us review some of the basic
ideas concerning conjunctive queries, Datalog programs, and their containment. To
begin, we use the logical rule notation from [25].

Example 1.1. The following

p(X,Z) :- a(X,Y) & a(Y,Z)

is a rule that talks about a, an EDB predicate (“Extensional DataBase”, or stored
relation), and p, an IDB predicate (“Intensional DataBase”, or predicate whose relation
is constructed by rules). In this and several other examples, it is useful to think of a
as an “arc” predicate de�ning a graph, while other predicates de�ne certain structures
that might exist in the graph. That is, a(X; Y ) means there is an arc from node X to
node Y . In this case, the rule says “p(X; Z) is true if there is an arc from node X to
some node Y and also an arc from Y to Z”. That is, p represents paths of length 2.

In general, there is one atom, the head, on the left of the “if ” sign, :-, and zero
of more atoms, called subgoals, on the right side (the body). The head always has an
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IDB predicate; the subgoals can have IDB or EDB predicates. Thus, here p(X; Z) is
the head, while a(X; Y ) and a(Y; Z) are subgoals.
We assume that each variable appearing in the head also appears somewhere in

the body. This “safety” requirement assures that when we use a rule, we are not left
with unde�ned variables in the head when we try to infer a fact about the head’s
predicate.
We also assume that atoms consist of a predicate and zero or more arguments. An

argument can be either a variable or a constant. However, we exclude function symbols
from arguments.

1.1. Conjunctive queries

A conjunctive query (CQ) is a rule with subgoals that are assumed to have EDB
predicates. A CQ is applied to the EDB relations by considering all possible substitu-
tions of values for the variables in the body. If a substitution makes all the subgoals
true, then the same substitution, applied to the head, is an inferred fact about the head’s
predicate.

Example 1.2. Consider Example 1.1, whose rule is a CQ. If a(X; Y ) is true exactly
when there is an arc X →Y in a graph G, then a substitution for X; Y , and Z will
make both subgoals true when there are arcs X →Y →Z . Thus, p(X; Z) will be inferred
exactly when there is a path of length 2 from X to Z in G.

A crucial question about CQs is whether one is contained in another. If Q1 and Q2
are CQs, we say Q1⊆Q2 if for all databases (truth assignments to the EDB predicates)
D, the result of applying Q1 to D [written Q1(D)] is a subset of Q2(D). Two CQs are
equivalent if and only if each is contained in the other. It turns out that in almost all
cases, the only approach known for testing equivalence is by testing containment in
both directions. Moreover, in information-integration applications, containment appears
to be more fundamental than equivalence, so from here we shall concentrate on the
containment test.
Conjunctive queries and their containment were �rst studied by Chandra and Merlin

[3]. Here, we shall give another test, following the approach of [21], because this test
extends more naturally to the generalizations of the CQ-containment problem that we
shall discuss. To test whether Q1⊆Q2:
1. Freeze the body of Q1 by turning each of its subgoals into facts in the database. That
is, replace each variable in the body by a distinct constant, and treat the resulting
subgoals as the only tuples in the database.

2. Apply Q2 to this canonical database.
3. If the frozen head of Q1 is derived by Q2, then Q1⊆Q2. Otherwise, not; in fact, the
canonical database is a counterexample to the containment, since surely Q1 derives
its own frozen head from this database.
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Example 1.3. Consider the following two CQs:

Q1: p(X,Z) :- a(X,Y) & a(Y,Z);

Q2: p(X,Z) :- a(X,U) & a(V,Z):

Informally, Q1 looks for paths of length 2, while Q2 looks only for nodes X and
Z such that X has an arc out to somewhere, and Z has an arc in from somewhere.
Intuitively, we expect, Q1⊆Q2, and that is indeed the case.
In this and other examples, we shall use integers starting at 0 as the constants that

“freeze” the CQ, although obviously the choice of constants is irrelevant. Thus, the
canonical database D constructed from Q1 consists of the two tuples a(0; 1) and a(1; 2)
and nothing else. The frozen head of Q1 is p(0; 2).
If we apply Q2 to D, the substitution X → 0; U→ 1; V → 1, and Z→ 2 yields p(0; 2)

in the head of Q2. Since this fact is the frozen head of Q1, we have veri�ed Q1⊆Q2.

Incidentally, for this containment test and the more general tests of following sub-
sections, the argument that it works is, in brief:
• If the test is negative, then the constructed database is a counterexample to the
containment.

• If the test is positive, then there is an implied homomorphism � from the variables
of Q2 to the variables of Q1. We obtain � by seeing what constant each variable X
of Q2 was mapped to in the successful application of Q2 to the canonical database.
�(X ) is the variable of Q1 that corresponds to this constant. If we now apply Q1 to
any database D and yield a particular fact for the head, let the homomorphism from
the variables of Q1 to the database symbols that we use in this application be �.
Then � followed by � is a homomorphism from the variables of Q2 to the database
symbols that shows how Q2 will yield the same head fact. This argument proves
Q1⊆Q2.
Containment of CQs is NP-complete [3], although [22] shows that in the common

case where no predicate appears more than twice in the body, then there is a linear-time
algorithm for containment.

1.2. CQs with negation

An important extension of CQs is to allow negated subgoals in the body. The e�ect
of applying a CQ to a database is as before, but now, when we make a substitution
of constants for variables, the atoms in the negated subgoals must be false rather than
true (i.e., each negated subgoal itself must be true).
Now, the containment test is in a slightly higher complexity class; it is complete

for the class �p2 , problems that can be expressed as {w | (∀x)(∃y)�(w; x; y)}, where
strings x and y are of length bounded by a polynomial function of the length of w,
and � is a function that can be computed in polynomial time. This test, due to Levy
and Sagiv [16], involves exploring an exponential number of “canonical” databases,
any one of which can provide a counterexample to the containment.
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The Levy–Sagiv test is straightforward. Suppose we wish to test Q1⊆Q2. We use
an alphabet A of k symbols, where k is the number of variables in Q1. We consider all
databases D formed from tuples all of whose components are in A. If Q1(D)⊆Q2(D)
for each of these canonical databases, then Q1⊆Q2, and if not, then not. The number of
canonical databases is 2 raised to a polynomial in k; the exact polynomial depends on
the number of arguments in the subgoals of Q1 and the number of di�erent predicates
in Q1.
A more systematic, although still exponential way to consider all the canonical

databases is:
1. Consider all partitions of the variables of Q1 and assign for each block of the
partition a unique constant. Thus, we obtain a number of basic canonical databases
D1; D2; : : : ; Dk , where k is the number of partitions of integer n, and n is the number
of variables in the body of Q1. Each Di consists of the frozen positive subgoals of
Q1 only, not the negated subgoals.

2. For each basic canonical database Di consider whether Di makes all the subgoals
of Q1 true. Note that because the atom in a negated subgoal may happen to be in
Di, it is possible that Di makes the body of Q1 false.

3. For those Di that make the body of Q1 true, test whether any Q2(D) includes the
frozen head of Q1, where D is any database that:
(a) is a superset of Di formed by adding other tuples that use the same set of

symbols as Di, and
(b) does not include any tuple that is a frozen negative subgoal of Q1.
These Ds, plus the basic canonical databases, form the set of canonical databases
for the containment question Q1⊆Q2. When determining what the frozen head of
Q1 is, we make the same substitution of constants for variables that yielded Di.

4. If every Di either makes the body of Q1 false [the test of (2)] or meets the test of
(3), then Q1⊆Q2; otherwise, not.

Example 1.4. Let us consider the following two conjunctive queries:

Q1: p(X,Z) :- a(X,Y) & a(Y,Z) & NOT a(X,Z);

Q2: p(A,C) :- a(A,B) & a(B,C) & NOT a(A,D):

Intuitively, Q1 looks for paths of length 2 that are not “short-circuited” by a single arc
from beginning to end. Q2 looks for paths of length 2 that start from a node A that is
not a “universal source”, i.e., there is at least one node D not reachable from A by an
arc.
To show Q1⊆Q2 we need to consider all partitions of {X; Y; Z}. There are �ve of

them: one that keeps all three variables separate, one that groups them all, and three
that group one pair of variables. The table in Fig. 1 shows the �ve cases and their
outcomes.
For instance, in case (1), where all three variables are distinct, and we have arbitrarily

chosen the constants 0, 1, and 2 for X; Y , and Z , respectively, the basic canonical
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Partition Canonical database Outcome

(1) {X }{Y}{Z} {a(0; 1); a(1; 2)} both yield head p(0; 2)
(2) {X; Y}{Z} {a(0; 0); a(0; 1)} Q1 body false
(3) {X }{Y; Z} {a(0; 1); a(1; 1)} Q1 body false
(4) {X; Z}{Y} {a(0; 1); a(1; 0)} both yield head p(0; 0)
(5) {X; Y; Z} {a(0; 0)} Q1 body false

Fig. 1. The �ve basic canonical databases and their outcomes.

database D1 is the two positive subgoals, frozen to be a(0; 1) and a(1; 2). The frozen
negative subgoal NOT a(0; 2) is true in this case, since a(0; 2) is not in D1. Thus, Q1
yields its own head, p(0; 2), and we must test that Q2 does likewise on any database
D consisting of symbols 0, 1, and 2, that includes the two tuples of D1 and does not
include the tuple a(0; 2), the frozen negative subgoal of Q1. Since there are six optional
tuples, there are 26 = 64 di�erent canonical databases D.
However, regardless of which of these 64 databases D is, the same argument will

show that Q2(D) includes the frozen head of Q1, which is p(0; 2). Speci�cally, we use
the substitution A→ 0, B→ 1, C→ 2, and D→ 2. Then the positive subgoals become
true for any such D. The negative subgoal becomes NOT a(0; 2), as we have explicitly
excluded a(0; 2) from any of these databases D. We conclude that the Levy–Sagiv test
holds for case (1).
Now consider case (2), where X and Y are equated and Z is di�erent. We have

chosen to use 0 for X and Y ; 1 for Z . Then the basic canonical database for this case is
D2, consisting of the frozen positive subgoals a(0; 0) and a(0; 1). For this substitution,
the negative subgoal of Q1 becomes NOT a(0; 1). Since a(0; 1) is in D2, this subgoal is
false. Thus, for this substitution of constants for variables in Q1, we do not even derive
the head of Q1. We do not need to check further in this case; the test is satis�ed.
The three remaining cases must be checked as well. However, as indicated in

Fig. 1, in each case either both CQs yield the frozen head of Q1 or Q1 does not
yield its own frozen head. Thus, the test is completely satis�ed, and we conclude
Q1⊆Q2.

1.3. CQs with arithmetic comparisons

Another important extension of CQ-containment theory is the inclusion of arithmetic
comparisons as subgoals. In this regard we must consider the set of values in the
database as belonging to a totally ordered set, e.g., the integers or reals. When we
consider possible assignments of integer constants to the variables of conjunctive query
Q1, we may use consecutive integers, starting at 0, but now we must consider not only
partitions of variables into sets of equal value, but among the blocks of the partition,
we must consider the relative order of their values. The basic canonical database is
constructed from those subgoals that have nonnegated, uninterpreted predicates only,
not those with a negation or a comparison operator.
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If there are negated subgoals, then we must also consider certain canonical databases
that are supersets of the basic canonical databases, as we did in Section 1.2. But if
there are no negated subgoals, then the basic canonical databases alone su�ce.

Example 1.5. Now consider the following two conjunctive queries, each of which
refers to a graph in which nodes are assumed to be integers:

Q1: p(X,Z) :- a(X,Y) & a(Y,Z) & X<Y;

Q2: p(A,C) :- a(A,B) & a(B,C) & A<C.

Both ask for paths of length 2. But Q1 requires that the �rst node be numerically less
than the second, while Q2 requires that the �rst node be numerically less than the third.
The number of di�erent basic canonical databases is 13. We must consider the �ve

di�erent partitions of {X; Y; Z}, as we did in Fig. 1. However, we also have to order the
blocks of each partition. For partition (1) of Fig. 1, where each variable is separate, we
have six possible orders of the blocks. For partitions (2)–(4), where there are only two
blocks, we have two di�erent orders. Finally, for partition (5), with only one block,
there is one order.
In this example, the containment test fails. We have only to �nd one of the 13

cases to show failure. For instance, consider X =Z =0 and Y =1. The basic canonical
database D for this case is {a(0; 1); a(1; 0)}, and since X¡Y , the body of Q1 is true.
Thus, Q2(D) must include the frozen head of Q1, p(0; 0). However, no assignment of
values to A, B, and C makes all three subgoals of Q2 true, when D is the database.
That is, in order to make subgoals a(A; B) and a(B; C) both true for D, we surely must
use 0 or 1 for all of A; B, and C. Then to make A¡C true, we must have A=0 and
C =1. But then, whether B is 0 or 1 we shall have in Q2 a subgoal a(0; 0) or a(1; 1),
neither of which is in D. Thus, D is a counterexample to Q1⊆Q2.

The containment test for CQs with arithmetic from [10, 28] shows that the problem
of testing containment for CQs with arithmetic comparisons is complete for �p2 , at
least in the case of a dense domain such as the reals. [16] actually includes arithmetic
comparisons in their work on negation, and we should note that the above technique
works even if there are negated subgoals as well as arithmetic comparisons. There is
a more general approach that works for any interpreted predicates, not just a predicate
like ¡ or 6 that forms a total order; it appears in [32]. However, this technique does
not include CQs with negated subgoals.

1.4. Datalog programs

Let us now return to the original model of rules, excluding negated subgoals and
arithmetic comparisons. However, we shall now consider collections of rules, which
we call a Datalog program. Such collections of rules have a natural, least-�xedpoint
interpretation, where we start by assuming the IDB predicates have empty relations.
We then use the rules to infer new IDB facts, until no more facts can be inferred.
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More on the semantics of Datalog, including e�cient algorithms for evaluating the IDB
predicates, can be found in [25, 26]. While we shall not discuss Datalog with negated
subgoals here, because the meaning is debatable in some cases, the principal ideas are
surveyed in [27]. Here is an example of a Datalog program and its semantics.

Example 1.6. Consider the three rules:
(1) p(X,Z) :- q(X,Y) & b(Y,Z).
(2) q(X,Y) :- a(X,Y).
(3) q(X,Z) :- a(X,Y) & p(Y,Z).
Intuitively, think of a graph with two kinds of arcs: “a-arcs” and “b-arcs”. Then p and
q represent certain kinds of paths. Rule (1) says that a q-path followed by a b-arc is
a p-path. Rule (2) says that a single a-arc is a q-path, while rule (3) says that a-arcs
followed by p-paths are also q-paths. It may not be obvious what is going on, but
one can prove by an easy induction that the p-paths consist of some number n¿1 of
a-arcs followed by an equal number of b-arcs. A q-path is the same, except it has one
fewer b-arc.
To get a feel for why this description of p- and q-paths is valid, consider a particular

graph G described by the a and b EDB predicates. Then rule (2) says all the paths a
are in the relation for q. We can therefore use rule (1) to infer that any path of the
form ab is in the relation for p; more precisely, if there is a path from node X to
node Z that follows an a-arc and then a b-arc, p(X; Z) is true. Next, rule (3) tells us
that any path of the form aab is a q-path; rule (1) says paths of the form aabb are
p-paths, and so on.

Containment questions involving Datalog programs are often harder than for CQs.
[23] shows that containment of Datalog programs is undecidable, while [5] shows
that containment of a Datalog program in a CQ is doubly exponential. However, the
important case for purposes of information integration is the containment of a CQ in a
Datalog program, and this question turns out to be no more complex than containment
of CQs [21].
To test whether CQ Q is contained in Datalog program P, we “freeze” the body of

Q, just as we did in Section 1.1, to make a canonical database D. We then see if P(D)
contains the frozen head of Q. The only signi�cant di�erence between containment in
a CQ and containment in a Datalog program is that in the latter case we must keep
applying the rules until either the head is derived, on no more IDB facts can be
inferred.

Example 1.7. Consider the Datalog program from Example 1.6, which we shall call
P, and the CQ Q:

p(A,C) :- a(A,B) & b(B,C):

Freezing the body of Q, we obtain the canonical database D= {a(0; 1); b(1; 2)}. Now,
we apply P to D. Rule (2) lets us infer q(0; 1) from a(0; 1). Then, rule (1) lets us
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Fig. 2. Constructing a query from views.

infer p(0; 2) from q(0; 1) and b(1; 2). Since p(0; 2) is the frozen head of Q, our test
has concluded positively; Q⊆P.

2. Synthesizing queries from views

Query containment algorithms connect to information-integration via a concept called
“synthesizing queries from views”. The idea, originally studied by [4, 31], is suggested
in Fig. 2. There are a number of “EDB” predicates, for which we use p’s in Fig. 2.
These predicates, which are not truly EDB predicates since they usually do not exist as
physically stored relations, can be thought of as representing the basic concepts used
in queries. There are also views, denoted by v’s in Fig. 2, that represent resources
that the integrator uses internally to help answer queries. Each view has a de�nition in
terms of the EDB predicates, and we suppose here that these de�nitions are conjunctive
queries.

2.1. Solving queries by views

A query Q is expressed in terms of the EDB predicates, the p’s. Our problem is
to �nd a “solution” S for the query Q. A solution is an expression (also a CQ in the
�gure) in terms of the views. When we replace the views in S by their de�nitions, we
get an expansion query E, which must be equivalent to the original query Q, if the
solution S is valid. An alternative formulation of the query-synthesis problem is to ask
for all solutions S whose expansion E is contained in Q (perhaps properly contained).
“The solution” for Q is then the union of all these partial solutions.

Example 2.1. We shall consider an example that illustrates some technical points, but
su�ers in realism for the sake of these points. Let us suppose that there is a single
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EDB predicate p(X; Y ) which we interpret to mean that Y is a parent of X . Let there
be two views, de�ned as follows:

v1(Y,Z) :- p(X,Y) & p(Y,Z);

v2(X,Z) :- p(X,Y) & p(Y,Z):

Note that the views have the same body but di�erent heads. The �rst view, v1, actually
produces a subset of the relation for p: those child-parent pairs (Y; Z) such that the child
is also a parent of some individual X . The second view, v2, produces a straightforward
grandparent relation from the parent relation.
Suppose that we want to query this information system for the great grandparents

of a particular individual, whom we denote by the constant 0. This query is expressed
in terms of the EDB predicate p by

q(C) :- p(0,A) & p(A,B) & p(B,C):

Our problem is to �nd a CQ whose subgoals use only the predicates v1 and v2 and
whose expansion is equivalent to the query above. A bit of thought tells us that

s1(C) :- v2(0,D) & v1(D,C)

is a solution. That is, if we replace each of the subgoals of s1 by the de�nition of the
views (being careful to use unique variables in place of those variables that appear in
the bodies of the view de�nitions but not in the heads of those de�nitions), we get
the expansion:

e1(C) :- p(0,E) & p(E,D) & p(F,D) & p(D,C):

We can use the CQ containment test in both directions to prove that e1 ≡ q. Intuitively,
the subgoal p(F;D) in e1 is super
uous, since every time there is binding for E and
D that makes p(E;D) true, we can bind F to the same value as E and make p(F;D)
true.
There are other solutions that, when expanded, are contained within q, but are not

equivalent to it. Some examples are:

s2(C) :- v1(0,D) & v2(D,C);

s3(C) :- v1(0,D) & v1(D,E) & v1(E,C);

s4(C) :- v2(0,D) & v1(D,C) & v2(C,E):

Solution s2 is equivalent to q if individual 0 has a child in the database. Otherwise, 0
cannot appear as a �rst component in the relation for v1, and the result of s2 is empty.
Thus, s2⊆ q, but not conversely. Solution s3 is actually equivalent to s2, while s4 gives
those great grandparents of individual 0 who are themselves grandchildren.
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2.2. Minimal-solution theorems

It might appear from Example 2.1 that one can only guess potential solutions for
a query and test them via CQ-containment tests. However, there are theorems that
limit the search and show that the problem of expressing a query in terms of views,
while NP-complete, is no worse than that. As discussed in Section 1.1, we expect that
queries will be short, so NP-complete problems are unlikely to be a major bottleneck
in practice.
The principal idea is that any view used in a solution must serve some function in the

query; a view without a function may be deleted from the solution. For example, one
possible function of a view is to cover some subgoal of the query must be covered by
some view. The question of when a view covers a query subgoal is a bit subtle, because
two or more views may cover the same subgoal. For instance, consider Example 2.1,
where both p(E;D) and p(F;D) from expansion e1 “cover” p(A; B) from the query.
More precisely, A, E, and F may each represent a parent of individual 0, while B
and D represent a parent of that parent. Note that p(E;D) and p(F;D) come from the
expansion of v2(0; D) and v1(D;C), respectively, in solution s1, so these two subgoals
from di�erent views each play the same role in the expansion.
Let us de�ne a solution S for a query Q to be minimal if

1. S ⊆Q.
2. There is no solution T for Q such that
(a) S ⊆T ⊆Q, and
(b) T has fewer subgoals than S.

Theorem 2.2 (Levy [11]). If queries are CQs without negation; arithmetic compari-
sons; or constants in the body; then every minimal; contained conjunctive-query solu-
tion for a query Q has no more subgoals (uses of views) than Q has subgoals.

Theorem 2.3 (Rajaraman [20]). If queries are CQs without negation or arithmetic
comparisons (but with constants in the body permitted; as in Example 2.1), then
every minimal equivalent CQ-solution for a query Q has no more subgoals than the
sum of the number of subgoals and number of variables in Q.

Both Theorems 2.2 and 2.3 o�er nondeterministic polynomial-time algorithms to �nd
either
1. a single solution equivalent to the query Q, or
2. a set of solutions whose union is contained in Q and that contains any other solution
that is contained in Q.

In each case, one searches “only” an exponential number (as a function of the length
of Q) of minimal queries. If we are looking for one solution equivalent to Q, then
we may stop if we �nd one, and we conclude there is none if we have searched all
solutions of length up to the bound and found none. If we want all solutions contained
in the query, then we search all up to the bound, taking those that are contained in Q.
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Fig. 3. Common integration architecture.

3. Information-integration systems

Information integration has long been recognized as a central problem of modern
database systems. While early databases were self-contained, it is now generally real-
ized that there is great value in taking information from various sources and making
them work together as a whole. Yet there are several di�cult problems to be faced:
• “Legacy” databases cannot be altered just because we wish to support a new, inte-
grating application above them.

• Databases that ostensibly deal with the same concepts may have di�erent shades of
meaning for the same term, or use di�erent terms for the same concept.

• Information sources, such as those on the “web”, may have no �xed schema or a
time-varying schema.
A common integration architecture is shown in Fig. 3. Several sources are wrapped

by software that translates between the source’s local language, model, and concepts
and the global concepts shared by some or all of the sources. System components, here
called mediators [30], obtain information from one or more components below them,
which may be wrapped sources or other mediators. Mediators also provide information
to components above them and to external users of the system.
In a sense, a mediator is a view of the data found in one or more sources. Data

does not exist at the mediator, but one may query the mediator as if it were stored
data; it is the job of the mediator to go to its sources and �nd the answer to the
query.
Today, the components labeled “mediator” in Fig. 3 are unlikely to be true mediators,

but rather data warehouses. If a mediator is like a view, then a warehouse is like
a materialized view. That is, the warehouse holds data that is constructed from the
data at the sources. The warehouse is queried directly, with no involvement by the
sources. There are numerous problems associated with the design and implementation
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of warehouses (see e.g. [29]), not the least of which is that it is di�cult and=or
expensive to keep the warehouse up-to-date, as the underlying data changes.
There are, however, several research projects developing true mediator capabilities,

and in this section we shall introduce two of them:
1. Information Manifold [9, 12, 13], a project of AT&T Laboratories.
2. Tsimmis [7, 17–19, 24], a project at Stanford University.
Both systems use logic-based technology, and while neither is based on Datalog per
se, the operation of each can be translated into Datalog.

3.1. Information manifold

Information manifold (IM) is based on a dialect of description logic called CARIN
[15]. Description logic is a fragment of �rst-order logic that can almost be thought
of as nonrecursive Datalog with IDB predicates restricted to be unary, although there
are certain capabilities of description logic that are beyond what Datalog provides [2].
Here, we shall use Datalog in examples of the architecture of IM.
The architecture of IM is essentially that described in Section 2. The following points

characterize IM in these terms:
• An IM application has a collection of “global” predicates, in terms of which all
queries are expressed.

• Each information source is associated with one or more views. Views are also de�ned
in terms of the global predicates.

• However, the de�nition of a view should not be given the usual interpretation of
“this source provides all facts derivable from its de�nition and the global predicates”.
Rather, the intension is that the view provides some of those facts.

• The solution to a query is the union of all minimal CQs (over the views) contained
in the query. Note that there could be other solutions to the query in sources not
available to this IM application, but the minimal solutions provide all the query
answers that are accessible to IM.

• Also associated with a source are zero or more constraints. A constraint is a guar-
antee that certain facts that might be present in the view will in truth not appear
there. For example, a source might supply a parent-child predicate as its view, and
a constraint might state that the only pairs supplied will have female children born
after 1970.

Example 3.1. Let us consider an integrated information system about employees of
a company. This example too is somewhat contrived for the sake of some technical
points. In this system, the global predicates are:
1. emp(E), meaning E is an employee.
2. phone(E; P), meaning P is E’s phone.
3. o�ce((E;O), meaning O is E’s o�ce.
4. mgr(E;M), meaning M is E’s manager.
5. dept(E;D), meaning D is E’s department.
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There are three sources, each of which provides one view. The de�nitions of the views
are:

v1(E,P,M) :- emp(E) & phone(E,P) & mgr(E,M);

v2(E,O,D) :- emp(E) & office(E,O) & dept(E,D);

v3(E,P) :- emp(E) & phone(E,P) & dept(E,toy):

That is, the �rst source, which supports view v1, gives information about employees,
their phones and managers. The second source supports view v2 and gives information
about the o�ces and departments of employees. The third source supports view v3
and provides the phones of employees, but only for employees in the Toy Department.
Notice that the constraint department = “Toy” is enforced by the subgoal dept(E; toy)
in the de�nition of v3. This constraint would be important if we asked a query about
employees known not to be in the Toy Department; then we would know that v3 does
not appear in any minimal solution.
Also note that there is no reason to believe the phone information provided by v1

and v3 is consistent. Further, it is entirely possible that the information is incomplete;
only one of these sources provides phone information, even though the employee is in
the Toy Department. In fact, perhaps neither source tells us Sally’s phone, even though
she has a phone.
Suppose this system is asked a query: “what are Sally’s phone and o�ce?” We can

express this query in terms of the global predicates as

q1(P,O) :- phone(sally,P) & office(sally,O):

There are two minimal solutions to this query. Both use v2 to get Sally’s o�ce, while
the two solutions di�er on whether v1 or v3 is used to get the phone. That is, the full
answer to query q1 is the union of the CQs:

answer(P,O) :- v1(sally,P,M) & v2(sally,O,D);

answer(P,O) :- v3(sally,P) & v2(sally,O,D):

Note that the expansions of these solutions:

answer(P,O) :- emp(sally) & phone(sally,P) & mgr(sally,M) &

emp(sally) & office(sally,O) & dept(sally,D);

answer(P,O) :- emp(sally) & phone(sally,P) & dept(sally,toy) &

emp(sally) & office(sally,O) & dept(sally,D)

are not equivalent to q1; they are the CQs that come closest to q1 while still being
contained in q1.
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Fig. 4. An OEM object.

3.2. Tsimmis

Tsimmis, which stands for “The Stanford-IBM Manager of Multiple Information
Sources”, was a DARPA-funded, joint project of the Stanford database group and the
IBM=Almaden database research group, although the IBM contingent later began work
on their own information integration project called the Garlic [8]. Tsimmis follows
the mediator architecture of Fig. 3, allowing us to create a hierarchy of wrappers and
mediators that talk to one another. Tsimmis components talk among themselves using
a data model called the object-exchange model (OEM) and a query language called
mediator speci�cation language (MSL). MSL is also used to describe mediators and
wrappers at a high level, and these components can be generated automatically from
the MSL speci�cation.

3.2.1. OEM
The OEM model [18] is “object-oriented”, and data is assumed to be organized into

objects. An OEM object consists of:
1. A label, roughly the name of the object’s class.
2. A type for the value of the object. The type is either an atomic type: integer, string,
Java script, and so on, or it is the type “set of OEM objects”.

3. A value, either an actual value if the object is atomic, or a set of OEM objects.
4. An (optional) object-ID.

Example 3.2. Fig. 4 suggests an OEM object with label library, whose value is a set
of objects representing the documents in the library. We also see one member object,
with label book. The value of this object is a set, and we have shown two members
of that set. Both are atomic objects, one labeled title and having value Jurassic

Park, and the other labeled author with value Crichton.
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(1) <f(E) epo {<name E> <phone P>}> @med :-

<emp {<name E> <phone P>} > @source1

(2) <f(E) epo {<name E> <phone P>}> @med :-

<emp {<name E> <phone P>}> @source3

(3) <f(E) epo {<name E> <office O>}> @med :-

<emp {<name E> <office O>}> @source2

(4) <edm {<name E> <dept D> <mgr M>}> @med :-

<emp {<name E> <mgr M>}> @source1 AND

<emp {<name E> <dept D>}> @source2

Fig. 5. An MSL mediator-description.

3.2.2. MSL
MSL statements are logical rules, but the rules are not exactly Datalog. Rather, MSL

uses a form of object-logic, in which
• Labels and values are connected using triangular brackets, <...>.
• It is also possible to include an object-ID inside triangular brackets as an optional
�rst component.

• Object-IDs may be constructed using function symbols, as in HiLog [6]
• Some (not necessarily all) members of a set of objects may be described by enclosing
them in curly braces {...}.

Example 3.3. Let us reconsider Example 3.1, where we had three sources. Source 1
produces employee–phone–manager information, Source 2 produces employee–o�ce–
department information, and Source 3 produces employee–phone information for
members of the Toy Department. Each of these sources will be assumed to export
appropriate OEM objects. For example, Source 1 exports objects with atomic subob-
jects labeled name, phone, and mgr. We wish to describe, using MSL rules, a mediator
named med that uses these three sources and exports two types of objects:
• Employee–phone–o�ce objects with label epo.
• Employee–department–manager objects with label edm.
Each object of these types will have subobjects with the appropriate labels. Fig. 5
shows the MSL rules that describe these objects exported by med.
In this example, we have made the (unrealistic) assumption that employee names

are unique. Thus, as we assemble epo objects for an employee named E, we use the
object-ID f(E), expecting that this ID is unique. Rule (1) says that whenever there
is an emp object at Source 1 with a name subobject having value E and a phone

subobject with value P, we “create” at the mediator med an object whose ID is f(E)
and whose label is epo. This object has a subobject with label name and value E and a
second subobject with label phone and value P. Rules (2) and (3) are similar; rule (2)
takes employee=phone information from Source 3, while rule (3) takes employee=o�ce
information from Source 2. Three important points are:
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• Because the object-ID is speci�ed in rules (1)–(3), whenever information about
the same employee E is found in two or more sources, the subobjects implied by
the heads of these rules will be combined into the value of the same object – the
one with ID f(E). Thus, it will be typical that employee objects will have three
subobjects, with labels name, phone, and office. They could even have more than
three subobjects. For example, Sources 1 and 3 could give di�erent phones, so two
subobjects labeled phone would appear. A single source could also have several
phones or o�ces for employee E, and all of these would appear as subobjects at
the mediator.

• The fact that rule (1) only mentions name and phone subobjects at Source 1 does
not mean it will fail if there are more subobjects, e.g., a manager subobject. MSL
only mentions subobjects it needs, allowing any other subobjects to be present. There
is even a way (the rest-variable) to refer to “whatever other subobjects are present”.

• There is no assumption that variables like E or P are atomic. They might turn out
to have sets of objects as values, and in fact di�erent objects at the sources may
have di�erent types for values having the same label. For instance, some employees
may have strings for names, while others have objects with �rst- and last-name
subobjects.
Rule (4) in Fig. 5 follows a somewhat di�erent philosophy in constructing the edm

objects at med. Here, an object is produced only if we are successful in �nding, for
employee E, a department at Source 2 and a manager at Source 1. If either is missing,
then there is no object for employee E at med. In contrast, rules (1)–(3) allow there to
be an epo object for E if any one of the three sources mentions E. Note also that the
object-ID component in the constructed sources is optional, and in rule (4) there is no
need to specify an ID. Thus, the head of rule (4) has only label and value components,
while the other rules have 3-component heads.

3.2.3. Converting MSL to Datalog
There is a way to convert MSL into completely equivalent Datalog [17]. We shall

not go into this process, but rather give a simpli�cation that will help us compare IM
and Tsimmis.

Example 3.4. The following rules capture much of the content of the MSL rules in
Fig. 5:

epo(E,P,O) :- v1(E,P,M) & v2(E,O,D)

epo(E,P,O) :- v3(E,P) & v2(E,O,D)

edm(E,D,M) :- v1(E,P,M) & v2(E,O,D)

Recall that v1; v2, and v3 are the three views that we introduced in Example 3.1. They
correspond to Sources 1–3 in Example 3.3.
There is one important way that the rules above di�er from the MSL rules in Fig. 5.

We only get epo facts for employees such that among the three views we �nd both a



J.D. Ullman / Theoretical Computer Science 239 (2000) 189–210 205

phone and o�ce for that employee. In contrast, as we mentioned in Example 3.3, the
MSL rules can yield a phone without an o�ce or vice versa. This capability of MSL is
an essential contribution to dealing with heterogeneous, often incomplete information
sources.

3.2.4. Querying Tsimmis mediators
When we query an MSL mediator, we are e�ectively querying the objects exported

by the mediator. There is no notion of “global” predicates as there is in IM. Rather, we
must refer to the labels (equivalent to predicates) that the mediator exports. Completion
of our running example will illustrate the distinction between the Tsimmis and IM
approaches.

Example 3.5. Again let us ask “what are Sally’s phone and o�ce”? This time, how-
ever, we ask it of the mediator med, whose exported objects we have represented in
Datalog by the rules of Example 3.4. The appropriate query is thus:

answer(P,O) :- epo(sally,P.O):

MSL-generated mediators answer their queries by expanding the rules by which
the mediator is de�ned, in order to get the same query in terms of information
at the sources. In our simple example, we would replace the epo subgoal in the query
by the bodies of the two rules that de�ne epo at med, thus obtaining:

answer(P,O) :- v1(sally,P,M) & v2(sally,O,D);

answer(P,O) :- v3(sally,P) & v2(sally,O,D):

Notice that this expansion is identical to what IM obtained for the same query.

3.3. Comparing the IM and Tsimmis query processors

We should not suppose from Example 3.5 that the result of “equivalent” IM and
Tsimmis queries are always the same, even after accounting for the di�erence in the
underlying logics. The processes of query translation are rather di�erent.
• IM uses the query synthesis strategy outlined in Section 2.
• IM queries are in terms of global predicates, which are translated into views.
• Tsimmis queries are in terms of predicates synthesized at a mediator. These concepts,
in turn, are built from views in the IM sense, exported by the sources.

• Tsimmis uses a strategy of rule expansion to answer queries. Although the expansion
can result in an exponential number of terms, the 
avor of the search is di�erent
from IMs. In Tsimmis we can expand each subgoal of the query independently,
using every rule whose head uni�es with the subgoal.

Example 3.6. The following is an example of how the two systems can di�er. In this
example, Tsimmis appears to 
ounder, but we should emphasize that it is an atypical
example, contrived for the sake of illustration.
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Suppose we wanted to know Sally’s o�ce and department. That is

q2(O,D):- office(sally,O) & dept(sally,D):

Using the views of Example 3.1, IM would �nd that the only minimal solution to the
query q2 is

answer(O,D):- v2(sally,O,D):

However, using the Tsimmis mediator med of Example 3.3, we can only express our
query as

q3(O,D):- epo(sally,P,O) & edm(sally,D,M):

The reason for this awkwardness is that each mediator exports a speci�c collection of
objects. We do not have the freedom to penetrate, in our query, to the terms used by
the mediator’s sources.
The mediator med would process query q3 by expanding each subgoal. The result

would be the pair of rules:

answer(O,D):- v1(sally,P1,M1) & v2(sally,O,D) &

v1(sally,P2,M2) & v2(sally,O,D)

answer(O,D):- v3(sally,P1) & v2(sally,O,D) &

v1(sally,P2,M) & v2(sally,O,D)

Of course, the MSL optimizer will eliminate redundant terms and simplify this solution.
However, it cannot completely eliminate the subgoals using the irrelevant views v1 and
v3. As a result, it produces an empty answer in the case that we do not know a phone
or manager for Sally.

Let us again emphasize that the apparent failure of Tsimmis in Example 3.6 is due
only to the fact that we contrived the mediator to export inconvenient objects. The
motivation for the design of Tsimmis is that the mediators it creates may perform
some very complex processing of source data to produce its exported objects. It may
not be feasible to de�ne or create objects for every conceivable query. In comparison,
IM is limited in the way it can combine its sources, since it must rely on the particular
search algorithm of Section 2 to combine sources.

3.4. Further comparisons of IM and Tsimmis

In addition to the di�erences in query processing discussed in Section 3.3, there are
a number of other ways in which IM and Tsimmis di�er.

3.4.1. Levels of mediation
IM is designed to have two levels: the sources and the “global mediator”. In contrast,

Tsimmis assumes that there is an inde�nite number of levels, as the output of one
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mediator can be a source for a higher-level mediator. Of course, it would in principle
be possible for one IM application to be a source for another. However, then we would
have to wrap the �rst application, de�ning for it a �xed set of views that it exported.
We thus might face the same sort of awkwardness that we explored in Example 3.6
in the context of Tsimmis.

3.4.2. Adding sources
IM makes it quite convenient to add new sources. One must write a wrapper for the

sources and de�ne its views and constraints in terms of the global concepts. However,
no change to the query-processing algorithm is needed. The new views will be used
whenever they are appropriate for the query. In contrast, new Tsimmis sources not
only must be wrapped, but the mediators that use them have to be rede�ned and their
MSL de�nitions recompiled. The administrator of the system must �gure out whether
and how to use the new sources.

3.4.3. Semistructured data
As we have mentioned, Tsimmis supports the notion that data does not have a �xed

or uniform schema; we call such data semistructured. Objects with the same label,
say employee, may have di�erent sets of information available, and even the same
information may appear with di�erent structures in di�erent objects. For example, some
employees may be retired and have no salary subobject. Others may have an integer
salary. Others may have a structured salary including base, weekly commissions, and
so on. The MSL language has been designed to allow the mediator-implementor to
deal with the lack of schema. The reader will �nd more on the important issue of
handling semistructured data in [1].

3.4.4. Constraints
Only IM has an explicit mechanism for describing special properties of the infor-

mation that a particular source will supply and using that information in its query-
processing algorithm.

3.4.5. Automatic generation of components
Tsimmis has stressed the automatic generation of both wrappers [19] and mediators

[17]. In a sense, IM has no need for automatic generation of mediators, since each
application has one “mediator” and the query-processing algorithm it uses is the same as
that of any other IM application. Tsimmis wrapper-generation technology could be used
to wrap IM sources, although the di�erence in the models and languages (OEM=MSL
versus Description Logic) makes direct adaptation impossible.

3.5. Extensions of the query=view model of mediation

Both IM and Tsimmis have concentrated on conjunctive queries as the principal
model of both queries and views. However, there has been some exploration in both
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answer(X) :- book(X) and QUALS(X):

QUALS(X):- QUALS(X) & Q(X):

QUALS(X):- Q(X):

Q(X) :- property(X,$pname,$value).

Fig. 6. A recursive program generating views.

projects of the possibility of using more powerful languages for de�ning views. The
natural “next step” is to use recursive Datalog programs to generate in�nite families of
views. While describing a simple source by a �nite set of views or rules is adequate,
sources that support a rich query language (e.g., an SQL database) are better described
by in�nite families of queries.

Example 3.7. Suppose the source is an on-line bibliography that allows queries in
which one or more properties are speci�ed. We might describe the source by the
recursive program of Fig. 6.
There are several things we must understand about the notation in Fig. 6. First,

predicates QUALS and Q are expected to be expanded in all possible ways, generating
an in�nite set of conjunctive queries, each of the form

answer(X) :- book(X) & property() &

property() & : : : & property()

That is, each query asks for books X that satisfy certain properties.
The variables $pname and $value are parameters that are intended to be �lled in

for each property, allowing the CQ to match queries in which particular properties are
required to have speci�c values. A typical query is

query(X) :- book(X) & property(X, author, crichton) &

property(X, subject, dinosaurs):

The idea has been explored in the context of Tsimmis in [19]. It also has been
proposed as an extension to IM in [14]. In each case the satisfactory incorporation
of recursively generated, in�nite view sets requires extending the previously known
algorithms for containment of conjunctive queries and Datalog programs.

4. Conclusions

Both IM and Tsimmis o�er interesting approaches to the di�cult problems of infor-
mation integration. Moreover, they both draw upon similar, fairly ancient ideas from
database logic, such as conjunctive query containment, as well as new ideas in database



J.D. Ullman / Theoretical Computer Science 239 (2000) 189–210 209

theory. They di�er in a number of ways, including the underlying logic, the approach
to semistructured data, and the query processing algorithm. Each represents an exciting
direction for further research in database systems and for the creation of a new class
of information-processing tools.
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