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ABSTRACT

Data integration is the problem of combining data residing
at different sources, and providing the user with a unified
view of these data. The problem of designing data integra-
tion systems is important in current real world applications,
and is characterized by a number of issues that are interest-
ing from a theoretical point of view. This document presents
on overview of the material to be presented in a tutorial on
data integration. The tutorial is focused on some of the the-
oretical issues that are relevant for data integration. Special
attention will be devoted to the following aspects: modeling
a data integration application, processing queries in data
integration, dealing with inconsistent data sources, and rea-
soning on queries.

1. INTRODUCTION

Data integration is the problem of combining data residing
at different sources, and providing the user with a unified
view of these data [60, 61, 89]. The problem of designing
data integration systems is important in current real world
applications, and is characterized by a number of issues that
are interesting from a theoretical point of view. This tutorial
is focused on some of these theoretical issues, with special
emphasis on the following topics.

The data integration systems we are interested in this work
are characterized by an architecture based on a global
schema and a set of sources. The sources contain the real
data, while the global schema provides a reconciled, inte-
grated, and virtual view of the underlying sources. Model-
ing the relation between the sources and the global schema
is therefore a crucial aspect. Two basic approaches have
been proposed to this purpose. The first approach, called
global-as-view, requires that the global schema is expressed
in terms of the data sources. The second approach, called
local-as-view, requires the global schema to be specified in-
dependently from the sources, and the relationships between

the global schema and the sources are established by defin-
ing every source as a view over the global schema. Our goal
is to discuss the characteristics of the two modeling mecha-
nisms, and to mention other possible approaches.

Irrespectively of the method used for the specification of
the mapping between the global schema and the sources,
one basic service provided by the data integration system
is to answer queries posed in terms of the global schema.
Given the architecture of the system, query processing in
data integration requires a reformulation step: the query
over the global schema has to be reformulated in terms of
a set of queries over the sources. In this tutorial, such a
reformulation problem will be analyzed for both the case of
local-as-view, and the case of global-as-view mappings. A
main theme will be the strong relationship between query
processing in data integration and the problem of query an-
swering with incomplete information.

Since sources are in general autonomous, in many real-world
applications the problem arises of mutually inconsistent data
sources. In practice, this problem is generally dealt with by
means of suitable transformation and cleaning procedures
applied to data retrieved from the sources. In this tutorial,
we address this issue from a more theoretical perspective.

Finally, there are several tasks in the operation of a data in-
tegration system where the problem of reasoning on queries
(e.g., checking whether two queries are equivalent) is rele-
vant. Indeed, query containment is one of the basic prob-
lems in database theory, and we will discuss several notions
generalizing this problem to a data integration setting.

The paper is organized as follows. Section 2 presents our
formalization of a data integration system. In Section 3 we
discuss the various approaches to modeling. Sections 4 and 5
present an overview of the methods for processing queries
in the local-as-view and in the global-as-view approach, re-
spectively. Section 6 discusses the problem of dealing with
inconsistent sources. Section 7 provides an overview on the
problem of reasoning on queries. Finally, Section 8 con-
cludes the paper by mentioning some open problems, and
several research issues related to data integration that are
not addressed in the tutorial.

2. DATA INTEGRATION FRAMEWORK

In this section we set up a logical framework for data integra-
tion. We restrict our attention to data integration systems



based on a so-called global schema (or, mediated schema).
In other words, we refer to data integration systems whose
aim is combining the data residing at different sources, and
providing the user with a unified view of these data. Such a
unified view is represented by the global schema, and pro-
vides a reconciled view of all data, which can be queried by
the user. Obviously, one of the main task in the design of
a data integration system is to establish the mapping be-
tween the sources and the global schema, and such a map-
ping should be suitably taken into account in formalizing a
data integration system.

It follows that the main components of a data integration
system are the global schema, the sources, and the mapping.
Thus, we formalize a data integration system T in terms of
a triple (G, S, M), where

e G is the global schema, expressed in a language Lg over
an alphabet Ag. The alphabet comprises a symbol for
each element of G (i.e., relation if G is relational, class
if G is object-oriented, etc.).

e S is the source schema, expressed in a language Ls
over an alphabet As. The alphabet As includes a
symbol for each element of the sources.

e M is the mapping between G and S, constituted by a
set of assertions of the forms

qgs ~ qg,
a¢ ~ gs

where gs and qg are two queries of the same arity,
respectively over the source schema S, and over the
global schema G. Queries gs are expressed in a query
language La,s over the alphabet As, and queries ¢g
are expressed in a query language Laq,g over the al-
phabet Ag. Intuitively, an assertion gs ~» ¢g speci-
fies that the concept represented by the query ¢s over
the sources corresponds to the concept in the global
schema represented by the query gg (similarly for an
assertion of type gg ~ gs). We will discuss several
ways to make this intuition precise in the following
sections.

Intuitively, the source schema describes the structure of the
sources, where the real data are, while the global schema
provides a reconciled, integrated, and virtual view of the
underlying sources. The assertions in the mapping establish
the connection between the elements of the global schema
and those of the source schema.

Queries to Z are posed in terms of the global schema G, and
are expressed in a query language Lo over the alphabet Ag.
A query is intended to provide the specification of which
data to extract from the virtual database represented by
the integration system.

The above definition of data integration system is general
enough to capture virtually all approaches in the literature.
Obviously, the nature of a specific approach depends on the
characteristics of the mapping, and on the expressive power
of the various schema and query languages. For example, the

language Lg may be very simple (basically allowing the defi-
nition of a set of relations), or may allow for various forms of
integrity constraints to be expressed over the symbols of Ag.
Analogously, the type (e.g., relational, semistructured, etc.)
and the expressive power of Ls varies from one approach to
another.

We now specify the semantics of a data integration system.
In what follows, a database (DB) for a schema 7 is simply a
set of collection of sets, one for each symbol in the alphabet
of 7 (e.g., one relation for every relation schema of 7, if
T is relational, or one set of objects for each class of 7T,
if 7 is object-oriented, etc.). We also make a simplifying
assumption on the domain for the various sets. In particular,
we assume that the structures constituting the databases
involved in our framework (both the global database and
the source databases) are defined over a fixed domain T'.

In order to assign semantics to a data integration system
Z = (G,8, M), we start by considering a source database
for Z, i.e., a database D that conforms to the source schema
S and satisfies all constraints in S. Based on D, we now
specify which is the information content of the global schema
G. We call global database for Z any database for G. A global
database B for 7 is said to be legal with respect to D, if:

e 3 is legal with respect to G, i.e., B satisfies all the
constraints of G;

e B satisfies the mapping M with respect to D.

The notion of B satisfying the mapping M with respect to D
depends on how to interpret the assertions in the mapping.
We will see in the next section that several approaches are
conceivable. Here, we simply note that, no matter which is
the interpretation of the mapping, in general, several global
databases exist that are legal for Z with respect to D. This
observation motivates the relationship between data integra-
tion and databases with incomplete information [91], which
will be discussed in several ways later on in the paper.

Finally, we specify the semantics of queries posed to a data
integration system. As we said before, such queries are ex-
pressed in terms of the symbols in the global schema of 7.
In general, if ¢ is a query of arity n and DB is a database,
we denote with ¢7% the set of tuples (of arity n) in DB that
satisfy q.

Given a source database D for Z, the answer ¢>'% to a query
q in Z with respect to D, is the set of tuples t of objects in
I such that ¢ € ¢® for every global database B that is legal
for 7 with respect to D. The set ¢©'P is called the set of
certain answers to q in Z with respect to D.

Note that, from the point of view of logic, finding certain
answers is a logical implication problem: check whether it
logically follows from the information on the sources that ¢
satisfies the query. The dual problem is also of interest: find-
ing the so-called possible answers to q, i.e., checking whether
t € ¢® for some global database B that is legal for 7 with
respect to D. Finding possible answers is a consistency prob-
lem: check whether assuming that t is in the answer set of
q does not contradict the information on the sources.



3. MODELING

One of the most important aspects in the design of a data in-
tegration system is the specification of the correspondence
between the data at the sources and those in the global
schema. Such a correspondence is modeled through the no-
tion of mapping as introduced in the previous section. It
is exactly this correspondence that will determine how the
queries posed to the system are answered.

In this section we discuss mappings which can be expressed
in terms of first order logic assertions. Mappings going be-
yond first order logic are briefly discussed in Section 6.

Two basic approaches for specifying the mapping in a data
integration system have been proposed in the literature,
called local-as-view (LAV), and global-as-view (GAV), re-
spectively [89, 60]. We discuss these approaches separately.
We then end the section with a comparison of the two kinds
of mapping.

3.1 Local as view

In a data integration system Z = (G,S, M) based on the
LAV approach, the mapping M associates to each element
s of the source schema S a query gg over G. In other words,
the query language Laq,s allows only expressions consti-
tuted by one symbol of the alphabet As. Therefore, a LAV
mapping is a set of assertions, one for each element s of S,
of the form

5~ qg

From the modeling point of view, the LAV approach is based
on the idea that the content of each source s should be
characterized in terms of a view gg over the global schema.
A notable case of this type is when the data integration
system is based on an enterprise model, or an ontology [58].
This idea is effective whenever the data integration system is
based on a global schema that is stable and well-established
in the organization. Note that the LAV approach favors
the extensibility of the system: adding a new source simply
means enriching the mapping with a new assertion, without
other changes.

To better characterize each source with respect to the global
schema, several authors have proposed more sophisticated
assertions in the LAV mapping, in particular with the goal
of establishing the assumption holding for the various source
extensions [1, 53, 65, 24]. Formally, this means that in the
LAV mapping, a new specification, denoted as(s), is associ-
ated to each source element s. The specification as(s) deter-
mines how accurate is the knowledge on the data satisfying
the sources, i.e., how accurate is the source with respect to
the associated view qg. Three possibilities have been con-
sidered®:

e Sound views. When a source s is sound (denoted with
as(s) = sound), its extension provides any subset of
the tuples satisfying the corresponding view ¢gg. In

'In some papers, for example [24], different assumptions on
the domain of the database (open vs. closed) are also taken
into account.

other words, given a source database D, from the fact
that a tuple is in s© one can conclude that it satisfies
the associated view over the global schema, while from
the fact that a tuple is not in s” one cannot conclude
that it does not satisfy the corresponding view. For-
mally, when as(s) = sound, a database B satisfies the
assertion s ~ qg with respect to D if

ngqg

Note that, from a logical point of view, a sound source
s with arity n is modeled through the first order as-
sertion

Vx s(x) — qg(x)
where x denotes variables x1,...,Zn.

o Complete views. When a source s is complete (de-
noted with as(s) = complete), its extension provides
any superset of the tuples satisfying the corresponding
view. In other words, from the fact that a tuple is
in s? one cannot conclude that such a tuple satisfies
the corresponding view. On the other hand, from the
fact that a tuple is not in s” one can conclude that
such a tuple does not satisfy the view. Formally, when
as(s) = complete, a database B satisfies the assertion
s ~ gg with respect to D if

SDQQS

From a logical point of view, a complete source s with
arity n is modeled through the first order assertion

Vx gg(x) — s(x)

e Ezact Views. When a source s is ezact (denoted with
as(s) = exact), its extension is exactly the set of tuples
of objects satisfying the corresponding view. Formally,
when as(s) = ezact, a database B satisfies the asser-
tion s ~ qg with respect to D if

D_ B

s =4dg

From a logical point of view, an exact source s with

arity n is modeled through the first order assertion

Vx s(x) < qg(x)

Typically, in the literature, when the specification of as(s)
is missing, source s is considered sound. This is also the
assumption we make in this paper.

Information Manifold [62], and the system presented in [78§]
are examples of LAV systems. Information Manifold ex-
presses the global schema in terms of a Description Logic [8],
and adopts the language of conjunctive queries as query lan-
guages Lo, and Lar,g. The system described in [78] uses
an XML global schema, and adopts XML-based query lan-
guages for both user queries and queries in the mapping.
More powerful schema languages for expressing the global
schema are reported in [42, 59, 22, 21]. In particular, [42, 59]
discusses the case where various forms of relational integrity
constraints are expressible in the global schema, including
functional and inclusion dependencies, whereas [22, 21] con-
sider a setting where the global schema is expressed in terms
of Description Logics [11], which allow for the specification
of various types of constraints.



3.2 Global as view

In the GAV approach, the mapping M associates to each
element g in G a query ¢s over S. In other words, the query
language L, allows only expressions constituted by one
symbol of the alphabet Ag. Therefore, a GAV mapping is
a set of assertions, one for each element g of G, of the form

g~ gs

From the modeling point of view, the GAV approach is based
on the idea that the content of each element g of the global
schema should be characterized in terms of a view gs over
the sources. In some sense, the mapping explicitly tells the
system how to retrieve the data when one wants to evalu-
ate the various elements of the global schema. This idea is
effective whenever the data integration system is based on
a set of sources that is stable. Note that, in principle, the
GAYV approach favors the system in carrying out query pro-
cessing, because it tells the system how to use the sources
to retrieve data. However, extending the system with a new
source is now a problem: the new source may indeed have
an impact on the definition of various elements of the global
schema, whose associated views need to be redefined.

To better characterize each element of the global schema
with respect to the sources, more sophisticated assertions in
the GAV mapping can be used, in the same spirit as we saw
for LAV. Formally, this means that in the GAV mapping, a
new specification, denoted as(g) (either sound, complete, or
ezact) is associated to each element g of the global schema.
When as(g) = sound (resp., complete, exact), a database
B satisfies the assertion g ~ gs with respect to a source
database D if

D B D B D B
gs Cg (resp., gs 29°, 4s =9 )

The logical characterization of sound views and complete
views in GAV is therefore through the first order assertions

Vx gs(x) — g(x), Vx g(x) — gs(x)

respectively.

It is interesting to observe that the implicit assumption in
many GAV proposals is the one of exact views. Indeed, in a
setting where all the views are exact, there are no constraints
in the global schema, and a first order query language is used
as Lam,s, a GAV data integration system enjoys what we can
call the “single database property”, i.e., it is characterized
by a single database, namely the global database that is
obtained by associating to each element the set of tuples
computed by the corresponding view over the sources. This
motivates the widely shared intuition that query processing
in GAV is easier than in LAV. However, it should be pointed
out that the single database property only holds in such a
restricted setting.

In particular, the possibility of specifying constraints in G
greatly enhances the modeling power of GAV systems, espe-
cially in those situations where the global schema is intended
to be expressed in terms of a conceptual data model, or in
terms of an ontology [16]. In these cases, the language Lg
is in fact sufficiently powerful to allow for specifying, either
implicitly or explicitly, various forms of integrity constraints
on the global database.

Most of current data integration systems follow the GAV
approach. Notable examples are TSIMMIS [51], Garlic [30],
COIN [52], MOMIS [10], Squirrel [92], and IBIS [17]. Anal-
ogously to the case of LAV systems, these systems usually
adopt simple languages for expressing both the global and
the source schemas. IBIS is the only system we are aware
of that takes into account integrity constraints in the global
schema.

3.3 Comparison between GAV and LAV

The LAV and the GAV approaches are compared in [89] from
the point of view of query processing. Generally speaking, it
is well known that processing queries in the LAV approach
is a difficult task. Indeed, in this approach the only knowl-
edge we have about the data in the global schema is through
the views representing the sources, and such views provide
only partial information about the data. Since the mapping
associates to each source a view over the global schema, it
is not immediate to infer how to use the sources in order
to answer queries expressed over the global schema. On
the other hand, query processing looks easier in the GAV
approach, where we can take advantage that the mapping
directly specifies which source queries corresponds to the el-
ements of the global schema. Indeed, in most GAV systems,
query answering is based on a simple unfolding strategy.

From the point of view of modeling the data integration sys-
tem, the GAV approach provides a specification mechanism
that has a more procedural flavor with respect to the LAV
approach. Indeed, while in LAV the designer may concen-
trate on declaratively specifying the content of the source in
terms of the global schema, in GAV, one is forced to spec-
ify how to get the data of the global schema by means of
queries over the sources. A throughout analysis of the dif-
ferences/similarities of the two approaches from the point of
view of modeling is still missing. A first attempt is reported
in [19, 18], where the authors address the problem of check-
ing whether a LAV system can be transformed into a GAV
one, and vice-versa. They deal with transformations that are
equivalent with respect to query answering, i.e., that enjoy
the property that queries posed to the original system have
the same answers when posed to the target system. Results
on query reducibility from LAV to GAV systems may be use-
ful, for example, to derive a procedural specification from a
declarative one. Conversely, results on query reducibility
from GAV to LAV may be useful to derive a declarative
characterization of the content of the sources starting from
a procedural specification. We briefly discuss the notions of
query-preserving transformation, and of query-reducibility
between classes of data integration systems.

Given two integration systems Z = (G,S, M) and 7' =
(G', S, M) over the same source schema & and such that
all elements of G are also elements of G’, 7’ is said to be
query-preserving with respect to Z, if for every query g to Z
and for every source database D, we have that

,D _ I'.D

q q

In other words, Z’ is query-preserving with respect to Z if,
for each query over the global schema of Z and each source
database, the certain answers to the query with respect to
the source database that we get from the two integration



systems are identical. A class C; of integration systems is
query-reducible to a class C2 of integration systems if there
exist a function f : C1 — Ca such that, for each Z; € C; we
have that f(Z1) is query-preserving with respect to Z;.

With the two notions in place, the question of query re-
ducibility between LAV and GAV is studied in [18] within a
setting where views are considered sound, the global schema
is expressed in the relational model, and the queries used
in the integration systems (both the queries on the global
schema, and the queries in the mapping) are expressed in
the language of conjunctive queries. The results show that
in such a setting none of the two transformations is pos-
sible. On the contrary, if one extends the framework, al-
lowing for integrity constraints in the global schema, then
reducibility holds in both directions. In particular, inclu-
sion dependencies and a simple form of equality-generating
dependencies suffice for a query-preserving transformation
from a LAV system into a GAV one, whereas single head
full dependencies are sufficient for the other direction. Both
transformations result in a query-preserving system whose
size is linearly related to the size of the original one.

Although in this paper we mainly refer to the LAV and GAV
approaches to data integration, it is worth noticing that
more general types of mappings have been also discussed
in the literature. For example, [49] introduces the so-called
GLAV approach. In GLAV, the relationships between the
global schema and the sources are established by making
use of both LAV and GAV assertions. More precisely, in a
GLAV mapping as introduced in [49], every assertion has
the form ¢s ~ ¢g, where ¢s is a conjunctive query over the
source schema, and gg is a conjunctive query over the global
schema. A database B satisfies the assertion gs ~ gg with
respect to a source database D if ¢5 C qg. Thus, the GLAV
approach models a situation where sources are sound. Inter-
estingly, the technique presented in [19, 18] can be extended
for transforming any GLAV system into a GAV one. The
key idea is that a GLAV assertion can be transformed into
a GAV assertion plus an inclusion dependency. Indeed, for
each assertion

gs ~ 4g

in the GLAV system (where the arity of both queries is n),
we introduce a new relation symbol r of arity n in the global
schema of the resulting GAV system, and we associate to r
the sound view ¢s by means of

T~ ¢S
plus the inclusion dependency
r C qg.

Now, it is immediate to verify that the above inclusion de-
pendency can be treated exactly with the same technique in-
troduced in the LAV to GAV transformation, and therefore,
from the GLAV system we can obtain a query-preserving
GAV system whose size is linearly related to the size of the
original system.

4. QUERY PROCESSING IN LAV

In this section we discuss query processing in the LAV ap-
proach. From the definition given in Section 3, it is easy

to see that answering queries in LAV systems is essentially
an extended form of reasoning in the presence of incomplete
information [91]. Indeed, when we answer a query over the
global schema on the basis of a LAV mapping, we know only
the extensions of the views associated to the sources, and
this provides us with only partial information on the global
database. As we already observed, in general, there are sev-
eral possible global databases that are legal for the data
integration system with respect to a given source database.
This observation holds even for a setting where only sound
views are allowed in the mapping. The problem is even more
complicated when sources can be modeled as complete or
exact views. In particular, dealing with exact sources essen-
tially means applying the closed world assumption on the
corresponding views [1, 85].

The following example rephrases an example given in [1].
Consider a data integration system Z with global relational
schema G containing (among other relations) a binary rela-
tion couple, and two constants Ann and Bill. Consider also
two sources female and male, respectively with associated
views

female(f) ~ { f,m | couple(f,m) }
male(m) ~ { f,m | couple(f,m) }

and consider a source database D with female” = {Ann} and
male” = {Bill}, and assume that there are no constraints
imposed by a schema. If both sources are sound, we only
know that some couple has Ann as its female component and
Bill as its male component. Therefore, the query

Q = { =,y | couple(z,y) }

asking for all couples would return an empty answer, i.e.,
Q%P = (. However, if both sources are exact, we can con-
clude that all couples have Ann as their female component
and Bill as their male component, and hence that (Ann, Bill)
is the only couple, i.e., QTP = {(Ann, Bill)}.

Since in LAV, sources are modeled as views over the global
schema, the problem of processing a query is traditionally
called view-based query processing. Generally speaking, the
problem is to compute the answer to a query based on a set
of views, rather than on the raw data in the database [89,
60].

There are two approaches to view-based query processing,
called view-based query rewriting and view-based query an-
swering, respectively. In the former approach, we are given
a query ¢ and a set of view definitions, and the goal is to
reformulate the query into an expression of a fixed language
Lr that refers only to the views and provides the answer
to g. The crucial point is that the language in which we
want the rewriting is fixed, and in general coincides with
the language used for expressing the original query. In a
LAV data integration setting, query rewriting aims at re-
formulating, in a way that is independent from the current
source database, the original query in terms of a query to
the sources. Obviously, it may happen that no rewriting in
the target language Lr exists that is equivalent to the orig-
inal query. In this case, we are interested in computing a
so-called mazimally contained rewriting, i.e., an expression
that captures the original query in the best way.



Sound CQ CcQ PQ Datalog FOL
CcQ PTIME | coNP | PTIME | PTIME | undec.
cQF PTIME | coNP | PTIME | PTIME | undec.
PQ coNP coNP coNP coNP undec.
Datalog coNP undec. coNP undec. undec.
FOL undec. undec. undec. undec. undec.
Exact CQ CcQ PQ Datalog FOL
CcQ coNP coNP coNP coNP undec.
cQ* coNP coNP coNP coNP undec.
PQ coNP coNP coNP coNP undec.
Datalog undec. undec. undec. undec. undec.
FOL undec. undec. undec. undec. undec.

Table 1: Complexity of view-based query answering

In view-based query answering, besides the query ¢ and the
view definitions, we are also given the extensions of the
views. The goal is to compute the set of tuples ¢ such that
the knowledge on the view extensions logically implies that
t is an answer to g, i.e., t is in the answer to ¢ in all the
databases that are consistent with the views. It is easy to
see that, in a LAV data integration framework, this is ex-
actly the problem of computing the certain answers to ¢ with
respect to a source database.

Notice the difference between the two approaches. In query
rewriting, query processing is divided in two steps, where
the first one re-expresses the query in terms of a given query
language over the alphabet of the view names, and the sec-
ond one evaluates the rewriting over the view extensions.
In query answering, we do not pose any limitations on how
queries are processed, and the only goal is to exploit all
possible information, in particular the view extensions, to
compute the answer to the query.

A large number of results have been reported for both ap-
proaches. We first focus on view-based query answering.

Query answering has been extensively investigated in the
last years [1, 53, 43, 66, 4, 21]. A comprehensive framework
for view-based query answering, as well as several interesting
results, is presented in [53]. The framework considers var-
ious assumptions for interpreting the view extensions with
respect to the corresponding definitions (closed, open, and
exact view assumptions). In [1], an analysis of the com-
plexity of the problem under the different assumptions is
carried out for the case where the views and the queries are
expressed in terms of various languages (conjunctive queries
without and with inequalitites, positive queries, Datalog,
and first-order queries). The complexity is measured with
respect to the size of the view extensions (data complexity).
Table 1 summarizes the results presented in [1]. Note that,
for the query languages considered in that paper, the exact
view assumption complicates the problem. For example, the
data complexity of query answering for the case of conjunc-
tive queries is PTIME under the sound view assumption,
and coNP-complete for exact views. This can be explained
by noticing that the exact view assumption introduces a
form of negation, and therefore it may force to reason by
cases on the objects stored in the views.

In [24], the problem is studied for a setting where the global
schema models a semistructured database, i.e., a labeled
directed graphs. It follows that both the user queries,

and the queries used in the LAV mapping should be ex-
pressed in a query language for semistructured data. The
main difficulty arising in this context is that languages
for querying semistructured data enable expressing regular-
path queries [2, 15, 45]. A regular-path query asks for all
pairs of nodes in the database connected by a path con-
forming to a regular expression, and therefore may contain a
restricted form of recursion. Note that, when the query con-
tains unrestricted recursion, both view-based query rewrit-
ing and view-based query answering become undecidable,
even when the views are not recursive [43].

Table 2 summarizes the results presented in [24]. Both data
complexity, and expression complexity (complexity with re-
spect to the size of the query and the view definitions) are
taken into account. All upper bound results have been ob-
tained by automata-theoretic techniques. In the analysis,
a further distinction is proposed for characterizing the do-
main of the database (open vs. closed domain assumption).
In the closed domain assumption we assume that the global
database contains only objects stored in the sources. The re-
sults show that none of the cases can be solved in polynomial
time (unless P = NP). This can be explained by observing
that the need for considering various forms of incompleteness
expressible in the query language (due to union and tran-
sitive closure), is a source of complexity for query answer-
ing. Obviously, under closed domain, our knowledge is more
accurate than in the case of the open domain assumption,
and this rules out the need for some combinatorial reason-
ing. This provides the intuition of why under closed domain
the problem is “only” coNP-complete in all cases, for data,
expression, and combined complexity. On the other hand,
under open domain, we cannot exclude the possibility that
the database contains more objects than those known to
be in the views. For combined complexity, this means that
we are forced to reason about the definition of the query
and the views. Indeed, the problem cannot be less complex
than comparing two regular path queries, and this explains
the PSPACE lower bound. Interestingly, the table shows
that the problem does not exceed the PSPACE complexity.
Moreover, the data complexity remains in coNP, and there-
fore, although we are using a query language that is powerful
enough to express a (limited) form of recursion, the prob-
lem is no more complex than in the case of disjunctions of
conjunctive queries [1].

While regular-path queries represent the core of any query
language for semistructured data, their expressive power is
limited. Several authors point out that extensions are re-
quired for making them useful in real settings (see for ex-
ample [14, 15, 80]). Indeed, the results in [24] have been
extended to query language with the inverse operator [26],
and to the class of union of conjunctive regular-path queries
in [28].

Turning our attention to view-based query rewriting, several
recent papers investigate the rewriting question for different
classes of queries. The problem is investigated for the case
of conjunctive queries (with or without arithmetic compar-
isons) in [66, 84], for disjunctive views in [4], for queries with
aggregates in [87, 37, 56], for recursive queries and nonre-
cursive views in [43], for queries expressed in Description
Logics in [9], for regular-path queries and their extensions



domain views Complexity

data [ expression [ combined

all sound || coNP coNP coNP

closed all exact coNP coNP coNP

arbitrary || coNP coNP coNP
all sound || coNP | PSPACE | PSPACE
open all exact coNP | PSPACE | PSPACE
arbitrary || coNP | PSPACE | PSPACE

Table 2: Complexity of view-based query answering
for regular-path queries

in [23, 26, 27], and in the presence of integrity constraints
in [59, 44]. Rewriting techniques for query optimization are
described, for example, in [34, 3, 88], and in [46, 80, 82] for
the case of path queries in semistructured data.

We already noted that view-based query rewriting and view-
based query answering are different problems. Unfortu-
nately, their similarity sometimes gives raise to a sort of
confusion between the two notions. Part of the problem
comes from the fact that when the query and the views are
conjunctive queries, the best possible rewriting is express-
ible as union of conjunctive queries, which is basically the
same language as the one of the original query and views.
However, for other query languages this is not the case. Ab-
stracting from the language used to express the rewriting,
we can define a rewriting of a query with respect to a set of
views as a function that, given the extensions of the views,
returns a set of tuples that is contained in the answer set of
the query in every database consistent with the views. We
call the rewriting that returns precisely such set the perfect
rewriting of the query with respect to the views. Observe
that, by evaluating the perfect rewriting over given view
extensions, one obtains the same set of tuples provided by
view-based query answering. i.e., in data integration termi-
nology, the set of certain answers to the query with respect
to the view extension. Hence, the perfect rewriting is the
best rewriting one can obtain, given the available informa-
tion on both the definitions and the extensions of the views.

An immediate consequence of the relationship between per-
fect rewriting and query answering is that the data com-
plexity of evaluating the perfect rewriting over the view ex-
tensions is the same as the data complexity of answering
queries using views. Typically, one is interested in queries
that can be evaluated in PTIME (i.e., are PTIME functions
in data complexity), and hence we would like rewritings to
be PTIME as well. For queries and views that are conjunc-
tive queries (without union), the perfect rewriting is a union
of conjunctive queries and hence is PTIME [1]. However, al-
ready for very simple query languages containing union the
perfect rewriting is not PTIME in general. Hence, for such
languages it would be interesting to characterize which in-
stances of query rewriting admit a perfect rewriting that is
PTIME. By establishing a tight connection between view-
based query answering and constraint-satisfaction problems,
it is argued in [27] that this is a difficult task.

5. QUERY PROCESSING IN GAV

Most GAV data integration systems do not allow integrity
constraints in the global schema, and assume that views
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" | 15 | alice | hong kong | 24
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Figure 1: Extension of sources for the example

are exact. It is easy to see that, under these assumptions,
query processing can be based on a simple unfolding strat-
egy. When we have a query g over the alphabet Ag of
the global schema, every element of Ag is substituted with
the corresponding query over the sources, and the resulting
query is then evaluated at the sources. As we said before,
such a strategy suffices mainly because the data integration
system enjoys the single database property. Notably, the
same strategy applies also in the case of sound views.

However, when the language Lg used for expressing the
global schema allows for integrity constraints, and the views
are sound, then query processing in GAV systems becomes
more complex. Indeed, in this case, integrity constraints can
in principle be used in order to overcome incompleteness of
data at the sources. The following example shows that, by
taking into account foreign key constraints, one can obtain
answers that would be missed by simply unfolding the user
query.

Let T = (G, S, M) be a data integration system, where G is
constituted by the relations

employee( Ecode, Ename, Ecity)
company(Ccode, Cname)
employed(Ecode, Ccode)

and the constraints

key(employee) = {Ecode}
key(company) {Ccode}
employed[Ecode] employee[Ecode]
]

-
employed[Ccode] C company[Ccode]

The source schema S consists of three sources. Source s,
of arity 4, contains information about employees with their
code, name, city, and date of birth. Source sz, of arity 2,
contains codes and names of companies. Finally, Source
s3, of arity 2, contains information about employment in
companies. The mapping M is defined by

employee s { x,Y,z ‘ Sl(xvy7zaw) }
company ~: { z,y | s2(z,y) }
employed ~: { z,w | s3(z,w) }

Now consider the following user query g, asking for codes of
employees:

{ @ | employee(z, y, 2) }

Suppose that the data stored in the source database D are
those depicted in Figure 1: by simply unfolding ¢ we obtain
the answer {12}. However, due to the integrity constraint
employed|[Ecode] C employee[Ecode], we know that 16 is the
code of a person, even if it does not appear in s¥. The
correct answer to ¢ is therefore {12,16}. Observe that we



do not know any value for the attributes of the employee
whose Ecode is 16.

Given a source database D, let us call “retrieved global
database” the global database that is obtained by popu-
lating each relation r in the global schema according to
the mapping, i.e., by populating r with the tuples obtained
by evaluating the query that the mapping associates to q.
In general, integrity constraints may be violated in the re-
trieved global database (e.g., the retrieved global database
for the above example). Regarding key constraints, let us
assume that the query that the mapping associates to each
global schema relation r is such that the data retrieved for
r do not violate the key constraint of r. In other words, the
management of key constraints is left to the designer (see
next section for a discussion on this subject). On the other
hand, the management of foreign key constraints cannot be
left to the designer, since it is strongly related to the incom-
pleteness of the sources. Moreover, since foreign keys are
interrelation constraints, they cannot be dealt with in the
GAV mapping, which, by definition, works on each global
relation in isolation.

The assumption of sound views asserts that the tuples re-
trieved for a relation r are a subset of the tuples that the
system assigns to 7; therefore, we may think of completing
the retrieved global database by suitably adding tuples in or-
der to satisfy foreign key constraints, while still conforming
to the mapping. When a foreign key constraint is violated,
there are several ways of adding tuples to the retrieved global
database to satisfy such a constraint. In other words, in the
presence of foreign key constraints in the global schema, the
semantics of a data integration system must be formulated
in terms of a set of databases, instead of a single one. Since
we are interested in the certain answers ¢©'” to a query g,
i.e., the tuples that satisfy ¢ in all global databases that are
legal for 7 with respect to D, the existence of several such
databases complicates the task of query answering.

In [17], a system called IBIS is presented, that takes into
account key and foreign key constraints over the global rela-
tional schema. The system uses the foreign key constraints
in order to retrieve data that could not be obtained in tradi-
tional data integration systems. The language for express-
ing both the user query and the queries in the mapping is
the one of union of conjunctive queries. To process a query
q, IBIS expands ¢ by taking into account the foreign key
constraints on the global relations appearing in the atoms.
Such an expansion is performed by viewing each foreign key
constraint r1[X] C r2[Y], where X and Y are sets of h at-
tributes and Y is a key for r2, as a logic programming [77]
rule

Té()?7fh+l(i)7"'

where each f; is a Skolem function, X is a vector of h vari-
ables, and we have assumed for simplicity that the attributes
involved in the foreign key are the first h ones. Each r} is
a predicate, corresponding to the global relation r;, defined
by the above rules for foreign key constraints, together with
the rule

7fn()_(‘)) — Ti(X7Xh+17"'7Xm)

(X1, ., Xn) — (X, ., X))

Once such a logic program IIg has been defined, it can be

used to generate the expanded query expand_q associated
to the original query ¢. This is done by performing a par-
tial evaluation [40] with respect to Ilg of the body of ¢/,
which is the query obtained by substituting in ¢ each predi-
cate r; with r;. In the partial evaluation tree, a node is not
expanded anymore either when no atom in the node uni-
fies with a head of a rule, or when the node is subsumed
by (i.e., is more specific than) one of its predecessors. In
the latter case, the node gets an empty node as a child;
intuitively this is because such a node cannot provide any
answer that is not already provided by its more general pre-
decessor. These conditions guarantee that the construction
of the partial evaluation tree for a query always terminates.
Then, the expansion expand_qg of ¢ is a union of conjunctive
queries whose body is constituted by the disjunction of all
nonempty leaves of the partial evaluation tree. It is possible
to show that, by unfolding expand_qg according to the map-
ping, and evaluating the resulting query over the sources,
one obtains exactly the set of certain answers of ¢ to Z with
respect to D [17].

6. INCONSISTENCIES BETWEEN SOUR-
CES

The formalization of data integration presented in the pre-
vious sections is based on a first order logic interpretation
of the assertions in the mapping, and, therefore, is not able
to cope with inconsistencies between sources. Indeed, if in
a data integration system Z = (G, S, M), the data retrieved
from the sources do not satisfy the integrity constraints of
G, then no global database exists for Z, and query answering
becomes meaningless. This is the situation occurring when
data in the sources are mutually inconsistent. In practice,
this situation is generally dealt with by means of suitable
transformation and cleaning procedures to be applied to
data retrieved by the sources (see [12, 50]). In this section,
we address the problem from a more theoretical perspective.

Several recent papers aim at formally dealing with inconsis-
tencies in databases, in particular for providing informative
answers even in the case of a database that does not sat-
isfy its integrity constraints (see, for example, [13, 6, 7, 54]).
Although interesting, such results are not specifically tai-
lored to the case of different consistent data sources that
are mutually inconsistent, that is the case of interest in
data integration. This case is addressed in [76], where the
authors propose an operator for merging databases under
constraints. Such operator allows one to obtain maximal
amount of information from each database by means of a
majority criterion used in case of conflict. However, also
the approach described in [76] does not take explicitly into
account the notion of mapping as introduced in our data
integration setting.

In data integration, according to the definition of mapping
satisfaction as given in Section 3, it may be the case that
the data retrieved from the sources cannot be reconciled in
the global schema in such a way that both the constraints
of the global schema, and the mapping are satisfied. For
example, this happens when a key constraint specified for
the relation 7 in the global schema is violated by the tuples
retrieved by the view associated to r, since the assumption
of sound views does not allow us to disregard tuples from



r with duplicate keys. If we do not want to conclude in
this case that no global database exists that is legal for 7
with respect to D, we need a different characterization of
the mapping. In particular, we need a characterization that
allows us support query processing even when the data at
the sources are incoherent with respect to the integrity con-
straints on the global schema.

A possible solution is to characterize the data integration
system Z = (G, S, M) (with M = {ri ~ Vi, ... ;10 ~
Vi }), in terms of those global databases that

1. satisfy the integrity constraints of G, and

2. approximate at best the satisfaction of the assertions
in the mapping M, i.e., that are as sound as possible.

In other, the integrity constraints of G are considered strong,
whereas the mapping is considered soft. Given a source
database D for Z, we can now define an ordering between
the global databases for Z as follows. If By and By are two
databases that are legal with respect to G, we say that B
is better than B2 with respect to D, denoted as B1 >p Ba,
if there exists an assertion 7; ~ V; in M such that

- (P nVP) o (P2 N VP), and

- (P vP) 2 (P nVP), for all 7 ~ V; in M with
J# 5

Intuitively, this means that there is at least one assertion for
which B; satisfies the sound mapping better than B2, while
for no other assertion Bz is better than ;. In other words,
B1 approximates the sound mapping better than Bs.

It is easy to verify that the relation >>p is a partial order.
With this notion in place, we can now define the notion of B
satisfying the mapping M with respect to D in our setting;:
a database B that is legal with respect to G satisfies the
mapping M with respect to D if I is maximal with respect
to >>p, i.e., for no other global database B’ that is legal with
respect to G, we have that B’ >p B.

The notion of legal database for Z with respect to D, and
the notion of certain answer remain the same, given the
new definition of satisfaction of mapping. It is immediate
to verify that, if there exists a legal database for Z with
respect to D under the first order logic interpretation of the
mapping, then the new semantics and the old one coincide,
in the sense that, for each query g, the set ¢©'7 of certain
answers computed under the first order semantics coincides
with the set of certain answers computed under the new
semantics presented here.

The problem of inconsistent sources in data integration is
addressed in [64], in particular for the case where:

e the global schema is a relational schema with key and
foreign key constraints,

e the mapping is of type GAV,

e the query language Laq,s is the language of union of
conjunctive queries,

e the views in the mapping are intended to be sound.

In such a setting, an algorithm is proposed for computing the
certain answers of a query in the new semantical framework
presented above. The algorithm checks whether a given tu-
ple t is a certain answer to a query ¢ with respect to a given
source database D in coNP data complexity (i.e., with re-
spect to the size of D). Based on this result, the problem of
computing the certain answers in the presented framework
can be shown to be coNP-complete in data complexity.

7. REASONING ON QUERIES

Recent work addresses the problem of reasoning on queries
in data integration systems. The basic form of reasoning on
queries is checking containment, i.e., verifying whether one
query returns a subset of the result computed by the other
query in all databases. Most of the results on query con-
tainment concern conjunctive queries and their extensions.
In [33], NP-completeness has been established for conjunc-
tive queries, in [63, 90], II5-completeness of containment of
conjunctive queries with inequalities is proved, and in [86]
the case of queries with the union and difference operators is
studied. For various classes of Datalog queries with inequal-
ities, decidability and undecidability results are presented
in [35] and [90], respectively. Other papers consider the
case of query containment in the presence of various types
of constraints [5, 39, 32, 69, 71, 70, 20], and for regular-path
queries and their extensions [47, 25, 28, 41].

Besides the usual notion of containment, several other no-
tions have been introduced related to the idea of comparing
queries in a data integration setting, especially in the con-
text of the LAV approach.

In [79], a query is said to be contained in another query
relative to a set of sources modeled as views, if, for each ex-
tension of the views, the certain answers to the former query
are a subset of the certain answers to the latter. Note that
this reasoning problem is different from the usual contain-
ment checking: here we are comparing the two queries with
respect to the certain answers computable on the basis of
the views available. The difference becomes evident if one
considers a counterexample to relative containment: 1 is
not contained in Q2 relative to views )V if there is a tuple
t and an extension &£ of V, such that for each database DB
consistent with £ (i.e., a database DB such that, the result
VPE of evaluating the views over DB is exactly £), t is an
answer of Q1 to DB, but there is a database DB’ consistent
with € such that ¢ is not an answer of Q2 to DB’. In other
words, (01 is not contained in Q)2 relative to views V if there
are two databases DB and DB’ such that VP8 = VP8’ and
QP® = QP¥.

In [79], it is shown that the problem of checking relative con-
tainment is IT¥ complete in the case of conjunctive queries
and views. In [74], such results are extended to the case
where views have limited access patterns.

In [72], the authors introduce the notion of “p-containment”



(where “p” stands for power): a view set V is said to be p-

contained in another view set W, i.e., YW has at least the
answering power of V, if WW can answer all queries that can
be answered using V.

The notion of “information content” of materialized views
is studied in [57] for a restricted class of aggregate queries,
with the goal of devising techniques for checking whether
a set of views is sufficient for completely answering a given
query based on the views.

One of the ideas underlying the above mentioned papers is
the one of losslessness: a set of views is lossless with respect
to a query, if, no matter what the database is, we can answer
the query by solely relying on the content of the views. This
question is relevant for example in mobile computing, where
we may be interested in checking whether a set of cached
data allows us to derive the requested information without
accessing the network, or in data warehouse design, in par-
ticular for the view selection problem [36], where we have to
measure the quality of the choice of the views to materialize
in the data warehouse. In data integration, losslessness may
help in the design of the data integration system, in par-
ticular, by selecting a minimal subset of sources to access
without losing query-answering power.

The definition of losslessness relies on that of certain an-
swers: a set of views is lossless with respect to a query,
if for every database, we can answer the query over that
database by computing the certain answers based on the
view extensions. It follows that there are at least two ver-
sions of losslessness, namely, losslessness under the sound
view assumption, and losslessness under the exact view as-
sumption.

The first version is obviously weaker than the second one.
If views V are lossless with respect to a query @ under the
sound view assumption, then we know that, from the in-
tensional point of views, V contain enough information to
completely answer @, even though the possible incomplete-
ness of the view extensions may prevent us form obtaining
all the answers that () would get from the database. On the
other hand, if V are lossless with respect to a query @ under
the exact view assumption, then we know that they contain
enough information to completely answer @, both from the
intensional and from the extensional point of view.

In [29], the problem of losslessness is addressed in a context
where both the query and the views are expressed as regular
path queries. It is shown that, in the case of the sound view
assumption, the problem is solvable by a technique that is
based on searching for a counterexample to losslessness, i.e.,
two databases that are both coherent with the view exten-
sions, and that differ in the answers to the query. Different
from traditional query containment, the search for a coun-
terexample is complicated by the presence of a quantification
over all possible view extensions. The key observation in [29]
is that, under the sound view assumption, we can restrict
our attention to counterexamples that are linear databases,
and this allows devising a method that uses, via automata-
theoretic techniques, the known connection between view-
based query answering and constraint satisfaction [27]. As
far as the computational complexity is concerned, the prob-

lem is PSPACE-complete with respect to the view defini-
tions, and EXPSPACE-complete with respect to the query.

It is interesting to observe that, for the case of exact views,
the search for a counterexample cannot be restricted to lin-
ear databases. Actually, the question of losslessness under
the exact view assumption is largely unexplored. To the
best of our knowledge, the problem is open even for a set-
ting where both the query and the views are conjunctive
queries.

8. CONCLUSIONS

The aim of this tutorial was to provide an overview of some
of the theoretical issues underlying data integration. Sev-
eral interesting problems remain open in each of the topics
that we have discussed. For example, more investigation
is needed for a deep understanding of the relationship be-
tween the LAV and the GAV approaches. Open problems
remain on algorithms and complexity for view-based query
processing, in particular for the case of rich languages for
semistructured data, for the case of exact views, and for the
case of integrity constraints in the global schema. Query
processing in GAV with constraints has been investigated
only recently, and interesting classes of constraints have not
been considered yet. The treatment of mutually inconsis-
tent sources, and the issue of reasoning on queries present
many open research questions.

Moreover, data integration is such a rich field that several
important related aspects not addressed here can be identi-
fied, including the following.

e How to build an appropriate global schema, and how
to discover inter-schema [31] and mapping assertions
(LAV or GAV) in the design of a data integration sys-
tem (see, for instance, [83]).

e How to (automatically) synthesize wrappers that
present the data at the sources in a form [] that is
suitable for their use in the mapping.

e How to deal with possible limitations in accessing the
sources, both in LAV [84, 67, 68] and in GAV [75, 48,
73, 74].

e How to incorporate the notions of quality (data qual-
ity, quality of answers, etc.) [81], and data cleaning [12]
into a formal framework for data integration.

e How to learn rules that allow for automatically map-
ping data items in different sources (for example, for
inferring that two key values in different sources actu-
ally refer to the same real-world object [38]).

e How to go beyond the architecture based on a global
schema, so as, for instance, to model data exchange,
transformation, and cooperation rather than data in-
tegration (see, e.g., [55]), or to devise information in-
tegration facilities for the Semantic Web.

e How to optimize the evaluation of queries posed to a
data integration system [3].

We believe that each of the above issues is characterized by
interesting research problems still to investigate.
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Abstract The problem of answering queries using views is to find efficient methods of answering a query
using a set of previously defined materialized views over the database, rather than accessing the database
relations. The problem has recently received significant attention because of its relevance to a wide variety of
data management problems. In query optimization, finding a rewriting of a query using a set of materialized
views can yield a more efficient query execution plan. To support the separation of the logical and physical
views of data, a storage schema can be described using views over the logical schema. As a result, finding a
query execution plan that accesses the storage amounts to solving the problem of answering queries using
views. Finally, the problem arises in data integration systems, where data sources can be described as
precomputed views over a mediated schema. This article surveys the state of the art on the problem of
answering queries using views, and synthesizes the disparate works into a coherent framework. We describe
the different applications of the problem, the algorithms proposed to solve it and the relevant theoretical
results.

1 Introduction

The problem of answering queries using views (a.k.a. rewriting queries using views) has recently received
significant attention because of its relevance to a wide variety of data management problems: query optimiza-
tion, maintenance of physical data independence, data integration and data warehouse design. Informally
speaking, the problem is the following. Suppose we are given a query @) over a database schema, and a set
of view definitions V3,...,V,, over the same schema. Is it possible to answer the query ) using only the
answers to the views V4,...,V,? Alternatively, what is the maximal set of tuples in the answer of () that we
can obtain from the views? If we can access both the views and the database relations, what is the cheapest
query execution plan for answering Q7

The first class of applications in which we encounter the problem of answering queries using views is
query optimization and database design. In the context of query optimization, computing a query using
previously materialized views can speed up query processing because part of the computation necessary for
the query may have already been done while computing the views. Such savings are especially significant in
decision support applications when the views and queries contain grouping and aggregation. Furthermore, in
some cases, certain indices can be modeled as precomputed views (e.g., join indices [Val87]),! and deciding
which indices to use requires a solution to the query rewriting problem. In the context of database design,
view definitions provide a mechanism for supporting the independence of the physical view of the data and
its logical view. This independence enables us to modify the storage schema of the data (i.e., the physical
view) without changing its logical schema, and to model more complex types of indices. Hence, several

! Strictly speaking, to model join indices we need to extend the logical model to refer to row IDs.



2 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

authors describe the storage schema as a set of views over the logical schema [YL87,TSI96,Fl096]. Given
these descriptions of the storage, the problem of computing a query execution plan (which, of course, must
access the physical storage) involves figuring out how to use the views to answer the query.

A second class of applications in which our problem arises is data integration. Data integration systems
provide a uniform query interface to a multitude of autonomous data sources, which may reside within an
enterprise or on the World-Wide Web. Data integration systems free the user from having to locate sources
relevant to a query, interact with each one in isolation, and manually combine data from multiple sources.
Users of data integration systems do not pose queries in terms of the schemas in which the data is stored,
but rather in terms of a mediated schema. The mediated schema is a set of relations that is designed for
a specific data integration application, and contains the salient aspects of the domain under consideration.
The tuples of the mediated schema relations are not actually stored in the data integration system. Instead,
the system includes a set of source descriptions that provide semantic mappings between the relations in the
source schemas and the relations in the mediated schema.

The data integration systems described in [LRO96b,DG97b, KW96,LKG99] follow an approach in which
the contents of the sources are described as views over the mediated schema. As a result, the problem of
reformulating a user query, posed over the mediated schema, into a query that refers directly to the source
schemas becomes the problem of answering queries using views. In a sense, the data integration context can
be viewed as an extreme case of the need to maintain physical data independence, where the logical and
physical layout of the data sources has been defined in advance. The solutions to the problem of answering
queries using views differ in this context because the number of views (i.e., sources) tends to be much larger,
and the sources need not contain the complete extensions of the views.

In the area of data warehouse design we need to choose a set of views (and indexes on the views) to
materialize in the warehouse [HRU96,TS97, YKL97, GHRU97, ACN00,CGO00]. Similarly, in web-site design,
the performance of a web site can be significantly improved by choosing a set of views to materialize [FLSY99).
In both of these problems, the first step in determining the utility of a choice of views is to ensure that the
views are sufficient for answering the queries we expect to receive over the data warehouse or the web site.
This problem, again, translates into the view rewriting problem.

Finally, answering queries using views plays a key role in developing methods for semantic data caching
in client-server systems [DFJ*96,KB96,CR94, ACPS96]. In these works, the data cached at the client is
modeled semantically as a set of queries, rather than at the physical level as a set of data pages or tuples.
Hence, deciding which data needs to be shipped from the server in order to answer a given query requires
an analysis of which parts of the query can be answered by the cached views.

The many applications of the problem of answering queries using views has spurred a flurry of research,
ranging from theoretical foundations to algorithm design and implementation in several commercial systems.
This article surveys the current state of the art in this area, and classifies the works into a coherent framework
based on a set of dimensions along which the treatments of the problem differ.

The treatments of the problem differ mainly depending on whether they are concerned with query op-
timization and database design or with data integration. In the case of query optimization and database
design, the focus has been on producing a query execution plan that involves the views, and hence the effort
has been on extending query optimizers to accommodate the presence of views. In this context, it is necessary
that rewriting of the query using the views be an equivalent rewriting in order for the query execution plan
to be correct. It is important to note that some of the views included in the query plan may not contribute
to the logical correctness of the plan, but only to reducing the plan’s cost.

In the data integration context, the focus has been on translating queries formulated in terms of a
mediated schema into queries formulated in terms of data sources. Hence, the output of the algorithm is
a query expression, rather than a query execution plan. Because the data sources may not entirely cover
the domain, we sometimes need to settle for a contained query rewriting, rather than an equivalent one. A
contained query rewriting provides a subset of the answer to the query, but perhaps not the entire answer.
In addition, the works on data integration distinguished between the case in which the individual views are
complete (i.e., contain all the tuples in their definition) and the case where they may be incomplete (as is
common when modeling autonomous data sources). Furthermore, the works on data integration distinguished
the translation problem from the more general problem of finding all the answers to a query given the data
in the sources, and showed that the two problems differ in interesting ways.
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The survey is organized as follows. Section 2 presents in more detail the applications motivating the study
of the problem and the dimensions along which we can study the problem. Section 3 defines the problem
formally. As a basis for the discussion of the different algorithms, Section 4 provides an intuitive explanation
of the conditions under which a view can be used to answer a query. Section 5 describes how materialized
views have been incorporated into query optimization. Section 6 describes algorithms for answering queries
using views that were developed in the context of data integration. Section 7 surveys some theoretical issues
concerning the problem of answering queries using views, and Section 8 discusses several extensions to the
algorithms in Sections 5 and 6 to accommodate queries over object-oriented databases and queries with
access-pattern limitations. Finally, Section 9 concludes, and outlines some of the open problems in this area.

We note that this survey is not concerned with the closely related problems of incremental mainte-
nance of materialized views, which is surveyed in [GM99b], selection of which views to maintain in a
data warehouse [HRU96,TS97, GHRU97, Gup97b, YKL97, GM99¢c, CG00, CHSO01] or automated selection of
indexes [CN98b, CN98a].

2 Motivation and Illustrative Examples

Before beginning the detailed technical discussion, we motivate the problem of answering queries using
views through some of its applications. In particular, this section serves to illustrate the wide and seemingly
disparate range of applications of the problem. We end the section by classifying the different works on the
topic into a taxonomy.

We use the following familiar university schema in our examples throughout the paper. We assume that
professors and students and departments are uniquely identified by their names, and courses are uniquely
identified by their numbers. The Registered relation describes the students’ registration in classes, while the
Major relation describes in which department a particular student is majoring (we assume for simplicity that
every department has a single major program).

Prof(name, area)

Course(c-number, title)

Teaches(prof, c-number, quarter, evaluation)
Registered(student, c-number, quarter)
Major(student, dept)

Worksln(prof, dept)

Advises(prof, student).

2.1 Query Optimization

The first and most obvious motivation for considering the problem of answering queries using views is for
query optimization. If part of the computation needed to answer a query has already been performed in
computing a materialized view, then we can use the view to speed up the computation of the query.

Consider the following query, asking for students and course titles for students who registered in Ph.D-
level classes taught by professors in the Database area (in our example university graduate level classes have
numbers of 400 and above, and Ph.D-level courses numbers of 500 and above):

select Registered.student, Course.title
from Teaches, Prof, Registered, Course
where Prof.name=Teaches.prof and Teaches.c-number=Registered.c-number and

Teaches.quarter=Registered.quarter and Registered.c-number=Course.c-number and
Course.c-number > 500 and Prof.area="DB".

Suppose we have the following materialized view, containing the registration records of graduate level
courses and above.
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create view Graduate as

select Registered.student, Course.title, Course.c-number, Registered.quarter
from Registered, Course
where Registered.c-number=Course.c-number and Course.c-number > 400.

The view Graduate can be used in the computation of the above query as follows:

select Graduate.student, Graduate.title
from Teaches, Prof, Graduate
where Prof.name=Teaches.prof and

Teaches.c-number=Graduate.c-number and Teaches.quarter=Graduate.quarter and
Graduate.c-number > 500 and Prof.area="DB".

The resulting evaluation will be cheaper because the view Graduate has already performed the join between
Registered and Course, and has already pruned the non-graduate courses (the courses that actually account
for most of the activity going on in a typical university). It is important to note that the view Graduate is
useful for answering the query even though it does not syntactically match any of the subparts of the query.

Even if a view has already computed part of the query, it is not necessarily the case that using the view
will lead to a more efficient evaluation plan, especially considering the indexes available on the database
relations and on the views. For example, suppose the relations Course and Registered have indexes on the
c-number attribute. In this case, if the view Graduate does not have any indexes, then evaluating the query
directly from the database relations may be cheaper. Hence, the challenge is not only to detect when a view
is logically usable for answering a query, but also to make a judicious cost-based decision on when to use the
available views.

2.2 Maintaining Physical Data Independence

Several works on answering queries using views were inspired by the goal of maintaining physical data
independence in relational and object-oriented databases [YL87,TSI96,F1096]. One of the principles un-
derlying modern database systems is the separation between the logical view of the data (e.g., as tables
with their named attributes) and the physical view of the data (i.e., how it is laid out on disk). With the
exception of horizontal or vertical partitioning of relations into multiple files, relational database systems
are still largely based on a 1-1 correspondence between relations in the schema and files in which they are
stored. In object-oriented systems, maintaining the separation is necessary because the logical schema con-
tains significant redundancy, and does not correspond to a good physical layout. Maintaining physical data
independence becomes more crucial in applications where the logical model is introduced as an intermedi-
ate level after the physical representation has already been determined. This is common in applications of
semi-structured data [Bun97,Abi97, FLM98], storage of XML data in relational databases [FK99,SGT*+99,
DFS99, TTHWO01], and in data integration. In fact, the STORED System [DFS99] stores XML documents in
a relational database, and uses views to describe the mapping from XML into relations in the database. In
some sense, data integration, discussed in the next section, is an extreme case where there is a separation
between the logical view of the data and its physical view.

To maintain physical data independence, several authors proposed to use views as a mechanism for
describing the storage of the data. In particular, [TSI96] described the storage of the data using GMAPs
(generalized multi-level access paths), expressed over the conceptual model of the database.

To illustrate, consider the entity-relationship model of a slightly extended university domain shown in
Figure 1. Figure 2 shows GMAPs expressing the different storage structures for this data.

A GMAP describes the physical organization and indexes of the storage structure. The first clause of the
GMAP (the as clause) describes the actual data structure used to store a set of tuples (e.g., a BT-tree, hash
index, etc.) The remaining clauses describe the content of the structure, much like a view definition. The
given and select clauses describe the available attributes, where the given clause describes the attributes on
which the structure is indexed. The definition of the view, given in the where clause uses infix notation over
the conceptual model.

In our example, the GMAP G1 stores a set of pairs containing students and the departments in which
they major, and these pairs are indexed by a Bt-tree on attribute Student.name. The GMAP G2 stores an
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Fig. 1 An Entity/Relationship diagram for the university domain. Note that quarter is an attribute of the relation-
ships registered and teaches.

def_gmap G1 as bt-tree by def_gmap G2 as bt-tree by
given Student.name given Student.name
select Department select Course.c-number
where Student major Department. where Student registered Course.

def_gmap G3 as b*-tree by
given Course.c-number
select Department
where Student registered Course and Student major Department.

Fig. 2 GMAPs for the university domain.

index from the names of students to the numbers of the courses in which they are registered. The GMAP
G3 stores an index from course numbers to departments whose majors are enrolled in the course. As shown
in [TSI96], using GMAPs it is possible to express a large family of data structures, including secondary
indexes on relations, nested indexes, collection based indexes and structures implementing field replication.

Given that the data is stored in the structures described by the GMAPSs, the question that arises is how
to use these structures to answer queries. Since the logical content of the GMAPs are described by views,
answering a query amounts to finding a way of rewriting the query using these views. If there are multiple
ways of answering the query using the views, we would like to find the cheapest one. Note that in contrast
to the query optimization context, we must use the views to answer a given query, because all the data is
stored in the GMAPs,

Consider the following query in our domain, which asks for names of students registered for Ph.D-level
courses and the departments in which these students are majoring.

select Student.name, Department
where Student registered Course and Student major Department and Course.c-number>500.

The query can be answered in two ways. First, since Student.name uniquely identifies a student, we can
take the join of G1 and G2, and then apply a selection Course.c-number>500, and a projection on Stu-
dent.name and Department. A second solution would be to join G3 with G2 and select Course.c-number>500.
In fact, this solution may even be more efficient because G3 has an index on the course number and therefore
the intermediate joins may be much smaller.

2.3 Data Integration

Much of the recent work on answering queries using views has been spurred because of its applicability
to data integration systems. A data integration system (a.k.a. a mediator system [Wie92]) provides a uni-
form query interface to a multitude of autonomous heterogeneous data sources. Prime examples of data



6 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

integration applications include enterprise integration, querying multiple sources on the World-Wide Web,
and integration of data from distributed scientific experiments. The sources in such an application may be
traditional databases, legacy systems, or even structured files. The goal of a data integration system is to
free the user from having to find the data sources relevant to a query, interact with each source in isolation,
and manually combine data from the different sources.

To provide a uniform interface, a data integration system exposes to the user a mediated schema. A
mediated schema is a set of virtual relations, in the sense that they are not actually stored anywhere. The
mediated schema is designed manually for a particular data integration application. To be able to answer
queries, the system must also contain a set of source descriptions. A description of a data source specifies the
contents of the source, the attributes that can be found in the source, and the constraints on the contents
of the source.

One of the approaches for specifying source descriptions, which has been adopted in several systems
([LRO96b,KW96,FW97,DG97b, LKG99]), is to describe the contents of a data source as a view over the me-
diated schema. This approach facilitates the addition of new data sources and the specification of constraints
on contents of sources (see [Ul97,FLM98,Lev00] for a comparison of different approaches for specifying
source descriptions).

In order to answer a query, a data integration system needs to translate a query formulated on the
mediated schema into one that refers directly to the schemas in the data sources. Since the contents of the
data sources are described as views, the translation problem amounts to finding a way to answer a query
using a set of views.

We illustrate the problem with the following example, where the mediated schema exposed to the user is
our university schema, except that the relations Teaches and Course have an additional attribute identifying
the university at which a course is being taught:

Teaches(prof, c-number, quarter, evaluation, univ)
Course(c-number, title, univ)

Suppose we have the following two data sources. The first source provides a listing of all the courses titled
“Database Systems” taught anywhere and their instructors. This source can be described by the following
view definition:

create view DB-courses as

select Course.title, Teaches.prof, Course.c-number, Course.univ
from Teaches, Course
where Teaches.c-number=Course.c-number and Teaches.univ=Course.univ and

Course.title="Database Systems".

The second source lists Ph.D level courses being taught at the University of Washington (UW), and is
described by the following view definition:

create view UW-phd-courses as
select Course.title, Teaches.prof, Course.c-number, Course.univ
from Teaches, Course
where Teaches.c-number=Course.c-number and
Course.univ="UW" and Teaches.univ="UW" and Course.c-number>500.

If we were to ask the data integration system who teaches courses titled “Database Systems” at UW, it
would be able to answer the query by applying a selection on the source DB-courses:

select prof
from DB-courses
where univ="UW".

On the other hand, suppose we ask for all the graduate-level courses (not just in databases) being offered
at UW. Given that only these two sources are available, the data integration system cannot find all tuples
in the answer to the query. Instead, the system can attempt to find the maximal set of tuples in the answer
that are available from the sources. In particular, the system can obtain graduate database courses at UW
from the DB-courses source, and the Ph.D level courses at UW from the UW-Phd-courses source. Hence, the
following query provides the maximal set of answers that can be obtained from the two sources:
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select title, c-number

from DB-courses

where univ="UW" and c-number>400
UNION

select title, c-number

from UW-phd-courses.

Note that courses that are not Ph.D-level courses or database courses will not be returned as answers.
Whereas in the contexts of query optimization and maintaining physical data independence the focus is on
finding a query expression that is equivalent to the original query, here we attempt to find a query expression
that provides the mazimal answers from the views. We formalize both of these notions in Section 3.

Other applications: Before proceeding, we also note that the problem of answering queries using views arises
in the design of data warehouses (e.g., [HRU96,TS97, GHRU97,YKL97]) and in semantic data caching. In
data warehouse design, when we choose a set of views to materialize in a data warehouse, we need to check
that we will be able to answer all the required queries over the warehouse using only these views. In the
context of semantic data caching (e.g., [DFJT96, KB96, CR94, ACPS96]) we need to check whether the cached
results of a previously computed query can be used for a new query, or whether the client needs to request
additional data from the server. In [FLSY99, YFIVOO0] it is shown that precomputing views can significantly
speed up the response time from web sites, which again raises the question of view selection.

2.4 A taxonomy of the field

As illustrated by the examples, there are several dimensions along which we can classify the treatments of the
problem of answering queries using views. In this section we describe a taxonomy for classifying the different
works on this problem, and highlight the main differences between the problem treatments. Figure 3 shows
the taxonomy and some of the representative works belonging to each of its classes.

Answering queries using views

Cost-based rewriting Logical rewriting
(query optimization and physical data independence) (data integration)
System-R style Transformational approaches Rewriting algorithms  Query answering algorithms
[CKPS95,TSI196, PHO1] [FRV96,BDD198] [YL87,LMSS95] (complete or incomplete sources)
[DPT99,ZCL*00,GL01] [Qia96,LRO96D] [AD98, GM99a, CGLV00a]
[DG97a, PLOO0] ’ ’

Fig. 3 A taxonomy of work on answering queries using views. The main distinction is between works on query
optimization and maintenance of physical data independence and works considering logical rewritings, mostly in the
context of data integration. The works on query optimization have considered both System-R style algorithms and
transformation-based algorithms. The works on data integration considered algorithms that scale to a large number
of views, and the question of finding all the answers to the query, given the view extensions.

The most significant distinction between the different works is whether their goal is data integration or
whether it is query optimization and maintenance of physical data independence. The key difference between
these two classes of works is the output of the algorithm for answering queries using views. In the former case,
given a query @, and a set of views V), the goal of the algorithm is to produce an expression ' that references
the views and is either equivalent to or contained in ). In the latter case, the algorithm must go further
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and produce a (hopefully optimal) query execution plan for answering ) using the views (and possibly the
database relations). Here the rewriting must be an equivalent to @ in order to ensure the correctness of the
plan.

The similarity between these two bodies of work is that they are concerned with the core issue of whether
a rewriting of a query is equivalent to or contained in the query. However, while logical correctness suffices
for the data integration context, it does not in the query optimization context where we also need to find the
cheapest plan using the views. The complication arises because the optimization algorithms need to consider
views that do not contribute to the logical correctness of the rewriting, but do reduce the cost of the resulting
plan. Hence, while the reasoning underlying the algorithms in the data integration context is mostly logical,
in the query optimization case it is both logical and cost-based. On the other hand, an aspect stressed in
the data integration context is the importance of dealing with a large number of views, which correspond to
data sources. In the context of query optimization it is generally assumed (not always!) that the number of
views is roughly comparable to the size of the schema.

| Extension I Relevant works |
Grouping and aggregation [GHQ95,SDJL96,CNS99, GRT99, ZCL 700, GT00] (Section 5.3)
Bag semantics [CKPS95,ZCL700] (Section 5.3)
0QL [FRV96,DPT99] (Section 8.1)
Multi-block queries [ZCL700] (Section 5.2)
Integrity constraints [DL97,Gry98,ZCL¥00,DPT99] (Section 7.2)
Access-pattern limitations [RSU95,KW96,DL97] (Section 8.2)
Unions in the views [AGK99,Dus98] (Section 8.3)
Queries over semi-structured data CGLV99,PV99] (Section 8.3)
Hierarchies in Description Logics BLR97,CGL99] (Section 8.3)
Languages for querying schema [Mil98] (Section 8.3)

Table 1 Extensions to query and view languages

The works on query optimization can be classified into System-R style optimizers and transformational
optimizers. The initial works incorporated views into System-R style join enumeration, while later works that
attempt to deal with a more extended subset of SQL realized that the power of rewriting rules is required
in order to incorporate views.

The main line of work on data integration attempted to develop algorithms for answering queries using
views that scale up to a large number of views?. A second line of work started considering different properties
of the data sources. For example, it was shown that if data sources are assumed to be complete (i.e., they
include all the tuples that satisfy their definition), then the problem of answering queries using views becomes
computationally harder. Intuitively, the reason for the added complexity is that when sources are complete,
we can also infer negative information as a result of a query to the source. This led to asking the following more
basic question: given a query @, a set of views V and their extensions, what is the complexity of finding the
maximal set of tuples in the answer to @ from V.2 This work established an interesting connection between
the problem of answering queries using views and query answering in conditional tables [IL84]. In these
works, a major factor affecting the complexity of the problem is whether the view extensions are assumed
to be complete or not (when they are complete, the complexity is higher). Note that in the context of query
optimization, the views are always assumed to be complete.

A separate dimension for classifying the different works is the specific language used for expressing views
and queries. Much of the early work on the problem focused on select-project-join queries, but, as shown in
Table 1, many extensions have been considered as well. The works on query optimization have considered

2 Strictly speaking, the motivation for the work of [YL87] was the maintenance of physical data independence, but
their algorithm has more similarities with the data integration algorithms.

3 Some authors refer to the distinction between the two problems as the rewriting problem versus the query
answering problem.
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extensions of interest to SQL engines, such as grouping and aggregation and the presence of certain integrity
constraints on the database relations. For obvious reasons, these works have also considered the implications
of bag semantics on the rewriting problem. The data integration works have considered extensions such
as access-pattern limitation to the views, recursive queries, path expressions in the queries, and integrity
constraints expressed in description logics.

3 Problem Definition

In this section we define the basic terminology used throughout this paper. We define the concepts of query
containment and query equivalence that provide a semantic basis for comparing between queries and their
rewritings, and then define the problem of answering queries using views. Finally, we define the problem of
extracting all the answers to a query from a set of views (referred to as the set of certain answers).

The bulk of our discussion will focus on the class of select-project-join queries on relational databases.
A view is a named query. It is said to be materialized if its results are stored in the database. A database
instance is an assignment of an extension (i.e., a set of tuples) to each of the relations in the database.

We assume the reader is familiar with the basic elements of SQL. We will distinguish between queries that
involve arithmetic comparison predicates (e.g., <,<,#) and those that do not. Our discussion of answering
queries using views in the context of data integration systems will require considering recursive datalog
queries. We recall the basic concepts of datalog in Section 6.

In our discussion, we denote the result of computing the query @) over the database D by Q(D). We often
refer to queries that reference named views (e.g., in query rewritings). In that case, Q(D) refers to the result
of computing @) after the views have been computed from D.

3.1 Containment and Equivalence

The notions of query containment and query equivalence enable comparison between different reformulations
of queries. They will be used when we test the correctness of a rewriting of a query in terms of a set of views.
In the definitions below we assume the answers to queries are sets of tuples. The definitions can be extended
in a straightforward fashion to bag semantics. In the context of our discussion it is important to note that
the definitions below also apply to queries that may reference named views.

Definition 1 Query containment and equivalence: A query Q1 is said to be contained in a query QQ2, denoted
by Q1 C @2, if for all database instances D, the set of tuples computed for ()1 is a subset of those computed
for Q2, i.e., Q1(D) C Q2(D). The two queries are said to be equivalent if Q1 C Q2 and Q2 C Q1.

The problems of query containment and equivalence have been studied extensively in the literature and
should be a topic of a specialized survey. Some of the cases which are most relevant to our discussion
include: containment of select-project-join queries and unions thereof [CM77,SY81], queries with arithmetic
comparison predicates [Klu88,1.593,Z093, KMT98], recursive queries [Shm93,Sag88,1.593,CV92,CV94], and
queries with bag semantics [CV93]

3.2 Rewriting of a Query Using Views

Given a query () and a set of view definitions Vi, ..., V,,, a rewriting of the query using the views is a query
expression Q' that refers only to the views Vi,...,V,;.2 In SQL, a query refers only to the views if all the
relations mentioned in the from clauses are views. In practice, we may also be interested in rewritings that
can also refer to the database relations. Conceptually, rewritings that refer to the database relations do not
introduce new difficulties, because we can always simulate the previous case by inventing views that mirror
precisely the database tables.

As we saw in Section 2, we need to distinguish between two types of query rewritings: equivalent rewritings
and maximally-contained rewritings. For query optimization and maintaining physical data independence we
consider equivalent rewritings.

* Note that rewritings that refer only to the views were called complete rewritings in [LMSS95].
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Definition 2 Equivalent rewritings: Let Q) be a query andV = {V1,...,Vin} be a set of view definitions. The
query Q' is an equivalent rewriting of Q using V if:

— Q' refers only to the views in V, and

— @' is equivalent to ().

In the context of data integration, we often need to consider maximally-contained rewritings. Unlike the case
of equivalent rewritings, the maximally-contained rewriting may differ depending on the query language we
consider for the rewriting. Hence, the following definition depends on a particular query language:

Definition 3 Mazimally-contained rewritings: Let Q be a query, V = {V1,...,Vin} be a set of view defini-
tions, and L be a query language. The query Q' is a mazimally-contained rewriting of QQ using V w.r.t. L
if:

— Q' is a query in L that refers only to the views in V),

— @' is contained in Q, and

— there is no rewriting Q1 € L, such that Q' C Q1 C Q and Q1 is not equivalent to Q'.

When a rewriting @' is contained in @ but is not a maximally-contained rewriting we refer to it as a
contained rewriting. Note that the above definitions are independent of the particular query language we
consider. Furthermore, we note that algorithms for query containment and equivalence provide methods
for testing whether a candidate rewriting of a query is an equivalent or contained rewriting. However, by
themselves, these algorithms do not provide a solution to the problem of answering queries using views.

A more fundamental question we can consider is how to find all the possible answers to the query, given
a set of view definitions and their extensions. Finding a rewriting of the query using the views and then
evaluating the rewriting over the views is clearly one candidate algorithm. If the rewriting is equivalent to the
query, then we are guaranteed to find all the possible answers. However, as we see in Section 7, a maximally-
contained rewriting of a query using a set of views does not always provide all the possible answers that can
be obtained from the views. Intuitively, the reason for this is that a rewriting is maximally-contained only
w.r.t. a specific query language, and hence there may sometimes be a query in a more expressive language
that may provide more answers.

The problem of finding all the answers to a query given a set of views is formalized below by the notion
of certain answers, originally introduced in [AD98]. In the definition, we distinguish the case in which the
view extensions are assumed to be complete (closed-world assumption) from the case in which the views may
be partial (open-world).

Definition 4 Certain answers: Let Q be a query and V = {V1,...,V,,} be a set of view definitions over

the database schema Ry,...,R,. Let the sets of tuples vy,...,v,, be extensions of the views Vi,...,Vpy,
respectively.

The tuple a is o certain answer to the query () under the closed-world assumption given vy, ..., vy, if
a € Q(D) for all database instances D such that V;(D) = v; for every i, 1 <i < m.

The tuple a is a certain answer to the query @Q under the open-world assumption given vi,...,Vy if

a € Q(D) for all database instances D such that V;(D) D v; for every i, 1 <i < m.

The intuition behind the definition of certain answers is the following. The extensions of a set of views
do not define a unique database instance. Hence, given the extensions of the views we have only partial
information about the real state of the database. A tuple is a certain answer of the query @ if it is an
answer for any of the possible database instances that are consistent with the given extensions of the views.
Section 7.3 considers the complexity of finding certain answers.

Ezample 1 As a very simple example, consider a database schema R(A, B) that includes a single relation
with two attributes. Suppose the view V; is defined to be the projection of R on A, while V5 is defined to be
the projection of R on B, and suppose that our query @ is to retrieve all of the relation R.

Suppose we are given that the extension of V) includes the single tuple (¢1), and that the extension of V;
includes the single tuple (c2),

Under the closed-world assumption, we can infer that the tuple (¢1,c2) must be in the relation R, and
hence it is a certain answer to (). However, under the open-world assumption, since V; and V5 are not
necessarily complete, the tuple (¢1,c2) need not be in R. For example, R may contain the tuples (¢1,d) and
(e, ¢2) for some constants d and e. Hence, (c1,c2) is not a certain answer to Q. O
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4 When is a View Usable for a Query

The common theme across all of the works on answering queries using views is that they all have to deal
with the fundamental question of when a view is usable to answer a query. Hence, before describing the
actual algorithms for answering queries using views it is instructive to examine a few examples and gain an
intuition for the conditions under which a view is usable for answering a query, and in what ways a view
may be useful. In this section we consider select-project-join queries under set semantics. Note that in some
cases a view may be usable in maximally-contained rewritings but not in equivalent rewritings.

Informally, a view can be useful for a query if the set of relations it mentions overlaps with that of the
query, and it selects some of the attributes selected by the query. Moreover, if the query applies predicates
to attributes that it has in common with the view, then the view must apply either equivalent or logically
weaker predicates in order to be part of an equivalent rewriting. If the view applies a logically stronger
predicate, it may be part of a contained rewriting.

Consider the following query, asking for the triplets of professors, students, and teaching quarters, where
the student is advised by the professor, and has taken a class taught by the professor during the winter of
1998 or later.

select Advises.prof, Advises.student, Registered.quarter

from Registered, Teaches, Advises

where Registered.c-number=Teaches.c-number and Registered.quarter=Teaches.quarter and
Advises.prof=Teaches.prof and Advises.student=Registered.student and
Registered.quarter > "winter98".

The following view V; is usable because it applies the same join conditions to the relations Registered and
Teaches. Hence, we can use V; to answer the query by joining it with the relation Advises. Furthermore, V3
selects the attributes Registered.student, Registered.quarter and Teaches.prof that are needed for the join with
the relation Advises and for the select clause of the query. Finally, V; applies a predicate Registered.quarter >
"winter97” which is weaker than the predicate Registered.quarter > "winter98" in the query. However, since
V1 selects the attribute Registered.quarter, the stronger predicate can be applied as part of the rewriting.

create view Vj as

select Registered.student, Teaches.prof, Registered.quarter

from Registered, Teaches

where Registered.c-number=Teaches.c-number and Registered.quarter=Teaches.quarter and
Registered.quarter > "winter97".

The views shown in Figure 4 illustrate how minor modifications to V4 change their usability in answering
the query. The view V5 is similar to Vi, except that it does not select the attribute Teaches.prof, which is
needed for the join with the relation Advises and in the select clause of the query. Hence, to use V5 in the
rewriting, we would need to join Vs with the Teaches relation again (in addition to a join with Advises). Still,
if the join of the relations Registered and Teaches is very selective, then employing V5, may actually result in
a more efficient query execution plan.

The view V3 does not apply the necessary equi-join predicate between Registered.quarter and Teaches.quarter.
Since the attributes Teaches.quarter and Registered.quarter are not selected by V3, the join predicate cannot
be applied in the rewriting, and therefore there is little to gain by using V3. The view V4 considers only the
professors who have at least one area of research. Hence, the view applies an additional condition that does
not exist in the query, and cannot be used in an equivalent rewriting unless we allow union and negation
in the rewriting language. However, if we have an integrity constraint stating that every professor has at
least one area of research, then an optimizer should be able to realize that V, is usable. Finally, view V5
applies a stronger predicate than in the query (Registered.quarter > "winter99"), and is therefore usable for
a contained rewriting, but not for an equivalent rewriting of the query.

To summarize, the following conditions need to hold in order for a select-project-join view V' to be usable
in an equivalent rewriting of a query ). The intuitive conditions below can be made formal in the context
of a specific query language and/or available integrity constraints (see e.g., [YL87,LMSS95]).
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create view V5 as

select Registered.student, Registered.quarter
from Registered, Teaches

where Registered.c-number=Teaches.c-number
and Registered.quarter=Teaches.quarter
and Registered.quarter > "winter98".

create view V4 as

select Registered.student, Registered.quarter,
Teaches.prof

from Registered, Teaches, Advises, Area

where Registered.c-number=Teaches.c-number

and Registered.quarter=Teaches.quarter

and Teaches.prof=Aduvises.prof

create view V3 as

select Registered.student, Teaches.prof, Registered.quarter
from Registered, Teaches

where Registered.c-number=Teaches.c-number

and Registered.quarter > "winter98".

create view V3 as
select Registered.student, Teaches.prof, Registered.quarter

from Registered, Teaches

where Registered.c-number=Teaches.c-number
and Registered.quarter=Teaches.quarter
and Registered.quarter > "winter99".

and Teaches.prof=Area.name
and Registered.quarter > "winter98”

Fig. 4 Examples of unusable views.

1. There must be a mapping 9 from the occurrences of tables mentioned in the from clause of V' to those
mentioned in the from clause of (), mapping every table name to itself. In the case of bag semantics, ¥
must be a 1-1 mapping, whereas for set semantics, ¥ can be a many-to-1 mapping.

2. V must either apply the join and selection predicates in ) on the attributes of the tables in the domain
of 1, or must apply to them a logically weaker selection, and select the attributes on which predicates
need to still be applied.

3. V must not project out any attributes of the tables in the domain of 9 that are needed in the selection of
@, unless these attributes can be recovered from another view (or from the original table if it’s available).

Finally, we note that the introduction of bag semantics introduces additional subtleties. In particular, we
must ensure that the multiplicity of answers required in the query are not lost in the views (e.g., by the use
of distinct), and are not increased (e.g., by the introduction of additional joins).

5 Incorporating Materialized Views into Query Optimization

This section describes the different approaches to incorporating materialized views into query optimization.
The focus of these algorithms is to judiciously decide when to use views to answer a query. The output of
the algorithm is an execution plan for the query. The approaches differ depending on which phase of query
optimization was modified to consider materialized views. Section 5.1 describes algorithms based on System
R-style optimization, where materialized views are considered during the join enumeration phase [CKPS95,
TSI96]. Section 5.2 describes works based on transformational optimizers [ZCL*00,DPT99,PDST00, GLO01].
There, the key idea is that replacing a query subexpression by a view is yet another transformation employed
by the optimizer. Section 5.3 discusses some of the issues that arise when rewriting algorithms are extended
to consider grouping and aggregation. These extensions are key to incorporating materialized views into
decision support applications.

5.1 System-R style optimization

In this section we consider select-project-join queries and discuss the changes that need to be made to a
join enumeration algorithm to incorporate materialized views. To illustrate the changes to a System R-style
optimizer we first briefly recall the principles underlying System-R optimization [SAC*79]. System-R takes
a bottom-up approach to building query execution plans. In the first phase, it constructs plans of size 1, i.e.,
chooses the best access paths to every table mentioned in the query. In phase n, the algorithm considers
plans of size n, by combining pairs of plans obtained in the previous phases (Note that if the algorithm is
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considering only left-deep plans, it will try to combine plans of size n — 1 with plans of size 1. Otherwise, it
will consider combining plans of size k with plans of size n — k.) The algorithm terminates after constructing
plans that cover all the relations in the query.

Intuitively, the efficiency of System-R stems from the fact that it partitions query execution plans into
equivalence classes, and only considers a single execution plan for every equivalence class. Two plans are in
the same equivalence class if they (1) cover the same set of relations in the query (and therefore are also of
the same size), and (2) produce the answers in the same interesting order. In the process of building plans,
two plans are combined only if they cover disjoint subsets of the relations mentioned in the query.

In our context, the query optimizer builds query execution plans by accessing a set of views, rather
than a set of database relations. Hence, in addition to the meta-data that the query optimizer has about
the materialized views (e.g., statistics, indexes) the optimizer is also given as input the query expressions
defining the views. Recall that a database relation can always be modeled as a view as well.

We illustrate the changes to the join enumeration algorithm with an example that includes the following
views:

create view Vi as
select student, dept

from Major.

create view V5 as

select Registered.student, Registered.c-number
from Registered, Course
where Registered.c-number=Course.c-number

and Course.title LIKE "%theory%’.

create view V3 as

select Major.dept, Registered.c-number

from Registered, Major

where Registered.student=Major.student and Registered.c-number>500.

Suppose the query below asks for all of the students attending Ph.D level classes with ’theory’ in their
title, and the departments in which the students are majoring.

select Registered.student, Major.dept

from Registered, Major, Course

where Registered.student=Major.student and Registered.c-number=Course.c-number and
Course.c-number>500 and Course.title LIKE "%theory%'.

We now describe the additional issues that the optimizer needs to consider in the presence of materialized
views. Figure 5 shows a side-by-side comparison of the steps of a traditional optimizer vs. one that exploits
materialized views. The algorithm described below is a slight modification of the GMAP algorithm [TSI96].
The algorithm described in [CKPS95] uses the same principles, but, as we explain later, with several differ-
ences.

A. In the first iteration the algorithm needs to decide which views are relevant to the query. A view is relevant
if it is usable in answering the query (illustrated by the conditions in Section 4). The corresponding step
in a traditional optimizer is trivial: a relation is relevant to the query if it is mentioned in the from clause.

In our example, the algorithm will determine that all three views are relevant to the query, because each
of them mentions the relations in the query and applies some of the same join predicates as in the query.
Therefore, the algorithm chooses the best access path to each of the views, depending on the existing index
structures and selection predicates in the query.

B. Since the query execution plans involve joins over views, rather than joins over database relations, plans
can no longer be neatly partitioned into equivalence classes which can be explored in increasing size. This
observation implies several changes to the traditional algorithm:
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1. Termination testing: the algorithm needs to distinguish partial query execution plans of the query
from complete execution plans. The enumeration of the possible join orders terminates when there
are no more unexplored partial plans. In contrast, in the traditional setting the algorithm terminates
after considering the equivalence classes that include all the relations in the query.

2. Pruning of plans: a traditional optimizer compares between pairs of plans within one equivalence
class and saves only the cheapest one for each class. In our context, the query optimizer needs to
compare between any pair of plans generated thus far. A plan p is pruned if there is another plan p’
that (1) is cheaper than p and, (2) has greater or equal contribution to the query than p. Informally,
a plan p' contributes more to the query than the plan p if it covers more of the relations in the query
and selects more of the necessary attributes.

3. Combining partial plans: in the traditional setting, when two partial plans are combined, the join
predicates that involve both plans are explicit in the query, and the enumeration algorithm need only
consider the most efficient way to apply these predicates. However, in our case, it may not be obvious
a priori which join predicate will yield a correct rewriting of the query, since we are joining views
rather than database relations directly. Hence, the enumeration algorithm needs to consider several
alternative join predicates. Fortunately, in practice, the number of join predicates that need to be
considered can be significantly pruned using meta-data about the schema. For example, there is no
point in trying to join a string attribute with a numeric one. Furthermore, in some cases we can
use knowledge of integrity constraints and the structure of the query to reduce the number of join
predicates we consider. Finally, after considering all the possible join predicates, the optimizer also
needs to check whether the resulting plan is still a partial solution to the query.

In our example, the algorithm will consider in the second iteration all possible methods to join pairs
of plans produced in the first iteration. The algorithm will save the cheapest plan for each of the two-way
joins, assuming the result is still a partial or complete solution to the query. The algorithm will consider the
following combinations (in this discussion we ignore the choice of inner versus outer input to the join):

— the join of V1 and V2 on the attribute student: This join produces a partial result to the query. There
are two ways to extend this join to complete execution plan. The first is to apply an additional selection
on the c-number attribute and a projection on student and dept. The second, which is explored in the
subsequent iteration, is to join the result with V3. Hence, the algorithm produces one complete execution
plan and keeps V1 X V2 for the subsequent iterations.

In principle, as explained in bullet 3 above, the algorithm should also consider joining V1 and V2 on
other attributes (e.g., V1.student=V2.c-number), but in this case, a simple semantic analysis shows that
such a join will not yield a partial solution.

— the joins of V1 with V3 (on dept) and of V2 with V3 (on c-number): These two joins produce partial
solutions to the query, but only if set semantics are considered (otherwise, the resulting rewriting will have
multiple occurrences of the Major (or Registered) relation, whereas the query has only one occurrence).

In the third iteration, the algorithm tries to join the plans for the partial solutions from the second
iteration with a plan from the first iteration. One of the plans the algorithm will consider is the one in which
the result of joining V2 and V3 is then joined with V1. Even though this plan may seem redundant compared
to V1 M V2, it may be cheaper depending on the available indexes on the views, because it enables pruning
the (possibly larger) set of students based on the selective course number.

Variations on the above principles are presented in [TSI94, TSI96] and [CKPS95]. The algorithm in [T'SI96]
attempts to reformulate a query on a logical schema to refer directly to GMAPs storing the data (see
Section 2). They consider select-project-join queries with set semantics. To test whether a solution is complete
(i.e., whether it is equivalent to the original query) they use an efficient and sufficient query-equivalence
condition that also makes use of some inclusion and functional dependencies.

The goal of the algorithm described in [CKPS95] is to make use of materialized views in query evaluation.
They consider select-project-join queries with bag semantics and which may also include arithmetic com-
parison predicates. Under bag semantics, the ways in which views may be combined to answer a query are
more limited. This is due to the fact that two queries are equivalent if and only if there is a bi-directional 1-1
mapping between the two queries, which maps the join predicates of one query to those of the other [CV93].
Hence, if we ignore the arithmetic comparison operators, a view is usable only if it is isomorphic to a subset
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Conventional optimizer Optimizer using views
Iteration 1 Iteration 1
a) find all possible access paths. al) Find all views that are relevant to the query.

a2) Distinguish between partial and complete solutions
to the query.

b) Compare their cost and keep the least b) Compare all pairs of views. If one has neither greater
expensive. contribution nor a lower cost than the other, prune it.

c) If the query has one relation, stop. c) If there are no partial solutions, stop.

Iteration 2 Iteration 2

For each query join:
a) Consider joining the relevant access paths al) Consider joining all partial solutions found in the

found in the previous iteration using all previous iteration using all possible equi-join methods and
possible join methods. trying all possible subsets of join predicates.
a2) Distinguish between complete and partial solutions.
b) Compare the cost of the resulting join b) If any newly generated solution is either not relevant
plans and keep the least expensive. to the query, or dominated by another, prune it.
c) If the query has only 2 relations, stop. c) If there are no partial solutions, stop.
Iteration 3 Iteration 3

Fig. 5 A comparison of a traditional query optimizer with one that exploits materialized views.

of the query. An additional difference between [TSI96] and [CKPS95] is that the latter searches the space
of join orderings in a top-down fashion, compared to the bottom-up fashion in [TSI96]. However, since the
algorithms consider different semantics, their search spaces are incomparable. Both [TSI96] and [CKPS95]
present experimental results that examine the cost of considering materialized views in query optimization.

5.2 Transformational and other approaches to view rewriting

In this section we describe several works that incorporate view rewriting as transformations. The common
theme in these works is that replacing some part of a query with a view is considered as another transforma-
tion available to the optimizer. This approach is necessary when (1) the entire optimizer is transformational
(e.g, in [GLO1]), and (2) in the logical rewriting phase of a System-R style optimizer that is considering more
complex SQL queries (as in [ZCL*00]).

In [GLO1] the authors describe an algorithm for rewriting queries using views that is implemented in the
transformational optimizer of Microsoft SQL Server. In the algorithm, view matching is added as another
transformation rule in the optimizer. The transformation rule is invoked on select-project-join-group-by
(SPJG) expressions, and it attempts to replace the SPJG expression by a single view. The authors describe
in detail the conditions under which a sub-query is replaced by a view. The key novelty in this work is the
filter-tree, a clever index structure that makes it possible to efficiently filter the set of views that are relevant
to a particular SPJG expression. The index is composed of several sub-indexes, each of which is built on
a particular property of the views (e.g., the set of tables in the view, the set of output columns, grouping
columns). The sub-indexes are combined in a hierarchical fashion into the filter tree, where each level in the
tree further partitions the views according to another property. The authors describe a set of experiments
that shows that their algorithm adds relatively little to the optimization time, even in the presence of 1000
views.

In [ZCL100] the authors describe how view rewriting is incorporated into the query rewrite phase of the
IBM DB2 UDB optimizer. Their algorithm operates on the Query Graph Model (QGM) representation of
a query [HFLP89], which decomposes the query into multiple QGM bozes, each corresponding to a select-
project-join block. The algorithm attempts to match pairs of QGM boxes in the views with those in the query.
The algorithm navigates the QGM in a bottom up fashion, starting from the leaf boxes. A match between a
box in the query and in the view can be either (1) exact, meaning that the two boxes represent equivalent
queries, or (2) may require a compensation. A compensation represents a set of additional operations that
need to be performed on a box of the view in order to obtain an equivalent result to a box in the query. The
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algorithm considers a pair of boxes only after the match algorithm has been applied to every possible pair of
their children. Therefore, the match (and corresponding compensation) can be determined without looking
into the subtrees of their children. The algorithm terminates when it finds a match between the root of the
view and some box in the QGM of the query. The authors show that by considering rewritings at the QGM
level, they are able to extend previous algorithms to handle SQL queries and views with multiple blocks,
while previous algorithms considered only single block queries. As we point out in the next section, their
algorithm also extends previous work to handle more complex types of grouping and aggregation.

In [DPT99] the authors use a transformational approach to uniformly incorporate the use materialized
views, specialized indexes and semantic integrity constraints. All of these are represented as constraints.
Their procedure involves two phases, each involving a different set of transformations. In the first phase,
the chase, the query is expanded to include any other structure (e.g,. materialized view or access structure)
that is relevant to the query, resulting in a wniversal query plan. In the second phase, the back-chase, the
optimizer tries to remove structures (and hence joins) from the universal plan, in order to obtain a plan of
minimal cost. The chase procedure is based on a generalization of the standard chase procedure to handle
path conjunctive queries [PT99], thereby enabling the algorithm to handle certain forms of object-oriented
queries. In [PDSTO00] the authors describe an implementation of the framework and experiments that prove
its feasibility, focusing on methods for speeding up the back-chase phase.

In [BDD"98] the authors describe a limited use of transformation rules to incorporate view rewriting
algorithm into the Oracle 8 DBMS. The algorithm works in two phases. In the first phase, the algorithm
applies a set of rewrite rules that attempt to replace parts of the query with references to existing materialized
views. The rewrite rules consider the cases in which views satisfy the conditions described in Section 4, and
also consider common integrity constraints encountered in practice, such as functional dependencies and
foreign key constraints. The result of the rewrite phase is a query that refers to the views. In the second
phase, the algorithm compares the estimated cost of two plans: the cost of the result of the first phase, and
the cost of the best plan found by the optimizer that does not consider the use of materialized views. The
optimizer chooses to execute the cheaper of these two plans. The main advantage of this approach is its ease
of implementation, since the capability of using views is added to the optimizer without changing the join
enumeration module. On the other hand, the algorithm considers the cost of only one possible rewriting of
the query using the views, and hence may miss the cheapest use of the materialized views.

Finally, in [ALUOQ1] the authors consider using views for query optimization from a different angle. They
consider the problem of finding the rewriting of the query with minimal cost under three specific cost models:
(1) minimizing the number of views in the rewriting (hence the number of joins), (2) reducing the size of the
intermediate relations computed during the rewriting, and (3) reducing the size of intermediate relations while
also dropping irrelevant attributes as the computation proceeds. The techniques underlying the CORECOVER
algorithm described in [ALUO1] are closer in spirit to those used in the MiniCon Algorithm [PL00] described
in Section 6.4.

5.8 Queries with grouping and Aggregation

In decision support applications, when queries contain grouping and aggregation, there is even more of an
opportunity to obtain significant speedups by reusing the results of materialized views. However, the presence
of grouping and aggregation in the queries or the views introduces several new difficulties to the problem of
answering queries using views. The first difficulty that arises is dealing with aggregated columns. Recall that
for a view to be usable by a query, it must not project out an attribute that is needed in the query (and is
not otherwise recoverable). When a view performs an aggregation on an attribute, we lose some information
about the attribute, and in a sense partially projecting it out. If the query requires the same or a coarser
grouping than performed in the view, and the aggregated column is either available or can be reconstructed
from other attributes, then the view is still usable for the query. The second difficulty arises due to the
loss of multiplicity of values on attributes on which grouping is performed. When we group on an attribute
A, we lose the multiplicity of the attribute in the data, thereby losing the ability to perform subsequent
sum, counting or averaging operations. In some cases, it may be possible to recover the multiplicity using
additional information.
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The following simple example illustrates some of the subtleties that arise in the presence of grouping and
aggregation. To make this example slightly more appealing, we assume the quarter attribute of the relation
Teaches is replaced by a year attribute (and hence, there are likely to be several offerings of the same course
during an academic year). Suppose we have the following view available, which considers all the graduate
level courses, and for every pair of course and year, gives the maximal course evaluation for that course in
the given year, and the number of times the course was offered.

create view V as

select c-number, year, Max(evaluation) as maxeval, Count(x) as offerings
from Teaches

where c-number > 400

groupBy c-number, year.

The following query considers only Ph.D-level courses, and asks for the maximal evaluation obtained for
any course during a given year, and the number of different course offerings during that year.

select year, count(x), Max(evaluation)
from Teaches

where c-number > 500

groupBy year.

The following rewriting uses the view V to answer our query.

select year, sum(offerings), Max(maxeval)
from \Y

where c-number > 500

groupBy year.

There are a couple of points to note about the rewriting. First, even though the view performed an
aggregation on the attribute evaluation, we could still use the view in the query, because the groupings in
the query (on year) are more coarse than those in the view (on year and c-number). Thus, the answer to
the query can be obtained by coalescing groups from the view. Second, since the view groups the answers
by c-number and thereby loses the multiplicity of each course, we would have ordinarily not been able to
use the view to compute the number of course offerings per year. However, since the view also computed
the attribute offerings, there was still enough information in the view to recover the total number of course
offerings per year, by summing the offerings per course.

Several works considered the problem of answering queries using views in the presence of grouping and
aggregation. One approach considered involved a set of transformations in the query rewrite phase [GHQ95].
In this approach, the algorithm performs syntactic transformations on the query until it is possible to identify
a subexpression of the query that is identical to the view, and hence substitute the view for the subexpression.
However, as the authors point out, the purely syntactic nature of this approach is a limiting factor in its
applicability.

A more semantic approach is proposed in [SDJL96]. The authors describe the conditions required for
a view to be usable for answering a query in the presence of grouping and aggregation, and a rewriting
algorithm that incorporates these conditions. That paper considers the cases in which the views and/or the
queries contain grouping and aggregation. It is interesting to note that when the view contains grouping and
aggregation but the query does not, then unless the query removes duplicates in the select clause, the view
cannot be used to answer a query. Another important point to recall about this context is that because of
the bag semantics a view will be usable to answer a query only if there is an isomorphism between the view
and a subset of the query [CV93]. The work described in [ZCL*00] extends the treatment of grouping and
aggregation to consider multi-block queries and to multi-dimensional aggregation functions such as cube,
roll-up and grouping sets [GBLP9S].

Several works [CNS99, GRT99,GT00] consider the formal aspects of answering queries using views in
the presence of grouping and aggregation. They present cases in which it can be shown that a rewriting
algorithm is complete, in the sense that it will find a rewriting if one exists. Their algorithms are based on
insights into the problem of query containment for queries with grouping and aggregation.
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An interesting issue that has not received attention to date is extending the notion of maximally-contained
rewritings to the presence of grouping and aggregation. In particular, one can imagine a notion of maximally-
contained plans in which the answers provide the best possible bounds on the aggregated columns.?

6 Answering Queries Using Views for Data Integration

The previous section focused on extending query optimizers to accommodate the use of views. They were
designed to handle cases where the number of views is relatively small (i.e., comparable to the size of the
database schema), and cases where we require an equivalent rewriting of the query. In addition, for the most
part, these algorithms did not consider cases in which the resulting rewriting may contain a union over the
views.

In contrast, the context of data integration requires that we consider a large number of views, since each
data source is being described by one or more views. In addition, the view definitions contain many complex
predicates, whose goal is to express fine-grained distinctions between the contents of different data sources.
As shown in Section 2, we will often not be able to find an equivalent rewriting of the query using the
source views, and the best we can do is find the maximally-contained rewriting of the query. The maximally-
contained rewriting will often involve a union of several queries over the sources. Furthermore, in the context
of data integration it is often assumed that the views are not complete, i.e., they may only contain a subset
of the tuples satisfying their definition.

In this section we describe algorithms for answering queries using views that were developed specifically
for the context of data integration. These algorithms are the bucket algorithm developed in the context of the
Information Manifold system [LRO96b] and later studied in [GM99a], the inverse-rules algorithm [Qia96,
DGLO00] which was implemented in the InfoMaster system [DG97b], and the MiniCon algorithm [PL0O0,
PHO1]. It should be noted that unlike the algorithms described in the previous section, the output of these
algorithms is not a query execution plan, but rather a query referring to the view relations.

6.1 Datalog notation

For this and the next section, it is necessary to revert to datalog notation and terminology. Hence, below we
provide a brief reminder of datalog notation and of conjunctive queries [Ul189, AHV95].
Conjunctive queries are able to express select-project-join queries. A conjunctive query has the form:

Q(X) = Tl(Xl)a SRR Tn(Xn)
where ¢, and 71, .. .,r, are predicate names. The predicate names rq, ..., r, refer to database relations. The
atom g(X) is called the head of the query, and refers to the answer relation. The atoms r1(X1),...,7n(Xy)
are the subgoals in the body of the query. The tuples X, X;,...,X,, contain either variables or constants.
We require that the query be safe, i.e., that X C X; U...U X,, (that is, every variable that appears in the
head must also appear in the body).

Queries may also contain subgoals whose predicates are arithmetic comparisons <, <, =, #. In this case,
we require that if a variable X appears in a subgoal of a comparison predicate, then X must also appear in
an ordinary subgoal. We refer to the subgoals of comparison predicates of a query @ by C(Q).

As an example of expressing an SQL query in datalog, consider the following SQL query asking for the
students (and their advisors) who took courses from their advisors after the winter of 1998:

select Advises.prof, Advises.student

from Registered, Teaches, Advises

where Registered.c-number=Teaches.c-number and Registered.quarter=Teaches.quarter and
Advises.prof=Teaches.prof and Advises.student=Registered.student and
Registered.quarter > "winter98”.

In the notation of conjunctive queries, the above query would be expressed as follows:

5 T thank an anonymous reviewer for suggesting this problem.
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q(prof, student) :-Registered(student, c-number, quarter), Teaches(prof, c-number, quarter),
Advises(prof, student), quarter > "winter98".

Note that when using conjunctive queries, join predicates of SQL are expressed by multiple occurrences
of the same variable in different subgoals of the body (e.g., the variables quarter, c-number, prof, and student
above). Unions can be expressed in this notation by allowing a set of conjunctive queries with the same head
predicate.

A datalog query is a set of rules, each having the same form as a conjunctive query, except that predicates
in the body do not have to refer to database relations. In a datalog query we distinguish EDB (extensional
database) predicates that refer to the database relations from the IDB (intensional database) predicates that
refer to intermediate computed relations. Hence, in the rules, EDB predicates appear only in the bodies,
whereas the IDB predicates may appear anywhere. We assume that every datalog query has a distinguished
IDB predicate called the query predicate, referring to the relation of the result.

A predicate p in a datalog program is said to depend on a predicate ¢ if ¢ appears in one of the rules
whose head is p. The datalog program is said to be recursive if there is a cycle in the dependency graph of
predicates. It is important to recall that if a datalog program is not recursive, then it can be equivalently
rewritten as a union of conjunctive queries, though possibly with an exponential blowup in the size of the
query. As we see in Section 7.2, certain cases may require rewritings that are recursive datalog queries.

The input to a datalog query @ consists of a database D storing extensions of all EDB predicates in Q.
Given such a database D, the answer to ), denoted by Q(D), is the least fixpoint model of @) and D, which
can be computed as follows. We apply the rules of the program in an arbitrary order, starting with empty
extensions for the IDB relations. An application of a rule may derive new tuples for the relation denoted by
the predicate in the head of the rule. We apply the rules until we cannot derive any new tuples. The output
Q(D) is the set of tuples computed for the query predicate. Note that since the number of tuples that can be
computed for each relation is finite and monotonically increasing, the evaluation is guaranteed to terminate.
Finally, we say that a datalog query refers only to views if instead of EDB predicates we have predicates
referring to views (but we still allow arithmetic comparison predicates and IDB predicates).

6.2 The Bucket Algorithm

The goal of the bucket algorithm is to reformulate a user query that is posed on a mediated (virtual) schema
into a query that refers directly to the available data sources. Both the query and the sources are described
by conjunctive queries that may include atoms of arithmetic comparison predicates (hereafter referred to
simply as predicates). As we explain in Section 7, the number of possible rewritings of the query using the
views is exponential in the size of the query. Hence, the main idea underlying the bucket algorithm is that
the number of query rewritings that need to be considered can be drastically reduced if we first consider
each subgoal in the query in isolation, and determine which views may be relevant to each subgoal.

Given a query @, the bucket algorithm proceeds in two steps. In the first step, the algorithm creates a
bucket for each subgoal in @) that is not in C(Q), containing the views (i.e., data sources) that are relevant
to answering the particular subgoal. More formally, to decide whether the view V should be in the bucket
of a subgoal g, we consider each of the subgoals ¢g; in V' and do the following;:

a. check whether there is a unifier 6 for g and g, i.e., 8 is a variable mapping such that 6(g) = 6(g1). If
there is no unifier, we proceed to the next subgoal.

b. given the unifier §, we check whether the view and the query would be compatible after the unifier is
applied. Hence, we apply 6y to the query and to the view, where 8,y is the same as 6 but its domain
does not include the existential variables in V' (since only the head variables of V' are part of a rewriting).
Then we check two conditions: (1) that the predicates in @ and in V are mutually satisfiable, i.e.,
On(v)(C(Q)) AOpvy(C(V)) is satisfiable, and (2) that 6 treats the head variables occurring in g correctly,
i.e., if X is a head variable that appears in position ¢ of the subgoal g, then the variable appearing in
position ¢ of g; must be a head variable of V.

If the above conditions are satisfied, then we insert the atom 8(head(V')) into the bucket of g. Note that
a subgoal g may unify with more than one subgoal in a view V/, and in that case the bucket of g will contain
multiple occurrences of V.
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In the second step, the bucket algorithm finds a set of conjunctive query rewritings, each of them being a
conjunctive query that includes one conjunct from every bucket. Each of these conjunctive query rewritings
represents one way of obtaining part of the answer to () from the views. The result of the bucket algorithm
is defined to be the union of the conjunctive query rewritings (since each of the rewritings may contribute
different tuples). Given a conjunction, constructed from a single element from every bucket, it is a conjunctive
query rewriting if either (1) the conjunction is contained in the query @, or (2) it is possible to add atoms
of comparison predicates such that the resulting conjunction is contained in Q.

Ezxample 2 Consider the following views

V1(student,c-number,quarter,title) :- Registered(student,c-number,quarter), Course(c-number title),
c-number>500, quarter>Aut98.

V2(student,prof,c-number,quarter) :- Registered(student,c-number,quarter),
Teaches(prof,c-number,quarter)

V3(student,c-number) :- Registered(student,c-number,quarter), quarter < Aut94.

V4(prof,c-number,title,quarter) :- Registered(student,c-number,quarter), Course(c-number title),
Teaches(prof,c-number,quarter), quarter<Aut97.

Suppose our query is:
q(S,C,P) - Teaches(P,C,Q), Registered(S,C,Q), Course(C,T), C>300, Q>Aut95.

In the first step the algorithm creates a bucket for each of the relational subgoals in the query in turn.
The resulting contents of the buckets are shown in Table 2. The bucket of Teaches(P,C,Q) includes views V2
and V4, since the following mapping unifies the subgoal in the query with the corresponding Teaches subgoal
in the views (thereby satisfying condition (a) above):

{ P — prof, C = c-number, Q — quarter }.

Note that each view head in a bucket only includes variables in the domain of the mapping. Fresh variables
(primed) are used for the other head variables of the view.

The bucket of the subgoal Registered(S,C,Q) contains the views V1 and V2, since the following mapping
unifies the subgoal in the query with the corresponding Registered subgoal in the views:

{ S — student, C — c-number, Q — quarter }.

Teaches(P,C,Q) | Registered(S,C,Q) | Course(C,T)
V2(S',P,C,Q) V1(5,C,Q,T) V1(5,C,Q'\T)
V4(P,C,T",Q) V2(S,P',C.Q) V4(P',C,T,Q)

Table 2 Contents of the buckets. The primed variables are those that are not in the domain of the unifying mapping.

The view V3 is not included in the bucket of Registered(S,C,Q) because after applying the unification
mapping, the predicates Q > Aut95 and Q < Aut94 are mutually inconsistent. The view V4 is not included
in the bucket of Registered(S,C,Q) because the variable student is not in the head of V4, while S is in the
head of the query.

Next, consider the bucket of the subgoal Course(C, T). The views V1 and V4 will be included in the bucket
because of the mapping

{ C — c-number, T — title }.

In the second step of the algorithm, we combine elements from the buckets. In our example, we start
with a rewriting that includes the top elements of each bucket, i.e.,

q’(5.C,P) - V2(S',P.C,Q), V1(5,C,Q,T"), V1(S', C, Q", T).
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As can be checked, this rewriting can be simplified by equating the variables S and S’, and Q and Q’,
and then removing the third subgoal, resulting with

q'(5.C,P) :- V2(S',P.C,Q), V1(5.C,Q,T).
Another possibility that the bucket algorithm would explore is:
q'(S,.C,P) - V4(P, C, T', Q), V1(5,C,Q,T"), V4(P', C, T, Q).

However, this rewriting would be dismissed because the quarters given in V1 are disjoint from those given
in V4. In this case, the views V1 and V4 are relevant to the query when they are considered in isolation, but,
if joined, would yield the empty answer.

Finally, the algorithm would also produce the rewriting

q'(5.C,P) - V2(S,P.C,Q), V4(P. C, T, Q).

Hence, the result of the bucket algorithm is the union of two conjunctive queries, one obtains answers
by joining V1 and V2, and the other by joining V2 and V4. The reader should note that in this example,
as often happens in the data integration context, the algorithm produced a mazimally-contained rewriting
of the query using the views, and not an equivalent rewriting. In fact, when the query does not contain
arithmetic comparison predicates (but the view definitions still may) the bucket algorithm is guaranteed to
return the maximally-contained rewriting of the query using the views. O

The strength of the bucket algorithm is that it exploits the predicates in the query to prune significantly
the number of candidate conjunctive rewritings that need to be considered. Checking whether a view should
belong to a bucket can be done in time polynomial in the size of the query and view definition when the
predicates involved are arithmetic comparisons. Hence, if the data sources (i.e., the views) are indeed dis-
tinguished by having different comparison predicates, then the resulting buckets will be relatively small.
The bucket algorithm also extends naturally to cases where the query (but not the views) is a union of
conjunctive queries, and to other forms of predicates in the query such as class hierarchies [LRO96a]. Fi-
nally, the bucket algorithm also makes it possible to identify opportunities for interleaving optimization and
execution in a data integration system in cases where one of the buckets contains an especially large number
of views [LRO96a].

The main disadvantage of the bucket algorithm is that the Cartesian product of the buckets may still be
rather large. Furthermore, in the second step the algorithm needs to perform a query containment test for
every candidate rewriting. The testing problem is IT§-complete,® though only in the size of the query and
the view definition, and hence quite efficient in practice.

6.8 The Inverse-rules Algorithm

Like the bucket algorithm, the inverse-rules algorithm was also developed in the context of a data integration
system [DG97b]. The key idea underlying the algorithm is to construct a set of rules that invert the view
definitions, i.e., rules that show how to compute tuples for the database relations from tuples of the views. We
illustrate inverse rules with an example. Suppose we have the following view (we omit the quarter attribute
of Registered for brevity in this example):

V3(dept, c-number) :- Major(student,dept), Registered(student,c-number).
We construct one inverse rule for every subgoal in the body of the view:

Major( f1(dept,X), dept) :- V3(dept,X)
Registered( f1(Y, c-number), c-number) :- V3(Y,c-number)

5 For conjunctive queries with no comparison predicates, query containment is in NP because we only need to guess
a containment mapping. Here, however, we need to guess a containment mapping for every possible ordering on the
variables in containing query.
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Intuitively, the inverse rules have the following meaning. A tuple of the form (dept,c-number) in the
extension of the view V3 is a witness of tuples in the relations Major and Registered. The tuple (dept,c-
number) is a witness in the sense that it tells us two things:

— the relation Major contains a tuple of the form (Z, dept), for some value of Z.
— the relation Registered contains a tuple of the form (Z, c-number), for the same value of Z.

In order to express the information that the unknown value of Z is the same in the two atoms, we refer
to it using the functional term f;(dept,c-number). Formally, f; is a Skolem function (see [ABS99], Pg. 96)
and therefore uninterpreted. Note that there may be several values of Z in the database that cause the tuple
(dept,c-number) to be in the join of Major and Registered, but all that matters is that there exists at least
one such value.

In general, we create one function symbol for every existential variable that appears in the view definitions.
These function symbols are used in the heads of the inverse rules.

The rewriting of a query @ using the set of views V is the datalog program that includes

— the inverse rules for V, and
— the query Q.

As shown in [DG97a,DGLO0], the inverse-rules algorithm returns the maximally-contained rewriting of
Q@ using V. In fact, the algorithm returns the maximally contained query even if () is an arbitrary recursive
datalog program.

Ezxample 3 Suppose a query asks for the departments in which the students of the 444 course are majoring,
q(dept) :- Major(student,dept), Registered(student, 444)

and the view V3 includes the tuples:

{ (CS, 444), (EE, 444), (CS, 333) }.

The inverse rules would compute the following tuples:

Registered: { (f1(CS.444), CS), (f1(EE,444), EE), (f1(CS.333), CS) }
Major: { (f1(CS,444),444), (f1(EE,444),444), (f1(CS,333),333) }

Applying the query to these extensions would yield the answers CS and EE. O

In the above example we showed how functional terms are generated as part of the evaluation of the
inverse rules. However, the resulting rewriting can actually be rewritten in such a way that no functional
terms appear [DG97a].

There are several interesting similarities and differences between the bucket and inverse rules algorithms
that are worth noting. In particular, the step of computing buckets is similar in spirit to that of computing
the inverse rules, because both of them compute the views that are relevant to single atoms of the database
relations. The difference is that the bucket algorithm computes the relevant views by taking into consideration
the contexrt in which the atom appears in the query, while the inverse rules algorithm does not. Hence, if the
predicates in a view definition entail that the view cannot provide tuples relevant to a query (because they
are mutually unsatisfiable with the predicates in the query), then the view will not end up in a bucket. In
contrast, the query rewriting obtained by the inverse rules algorithm may contain views that are not relevant
to the query. However, the inverse rules can be computed once, and be applicable to any query. In order
to remove irrelevant views from the rewriting produced by the inverse-rules algorithm we need to apply a
subsequent constraint propagation phase (as in [LFS97,SR92]).

A key advantage of the inverse-rules algorithm is its conceptual simplicity and modularity. As shown
in [DGLO0], extending the algorithm to exploit functional dependencies on the database schema, recursive
queries or the existence of access-pattern limitations can be done by adding another set of rules to the inverse
rules. Furthermore, the algorithm produces the maximally-contained rewriting in time that is polynomial in
the size of the query and the views. Note that the algorithm does not tell us whether the maximally-contained
rewriting is equivalent to the original query, which would contradict the fact that the problem of finding an
equivalent rewriting is NP-complete [LMSS95] (see Section 7).
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On the other hand, using the resulting rewriting produced by the algorithm for actually evaluating queries
from the views has a significant drawback, since it insists on recomputing the extensions of the database
relations. In our example, evaluating the inverse rules computes tuples for Registered and Major, and the
query is then evaluated over these extensions. However, by doing that, we lose the fact that the view already
computed the join that the query is requesting. Hence, much of the computational advantage of exploiting
the materialized view is lost.

In order to obtain a more efficient rewriting from the inverse rules, we must unfold the inverse rules and
remove redundant subgoals from the unfolded rules. Unfolding the rules turns out to be similar to (but still
slightly better than) the second phase of the bucket algorithm, where we consider the Cartesian product of
the buckets (see [PL00] for an experimental analysis).

6.4 The MiniCon algorithm

The MiniCon algorithm [PL00,PHO1] addresses the limitations of the previous algorithms. The key idea
underlying the algorithm is a change of perspective: instead of building rewritings by combining rewritings
for each of the query subgoals or the database relation, we consider how each of the variables in the query
can interact with the available views. The result is that the second phase of the MiniCon algorithm needs to
consider drastically fewer combinations of views. The following example illustrates the key idea of MiniCon.
Consider the query

q(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)
and the views:

V1(dept) :- Major(student,dept), Registered(student, 444, quarter).

V2(prof, dept, area) :- Advises(prof, student), Prof(name, area)

V3(dept, c-number) :- Major(student,dept), Registered(student, c-number, quarter),
Advises(prof, student).

The bucket algorithm considers each of the subgoals in the query in isolation, and therefore puts the
view V1 into the buckets of Major(student, dept) and Registered(student, 444, quarter). However, a careful
analysis reveals that V1 cannot possibly be useful in a rewriting of the query. The reason is that since the
variable student is not in the head of the view, then in order for V1 to be useful, it must contain the subgoal
Advises(prof,student) as well. Otherwise, the join on the variable S in the query cannot be applied using the
results of V1.

The MiniCon algorithm starts out like the bucket algorithm, considering which views contain subgoals
that correspond to subgoals in the query. However, once the algorithm finds a partial variable mapping from
a subgoal g in the query to a subgoal g; in a view V, it changes perspective and looks at the variables in the
query. The algorithm considers the join predicates in the query (which are specified by multiple occurrences
of the same variable) and finds the minimal additional set of subgoals that must to be mapped to subgoals
in V, given that g will be mapped to g;. This set of subgoals and mapping information is called a MiniCon
Description (MCD), and can be viewed as a generalized bucket. Unlike buckets, MCDs are associated with
sets of subgoals in the query. In the second phase, the MCDs are combined to produce the query rewritings.

In the above example, the algorithm will determine that it cannot create an MCD for V1 because it
cannot apply the join predicates in the query. When V2 is considered, the MCD will contain only the
subgoal Advises(prof, student). When V3 is considered, the MCD will include all of the query subgoals.

The key advantage of the MiniCon algorithm is that the second phase of the algorithm considers many
fewer combinations of MCDs compared to the Cartesian product of the buckets or compared to the number
of unfoldings of inverse rules. The work in [PL00] describes a detailed set of experiments that shows that
the MiniCon significantly outperforms the inverse rules algorithm, which in turn outperforms the bucket
algorithm. The paper demonstrates exactly how these savings are obtained in the second phase of the
algorithm. Furthermore, the experiments show that the algorithm scales up to hundreds of views with
commonly occurring shapes such as chain, star and complete queries (see [MGA97] for a description of these
query shapes). The work in [PHO1] also explains how to exploit the key ideas of the the MiniCon algroithm
to the context of query optimization with materialized views, where the cost of the query plan if the primary
concern.
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7 Theory of Answering Queries Using Views

In the previous sections we discussed specific algorithms for answering queries using views. Here we consider
several fundamental issues that cut across all of the algorithms we have discussed thus far, and which have
been studied from a more theoretical perspective in the literature.

The first question concerns the completeness of the query rewriting algorithms. That is, given a set of
views and a query, will the algorithm always find a rewriting of the query using the views if one exists?
A related issue is characterizing the complexity of the query rewriting problem. We discuss these issues in
Section 7.1.

Completeness of a rewriting algorithm is characterized w.r.t. a specific query language in which the
rewritings are expressed (e.g., select-project-join queries, queries with union, recursion). For example, there
are cases in which if we do not allow unions in the rewriting of the query, then we will not be able to find an
equivalent rewriting of a query using a set of views. The language that we consider for the rewriting is even
more crucial when we consider maximally-contained rewritings, because the notion of maximal containment
is defined w.r.t. a specific query language. As it turns out, there are several important cases in which a
maximally-contained rewriting of a query can only be found if we consider recursive datalog rewritings.
These cases are illustrated in Section 7.2.

At the limit, we would like to be able to extract all the certain answers for a query given a set of views,
whether we do it by applying a query rewriting to the extensions of the views or via an arbitrary algorithm.
In Section 7.3 we consider the complexity of finding all the certain answers, and show that even in some
simple cases the problem is surprisingly co-NP-hard in the size of the extensions of the views.

7.1 Completeness and complexity of finding query rewritings

The first question one can ask about an algorithm for rewriting queries using views is whether the algorithm
is complete: given a query ) and a set of views V), will the algorithm find a rewriting of ) using V when one
exists. The first answer to this question was given for the class of queries and views expressed as conjunctive
queries [LMSS95]. In that paper it was shown that when the query does not contain comparison predicates
and has n subgoals, then there exists an equivalent conjunctive rewriting of @ using V only if there is a
rewriting with at most n subgoals. An immediate corollary of the bound on the size of the rewriting is that
the problem of finding an equivalent rewriting of a query using a set of views is in NP, because it suffices to
guess a rewriting and check its correctness.”

The bound on the size of the rewriting also sheds some light on the algorithms described in the previous
sections. In particular, it entails that the search strategy that the GMAP algorithm [TSI96] employs is
guaranteed to be complete under the conditions that (1) we use a sound and complete algorithm for query
containment for testing equivalence of rewritings, (2) when combining two subplans, the algorithm considers
all possible join predicates on the attributes of the combined subplans, and (3) we consider self-joins of
the views. These conditions essentially guarantee that the algorithm searches through all rewritings whose
size is bounded by the size of the query. It is important to emphasize that the rewriting of the query that
produces the most efficient plan for answering the query may have more conjuncts that the original query.
The bound of [LMSS95] also guarantees that the bucket algorithm is guaranteed to find the maximally-
contained rewriting of the query when the query does not contain arithmetic comparison predicates (but the
views may), and that we consider unions of conjunctive queries as the language for the rewriting.

In [LMSS95] it is also shown that the problem of finding a rewriting is NP-hard for two independent
reasons: (1) the number of possible ways to map a single view into the query, and (2) the number of ways to
combine the mappings of different views into the query.

In [RSU95] the authors extend the bound on the size of the rewriting to the case where the views
contain access-pattern limitations (discussed in detail in Section 8.2). In [CR97] the authors exploit the close
connection between the containment and rewriting problems, and show several polynomial-time cases of the
rewriting problems, corresponding to analogous cases for the problem of query containment.

" Note that checking the correctness of a rewriting is NP-complete; however, the guess of a rewriting can be extended
to a guess for containment mappings showing the equivalence of the rewriting and of the query.
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7.2 The need for recursive rewritings

As noted earlier, in cases where we cannot find an equivalent rewriting of the query using a set of views,
we consider the problem of finding maximally-contained rewritings. Our hope is that when we apply the
maximally-contained rewriting to the extensions of the views, we will obtain the set of all certain answers to
the query (Definition 4). Interestingly, there are several contexts where in order to achieve this goal we need
to consider recursive datalog rewritings of the query [DGL00]. We recall that a datalog rewriting is a datalog
program in which the base (EDB) predicates are the view relations, and there are additional intermediate
IDB relations. Except for the obvious case in which the query is recursive [DG97a], other cases include: when
we exploit the presence of functional dependencies on the database relations or when there are access-pattern
limitations on the extensions of the views [DL97] (see Section 8.2 for a more detailed discussion), when views
contain unions [Afr00] (though even recursion does not always suffice here), and the case where additional
semantic information about class hierarchies on objects is expressed using description logics [BLR97]. We
illustrate the case of functional dependencies below.

Ezxample 4 To illustrate the need for recursive rewritings in the presence of functional dependencies, we
temporarily venture into the domain of airline flights. Suppose we have the following database relation

schedule(Airline,Flight_no,Date,Pilot,Aircraft)

which stores tuples describing the pilot that is scheduled for a certain flight, and the aircraft that is used for
this flight. Assume we have the following functional dependencies on the relations in the mediated schema

Pilot — Airline and
Aircraft — Airline

expressing the constraints that pilots work for only one airline, and that there is no joint ownership of
aircrafts between airlines. Suppose we have the following view available, which projects the date, pilot and
aircraft attributes from the database relation:

v(D,P,C) :- schedule(A,N,D,P,C)

The view v records on which date which pilot flies which aircraft. Now consider a query asking for pilots
that work for the same airline as Mike (expressed as the following self join on the attribute Airline of the
schedule relation):

q(P) :- schedule(A,N,D,'mike’,C), schedule(A,N",D’,P,C")

The view v doesn’t record the airlines that pilots work for, and therefore, deriving answers to the above query
requires using the functional dependencies in subtle ways. For example, if both Mike and Ann are known to
have flown aircraft #111, then, since each aircraft belongs to a single airline, and every pilot flies for only one
airline, Ann must work for the same airline as Mike. Moreover, if, in addition, Ann is known to have flown
aircraft #222, and John has flown aircraft #222 then the same line of reasoning leads us to conclude that
Ann and John work for the same airline. In general, for any value of n, the following conjunctive rewriting
is a contained rewriting;:

Qn(P) L= V(Dlamikeacl); V(D27P2;CI); V(D33P2;C2)7 V(D4;P3702)7 sy
V(D2n727Pn>Cn71)7 V(D2n717Pn7C’n)7 V(DQn;-Pycn)

Moreover, for each n, ¢,(P) may provide answers that were not given by ¢; for i < n, because one can
always build an extension of the view v that requires n steps of chaining in order to find answers to the query.
The conclusion is that we cannot find a maximally-contained rewriting of this query using the views if we
only consider non-recursive rewritings. Instead, the maximally-contained rewriting is the following datalog
program:

relevantPilot( “mike™ ).

relevantAirCraft(C) - v(D, “mike", C).

relevantAirCraft(C) :- v(D,P,C), relevantPilot(P).

relevantPilot(P) .- relevantPilot(P1), relevantAirCraft(C), v(D1, P1, C), v(D2, P, C).



26 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

In the program above, the relation relevantPilot will include the set of pilots who work for the same airline
as Mike, and the relation relevantAirCraft will include the aircraft flown by relevant pilots. Note that the
fourth rule is mutually recursive with the definition of relevantAirCraft. O

In [DL97,DGLO0] it is shown how to augment the inverse-rules algorithm to incorporate functional
dependencies. The key element of that algorithm is to add a set of rules that simulate the application of a
Chase algorithm [MMS79] on the atoms of the database relations.

7.8 Finding the certain answers

A different perspective on the problem of answering queries using views is the following. Given a set of
materialized views and the corresponding view definitions, we obtain some incomplete information about the
contents of the database. More specifically, the views define a set of possible underlying databases D. Given
a query () over the database and a tuple ¢, there are a few possibilities: (1) ¢ would be an answer to @ for
every database in D, (2) t is an answer to ) for some database in D, or (3) t is not an answer to () for any
database in D. The notion of certain answers, (see Definition 4) formalizes case (1).

If Q' is an equivalent rewriting of a query @ using the set of views V, then it will always produce the
same result as @@, independent of the state of the database or of the views. In particular, this means that Q'
will always produce all the certain answers to ) for any possible database.

When Q' is a mazimally-contained rewriting of () using the views V it may produce only a subset of the
answers of @) for a given state of the database. The maximality of Q' is defined only w.r.t. the other possible
rewritings in a particular query language £ that we consider for )'. Hence, the question that remains is how
to find all the certain answers, whether we do it by applying some rewritten query to the views or by some
other algorithm.

The question of finding all the certain answers is considered in detail in [AD98,GM99a]. In their analy-
sis they distinguish the case of the open-world assumption from that of the closed-world assumption. With
the closed-world assumption, the extensions of the views are assumed to contain all the tuples that would
result from applying the view definition to the database. Under the open-world assumption, the extensions
of the views may be missing tuples. The open-world assumption is especially appropriate in data integration
applications, where the views describe sources that may be incomplete (see [EGW97,Lev96,Dus97] for treat-
ments of complete sources in the data integration context). The closed-world assumption is appropriate for
the context of query optimization and maintaining physical data independence, where views have actually
been computed from existing database relations.

Under the open-world assumption, [AD98] show that in many practical cases, finding all the certain
answers can be done in polynomial time. However, the problem becomes co-NP-hard (in the size of the view
extensions!) as soon as we allow union in the language for defining the views, or allow the predicate # in the
language defining the query.

Under the closed-world assumption the situation is even worse. Even when both the views and the query
are defined by conjunctive queries without comparison predicates, the problem of finding all certain answers
is already co-NP-hard. The following example is the crux of the proof of the co-NP-hardness result [AD98].

Ezample 5 The following example shows a reduction of the problem of graph 3-colorability to the problem of
finding all the certain answers. Suppose the relation edge(X,Y) encodes the edges of a graph, and the relation
color(X,Z) encodes which color Z is attached to the nodes of the graph. Consider the following three views:

V1(X) :- color(X,Y)

V2(Y) :- color(X,Y)

V3(X,Y) :- edge(X.Y)

where the extension of V1 is the set of nodes in a graph, the extension of V2 is the set {red, green, blue},
and the extension of V3 is the set of edges in the graph. Consider the following query:

q(c) :- edge(X,Y), color(X,Z), color(Y,Z)

In [AD98] it is shown that c is a certain answer to q if and only if the graph encoded by edge is not
three-colorable. Hence, they show that the problem of finding all certain answers is co-NP-hard. O



Answering Queries Using Views: A Survey 27

The hardness of finding all the certain answers provides an interesting perspective on formalisms for data
integration. Intuitively, the result entails that when we use views to describe the contents of data sources,
even if we only use conjunctive queries to describe the sources, the complexity of finding all the answers to
a query from the set of sources is co-NP-hard. In contrast, using a formalism in which the relations of the
mediated schema are described by views over the source relations (as in [GMPQ197]), the complexity of
finding all the answers is always polynomial. Hence, this result hints that the former formalism has a greater
expressive power as a formalism for data integration.

It is also interesting to note the connection established in [AD98] between the problem of finding all certain
answers and computation with conditional tables [IL84]. As the authors show, the partial information about
the database that is available from a set of views can be encoded as a conditional table using the formalism
studied in [IL84], providing a formalization to the intuition starting out this section.

The work in [GM99a] also considers the case where the views may either be incomplete, complete, or
contain tuples that don’t satisfy the view definition (referred to as incorrect tuples). It is shown that without
comparison predicates in the views or the query, when either all the views are complete or all of them may
contain incorrect tuples, finding all certain answers can be done in polynomial time in the size of the view
extensions. In other cases, the problem is co-NP-hard. The work in [MMO1] consider the query answering
problem in cases where we may have bounds on the soundness and/or completeness of the views.

Finally, [MLFO0Q] considers the problem of relative query containment, i.e., whether the set of certain
answers of a query () is always contained in the set of certain answers of a query 2. The paper shows that
for the conjunctive queries and views with no comparison predicates the problem is II¥-complete, and that
the problem is still decidable in the presence of access pattern limitations.

8 Extensions to the Query Language

In this section we survey the algorithms for answering queries using views in the context of several important
extensions to the query languages considered thus far. We consider extensions for Object Query Language
(OQL) [FRV96,F1096, DPT99], and views with access pattern limitations [RSU95,KW96,DL97].

8.1 Object Query Language

In [FRV96,F1096] the authors studied the problem of answering queries using views in the context of querying
object-oriented databases, and have incorporated their algorithm into the Flora OQL optimizer. In object-
oriented databases the correspondence between the logical model of the data and the physical model is even
less direct than in relational systems. Hence, as argued in [Flo96], it is imperative for a query optimizer for
object-oriented database be based on the notion of physical data independence.

Answering queries using views in the context of object-oriented systems introduces two key difficulties.
First, finding rewritings often requires that we exploit some semantic information about the class hierarchy
and about the attributes of classes. Second, OQL does not make a clean distinction between the select,
from and where clauses as in SQL. Select clauses may contain arbitrary expressions, and the where clauses
also allow path navigation.

The algorithm for answering queries using views described in [Flo96] operates in two phases. In the first
phase the algorithm rewrites the query into a canonical form, thereby addressing the lack of distinction
between the select, from and where clauses. As an example, in this phase, navigational expressions are
removed from the where clause by introducing new variables and terms in the from clause.

In the second phase, the algorithm exploits semantic knowledge about the class hierarchy in order to
find a subexpression of the query that is matched by one of the views. When such a match is found, the
subexpression in the query is replaced by a reference to the view and appropriate conditions are added in
order to conserve the equivalence to the query.

We illustrate the main novelties of the algorithm with the following example from [Flo96], using a French
version of our university domain. Here we have the class Universities, with subclass France.Universities and
the class City. The first two classes have the attributes students, PhDstudents (a sub-attribute of students),
professors and adjuncts.
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Ezxample 6 Suppose we have the following view asking for students who are at least as old as their professors,
and who study in universities in small cities. Below we use the notation of OQL. Note that the select clause
of OQL defines the record structure of the result. Also note the use of path expressions — for example, y in
x.students means that the variable y will be bound to each of the students of the object to which x will be
bound.

create view V1 as

select distinct [A:=x.name, B:=y.identifier, C:=2]
from x in Universities, y in x.students, z in union(x.professors, x.adjuncts)
where x.city.kind="small” and y.age > z.age.

Suppose a query asks for Ph.D students in French universities who have the same age as their professors,
and study in small town universities:

select distinct [D:=u.name, E:=v.name, F:=t.name]
from u in France.Universities, v in u.PhDstudents, t in u.professors
where u.city.kind="small" and v.age=t.age.

In the first step, the algorithm will transform the query and the view into their normal form. The resulting
expression for the query would be: (note that the variable w was added to the query in order to eliminate
the navigation term from the where clause)

select distinct [D:=u.name, E:=v.name, F:=t.name]
from u in France.Universities, w in City, v in u.PhDstudents, t in u.professors
where w.kind="small” and v.age=t.age and u.city=w.

In the next step, the algorithm will note the following properties of the schema:

1. The collection France.Universities is included in the collection Universities,

2. The collection denoted by the expression u.PhDstudents is included in the collection denoted by x.students.
This inclusion follows from the first inclusion and the fact that PhD students are a subset of students.

3. The collection u.professors is included in the collection union(x.professors, x.adjuncts).

Putting these three inclusions together, the algorithm determines that the view can be used to answer
the query, because the selections in the view are less restrictive than those in the query. The rewriting of the
query using the view is the following:

select distinct [D:=a.A, E:=a.B.name, F:=t.name]
from a in V1, u in France.Universities, v in u.PhDstudents, t in u.professors
where u.city.kind="small" and v.age=t.age and

u.name=a.A and v.name=a.B and t=a.C.

Note that the role of the view is only to restrict the possible bindings of the variables used in the query.
In particular, the query still has to restrict the universities to only the French ones, the students to only
the Ph.Ds, and the range of the variable t to cover only professors. In this case, the evaluation of the query
using the view is likely to be more efficient than computing the query only from the class extents. O

As noted in Section 5.2, the algorithm described in [DPT99,PDSTO00] also considers certain types of
queries over object-oriented data.

8.2 Access Pattern Limitations

In the context of data integration, where data sources are modeled as views, we may have limitations on
the possible access paths to the data. For example, when querying the Internet Movie Database, we cannot
simply ask for all the tuples in the database. Instead, we must supply one of several inputs, (e.g., actor name
or director), and obtain the set of movies in which they are involved.

We can model limited access paths by attaching a set of adornments to every data source. If a source is
modeled by a view with n attributes, then an adornment consists of a string of length n, composed of the
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letters b and f. The meaning of the letter b in an adornment is that the source must be given values for the
attribute in that position. The meaning of the letter f in an adornment is that the source doesn’t have to
be given a value for the attribute in that position. For example, an adornment bf for a view V (A4, B) means
that tuples of V' can be obtained only by providing values for the attributes A.

Several works have considered the problem of answering queries using views when the views are also
associated with adornments describing limited access patterns. In [RSU95] it is shown that the bound given
in [LMSS95] on the length of a possible rewriting does not hold anymore. To illustrate, consider the following
example, where the binary relation Cites stores pairs of papers X,Y, where X cites Y. Suppose we have the
following views with their associated adornments:

CitationDB%#(X,Y) :- Cites(X,Y)
CitingPapers? (X) :- Cites(X,Y)

and suppose we have the following query asking for all the papers citing paper #001:
Q(X) :- Cites(X,001)

The bound given in [LMSS95] would require that if there exists a rewriting, then there is one with at
most one atom, the size of the query. However, the only possible rewriting in this case is:

q(X) :- CitingPapers(X), CitationDB(X,001).

[RSU95] shows that in the presence of access-pattern limitations it is sufficient to consider a slightly
larger bound on the size of the rewriting: n 4+ v, where n is the number of subgoals in the query and v is the
number of variables in the query. Hence, the problem of finding an equivalent rewriting of the query using a
set of views is still NP-complete.

The situation becomes more complicated when we consider maximally-contained rewritings. As the fol-
lowing example given in [KW96] shows, there may be no bound on the size of a rewriting. In the following
example, the relation DBpapers denotes the set of papers in the database field, and the relation AwardPapers
stores papers that have received awards (in databases or any other field). The following views are available:

DBSource’ (X) :- DBpapers(X)
CitationDB®#(X,Y) :- Cites(X,Y)
AwardDB?(X) :- AwardPaper(X)

The first source provides all the papers in databases, and has no access-pattern limitations. The second
source, when given a paper, will return all the papers that are cited by it. The third source, when given a
paper, returns whether the paper is an award winner or not.

The query asks for all the papers that won awards:

Q(X) :- AwardPaper(X).

Since the view AwardDB requires its input to be bound, we cannot query it directly. One way to get
solutions to the query is to obtain the set of all database papers from the view DBSource, and perform a
dependent join with the view AwardDB. Another way would be to begin by retrieving the papers in DBSource,
join the result with the view CitationDB to obtain all papers cited by papers in DBSource, and then join the
result with the view AwardDB. As the rewritings below show, we can follow any length of citation chains
beginning with papers in DBSource and obtain answers to the query that were possibly not obtained by
shorter chains. Hence, there is no bound on the length of a rewriting of the query using the views.

Q’(X) :- DBSource(X), AwardDB(X)
Q’'(X) :- DBSource(V), CitationDB(V,X7), ..., CitationDB(X,,,X), AwardDB(X).

Fortunately, as shown in [DL97,DGL00], we can still find a finite rewriting of the query using the views,
albeit a recursive one. The following datalog rewriting will obtain all the possible answers from the above
views. The key in constructing the program is to define a new intermediate relation papers whose extension
is the set of all papers reachable by citation chains from papers in databases, and is defined by a transitive
closure over the view CitationDB.
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papers(X) :- DBsource(X)
papers(X) :- papers(Y), CitationDB(Y,X)
Q’(X) :- papers(X), AwardDB(X).

In [DL97] it is shown that a maximally-contained rewriting of the query using the views can always be
obtained with a recursive rewriting. In [FW97] and [LKG99] the authors describe additional optimizations
to this basic algorithm.

8.3 Other Extensions

Several authors have considered additional extensions of the query rewriting problems in various contexts.
We mention some of them here.

Ezxtensions to the query and schema language: In [AGK99,Dus98] the authors consider the rewriting prob-
lem when the views may contain unions. The consideration of inclusion dependencies on the database relations
introduces several subtleties to the query rewriting problem, which are considered in [Gry98]. In [Mil98], the
author considers the query rewriting problem for a language that enables querying the schema and data
uniformly, and hence, names of attributes in the data may become constants in the extensions of the views.
In [MRP99] the authors show that when the schema contains a single universal relation, answering queries
using views and several related operations can be done more efficiently.

Semi-structured data: The emergence of XML as a standard for sharing data on the WWW has spurred
significant interest in building systems for integrating XML data from multiple sources. The emerging for-
malisms for modeling XML data are variations on labeled directed graphs, which have also been used to model
semi-structured data [Abi97,Bun97,ABS99]. The model of labeled directed graphs is especially well suited
for modeling the irregularity and the lack of schema which are inherent in XML data. Several languages have
been developed for querying semi-structured data and XML [AQM 197, FFLS97,BDHS96, DFF+99, CRF00).

Several works have started considering the problem of answering queries using views when the views
and queries are expressed in a language for querying semi-structured data. There are two main difficulties
that arise in this context. First, such query languages enable using regular path expressions in the query, to
express navigational queries over data whose structure is not well known a priori. Regular path expressions
essentially provide a very limited kind of recursion in the query language. In [CGLV99] the authors consider
the problem of rewriting a regular path query using a set of regular path views, and show that the problem is
in 2EXPTIME (and checking whether the rewriting is an equivalent one is in 2EXPSPACE). In [CGLV00a]
the authors consider the problem of finding all the certain answers when queries and views are expressed
using regular path expressions, and show that the problem is co-NP-complete when data complexity (i.e., size
of the view extensions) is considered. In [CGLVO0O0b] the authors extend the results of [CGLV99,CGLV00a]
to path expressions that include the inverse operator, allowing both forward and backward traversals in a
graph.

The second problem that arises in the context of semi-structured data stems from the rich restructuring
capabilities which enable the creation of arbitrary graphs in the output. The output graphs can also include
nodes that did not exist in the input data. In [PV99] the authors consider the rewriting problem in the
case where the query can create answer trees, and queries that do not involve regular path expressions with
recursion. For the most part, considering queries with restructuring remains an open research problem.

Infinite number of views: Two works have considered the problem of answering queries using views in the
presence of an infinite number of views [LRU96, VP97]. The motivation for this seemingly curious problem
is that when a data source has the capability to perform local processing, it can be modeled by the (possibly
infinite) set of views it can supply, rather than a single one. As a simple example, consider a data source
that stores a set of documents, and can answer queries of the form:

q(doc) :- document(doc), contains(doc, wl), ..., contains(doc,wn)
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where we can have any number of occurrences of the contains subgoal, each with a different word.

To answer queries using such sources, one need not only choose which sources to query, but we must also
choose which query to send to it out of the set of possible queries it can answer. In [LRU96,VP97] it is shown
that in certain important cases the problem of answering a query using an infinite set of views is decidable.
Of particular note is the case in which the set of views that a source can answer is described by the finite
unfoldings of a datalog program.

Description Logics: Description logics are a family of logics for modeling complex hierarchical structures.
A description logic makes it possible to define sets of objects by specifying their properties, and then to
reason about the relationship between these sets (e.g., subsumption, disjointness). A description logic also
enables reasoning about individual objects, and their membership in different sets. One of the reasons that
description logics are useful in data management is their ability to describe complex models of a domain
and reason about inter-schema relationships [CL93]. For that reason, description logics have been used in
several data integration systems [AKS96, LR0O96a]. Borgida [Bor95] surveys the use of description logics in
data management.

Several works have considered the problem of answering queries using views when description logics are
used to model the domain. In [BLR97] it is shown that in general, answering queries using views in this
context may be NP-hard, and presents cases in which we can obtain a maximally-contained rewriting of a
query in recursive datalog. The complexity of answering queries using views for an expressive description
logic (which also includes n-ary relations) is studied in [CGL99).

9 Conclusions

As this survey has shown, the problem of answering queries using views raises a multitude of challenges,
ranging from theoretical foundations to considerations of a more practical nature. While algorithms for an-
swering queries using views are already being incorporated into commercial database systems (e.g., [BDD 98,
ZCL*00]), these algorithms will have even more importance in data integration systems and data warehouse
design. Furthermore, answering queries using views is a key technique to give database systems the ability
of maintaining physical data independence.

There are many issues that remain open in this realm. Although we have touched upon several query
languages and extensions thereof, many cases remain to be investigated. Of particular note are studying
rewriting algorithms in the presence of a wider class of integrity constraints on both the database and view
relations, and studying the effect of restructuring capabilities of query languages (as in OQL or languages
for querying semistructured data [BDHS96,AQM 197, FFLS97, DFF*99, CRF00]).

As described in the article, different motivations have led to two strands of work on answering queries
using views, one in the context of optimization and the other in the context of data integration. In part, these
differences are due to the fact that in the data integration context the algorithms search for a maximally-
contained rewriting of the query and assume that the number of views is relatively large. However, as we
illustrated, the principles underlying the two strands are similar. Furthermore, interesting challenges arise
as we try to bridge the gaps between these bodies of work. The first challenge is to extend the work on
query optimization to handle a much larger number of more complex views. The second challenge is to
extend data integration algorithms to choose judiciously the best rewritings of the query. This can be done
by either trying to order the access to the data sources (as in [FKL97,DL99,NLF99]), or to combine the
choice of rewritings with other adaptive aspects of query processing explored in data integration systems
(e.g., [UFA98,IFF199]).

The context of data warehouse design, when one tries to select a set of views to materialize in the
warehouse, raises another challenge. The data warehouse design problem is often treated as a problem of
search through a set of warehouse configurations. In each configuration, we need to determine whether the
workload queries anticipated on the warehouse can be answered using the selected views, and estimate the
cost of the configuration. In this context it is important to be able to reuse the results of the computation
from the previous state in the search space. In particular, this raises the challenge of developing incremental
algorithms for answering queries using views, which can compute rewritings more efficiently when only minor
changes are made to the set of available views.
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In this survey we considered the problem of using materialized views when they are available. I believe
that the next challenge is selecting which views to materialize in the first place. The problem of view selection
also has a surprising number of potential applications, such as query optimization, data warehousing, web-site
design, content distribution networks, peer-to-peer computing and ubiquitous computing. Even though there
has been work on this problem (e.g., [CHS01, ACN00, Gup97a,CG00, GM99¢, TS97, YKL97, BPT97, GHRU97,
HRU96, GHI*01]), the research is still in its infancy. The wealth of techniques developed for answering queries
using views will be very useful in this realm.
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Abstract. There are basically two approaches for designing a data integration
system. In the global-as-view (GAV) approach, one maps the concepts in the
global schema to views over the sources, whereas in the local-as-view (LAV) ap-
proach, one maps the sources into views over the global schema. The goal of
this paper is to relate the two approaches with respect to their expressive power.
The analysis is carried out in a relational database setting, where both the queries
on the global schema, and the views in the mapping are conjunctive queries. We
introduce the notion of query-preserving transformation, and query-reducibility
between data integration systems, and we show that, when no integrity constraints
are allowed in global schema, the LAV and the GAV approaches are incompara-
ble. We then consider the addition of integrity constraints in the global schema,
and present techniques for query-preserving transformations in both directions.
Finally, we show that our results imply that we can always transform any system
following the GLAV approach (a generalization of both LAV and GAV) into a
query-preserving GAV system.

1 Introduction

Data integration is the problem of combining the data residing at different sources,
and providing the user with a unified view of these data, called global (or, mediated)
schema [9]. The global schema is therefore the interface by which users issue their
queries to the system. The system answers the queries by accessing the appropriate
sources, thus freeing the user from the knowledge on where data are, and how data are
structured at the sources.

The interest in this kind of systems has been continuously growing in the last years.
Many organizations face the problem of integrating data residing in several sources.
Companies that build a Data Warehouse, a Data Mining, or an Enterprise Resource
Planning system must address this problem. Also, integrating data in the World Wide
Web is the subject of several investigations and projects nowadays. Finally, applications
requiring accessing or re-engineering legacy systems must deal with the problem of
integrating data stored in pre-existing sources.

The design of a data integration system is a very complex task, which comprises
several different issues [10]. One of the most important aspect is the specification of the
mapping between the global schema and the sources, and the use of such a specification
for carrying out query processing.



Two basic approaches have been used to specify the mapping between the sources
and the global schema [9, 11, 12]. The first approach, called global-as-view (or simply
GAV), requires that the global schema is expressed in terms of the data sources. More
precisely, to every element of the global schema, a view over the data sources is asso-
ciated, so that its meaning is specified in terms of the data residing at the sources. The
second approach, called local-as-view (LAV), requires the global schema to be speci-
fied independently from the sources. In turn, the sources are defined as views over the
global schema. The relationships between the global schema and the sources are thus
established by specifying the information content of every source in terms of a view
over the global schema.

Intuitively, the GAV approach provides a method for specifying the data integra-
tion system with a more procedural flavor with respect to the LAV approach. Indeed,
whereas in LAV the designer of the data integration system may concentrate on spec-
ifying the content of the source in terms of the global schema, in the GAV approach,
one is forced to specify how to get the data of the global schema by queries over the
sources.

A comparison of the LAV and the GAV approaches is reported in [16]. It is known
that the former approach ensures an easier extensibility of the integration system, and
provides a more appropriate setting for its maintenance. For example, adding a new
source to the system requires only to provide the definition of the source, and does not
necessarily involve changes in the global view. On the contrary, in the GAV approach,
adding a new source may in principle require changing the definition of the concepts in
the global schema.

It is also well known that processing queries in the LAV approach is a difficult
task [15,16,8, 1,7, 3,4]. Indeed, in this approach, the only knowledge we have about
the data in the global schema is through the views representing the sources, and such
views provide only partial information about the data. Since the mapping associates to
each source a view over the global schema, it is not immediate to infer how to use the
sources in order to answer queries expressed over the global schema. Thus, extracting
information from the data integration system is similar to query answering with incom-
plete information, which is a complex task [17]. On the other hand, query processing
looks much easier in the GAV approach, where we can take advantage that the map-
ping directly specifies which source queries corresponds to the elements of the global
schema. Indeed, in most GAV systems, query answering is based on a simple unfolding
strategy.

Besides the above intuitive considerations, a deep analysis of the differ-
ences/similarities of the two approaches is still missing. The goal of this paper is to
investigate on the relative expressive power of the LAV and the GAV approaches. In
particular, we address the problem of checking whether a LAV system can be trans-
formed into a GAV one, and vice-versa. Obviously, we are interested in transformations
that are equivalent with respect to query answering, in the sense that we want that ev-
ery query posed to the original system has the same answers when posed to the new
system. To this end, we introduce the notion of query-preserving transformation, and
the notion of query-reducibility between classes of data integration systems. Results on
query reducibility from LAV to GAV systems may be useful, for example, to derive a



procedural specification from a declarative one. Conversely, results on query reducibil-
ity from GAV to LAV may be useful to derive a declarative characterization of the
content of the sources starting from a procedural specification.

We study the problem in a setting where the global schema is expressed in the re-
lational model, and the queries used in the integration systems (both the queries on
the global schema, and the queries in the mapping) are expressed in the language of
conjunctive queries. We show that in such a setting none of the two transformations is
possible. On the contrary, we show that the presence of integrity constraints in the global
schema allows reducibility in both directions. In particular, inclusion dependencies and
a simple form of equality-generating dependencies suffice for a query-preserving trans-
formation from a LAV system into a GAV one, whereas single head full dependen-
cies are sufficient for the other direction. Finally, we introduce the GLAV approach,
where both LAV and GAV assertions are allowed in the mapping, and illustrate how
to adapt the technique from LAV to GAV to devise a query-preserving transformation
from GLAV to GAV.

Also, the results presented in the paper shows that techniques for answering queries
under integrity constraints are relevant in data integration. In particular, several ap-
proaches to answering queries under different forms of dependencies have been pro-
posed in the last years (see for example [14]). Our results imply that these approaches
can be directly applied to query answering in LAV, GAV, and GLAV systems with in-
clusion dependencies. Data integration is thus a good candidate as an application for
experimenting these techniques in real world settings.

The paper is organized as follows. In Section 2 we describe the formal framework
we use for data integration, and we introduce the notions of query-preserving trans-
formation, and of query-reducibility between classes of data integration systems. In
Section 3 we show that in the relational model without integrity constraints, the classes
of LAV and GAV systems are not mutually query-reducible. In Section 4 we present the
results on query-reducibility in the case where integrity constraints are allowed in the
global schema. Finally, Section 5 concludes the paper with a discussion on the GLAV
approach.

2 Framework for data integration

We set up a formal framework for data integration in the relational setting. We assume
that the databases involved in our framework are defined over a fixed (infinite) set A of
objects. A database DB for a relational schema R is a relational structure (APB,.P5B)
over R with APB C A. When needed, we denote a relation r of arity n by r/n. Given
a query ¢ over DB, we denote by ¢P? the set of tuples of objects in AP5 obtained by
evaluating ¢ over DB, i.e., the set of answers to ¢ over DB. In particular, we focus on
conjunctive queries (CQs) with equality atoms and constants. We denote a CQ of arity
n over a relational schema R as

{<X1,...,Xn>|§0(X1,...7Xn,Y1,...,Ym)}

where X;,...,X,, are the distinguished variables (not necessarily pairwise dis-
tinct), Y3,...,Y,, are the existentially quantified non-distinguished variables, and



o(X1,...,X,,Y1,...,Y,,) is a conjunction of atoms over predicate symbols in R,
involving constants, and the variables X,..., X, Y1,...,Y,,. For arelation r/n, we
write the CQ {(X1,...,X,,) | r(X1,...,X,)} simply as r.

We consider also constraints over a relational schema. In particular, we consider
inclusion dependencies, simple equality-generating dependencies, and single head full
dependencies [2]. Given a relation r and a tuple A of distinct attributes of », we de-
note the projection of » over A by r[A]. Similarly, given a tuple ¢ of r, we denote the
projection of ¢ over A by t[A]. An inclusion dependency is a dependency of the form
r[A] C r'[A’], where r and 7’ are two relations of a relational schema R and A and
A’ are two sequences of distinct attributes of the same arity, belonging to » and r’ re-
spectively. A database DB satisfies r[A] C r/[A'] if 7[A]PB C +'[A/]PB. A simple
equality-generating dependency has the form r — A = A’, where r is a relation of
a relational schema R, and A and A’ are two distinct attributes of ». A database DB
satisfies » — A = A’ if for every tuple ¢+ € »P5, it holds that t[A] = t[A’]. A single
head full dependency has the form ¢ C r, where r is a relation of a relational schema
‘R and ¢ is a conjunctive query over R of the same arity as r. A database DB satisfies
qCrif qDB C rPB,

A data integration system 7 is a triple (G, S, M), where

— G isthe global schema, expressed in the relational model, possibly with constraints.
— S is the source schema, also expressed in the relational model.
— M is the mapping between G and S, constituted by a set of assertions of the form

s € qg

where ¢s and gg are two queries of the same arity, respectively over the source
schema S and over the global schema G.

Intuitively, the source schema describes the schema of the data sources, which contain
data, while the global schema provides a reconciled, integrated, view of the underlying
sources. The assertions in the mapping establish the connection between the relations
of the global schema and those of the source schema. As typical in data integration, we
consider here mappings that are sound, i.e., the data provided by the queries over the
sources satisfy the queries over the global schema, but do not necessarily characterize
completely the answer of the queries over the global schema [16, 9, 7]. User queries are
posed over the global schema and are answered by retrieving data from the sources,
making use of the mapping.

Two basic approaches for specifying the mapping have been proposed in the lit-
erature: global-as-view (GAV) and local-as-view (LAV) [16, 9]. In the GAV approach,
the mapping M associates to each relation g in G a query os(g) over S, i.e., a GAV
mapping is a set of assertions, one for each relation g of G, of the form

0s(9) € g

In the LAV approach, the mapping M associates to each relation s in S a query og(s)
over G, i.e., a LAV mapping is a set of assertions, one for each relation s of S, of the
form

5 C og(s)



Observe that in both cases we associate to a relation (either global or local) a single
query. We call GAV (with constraints) the class of integration systems (with constraints)
with a GAV mapping. Similarly for LAV (with constraints).

Given an integration system Z = (G, S, M), we call source database (for 7), a
database for the source schema S, and global database (for 7) a database for G satis-
fying the constraints of G. Let D be a source database. A global database /5 satisfies an
assertion gs C qg in M with respect to D, if ¢5 C qg. The global database 5 is said
to be legal for Z with respect to D, if it satisfies all assertions in the mapping M with
respect to D. Observe that, in general, several global databases exist that are legal for 7
with respect to D.

Queries posed to an integration system Z are expressed in terms of the relations in
the global schema of Z. Given a source database D for Z, the answer ¢Z? to a query ¢
to Z with respect to D, is the set of tuples ¢ of objects in D such that ¢t € ¢Z for every
global database B legal for T with respect to D. The set ¢Z? is called the set of certain
answers of ¢ to Z with respect to D.

Given two integration systems Z = (G, S, M) and Z' = (G’, S, M’) over the same
source schema S and such that all relations of G are also relations of G’, we say that
T’ is query-preserving with respect to Z, if for every query ¢ to Z and for every source
databases D for S, we have that

In other words, we say that Z’ is query-preserving with respect to 7 if, given a query
over the global schema of Z, the certain answers we get for the query on the two inte-
gration systems are identical.

To compare classes of integration systems, we introduce the concept of query-
reducibility. A class C; of integration systems is query-reducible to a class C, of in-
tegration systems if there exist a function f : C; — Cs such that, for each Z; € C; we
have that f(Z;) is query-preserving with respect to Z;.

3 Comparing LAV and GAV without constraints

In this section we consider data integration systems without constraints in the global
schema. We want to check whether any GAV system can be transformed into a LAV
one which is query-preserving wrt it, and vice-versa. We show that both transformation
are not feasible.

We begin with the transformation from LAV to GAV.

Theorem 1. The class of LAV data integration systems is not query-reducible to the
class of GAV systems.

Proof. We prove the theorem by exhibiting a particular LAV system Z = (G, S, M),
a source database D for S, and a set of queries such that, for any GAV system 7’ =
(G',S, M), the certain answers of the queries wrt D differ in Z and Z'.

The LAV system Z is as follows. The global schema G is constituted by ¢, /2 and
g2/2, while the source schema § is constituted by a single relation s/2. The mapping



Miis
og(s) = {{(X,Y) | g1(X,Z2) AN ga(Z,Y)}

By contradiction, assume there is a GAV system 7' = (G',S, M’) that is query-
preserving with respect to Z. Observe that, since no constraints are allowed in the global
schema, the introduction of a new relation in G’ is useless if we want to construct a sys-
tem that is query-preserving wrt Z; in fact, the newly introduced predicates could not be
related to ¢g; and g». Therefore, we can assume that G’ = G. It follows that the mapping
M’ has the form

98(91) = {<X Y> | fl(Xﬂlea' "aZklvcla"'7ch1)}

QS(gQ) = {<Xa Y> | §2(X7KW15 .. '7Wk27d11 .. -7dh2)}
where &; and & are conjunctions of atoms over the only relation s, Z1, ..., Z, and
Wh, ..., W, are existentially quantified variables, and ¢y, ...,cp, and dy, ..., d}, are

constants of A.
We take the source database D to be such that s? = {(a, b)}, where a and b are two
constants, and we consider the following queries:

a(X,Y) ={(X,Y) | 1(X, Z2) N g2(Z,Y)}
QQ(va) = {<X’Y> | gl(X>Y)}
33(X,Y) = {{(X,Y) | g2(X,Y)}

The certain answers of ¢y, g2, and ¢s to Z wrt D are the following: ¢'” = (a,b),
7,D T,D
¢ =0,and g37" = 0.
If one of s(g1)™ or os(g2)? is non-empty, we have that one of ¢ ** or g2 ** is
non-empty, and hence a contradiction. When both os(g1)? and os(g2)? are empty, we
immediately obtain that ¢7 *” = (). Contradiction.

This result shows that the mechanism of query answering in LAV cannot be directly
simulated by the corresponding mechanism in GAV, which is basically unfolding, i.e.,
the substitution in the user query of the global relations with their definition given by
the mapping.

We now turn to the transformation from GAV to LAV.

Theorem 2. The class of GAV data integration systems is not query-reducible to the
class of LAV systems.

Proof. We exhibit a particular GAV system Z = (G, S, M) and a query such that, for
any LAV system 7/ = (G', S, M’) we can construct a source database D for S such
that the certain answers of the query to Z and Z' differ wrt D.

Let Z be as follows. The global schema G is constituted by a single relation g/2,
while the source schema S is constituted by s; /2 and s2/2. The mapping M is

0s(9) = {(X,Y) [s1(X, 2) N s2(2,Y)}



As in the previous case, we observe that the introduction of new relations in G’ is not
significant if we want to construct a system that is query-preserving wrt Z. Hence we
assume that G’ = G, and the mapping M’ has the form

Qg(sl) = {<X7Y> | 771(X7Y»217~~7Zk1701»~-~ 7ch1)}
99(52) = {<X,Y> | nQ(X7Y7W17"'7Wk2;d17"'7dh2)}

where 7; and 17 are conjunctions of atoms over the only relation

9 L1y Zyp Wh,..., Wy, are existentially quantified variables, and
Cly.+.yChyyda,...,dp, areconstants in A.

We define the source database D such that sP = {(a,b)} and s = {(b, ¢)}, where
a, b, and ¢ are constants, distinct from ¢4, ..., cp,, d1, ..., dp,. Consider the query

q(X,Y) = {<X7Y> |g(X,Y)}

whose certain answers in Z are {(a, c) }.

Let 7/ = (G',S, M') be a LAV system. We show that (a,c) ¢ ¢, by con-
structing a global database 3’ which satisfies M’ wrt D and such that (a, ¢) & ¢ . We
construct g%  as follows. We associate to each variable or constant VV appearing in the
definition of os(s1) a distinct constant «(V'), such that ¥(X) = a, ¥(Y) = b, and
(V) = V if V is a constant. Then, for each atom g(V1, V2) appearing in gs(s1), we
add the tuple ((V7), 4 (V2)) to g% . We do the same for ps(s2), with 4(X) = b and
¥(Y) = ¢. Such a construction of g% ensures that (a,c) & g% (by construction) and
that B’ is legal for Z’ wrt D, as (a,b) € s& and (b, c) € s&'. Therefore (a,¢) & ¢% 7.
This proves the claim.

This result shows that we are not able to deduce the information of a LAV mapping,
which specifies the role of each source relation wrt the global schema, from the infor-
mation contained in a corresponding GAV mapping, which gives direct information on
how query answering may be performed.

4 Comparing LAV and GAV with constraints

We address the question of query-reducibility in the case where integrity constraints are
allowed in the global schema.

One direction is almost immediate: single head full dependencies suffice for query-
reducibility from GAV systems to LAV systems. Indeed, if Z = (G, S, M) is a GAV
system, we define a corresponding LAV system Z' = (G’, S, M) as follows. For every
source relation s in S, we define a corresponding new relation g, in G’, and we include
in M’ the assertion s C pg(gs). Now, for every ps(g) € g in M, we introduce in
G’ the single head full dependency p’s(g) C g, where p’s(g) denotes the conjunction
obtained from ps(g) by substituting every atom s(z1, ..., z,) With gs(x1,...,x,). It
is easy to see that the resulting data integration system Z' = (G, S, M’) is a LAV
system, and that the transformation is query-preserving. Observe also that the size of Z’
is linearly related to the size of 7.

We now turn to the question of reducing LAV systems to GAV systems. We show
that, when inclusion and simple equality generating dependencies are allowed on the



global schema, we can obtain from every LAV system a query-preserving GAV system.
Let Z = (G,S, M) be a LAV integration system. Without loss of generality, we can
assume that no equality atoms appear in the conjunctive queries in the mapping M.
We define a corresponding GAV integration system Z' = (G', S, M’) as follows. For
technical reasons, we first rewrite all queries in the mapping M so that variables appear
in each atom at most once, by adding suitable equalities to the body of the queries. For
example, the query {(X) | cites(X, X)} is rewritten as {(X) | cites(X,Y)AY = X }.
Then Z is as follows:

— The set of sources S remains unchanged.
— The global schema G’ is obtained from G by introducing:

e anew relation image_s/n for each relation s/n in S;

e anew relation expand_s/(n + m) for each relation s/n in S, where m is the
number of non-distinguished variables of og (s); we assume variables in og(s)
to be enumerated as 71, ..., Zn+m, With Z1, ..., Z,, being the distinguished
variables;

and by adding the following dependencies:
o for each relation s/n in S we add the inclusion dependency

image_s[l,...,n] C expand_s[l,...,n]

o for each relation s in S and for each atom g(Z;,, ..., Z;, ) occurring in gg(s),
we add the inclusion dependency

expand_s[i1,...,ig] C g[l,..., k]

o for each relation s in S and for each atom Z; = Z; occurring in og(s), we add
the simple equality generating dependency

expand_s — =7
— The GAV mapping M’ associates to each global relation image_s the query
os(image_s) = s
and to the remaining global relations the empty query.
It is immediate to verify the following theorem.

Theorem 3. Let Z be a LAV integration system, and Z’ the corresponding GAV inte-
gration system defined as above. Then Z’ can be constructed in time that is linear in the
size of Z.

We illustrate the transformation with an example.
Example 1. Consider a LAV integration system Z = (G, S, M) where:

— The global schema G is constituted by the relations cites/2, expressing that a paper
cites another paper, and sameTopic/2, expressing that two papers are on the same
topic.



— The source schema S is constituted by three relations: source;, containing pairs
of papers that mutually cite each other; sources, containing pairs of papers on the
same topic, each with at least one citation; and sources, containing papers that cite
themselves.

— The LAV mapping M between the source schema and the global schema is:

og(source;) = {(X,Y) | cites(X,Y) A cites(Y, X)}
og(sources) = {(X,Y) | sameTopic(X,Y") A cites(X, Z) A cites(Y, W)}
og (sources) = {(X) | cites(X,Y) AN X =Y}

Then the corresponding GAV integration system Z’ = (G’, S, M’) is as follows:

— The source schema S remains unchanged.

— The global schema G’ is constituted by the relations cites/2, sameTopic/2
as before, and the additional relations image_source;/2, image_sources/2,
image_sources /1, expand_source; /2, expand _sources /4, and expand_sources /2.
Moreover, G contains the following inclusion dependencies:

image_source;[1,2] C expand_source;[1,2]
image_sources[1,2] C expand_sources[l, 2]
image_sourceg[l]  C expand_sources[l]
expand_source; [1,2] C cites[1, 2]
expand _source; [2,1] C cites[1, 2]
expand _sources[1, 3] C cites[1, 2]
expand_sources[2,4] C cites[1, 2]
expand_sourceg[1,2] C cites[1, 2]
expand_sources[1,2] C sameTopic|l, 2]
expand_sources —-1=2
— The GAV mapping M’ is
|
os(image_source;) = source;, i€{1,2,3}

We now show that the LAV integration system Z and the corresponding GAV inte-
gration system Z’ obtained as above are indeed query-equivalent. The proof is based on
the observation that both integration systems Z and Z’ can be captured by suitable logic
programs (we refer to [13] for notions relative to logic programming).

We first concentrate on GAV systems. The logic program Pz associated to a GAV
systemZ’ = (G', S, M’} is defined as follows:

— For each inclusion dependency g1[A] C g2[B] in G’, where A and B are sets of
attributes, we first introduce a “pseudo-rule” of the form (assuming for simplicity
that the attributes in A and B are the first & ones in g; and g, respectively):

gZ(le"’7Xh7Xh+17"'aXn) — gl(X17~~'7Xh7Yh+17"'7Ym)

Then, for each simple equality generating dependency in G of the form g, — i=j,
we substitute in the above pseudo-rule each occurrence of X ; with X;. We skolem-
ize the resulting pseudo-rule, obtaining a rule of the form

gQ(Zlﬁ"'7Z/€af]€+1(Z17"'aZk)a"'afn(Z17"' 7Z/€)) — gl(Zl7--~7Z/€7Wk+1

where each f; is a fresh Skolem function.

W)



— For each assertion ps(g) < ¢ in the mapping M’, where os(g) =
Xy, 0, X)) | (X, oo, X0, Yosa, ..o, Yin) 1, we have a rule of the form

g(Xl,...,Xn) — QD(Xl,...,Xn,Yn+1,...,Ym)

with the proviso that, if a simple equality generating dependency applies to g, then
we have to equate the appropriate variables.

In addition, the relations in S can be seen as predicates that are given extensionally.
That is, a source database D for Z’ can be seen as a finite set of ground facts in logic
programming terms.

By applying results from logic programming theory [13], we can show the following
lemma.

Lemma 1. Let Z’ be a GAV integration system, D a source database for Z’, Pz the
corresponding logic program as defined above, and M,,,;,, the minimal model of Pz U
D. Then, given a query ¢ over G, for every tuple (c1, ..., c,) of objects in D we have
that

(c1,...,cn) € 5P if and only if {c1,...,cn) € ¢Mmin

Proof (sketch). By considering the semantics of constraints in G’, and the corre-
sponding translation in Pz, it can be shown that the certain answers of ¢ to Z' wrt D
are those that are correct answers to ¢ for the logic program Pz, U D. The claim fol-
lows from the classical result in logic programming that the correct answers to a logic
program are those that are true in the minimal model. O

In other words, for GAV integration systems, the tuples of constants in the certain
answer to a query ¢ are equal to those that satisfy ¢ in the minimal model of the corre-
sponding logic program.

Let us turn to LAV integration systems. Without loss of generality, we can assume
that equality generating dependencies have been folded into queries by suitably renam-
ing variables. Given a LAV integration system Z, we can define an associated logic
program Pz by introducing rules for dependencies as before, and by treating queries
in the mapping as done in [5]. In particular, given the query associated to source s (for
simplicity of presentation, we assume s to be a unary relation and the relations in the
query to be binary)

0g(s) = {(X) 1 (X, Y1) A+ Age(X, Ye)}
by applying skolemization we get
0g(s) = {{(X) | g1(X, fr(X)) A+ Agr(X, fu(X))}.

Then, we can introduce in Pz the following rules, derived from the skolemized query:
91(X, f1(X)) — s(X)

gi(X, fr(X)) — s(X)

Based on the results in [5], we can prove also for LAV integration systems a lemma
analogous to Lemma 1.



Lemma 2. Let 7 be a LAV integration system, D a source database for Z, Pz the
corresponding logic program as defined above, and M,,,;,, the minimal model of PzUD.
Then, given a query g over G, for every tuple {(cy, ..., c,) of objects in D we have that

(c1,...,¢cn) €¢5P  ifandonlyif  (c1,...,c.) €q

Mmm
In other words, also for LAV integration systems, the tuples of constants in the cer-
tain answer to a query ¢ are equal to those that satisfy ¢ in the minimal model of the
corresponding logic program.

With these lemmas in place we can prove our main result.

Theorem 4. Let Z be a LAV integration system, and Z’ the corresponding GAV inte-
gration system defined as above. Then Z” is query-preserving wrt Z.

Proof (sketch). Let Pz be the logic program capturing Z and Pz the logic program
capturing Z’. Then it is possible to show that, for every source database D for Z and
every global relation g of the global schema G of Z, we have (modulo renaming of the
Skolem functions) that

/

ngm — gAImm

where M,,,;,, and M . are the minimal model of Pz UD and of Pz, U D, respectively.

Hence, by considering Lemma 1 and Lemma 2, we get the claim. O

5 Discussion

In the previous sections we have studied the relative expressive power of the two main
approaches to data integration, namely, LAV and GAV. We have shown that, in the
case where integrity constraints are not allowed in the global schema, LAV and GAV
systems are not mutually query-reducible. On the other hand, the presence of integrity
constraints allows us to derive query-preserving transformations in both directions.

In particular, we have demonstrated that inclusion dependencies and a simple form
of equality-generating dependencies in the global schema are sufficient for transforming
any LAV systems into a query-preserving GAV system whose size is linearly related to
the size of the original system. Interestingly, the technique can be easily extended for
transforming any GLAV system into a GAV one.

In the GLAV approach to data integration, the relationships between the global
schema and the sources are established by making use of both LAV and GAV asser-
tions [6]. More precisely, in a GLAV system, we associate a conjunctive query gg over
the global schema to a conjunctive query ¢s over the source schema. Therefore, GLAV
generalizes both LAV and GAV.

By exploiting the technique presented in Section 4, it is not difficult to see that any
GLAV system can be transformed into a query-preserving GAV one, with the same
technique presented above. The key idea is that a GLAV assertion can be transformed
into a GAV assertion plus an inclusion dependency. Indeed, for each assertion

gs € qg



in the GLAV system (where the arity of both queries is n), we introduce a new relation
symbol r/n in the global schema of the resulting GAV system, and we associate to r
the query

0s(r) = gs
plus the inclusion
r C qg

Now, it is immediate to verify that the above inclusion can be treated exactly with the
same technique introduced in the LAV to GAV transformation, and therefore, from the
GLAV system we can obtain a query-preserving GAV system whose size is linearly
related to the size of the original system.
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Abstract

In this paper we address the problem of query an-
swering and rewriting in global-as-view data inte-
gration systems, when key and inclusion dependen-
cies are expressed on the global integration schema.
In the case obkoundviews, we provide sound and
complete rewriting techniques for a maximal class
of constraints for which decidability holds. Then,
we introduce a semantics which is able to cope with
violations of constraints, and present a sound and
complete rewriting technique for the same decid-
able class of constraints. Finally, we consider the
decision problem of query answering and give de-
cidability and complexity results.

1 Introduction

The task of a data integration system is to combine data resid-
ing at different sources, providing the user with a unified view

of them, calledglobal schema User queries are formulated

over the global schema, and the system suitably queries the
sources, providing an answer to the user, who is not obliged to
have any information about the sources. The problem of data 2-
integration is a crucial issue in many application domains,
e.g., re-engineering legacy systems, data warehousing, data

mining, data exchange.

A central aspect of query processing is the specification of
the relationship between the global schema and the sources;

such a specification is given in the form of a so-calheap-

ping. There are basically two approaches for specifying the 3.

mapping. The first approach, callgtbbal-as-view(GAV),

requires that a view over the sources is associated with ev-
ery element of the global schema. Conversely, the second
approach, calletbcal-as-view(LAV), requires the sourcesto 2

be defined as views over the global schdirenzerini, 2002;
Duschka and Levy, 1997

The global schema is a representation of the domain of in

}@dis.uniromal.it

may return incorrect answers to the uféaginet al, 2003;
Cali et al, 2004.

Another significant issue is that the sources may not pro-
vide exactly the data that satisfy the corresponding portion of
the global schema; in particular, they may provide either a
subset or a superset of the data satisfying the mentioned por-
tion, and the mapping is to be considessindor complete
respectively. Mappings that are both sound and complete are
calledexact

In this paper, we restrict our analysis to the GAV approach,
which is the most used in the context of data integration. In
particular, we study a relational data integration framework in
which key dependencies (KDs) and inclusion dependencies
(IDs) are expressed on the global schema, and the mapping
is considered sound. The main contributions of this paper are
the following:

1. After showing that query answering in the general case

in undecidable, we provide a sound and complete query
rewriting technique first for the case of IDs alone, and
then for the case of KDs together with the maximal class
of IDs for which the problem is decidable, calledn-
key-conflicting IDsor simply NKCIDs (Section 3).

Since it is likely that data retrieved at different, au-
tonomous sources violate the KDs, we introduce a novel
semantics that is a “relaxation” of the sound semantics,
and that allows minimal repairs of the data (Section 4).
We then present a sound and complete query rewriting
technique in the case where KDs and NKCIDs are ex-
pressed on the global schema (Section 5).

Finally, we present decidability and complexity results
of the (decision) problem of query answering in the dif-
ferent cases (Section 6).

Formal framework for data integration

In this section we define a logical framework for data integra-
tion, based on the relational model with integrity constraints.

terest of the data integration system: integrity constraints ar&yntax We consider to have an infinite, fixed alphabetf

expressed on such a schema to enhance its expressivenes®)stants (also called values) representing real world objects,

thus improving its capability of representing the real world. and will take into account only databases haviregs domain.
Since sources are in general autonomous, the data préV¥e adopt the so-callegniqgue name assumptipie., we as-

vided by the sources are likely not to satisfy the constraintsume that different constants denote different objects.

on the global schema. Integrity constraints have to be taken Formally, a data integration systefis a triple (G, S, M),

into account during query processing; otherwise, the systewhere:



1. G is the global schemaexpressed in the relational
model with integrity constraints. In particula§ =
(U,%;,Yk), where(i) ¥ is a set of relations, each

mally, given a source databagefor Z = (G,S, M), the
semantics of wrt D, denotedsem(Z, D), is a set of global
databases faf, where a global databaggis in sem(Z, D)

with an associated arity that indicates the number off:

its attributes. The attributes of a relatienof arity n
are represented by the integdrs..,n. (i) X7 is a
set ofinclusion dependencie@Ds), i.e. a set of as-
sertions of the form;[A] C r3[B], wherery,ry are
relations in¥, A = A;,...,A, (n > 0) is a se-
guence of attributes of;, andB = By,...,B, is a
sequence of attributes of. (iii) Xk is a set ofkey de-
pendenciegKDs), i.e., a set of assertions of the form
key(r) = A, wherer is a relation in the global schema,
andA = A,..., A, is a sequence of attributes of
such that for eachh € {1,...,n — 1} a; < a;+1. We

assume, without loss of generality, that the attributes in

A are the firstn attributes ofr. Moreover, we assume
that at most one KD is specified for each relation.
2. S is thesource schemeconstituted by the schemas of

the various sources that are part of the data integration

1. Bis consistent witlg, i.e., it satisfies the IDs ix; and
the KDs inX x. More formally: (i) B satisfies an inclu-
sion dependency, [A] C r,[B] if for each tuplet; in
B there exists a tuplg; in 5 such that; [A] = ¢, [B],
wheret[A] is the projection of the tupleover A.. If B
satisfies all inclusion dependencies expressed ove
say thatB5 is consistent withX;; (ii) B satisfies a key
dependencycey(r) = A if for eacht;,t, € rB with
t1 # to we havet;[A] # t3[A]. If B satisfies all key
dependencies expressed®we say thaf3 is consistent
with YK

2. BB satisfies the mappingt wrt D, i.e., it satisfies each
pair (r, V) in M wrt D. In particular, we say thaB
satisfies the paitr, V) wrt D, if all the tuples satisfy-
ing V in D satisfyr in B, i.e. VP C 5. Note that

system. We assume that the sources are relational, and the above definition amounts to consider any viévas

that integrity constraints expressed Share satisfied

sound which means that the data retrieved from sources

data at the sources. Hence, we do not take such con- satisfy the global schema, but are not necessarily com-

straints into account in our framework.

3. M is the mappingbetween the global and the source

plete.
By simply evaluating each view over the source database

schema. In our framework the mapping is defined in thep, we obtain a global database, calleetrieved global

GAV approach, i.e., each relationinis associated with

databaset(Z, D), that actually satisfies the sound mapping

aview, i.e., a query, over the sources. We indicate theibut that is not necessarily consistent with

mapping as a set of assertions of the fdriyi/), wherer

We give now the semantics of queries. Formally, given

is arelation and’ is the associated view over the Source g source databasP for Z we call answersto a gueryq
schema. We assume that the language used to eXpre@ﬁarity n W.r.t. Z and D, the Setans(q,I, D) defined as

gueries in the mapping {gositive Datalod Abiteboul et

follows: ans(q,Z,D) = {{c1,...,cn) | foreachB ¢

al., 1994, over the alphabet of the relation symbols in sem(Z, D), (c1,...,cn) € B }.

S. A Datalog query (or programy) of arity » is a col-
lection of rules of the fornk(X) «— conj(X,¥), where

In this paper, we address the query answering problem, that
is the problem of computing the sets(q,Z, D). To this

conj(X, y) is a set of atoms whose predicate symbols argyim we make use of query rewriting techniques, i.e., we ex-

either relation symbols i or the head symbal, and
involvex = X4,..., X, andy = Y1,...,Y,,, where
X, andY; are either variables or values Bf We call
h(X) theheadof the rule, andonj (X, ¥) thebody.

Finally, aqueryover the global schemais a formula that
is intended to extract a set of tuples of element§ ofThe
language used to express queries @vés union of conjunc-
tive queries(UCQ) [Abiteboul et al, 1999, i.e., a Datalog

ploit the mappingM to reformulate the query into another
queryg,, therewriting, that can be evaluated on the source
databas®. We say thay,. is aperfect rewritingof ¢ w.r.t. 7

if ¢° = ans(q,Z, D) for eachD. Furthermore, with regard

to decidability and complexity results, we will refer to the de-
cision problem associated to query answering, that is, given a
data integration systefh = (G, S, M), a source databad®,

a queryg of arity n overG and an-tuplet of values ofT", to

program such that each rule head uses the same predicateasftablish whether € ans(q,Z, D).

the same arity, and only relation symbolsghbccur in each
rule body.

SemanticsA database instancgr simply databasgC for a
relational schem®£5 is a set of facts of the form(t) where
r is a relation of arityn in D3 andt is ann-tuple of values of
the domain alphabdt. We denote as® the set{t | 7(t) €
C}; moreover, given a Datalog quegy we denote ag® the
evaluation ofg over(, i.e., the minimal fixpoint model of
andcC [Abiteboulet al, 1999.

Example 2.1 Consider a data integration system
Zo = (Go,So, M), referring to the context of football
teams. The global schem@, consists of the rela-
tion predicates player(Pname, Pcountry, Pteam) and
team( Tacronym, Tname, Tleader), and the following
constraints: key(player) = {Pname}, key(team) =
{Tacronym}, team|[Tleader] C player|[Pname).

The source schem&, consists of the schemas of three
sources comprising the relation of arity 4, and the rela-

In order to specify the semantics of a data integration systions s andss, both of arity 3. Finally, the mapping/, is

temZ, we start by considering source databaséor 7, i.e.,
a databas® for the source schems. Based orD, we now

defined by the two assertions
(player, player(X,Y,Z) « s1(X,Y, Z,W))

specify which is the information content of the global schema (team, team(X,Y,Z) — s:(X,Y, Z)

G. We callglobal databasdor Z any database fag. For-

team(X,Y, Z) — s3(X,Y, Z))



Consider the source databaBg = {s;(Totti, ITA, RM, 27), Below we define the algorithriD-rewrite to compute the
s1(BeckhamENG, MU, 28), s2(RM,RomaTotti), perfect rewriting of a union of conjunctive queri€s Infor-

s3(MU,Man.Utd, Giggs) }. Then, ret(Zy,Dy) =  mally, the algorithm computes the closure of the set of con-
{player(Totti, ITA, RM), player(BeckhamENG, MU),  junctive queriesy with respect to the following two rules:
team(RM,RomaTotti), team (MU, Man.Utd, Gigg9 }. (i) if there exists a query € @ such thatbody(gq) contains

Notice that the facts inret(Zy, Dy) together with the for- two atomsg; andg. that unify, then the algorithm computes
eign key constrainteam|Tleader] C player[Pname] im-  the queryreducdgq, g, g2), which is obtained fromy by re-
pose thaiGiggs is a player. Since the views are sound, theplacingg; andg, with U(g1, g2) in the query body, and then
semantics for the integration system has to account for aby applying the substitution obtained in the computation of
the global databases that provide the country and the teafi(g1, g2) to the whole query. Such a new query is then trans-
of the player. Hencesem(Zy, Dy) contains all database in- formed by the functionr, which replaces witly each variable
stances that can be obtained by adding:tdZ,, Dy) (among  symbol X such that there is a single occurrenceXfin g.
others) at least one fact of the forplayer(Giggs «, 3), The use ofr is necessary in order to guarantee that each un-
wherea and g are values of the domain. Given the query bound variable is represented by the sympobuch a query
q(X) «— player(X,Y, Z), we have thatuns(q,Zo,Dy) =  isthen added t@).

{Totti, BeckhamGiggs}. m (ii) if there exists an inclusiod and a queryy € @ con-
taining an atomg such that/ is applicable tog, then the

o algorithm adds taQ the query obtained frong by replac-

3 Query rewriting ing g with gr(g, I) in its body (denoted in the algorithm as
In this section we present algorithms for computing the perg[g/gr(g, I)]). Namely, this step adds new conjunctions ob-
fect rewriting of a UCQ query in GAV integration systems tained by applying inclusion dependencies as rewriting rules
with KDs and IDs. We first study the case in which only IDs (applied from right to left).

are expressed on the global schema, then we deal with the The above rules correspond respectively to steps (a) and
simultaneous presence of both IDs and KDs. (b) of the algorithm.

Query rewriting under IDs only We start by studying ~Algorithm ID-rewrite(V, >;,q) _
query rewriting when only IDs are expressed on the global™Put: re'?‘t'onﬁ" Schemtg." inclusion dependenciesy,
schema. To this aim, we need some preliminary definitions. union of conjunctive querieg)
. : . . . Output: perfect rewriting of@

Given a conjunctive query, we say that a variabl&’ is N=
unboundin q if it occurs only once iry, otherwise we say repéat ’
that X is bound ing. Notice that variables occurring inthe o . o
head of the query are necessarily bound, since each of themfor each g € Q.. do

must also occur in the query body. Bound termis either a (a)for each g1, g2 € body(q) do

bound variable or a constant. if g1 andgo unify
In the following, we assume that all unbound variables in then Q" := Q" U {r(reducdq, g1, g2))};
the queryy are represented by the special tetm (b) for each g € body(q) do
L . foreachI € ¥; do
Definition 3.1 Given an atomy = s(Xl, ..., Xy) and an if I is applicable tq
inclusionI = rliy,...,ix] C s[j1,.--,Jjk], Wwe say thatl is then Q" := Q' U {qlg/ar(g, )] }

applicable tog if, for eachf such thatl < ¢ < n, if X, # & until Qaue = Q';

then there existé such thatj, = ¢. Moreover, we denote return Q’

with gr(g, I) the atoms(Y3,...,Y,,) (m is the arity ofs in o o ' o

¥) where for eaclf such thatl < ¢ < m, Y, = X, if there Termination of the algorithm is immediately implied by the
existsh such that, = ¢, otherwiseY; = ¢. fact that the number of conjunctions that can be generated by
the algorithm is finite, since the maximum length of a gen-
erated conjunction is equal to the maximum length of a con-
junction in the body of the initial quer§, and the number of
different atoms that can be generated by the algorithm is fi-
nite, since the alphabet of relation symbols used is finite (and
corresponds to the relation symbols occurringddnand in

Y1), as well as the set of terms used (corresponding to the set

Roughly speaking, an inclusiahis applicable to an atom
g if the relation symbol of; corresponds to the symbol in the
right-hand side of and if all the attributes for which bound
terms appear ig are propagated by the inclusidn When !
is applicable tgy, gr(g, I) denotes the atom obtained fram
by using! as a rewriting rule whose direction is right-to-left.

Definition 3.2 Given an atony; = r(Xi,...,X,) and an  of variable and constant names occurring in the qégplus
atomgy = r(Y1,...,Y,), we say thayy; and g, unify if for the symbok).
eachi such thatl < i < n, eitherX; = Y; or X; = { or Henceforth, we denote aH;p the UCQ returned by

Y; = ¢. Moreover, ifg; andg, unify, we denote a8/ (g1, 92)  ID-rewrite(¥, %}, Q). Moreover, we define the Datalog pro-
the atomr(Zy, ..., Z,) where, for each, if X; = Y; or  gramIl,, = {(V|(r,V) € M}.
Y; = ¢ thenZ; = X;, otherwiseZ; =Y.

Informally, two atoms unify if they can be made equal Theorem 3.3 LetZ = (G,S, M) be an integration system

through a substitution of each instance of the special symbdnd let@ be a UCQ query oveg. Then,Il;p UIlnz is a
& with other terms. perfect rewriting ofQ) w.r.t. Z.



Query rewriting under KDs and IDs  Now we address the It follows that chase(ret(Z,D)) is a representative for all
problem of query rewriting in the case where KDs and IDs arejatabases irem (Z, D), andans(q, Z, D) = gchase(ret(Z, D))
defined on the global schema. Unfortunately, KDs and IDsThe claim follows straightforwardly. |
interact reciprocally so that the (decision) problem of query .
answering in this setting becomes undecidable. The follow-, W& now go back to query rewriting. In the case of a NKC

ing theorem is a consequence of a similar property proved iffata integration system, we can apply the same technique de-
[Call et al, 2009 in the context of a single database. veloped for IDs alone, provided that we take into account the

) _ ) KDs with suitable rules. Indeed, observe thatf(Z, D) vi-
Theorem 3.4 Consider a data integration systei =  platesy, any tuple is in the answer to any query. Therefore,
(G,8, M), with g = (¥, %}, Yk), whereX; and Xk are  ith regard to this issue, we first introduce a unary global re-
sets of IDs and KDs respectively. Given a source databasgtion val; the idea is thatal stores all values occurring in
for 7, a queryq over¢, and a tuplet of values ofl', the D we construct a set of rulds,,; as follows: denoting with
problem of calculatingins(q, Z, D) is undecidable. {r1,...,rn,} the set of all relations ig,

. Undt_acidapility pf calculat_ing t'h'e certain answers to a query val(X;) — ri(X1,..., Xn,)

immediately implies undecidability of calculating the perfect . ' )

rewriting[Cali et al, 2003. The problem of query answering With1 <i < N, andl < j < n;. Then, consider a KD of the
becomes decidable if we restrict the IDs to be in a particulaform key(r) = K; without loss of generality, we suppose that

class, so that they do not interact with KDs. r has aritym andK = {1,...,k} (k < m). We introduce a
o . . . - : <i<m

Definition 3.5 Consider a data integration systefn = setofm — k rules; in particular, fok + 1 < i < m

<g,S,M>,Withg: <‘I’,E[,ZK>. An ID T’l[Al] gT’Q[AQ] q(Yl,...,Yn) — 7'(X1,‘..,Xk,Xk+1,...,Xm),

is anon-key-conflicting ID (NKCIDyv.r.t. K if either: (i) no P( Xy, Xiy Xpgy s Xon)s

KD is defined onrs; (ii) the KD key(r2) = K is in ¥k and X # X[, val(Y1), ..., val(Yy)

A, is not a strict superset &, i.e., Ay p K. If all IDs
in X2y are NKCIDs w.r.t. X g, the systent¥ is saidnon-key-
conflicting (NKC)

We point out that the class of NKC IDs comprises the well-

known class oforeign key dependencieshich correspond .
, S, M), and a queryg of arity n overG. Then,IIjp U
to IDs of the formr [A4] € 72[As] such thatkey(ry) = Ao. f_lg ¥ H> UL qis a);/)qerfect rgvyriting ng] ID
The most important feature of a NKC data integration sys- KD — val = M '

tem is theseparatiorbetween the IDs and the KDs; in such a . . .
case, in fact, we can take IDs into account as if the KDs were4 Semantics for inconsistent data sources

We denote witHIkp the set of rules introduced as described
above. From the results of Section 3 and from the above ob-
servation, we derive the following result.

Theorem 3.7 Consider a data integration systeh =

not expressed od. In the sound semantics, violations of IDs are treated “auto-
Theorem 3.6 (Separation)Given a NKC data integration matically”because of the nature of the semantics; instead, the
e s G5 M) With G = (0.5 5. let 7/ = violation of a single KD leads to the non-interesting case in

which sem(Z, D) = 0.

According to a common approach in the literature on in-
consistent databasfBaginet al,, 1983; Lin and Mendelzon,
and? ann-tuple of values. We have that ans(q,Z, D) iff 199% Arenaset al, 1999,dwe EOW introduce théa%osely— i
D is consistent Witftc and? ¢ ans(q, T, D). soundsemantics, opposed to the previous one (that we wi

call strictly-sound, in which the soundness assumption is

Proof (sketch). We say thatD is consistent with¥’xr  suitably relaxed. The intuition is that in the “relaxed” seman-
iff ret(Z,D) is consistent withX,. An important re- tics we are allowed to delete tuples framt(Z, D) to repair
sult, immediately derived fronlJohnson and Klug, 1984  violations of KDs, as long as we “minimize” such deletions;
states thatuns(q,Z, D) is obtained by evaluating over a  violations of IDs are treated as in the sound semantics.
(possibly infinite) database, callethaseand denoted with  Given a source databa®t we define the following order-
chase(ret(Z,D)). The chase is obtained by adding tuples toing > ; 1, over the global databases fthat are consistent
ret(Z, D) in a way that the added tuples repair violations ofwith G. Given two such global databas8sandB,, we write
IDs. The chase satisfies the IDs ogerand itis a representa- B, > 7 p) B, iff By N ret(Z,D) D By N ret(Z,D). That
tive of all databases isem(Z, D) [Cali et al, 2003. is, the portion ofret(Z, D) contained in the global database

“="Since by hypothesis ¢ ans(q,Z,D), there exists a s greater in3; than inBs, i.e., B, approximates the sound
global databasB € sem(Z, D) such that ¢ ¢°. A fortiori, mapping better thaf. .

(G, 8, M), with G’ = (¥, 3, (), the system obtained ¥y
by eliminating the KDs ofj; let D be a source database for
Z andZ’. Moreover, lety be a query of arity: overG andg’,

B satisfies;, thereforeB3 € sem(Z’, D), The claim follows We call maximalw.r.t. (Z,D) a global databasé for
immediately. _ 7 consistent withG, such that there exists no global
“<"By hypothesis, D is consistent withLx and¢ ¢  databaseB’ consistent withG such that B > p)
ans(q,Z’,D). Therefore,f ¢ gchase(ret(T'D)): note that B. Based on this notion, we define the loosely-

chase(ret(Z',D)) = chase(ret(Z,D)). It can be shown, sound semanticssem; as follows: sem;(Z,D) =
by induction on the number of added tuples in the construc{B | B is consistent wittg and is maximal w.r.t.(Z,D)}.
tion of chase(ret(Z,D)), that if Z is a NKC system, and Finally, we denote withans;(¢q,Z, D) the set of answers to
ret(Z, D) satisfies¥ i, alsochase(ret(Z,D)) satisfiesCi.  queries under the loosely-sound semantics.



Example 2.1 (cont.) Consider now the source
database D’ obtained by adding toD, the fact
s2(RM,RomaBeckhan). Then,ret(Zy, D) = ret(Zo, Do)
U {team(RM,RomaBeckham} We have now
that the tuples inret(Zy,D’) violate also the KD
key(team) {Tacronym}; hence, sem;(Zy,D’) con-
tains the databases of the formglayer(Totti, ITA RM),
player(BeckhamENG, MU), team (MU, Man.Utd, Giggs),
team(RM, RomaTotti), player(Giggs a, §) } and
{player(Totti, ITA, RM), player(BeckhamENG, MU),
team (MU, Man.Utd, Giggs), team(RM, RomaBeckham,
player(Giggs «, 3)}, for eacha, 8 € T.

Notice that for the queryq(X) <« player(X,Y,Z)
ansi(q,Zo, D) ans(q,Zo,D). On the other hand,
given the query ¢'(X,Z) «— team(X,Y,Z) we
have that ans;(¢’,Zo, D’) {(MU,Giggs} whereas
ans(q’, Zo, D) = {{(MU, Giggs, (RM, Totti) }. "

It is immediate to verify that, ifsem(Z,D) # 0, then
sem(Z,D) sem(Z, D), i.e., if there exists a global
database that satisfies both the constraint§ and the map-
ping assertions in\ w.r.t. a source databage, then the
strictly-sound and the loosely-sound semantics coincide.

5 Query rewriting in loosely-sound semantics

Theorem5.1LetZ = (G,S, M) be a NKC system, an@
be a UCQ of arityn overG. ThenII;xp UIl;p Ullpp isa
perfect rewriting ofQ) w.r.t. Z.

6 Summary of complexity results

Strictly-sound semantics. Query answering is undecidable
even if we allow a slightly more general class of IDs than the
NKCIDs; let us define a 1-key-conflicting (1KC) data inte-
gration system as a system such that for each ;] C
ro[As], Ao can be a strict superset éby(r2) (if defined),
but containing at most one attribute more than(rs).

Theorem 6.1 The problem of query answering in 1KC inte-
gration systems, under the strictly-sound semantics, is unde-
cidable.

In the strictly-sound semantics, the complexity of the deci-
sion problem of query answering is immediately derived from
the rewriting of Section 3.

Theorem 6.2 The problem of query answering in NKC in-
tegration systems, under the strictly-sound semantics, is in
PTIME in data complexity.

Proof. Trivial, since the perfect rewritingl;p U IIxp U
II,,,; U Il can be evaluated in PTIME w.r. O

Loosely-sound semanticsSince, as we already said, when

We now address the problem of computing answers to a quersem(Z, D) # () the strict semantics and the loose ones co-
under the loosely-sound semantics. Specifically, we presefficide, it is easy to see that the above properties of query
a rewriting technique to compute answers to queries posed @1swering under the strictly-sound semantics can be easily

NKC systems under the loosely-sound semantics.
Our method relies on Theorem 3.6 stating that for NKC

generalized.
Theorem 6.3 The problem of query answering in 1KC inte-

systems it is possible to “separately” deal with inclusion andgration systems, under the loosely-sound semantics, is unde-
key dependencies: actually, for the first ones we exploitidable.

the algorithmID-rewrite(¥, 37, Q) presented in Section 3,
whereas for the second ones we make use of Datalog

der stable model semantics , a well-known extension of Dat-

alog that allows for using negation in the body of program
rules[Kolaitis and Papadimitriou, 1991

More specifically, we define a DatalogorogramIl; i p
that allows us to compute the maximal subsets«fZ, D)
that are consistent witR i. II;x p is obtained by taking, for
each relation € G, the rules

7"()27 S;) — D (ia 5;) ) not F(ia 5;)
F()_(’7 }_;) — TD(ia 5;) ) T(iv Z) ) Yl # Zl
?()27 S;) — TD(ia S;) ) T(§> Z) ) Ym 7é Zm

where: inr(X,¥) the variables ink correspond to the at-
tributes constituting the key of the relationy = Y1,...,Y,,
andz = 7y,...,Zy,.

Informally, for each relatiom, IT; x p contains (i) a relation
rp that represents™*(Z:P); (i) a relationr that represents a
subset of-"¢*(Z.D) that is consistent with the KD for, (iii) an
auxiliary relationr. The above rules force each stable model
M of I,k p to be such that™ is a maximal subset of tuples
from »7*(Z.P) that are consistent with the KD for

Then, we consider the DatalogrrogramIl;xp U Tl;p U
I pp, Wherell; ;, is obtained througtD-rewrite(¥, 37, Q),
andII,p is obtained frondI, by replacing each symbel
with rD.

We now characterize the problem of query answering un-
der the loosely-sound semantics in NKC systems.

heorem 6.4 The problem of query answering in NKC inte-
gration systems, under the loosely-sound semantics, is cONP-
complete in data complexity.

Proof (sketch). Membership in coNP follows from Theo-
rem 5.1, and from the fact that query answering in Datalog
is coNP-complete in data complexity, while coNP-hardness
can be easily proved by a reduction of the 8t ORABILITY
problem to our problem. O

The summary of the results we have obtained is reported
in the table in Figure 1, which presents the complexity of
query answering for both the strictly-sound and the loosely-
sound semantics. Each row corresponds to a different class
of dependencies (specified in the first two columns), while
each cell of the table reports data complexity and combined
complexity* of query answering for UCQs: for each decid-
able case, the complexity of the problem is complete w.r.t. the
class reported. In the second column of the table, FK stands
for “foreign key dependencies” (a well-known class of IDs)
while GEN stands for “general IDs”. We have marked with
the symbol# the cells corresponding either to already known
results or to results immediately implied by known results.

1The results for combined complexity, which we cannot present
in detail due to space limitations, hold under the assumption that the
mapping is expressed in terms of UCQs.
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ABSTRACT

In databases with integrity constraints, data may not sat-
isfy the constraints. In this paper, we address the problem
of obtaining consistent answers in such a setting, when key
and inclusion dependencies are expressed on the database
schema. We establish decidability and complexity results
for query answering under different assumptions on data
(soundness and/or completeness). In particular, after show-
ing that the problem is in general undecidable, we identify
the maximal class of inclusion dependencies under which
query answering is decidable in the presence of key de-
pendencies. Although obtained in a single database con-
text, such results are directly applicable to data integra-
tion, where multiple information sources may provide data
that are inconsistent with respect to the global view of the
sources.

1. INTRODUCTION

In database applications, integrity constraints represent
fundamental knowledge about the domain of interest [8,
1]. In many scenarios, data may not satisfy integrity con-
straints; this happens, for instance, in data integration [20,
17], where integrity constraints enrich the semantics of the
global view of a set of autonomous information sources,
while such constraints may be violated by data at the
sources [14, 6]. In principle, the issue of dealing with in-
tegrity constraint violations is relevant in all applications
involving the integration of heterogeneous information (e.g.,
Data Warehouses, Enterprise Resource Planning Systems,
etc.). The current integration methodologies deal with this
problem in a data reconciliation step, in which data are
cleaned by ad hoc algorithms that eliminate all violations.

In the general case of a database in which data violate
integrity constraints, the problem arises of how to interpret
such a database. This problem has been extensively studied
in several works in the area of inconsistent databases that
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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have proposed a new semantic approach to the treatment of
integrity constraints [15, 11, 5, 21, 3, 4, 19, 16], which we
briefly illustrate in the following.

Traditionally, database theory adopts an exact interpreta-
tion of data, based on the closed world assumption [23], i.e.,
the interpretation of each relation r exactly corresponds to
the extension of r in the database instance. In order to cope
with data inconsistencies, other assumptions about data are
adopted in the literature. In particular, the interpretation
of each relation r can be considered either as a superset
(sound semantics) or a subset (complete semantics) of the
extension of r in the database instance. Although in many
cases such assumptions are sufficient to guarantee the exis-
tence of a consistent interpretation of the data, in general
a less strict interpretation is needed. In particular, several
studies [15, 21, 3, 19] propose a loose semantics which se-
lects, among all possible databases satisfying the integrity
constraints, only the ones that are “as close as possible” to
the actual database instance.

In this paper, we address the problem of query answering
in a relational setting under the above semantics, when key
and inclusion dependencies are expressed on the database
schema. Specifically: (i) we identify the frontier between
decidability and undecidability of query answering for the
various semantics; (%) for the decidable cases, we establish
the computational complexity of the query answering prob-
lem.

A detailed summary of the results of this paper is pre-
sented in Section 6 (see Figure 1). We remark that the
results we have obtained for the sound semantics extend
previous studies on query containment under integrity con-
straints [18], while the results for the loose semantics ex-
tend known results in the field of inconsistent databases, by
taking into account inclusion dependencies, which add sig-
nificant complexity to the problem. In particular, the key
issue in our work is that we are able to deal with infinite
models for a database schema, that are to be taken into ac-
count when cyclic inclusion dependencies are present in the
schema.

The paper is organized as follows. In Section 2 we recall
the formal framework of relational databases with integrity
constraints. In Section 3 we study decidability and com-
plexity of query answering under sound, complete, and ex-
act semantics. In Section 4 we introduce a loose semantics
for inconsistent data. In Section 5 we prove results about
decidability and complexity of query answering under the
loose semantics. Section 6 concludes the paper.



2. FRAMEWORK

In this section we present the syntax and semantics of the
relational model with integrity constraints. We assume that
the reader is familiar with the basic notions of relational
databases [1].

2.1 Syntax

We consider to have an infinite, fixed alphabet I" of values
representing real world objects, and we take into account
only database instances having I' as domain. Moreover, we
assume that different values in ' denote different objects,
i.e., we adopt the so-called unique name assumption.

Basically, in the relational model we have to account for a
set of relation symbols and a set of integrity constraints, i.e.,
assertions on the relation symbols that express conditions
that are intended to be satisfied by database instances.

In this paper we focus our attention on inclusion and
key dependencies. More formally, we indicate a relational
schema (or simply schema) DB as a triple (S,Z, K), where:

e S is a set of relations, each with an associated arity
that indicates the number of its attributes. The at-
tributes of a relation r of arity n are represented by
the integers 1,...,n.

e 7 is a set of inclusion dependencies (1Ds), i.e., a set of
assertions of the form r1[A] C r2[B], where r1,72 are
relations in S, A = A4, ..., A, is a sequence of distinct
attributes of r1, and B = Bi,..., B, is a sequence of
distinct attributes of 7.

e K is a set of key dependencies (KDs), i.e., a set of
assertions the form key(r) = A, where r is a relation in
the global schema, and A = A4,..., A, is a sequence
of attributes of r. We assume that at most one key
dependency is specified for each relation.

A relational query (or simply query) over DB is a formula
that is intended to extract a set of tuples of values of T.
The language used to express queries over DB is union of
congunctive queries (UCQ). A UCQ q of arity n is written
in the form ¢(X) «— conj,(X,¥1)V -V conj,, (X, ¥m),
where for each i € {1,...,m} conj,(X,¥:) is a conjunction
of atoms whose predicate symbols are in S, and involve X =
X1,...,Xnand y; = Yin,...,Yin,, where X; and Y;, £ are
either variables or values of T'.

2.2 Semantics

A database instance (or simply database) B for a schema
DB is a set of facts of the form r(t) where r is a relation
of arity n in S and t is an n-tuple of values from I'. We
denote as 77 the set {t | r(t) € B}. A database B for a
schema DB is said to be consistent with DB if it satisfies all
the dependencies expressed on DB. In our framework, this
means satisfying IDs in 7 and KDs in K. More formally:

e B satisfies an inclusion dependency r1[A] C r2[B] if for
each tuple ¢; in 72 there exists a tuple t2 in r5 such
that t1[A] = t2[B], where t[A] is the projection of the
tuple ¢t over A. If B satisfies all inclusion dependencies
expressed on DB, then we say that B is consistent with
T;

e I3 satisfies a key dependency key(r) = A if for each
ti,t2 € 78 with t1 # t2 we have t1[A] # t2[A]. If B

satisfies all key dependencies expressed on DB we say
that B is consistent with K.

Traditionally, the database theory essentially specifies a
single database instance for a schema DB. This means as-
suming that each relation r in S has to be considered ezact,
i.e., given a database instance D consistent with DB, r is
satisfied by exactly the tuples that satisfy r in D.

On the other hand, different assumptions can be adopted
for interpreting the tuples that D assigns to relations in S
with respect to tuples that actually satisfy DB. In particu-
lar, tuples in D can be considered a subset or a superset of
the tuples that satisfy DB, or exactly the set of tuples satis-
fying DB. These interpretations give raise to three different
semantics, called sound, complete, and ezxact, respectively.

Formally, given a database instance D for DB = (S,Z, K),
and an assumption x for D, where z € {s,c¢, e} (for sound,
complete, and exact semantics, respectively), the semantics
of DB with respect to D and z, denoted sem,(DB,D), is
the set of database instances B for DB such that:

e BB is consistent with DB, i.e., it satisfies the integrity
constraints in Z and IC;

e 3 satisfies the assumptions specified on D, i.e.:

— B D D when z = s (sound semantics);
— B C D when z = ¢ (complete semantics);

— B =D when z = e (exact semantics).

It is easy to see that, while sem.(DB, D) contains at most
a single database instance for DB, in general sem,(DB, D)
and sem.(DB, D) contain several databases for DB. Fur-
thermore, in our setting it always holds that sem.(DB, D)
is a non-empty set for each DB and each D, since the empty
database instance satisfies every possible set of KDs and
IDs, therefore 0 € sem(DB, D).

Finally, we give the semantics of queries. Formally, given
a database instance D for DB and an assumption x for D,
where x € {s,c, e}, we call answers to a query ¢ of arity n
with respect to DB, D and =z, the set ans.(q, DB,D) =
{{c1,...,cn) | foreach B € semq(DB,D),(c1,...,cn) €
q~ }, where ¢® denotes the result of evaluating g over the
database B. We recall that ¢° is the set of n-tuples of val-
ues of I' {(c1, ..., cn), such that, when substituting each ¢; for
x;, the formula 3yi.conj, (X, ¥1) V -+ V I¥m.cong,, (X, ¥m)
evaluates to true in B.

In this paper we address the decision problem associ-
ated to query answering, that is, given a database schema
DB, a database instance D, a query q of arity n over
DB and a n-tuple t of values of T', to establish whether
t € ansz(q, DB, D).

ExAMPLE 2.1. Consider the database schema
DB = (S,I,K) where S contains the two relations'
player(Pname, Pteam) and team(Tname, Tcity), T contains
the ID player[Pteam] C team[Tname], stating that every
player is enrolled in a team of a city, and K = (. Assume
to have the database instance

D = {player(a, b), player(a, d), player(e, f), team(b, ¢) }

!For the sake of clarity, in the example we use names to
denote attributes, rather than integers.



where a, b, ¢, d, e, f are values from T'. It is easy to see that
seme (DB, D) = 0, since there do not exist two tuples in team
having d and f as first component, i.e., D is not consistent
with DB. This in turn implies that query answering is mean-
ingless, since every possible fact is a logical consequence of
DB and D: for instance, the answer to the query that asks
for all team names in team, i.e., q(x) «— team(z,y), is the
whole interpretation domain ' (that is, every possible value
belongs to the extension of the query).
On the other hand,

sem.(DB, D) = {{player(a, b),team(b, c)}, {team(b, ¢)}, B}

while sems (DB, D) contains all databases instance that can
be obtained by adding to D (among others) at least one fact
of the form team(d, o) and one fact of the form team(f, 5),
where o and (B are values of the domain I'. Notice that,
since 0 € sem.(DB,D), ans.(q,DB,D) = 0, i.e., there is
no answer to the query in the complete semantics, whereas
anss(q, DB, D) = {b, d, f}. [

2.3 Complexity classes

Finally, we briefly recall the complexity classes mentioned
in the paper, and refer to [22] for further details. P4 (NP#4)
is the class of problems that are solved in polynomial time
by a deterministic (nondeterministic) Turing machine using
an oracle for A, i.e., that solves in constant time any prob-
lem in A. In particular, the complexity class X5 is the class
of problems that are solved in polynomial time by a non-
deterministic Turing machine that uses an NP-oracle, and
I1% is the class of problems that are complement of a prob-
lem in ¥8. Finally, PSPACE is the class of problems that
can be solved by a Turing machine that uses a polynomially
bounded amount of memory.

3. QUERY ANSWERING

In this section we address the problem of query answer-
ing in the presence of integrity constraints, under different
assumptions on the data. We consider a database schema
DB = (S,Z,K), and a database instance D for DB.

As illustrated in Section 2, when the data are consid-
ered complete, then the empty database always belongs
to sem.(DB,D), independently of Z and K; therefore, for
any query ¢ and for any tuple ¢ we have immediately
ans¢(q, DB, D) = 0; hence, the answer to the decision prob-
lem is always negative. When the data are considered exact,
we have two cases:

1. D satisfies both Z and K, therefore sem.(DB,D) =
{D} and ans.(q, DB, D) = q°. So, it is immediate to
establish whether £ € ans.(q, DB, D);

2. D violates either Z or K, therefore sem.(DB,D) =
and ans.(q, DB, D) consists of all tuples of the same
arity as gq; the answer to the decision problem is there-
fore affirmative, independently of ¢ and %.

The case where the data are considered sound is more
interesting: in fact, if the inclusion dependencies in Z are not
satisfied, we may think of adding suitable facts to D in order
to satisfy them (according to the sound semantics, we are
not allowed to repair such violations by deleting facts). In
this case, if D satisfies IC, the semantics of DB is constituted
in general by several (possibly infinite) databases, each of

which may have infinite size, since there are several ways
of adding facts to D. Query answering with sound data is
therefore a difficult task, that is not decidable in all cases.

We now define a restricted class of dependencies under
which query answering is decidable.

DEeFINITION 3.1. Given a database schema DB =
(8,Z,K), an inclusion dependency in I of the form
r1[A1] C r2[A2] is a non-key-conflicting inclusion depen-
dency (NKCID) with respect to K if either: (i) no KD is
defined on r2, or (it) the KD key(rz) = K is in KC, and As
is not a strict superset of K, i.e., A2 2 K. Moreover, the
schema DB is non-key-conflicting (NKC) if all the IDs in T
are NKCIDs with respect to K.

Informally, a set of dependencies is NKC if no ID in 7
propagates a proper subset of the key of the relation in its
right-hand side. We point out that the class of NKC IDs
comprises the well-known class of foreign key dependencies,
which corresponds to IDs of the form r1[A1] C r2[A2] such
that key(r2) = Aas.

We first show that, as soon as we extend the class of de-
pendencies beyond the non-key-conflicting case, query an-
swering is undecidable. In particular, we introduce, together
with KDs, inclusion dependencies of the form ri[A;] C
r2[Az] such that, if the KD key(r2) = K is in K, Ay is
allowed to cover K plus at most one attribute of ro. We will
call such IDs I-key-conflicting IDs (1KCIDs) with respect
to K. A 1-key-conflicting (1KC) database schema is defined
analogously to a NKC schema. We first show undecidability
of implication of KDs and 1KCIDs.

THEOREM 3.2. The problem of implication® for KDs and
1KCIDs is undecidable.

PrOOF. The proof is by reduction from the more gen-
eral problem of implication of functional dependencies (FDs)
and inclusion dependencies. Consider a generic instance of
this problem, i.e., given a database schema DB = (S,Z, F),
where 7 is a set of IDs and F is a set of FDs, and an inclusion
dependency §. We assume that all FDs in F are in normal
form, i.e. of the form r : A — B, where a single attribute B
is in the right-hand side. We construct an ad hoc problem
of implication of KDs and 1KCIDs, consisting of a database
schema DBy = (S1,7Z1,K1), where Z; is a set of 1KCID with
respect to K1, and the same dependency §. We will show
that the two problems are equivalent, i.e. (ZUJF) |= 6 if
and only if (Z1 UK1) | 6. The dependencies Z; and K,
defined in a new database schema DBy = (S1,Z1,K1), are
constructed as follows.

e The new set of relations Sy includes all relations in S
(plus those added as below).

e 7; includes all IDs in I (plus those added as below).
e Let ¢ be a FD in F, of the form
r: A — B

We add to the schema an auxiliary relation r, of arity
|A| 4+ 1, and we add to Z; the dependencies

M ro[A,B] C r[A,B]
V2t T[A7B] c T*P[A7B]

2For the details about implication of database dependencies,
we refer the reader to [1].




plus the key dependency
x: key(ry) = A

Note that all the IDs in Zz are 1KCIDs with respect to K;.
The following result, whose proof is straightforward, will be
used in the rest of the proof.

LEMMA 3.3. For any database B1 for DB1, we have that
B1 satisfies {@,v1,72} if and only if B1 satisfies {5¢,71,v2}-

From this result it follows that we are able to simulate
general FDs by using KDs and 1KCIDs only. Now we end
the reduction by showing that (Z U F) = § if and only if
(T UKy) E9.

“=” By contradiction, suppose (Z1 UK1) [~ §; then there
exists a database By for DB; such that B, satisfies (Z; UK1)
and violates §. Consider a database B for DB obtained
from By by removing the facts associated with the relations
of the form r, introduced in the reduction. By Lemma 3.3,
B satisfies (Z U F); moreover, B cannot satisfy ¢ because B
coincides with B; on the relations in S.

“«<” By contradiction, suppose (Z U K) [~ §; then there
exists a database B for DB such that B satisfies (Z U F)
and violates §. We construct a database Bi for D; that
coincides with B on the relations in S, and such that the
facts associated with the relations of the form r, introduced
in the reduction, are such that the dependencies of the form
~1,72 are satisfied. By Lemma 3.3, By satisfies (Z1 U K1);
moreover, it cannot satisfy § because B; coincides with B on
the relations in S.

The reduction is clearly computable in a finite amount of
time. Since implication of IDs and FDs is undecidable, the
thesis follows. O

We now show that query answering is undecidable in the
presence of KDs and 1KCIDs.

THEOREM 3.4. Let DB = (S,Z,K) be a 1KC database
schema, D a database instance for DB, q a query of arity
n over DB, and t a n-tuple of values of I'. The problem of
establishing whether t € anss(q, DB, D) is undecidable.

PRrROOF. The proof is analogous to a proof of PSPACE-
hardness of an analogous result (addressed in the context of
query containment) proved by Vardi and published in [18].
We will show a counterexample in which the problem is un-
decidable. Let § be the following inclusion dependency:

T[Al,...,Ak] - 8[31,...7319}

where r has arity n and s has arity m. Without loss of
generality, d involves the first k attributes of r and s respec-
tively. We choose a database instance D for DB containing
the single fact 7(c1,...,cn). Then we consider the following
boolean query:

q < T‘(Xl,...,Xn),S(Xl,.,,,Xk,Yk+1,.,.,Ym)

Note that the query ¢ has a positive answer
(ie., () € anss(¢,PB,D)) if and only if the fact
s(e1y. .y Chydiyi, ... dm) is  in  all  databases in
sems(DB,D). It is immediate to see that this is true
if and only if (ZUK) |= §. Since implication of 1KCIDs and
KDs is undecidable, the thesis follows. O

As an immediate consequence of this theorem, undecid-
ability of query answering in the presence of KDs and gen-
eral IDs follows. Moreover, the problem is still undecidable
if we restrict to the class of instances consistent with the key
dependencies.

COROLLARY 3.5. Let DB = (S,Z,K) be a 1KC database
schema, D a database instance for DB consistent with IC, q
a query of arity n over DB, and t a n-tuple of values of T.
The problem of establishing whether t € anss(q, DB, D) is
undecidable.

PROOF. The case where D does not satisfy K is clearly
decidable, since in that case the answer to the problem is
always affirmative. The claim follows immediately. O

Now we come to query answering in the case of NKCIDs
and KDs, and prove that this problem is decidable. To
this aim, we need some preliminary results, presented in
the milestone paper of Johnson and Klug [18], which ad-
dresses the problem of conjunctive query containment in a
database DB, in the presence of functional and inclusion
dependencies. To test whether ¢1 C 2, we first have to
“freeze” the body of q1, considering its atoms as facts in a
database instance D, and then applying the chase proce-
dure to such a database. The resulting (possibly infinite)
database, denoted as chase(DB,D), is constructed by re-
peatedly applying, as long as it is applicable, the following
rule:

INCLUSION DEPENDENCY CHASE RULE. Suppose
there is a tuple ¢ in r°****(P5P) and there is
an ID 6 € Z of the form r[X,] C s[X,]. If
there is no tuple t' in s"**¢(DB, D) such that
t'[X;s] = t[X,], then we add a new tuple tchase
in s°"9s«(PBP) quch that tehese[Xs] = ¢[X,], and
for any attribute A; of s, with 1 < i < m and
A; & X, tenase[Ai] is a fresh value, not appearing
elsewhere in the database.

Johnson and Klug have proved that g1 C g2 if and only if

qghase(DB’D) is non-empty. Moreover, they have shown that,

to check whether qgh‘m(DB‘D) is non-empty, only a finite por-

tion of chase(DB, D) needs to be considered. Based on this
property, they have defined a PSPACE algorithm Answer jx,
that checks the non-emptiness of ¢5"**“"%™),

In the case of query answering, we are able to exploit the
technique of Johnson and Klug. More specifically, we make

use of the notion of chase as specified by the following result.

LEMMA 3.6. Consider a database schema DB = (S,Z,0)
and an instance D for DB; let q be a conjunctive query of
arity n, and t a tuple of the same arity. We have that t €
anss(q, DB, D) if and only if t € ¢<h*«(PBP)

PROOF (SKETCH).

“=" Since chase(DB,D) satisfies Z, it belongs to
sems (DB, D). From the definition of anss(q, DB, D), it fol-
lows that { € g¢hase(PB.D),

“«<” Analogously to [7], it can be proved by induction
on the structure of chase(DB, D) that, for any database in-
stance B € sems(DB, D), there exists a homomorphism p
that sends the tuples of chase(DB, D) to the tuples of B.



. i h B .
By hypothesis T € ¢"*“PBP) 5o there exists a homomor-

phism A from the atoms of ¢ to the facts of chase(DB,D);
the composition A o y witnesses that t € anss(q, DB, D). O

Based on the above property, we can apply the algorithm
Answer i for query answering, to check whether a tuple ¢
belongs to anss(q, DB, D).

We now go back to NKCIDs. The most relevant property
of NKCIDs is that they do not interfere with KDs, so that
we can operate with NKCIDs just as if the KDs were not
defined in the schema. This property is expressed by the
following result.

THEOREM 3.7  (SEPARATION). Let DB = (S,Z,K) be
a NKC database schema, and let DB1 = (S,Z,0) be the
database schema obtained from DB by removing the KDs.
Let D be a database instance for DB and DB1, q a query
of arity m over DB, and t a n-tuple of values of I'. We
have that t & anss(q, DB, D) iff D is consistent with K and
t & anss(q,DB1, D).

PROOF. “=” By hypothesis t ¢ ans;(q, DB, D); this
means that there exists a database instance B for DB that
satisfies 7 and K, and such that £ ¢ ¢%. Tt is immediate to
verify that B is also an instance for DB; that satisfies IC,
and therefore t & anss(q, DB1, D). This proves the claim.

“«<” By hypothesis & ans;(q, DB1, D) and D satisfies K.
Before we proceed further, we need to prove the following
result.

LEMMA 3.8. Let DB = (S,Z,K) be a database schema,
with KDs and NKCIDs, and D is an instance for DB. Then
chase(DB, D) satisfies T and K if and only if D is consistent
with IC.

Proor. “=" If D violates any of the key dependencies,
since facts are only added (and never removed) in the con-
struction of the canonical database chase(DB, D), then also
chase(DB, D) violates the key dependencies in DB.

“<” The proof is by induction on the structure of
chase(DB, D). First, by hypothesis D is consistent with K.
For the induction step, suppose we insert in chase(DB, D)
a tuple ¢ into a relation r, on which a key dependency
key(r) = K is defined, according to the ID s[A] C r[B].
We will show that there is no violation of the key dependen-
cies on r, by showing that ¢ does not agree on K with any
pre-existing tuple 7 in "¢ (PBP) where chase* (DB, D) is
the portion of chase(DB, D) constructed until the insertion
of t.

According to the definition of NKCIDs, the possible cases
are the following.

1. B = K. In this case we have a foreign key dependency;
t and t cannot agree on K, because in that case t
wouldn’t have been added.

2. B ¢ K. The two tuples differ on the values of B
(otherwise only one of the two would have been added),
so they differ also on K.

3. BNK # () and B — K # 0. In this case B partially
overlaps with key(r); we necessarily have K — B # (),
otherwise B would be a strict superset of K. Therefore
t and ¢ differ in the values in K — B, where ¢ has fresh
values, thus they differ a fortiori on K.

4. BNK = (. In this case the two tuples differ in the
values in K, where t has fresh values.

O

With this result in place, we are able to extend the re-
sult of [18] to the case of NKCIDs and KDs. In fact, in
this case chase(DB1, D) (which is identical to chase(DB, D)
by construction) satisfies both Z and K. Therefore, it is
also a representative of all databases in sem, (DB, D), since
sems(DB, D) C sems(DB1,D): hence, from Lemma 3.6 it
follows that anss(q, DB,D) = q°"ese(PB1D) - The claim fol-
lows immediately. U

Based on the above theorem, we define the algorithm
Answers, that solves query answering in the case of non-
key-conflicting database schemata.

Algorithm Answers(DB, D, q,t)
Input: NKC database schema DB = (S,Z, K),
database instance D,
query g of arity n over DB,
n-tuple t of values of T';
Output: true if t € anss(q, DB, D), false otherwise;
if D is not consistent with K
then return true
else return Answer;x (DB, D, q,t)

To conclude the section, we present a complexity result
for query answering in the presence of NKCIDs and KDs.

THEOREM 3.9. Let DB = (S,Z,K) be a NKC database
schema, D a database instance for DB, q a query of ar-
ity n over DB, and t a n-tuple of values of I'. The prob-
lem of establishing whether t € anss(q, DB, D) is PSPACE-
complete with respect to combined complezity. Moreover, it
is in PTIME in data complezity.

PROOF. From the results in [18], it follows directly that
the problem in the case of IDs alone is PSPACE-complete;
being such a case a particular case of NKCIDs and KDs
(when no KD is defined, any ID is non-key-conflicting),
PSPACE-hardness in our general case follows trivially.

Membership is proved by showing that the algorithm
Answers runs in PSPACE. Consider a database schema
DB = (S,7,K) where Z and K are sets of NKCIDs and
KDs respectively. Given a database D for DB, a query q of
arity n over G, and a n-tuple ¢t of values of I", we want to es-
tablish whether ¢ € ans;s(q, DB, D). Our algorithm Answers
proceeds as follows. The first step, clearly feasible in PTIME
(and a fortiori in PSPACE), checks whether D satisfies K.
If it does not, the answer is trivial; if it does, we can apply
Theorem 3.7, disregarding K, and apply the PSPACE algo-
rithm Answer jx of [18]. All steps of Answers are computable
in PSPACE. Soundness and completeness of the algorithm
follow immediately from Theorem 3.7 and from soundness
and completeness of Answer x [18].

Membership in PTIME in data complexity follows im-
mediately since Answer ik runs in time polynomial in data
complexity. ]

The above complexity characterization of the problem
holds even if we restrict to instances consistent with the
key dependencies.



COROLLARY 3.10. Let DB = (S,Z,K) be a NKC database
schema, D a database instance for DB consistent with IC, q
a query of arity n over DB, and t a n-tuple of values of T.
The problem of establishing whether t € anss(q, DB, D) is
PSPACE-complete.

PrOOF. Membership follows immediately from the gen-
eral case treated in Theorem 3.9. With regard to hardness,
observe that in the case where D does not satisfy IC the above
algorithm solves query answering in PTIME. The claim fol-
lows immediately. O

4. SEMANTICS FOR
DATA

In the cases we have addressed so far, the violation of a sin-
gle dependency (under the sound and exact semantics) may
lead to the non-interesting case in which sem, (DB, D) = ()
(z € {e, s}). This does not seem reasonable when the viola-
tions are due to a small set of facts. According to a common
approach in the literature on inconsistent databases [15, 21,
3, 19], we now introduce less strict assumptions on data, un-
der which we can get consistent answers from inconsistent
database instances.

INCONSISTENT

EXAMPLE 2.1 (CONTD.). As we have already shown,
sem.(DB,D) = @ since D does not satisfy Z, and as a
consequence query processing is trivial in the exact seman-
tics. Assume now to add the key dependency key[player] =
{Pname} to K, stating that a player cannot be enrolled in
more than one team. It is easy to see that now it is also
sems (DB, D) = 0, since the facts player(a, b) and player(a, d)
are not consistent with IC, and it is not possible to make D
satisfy K by adding other facts to D. On the other hand,
team(b, ¢) is consistent with the dependencies in the schema,
whereas the inconsistency caused by player(e, f) can be re-
solved under the sound semantics by adding a suitable fact
to D of the form player(f,«). Therefore, rather than the
whole domain I', the query g(z) « team(z, y) should return
the answer set {b} under the exact semantics and {b, f} un-
der the sound semantics. ]

A possible solution to this problem is to characterize the
semantics of a database schema DB = (S,Z, K) with respect
to a database instance D in terms of those databases that (%)
satisfy the integrity constraints on DB, and (ii) approximate
“at best” the satisfaction of the assumptions on D. In other
words, the integrity constraints of DB are considered “hard”,
whereas the assumptions are considered “soft”.

According to the main approaches to inconsistent
databases, we now propose a modified definition of the se-
mantics that reflects the above idea. Given a possibly in-
consistent database D for DB, we define an ordering on the
set of all databases consistent with DB. If By and Bj are
two such databases, we say that B; is better than By with
respect to D, denoted as B1 >p Ba, if:

e 31 ND D B2 N D for the sound assumption
e 31 — D C By — D for the complete assumption

e at least one of the two following conditions holds for
the exact assumption:
(i) BiND D B,ND and B, —DQBQ—D;
(ii) BiNDDOBNDand By —D C Bz —D.

With this notion in place, we can modify the notion of
semantics of a schema DB with respect to a database in-
stance D and an assumption z, where € {s, ¢, e} as usual.
In order to distinguish between the semantics used so far
and their modified version, in the following we refer to the
former as strict semantics, while we call the latter loose
semantics, and denote it with semy, (DB, D). Namely, we
call strictly-sound, strictly-complete, and strictly-exact the
sound, complete, and exact semantics, whereas we respec-
tively call loosely-sound, loosely-complete, and loosely-ezact
the three loose semantics. More specifically, a database B
consistent with DB is in sem;, (DB, D) if B is maximal with
respect to >>p, i.e., for no other database B’ consistent with
DB, we have that B’ >>p B. It is also immediate to verify
the following lemma:

LEMMA 4.1. Let DB = (S,Z,K) be a database schema
and D be a database instance for DB. Then, semis(DB, D) =
Up: sems(DB,D’) for each D' mazimal subset of D consis-
tent with K.

PROOF. For each B € semy,(DB, D) consider D’ = BND.
It is easy to see that D’ is a maximal subset of D consis-
tent with K, and that B € sems(DB,D’). Furthermore, for
each D’ maximal subset of D consistent with I, if B’ ¢
sems(DB,D’), then B ND’ = D', hence B’ € semys(DB, D).
]

With regard to answers, we indicate the set of answers
to queries under the loose semantics with ans;,(q, DB, D),
where x € {s, ¢, e} as usual. It is immediate to verify that, if
semq (DB, D) # () for any = € {s, ¢, e}, then the strict seman-
tics and the loose one coincide, in the sense that, for each
query q ansz(q, DB, D) = ansi,(q, DB, D). Consequently,
since (as illustrated in Section 2) sem.(DB, D) # 0 for each
DB and for each D, it follows that the strictly-complete and
the loosely-complete semantics always coincide.

Moreover, notice that the loose semantics is never empty,
i.e., it always holds that sem;,(DB,D) # 0 for any = €
{s,c, e}, even if sem, (DB, D) = .

EXAMPLE 2.1 (CONTD.). With regard to our ongoing ex-
ample we have that:

1. sem.(DB, D) contains the database B1 = {player(a, b),
team(b, ¢)}, and all the databases of the form By =
{player(a, d), team(b, ¢), team(d, )} for each o € T,
Bs = {player(a, b), player(e,f), team(b, c¢), team(f, )}
for each o« € T, and Bs = {player(a, d), player(e,f),
team(b, ¢), team(d, «), team(f, 8)} for each o, 8 € T};

2. semis(DB, D) contains the databases of the form B3
and B4, and each database consistent with DB that
can be obtained by adding facts to a database of the
form Bs or By;

3. semy.(DB, D) = sem.(DB, D).
Therefore, under the three semantics, the answers to the

query q(x) < team(z,y) are respectively ans;.(q, DB, D) =
{b}, ansis(q, DB, D) = {b, f} and ansi.(g, DB, D) = . L]



5. QUERY ANSWERING UNDER THE
LOOSE SEMANTICS

In this section we analyze the problem of computing an-
swers to queries under the loose semantics. In particular,
since (as shown in Section 4) the loosely-complete and the
strictly-complete semantics coincide, we study query an-
swering under the loosely-sound semantics and the loosely-
exact semantics.

5.1 Query answering under the loosely-sound
semantics

We now study the query answering problem under the
loosely-sound semantics. As we already said, differently
from the strictly-sound semantics, given a database schema
DB = (8,Z,K) and a database instance D, it always holds
that sems(DB, D) # (), because we are now allowed to also
eliminate facts from D in order to satisfy integrity con-
straints. Notice that, while to satisfy key dependencies we
are forced to delete facts from D, inclusion dependencies
must be satisfied by adding new facts, since databases in
semys(DB, D) are the ones that are “as sound as possible”,
thus we have to consider only databases consistent with the
constraints that “minimize” elimination of facts from D.

We first show undecidability of query answering for 1-key-
conflicting database schemata.

THEOREM 5.1. Let DB = (S,Z,K) be a 1KC database
schema, D a database instance for DB consistent with IC, q
a query of arity n over DB, and t a n-tuple of values from
[. The problem of establishing whether t € anss(q, DB, D)
is undecidable.

ProoOF. Undecidability follows from Corollary 3.5 since,

in the case in which D is consistent with K, ¢t €
ansi;(q, DB, D) iff t € anss(q, DB, D). O

As for the class of non-key-conflicting database schemata,
we give a method for computing answers to a query ¢ un-
der the loosely-sound semantics that can be informally ex-
plained as follows: we first identify the maximal subsets of
D that are consistent with I, then for each such database
D’ we make use of the algorithm Answers presented in Sec-
tion 3. Indeed, it can be shown that a tuple t is a consis-
tent answer to a query ¢ with respect to DB and D, i.e.,
t € ansis(q, DB, D), iff Answers(DB, D', q,t) returns true for
each such database D’. More specifically, we define the fol-
lowing algorithm:

Algorithm Answer s(DB, D, q,t)
Input: non-key-conflicting database schema DB = (S,Z, K),
database instance D,
query q of arity n over DB, n-tuple t of values from T';
Output: true if ¢ € ans;s(q, DB, D), false otherwise;
if there exists D; C D
such that
(1) D1 is consistent with K;
(2) for each r(t) € D — Dy,
Dy U {r(t)} is not consistent with K;
(3) Answers(DB, D1, q,t) returns false
then return false
else return true

Informally, conditions (1) and (2) together check that D1
is a maximal subset of D consistent with C; this implies
the existence of a database B € semy (DB, D) such that
BN D = D;. Then, condition (3) verifies that ¢ ¢°.

THEOREM 5.2. Let DB = (S,Z,K) be a NKC database
schema, D be a database instance for DB, q be a query of
arity n over DB, and t be a n-tuple of values of T. Then,
t € ansis(q, DB, D) iff Answer s(DB, D, q,t) returns true.

PrROOF. “=" If T € ans;(q, DB, D) then T € ¢ for
each B € semy (DB, D). From Lemma 4.1 it follows that
t € anss(q, DB, D1) for each Dy maximal subset of D consis-
tent with K, and from soundness and completeness of algo-
rithm Answers, it follows that Answers(DB, D1, ¢, t) returns
true for each such database Di. Hence, Answer s(DB, D, q,t)
returns true.

“«<” Suppose by contradiction that t ¢ ansi(q, DB, D)
and Answer s(DB, D, q,t) returns true. This implies that
for each D; maximal subset of D consistent with IC,
Answers(DB, D1, q,t) returns true. From soundness and
completeness of algorithm Answers, it follows that ¢ €
anss(q, DB, D;) for each such database Dy, i.e., t € ¢° for
each B € sem;(DB,D:1). From Lemma 4.1 it follows that
T € ¢® for each B € semy;(DB, D), but this contradicts the
assumption. O

We give now the computational characterization of the
problem of query answering under the loosely-sound seman-
tics in the presence of NKCIDs with respect to K.

THEOREM 5.3. Let DB = (S,Z,K) be a NKC database
schema, D be a database instance for DB, q be a query of
arity n over DB, and t be a n-tuple of values of I'. The
problem of establishing whether t € ansis(q, DB, D) is coNP-
complete with respect to data complexity.

PrOOF. Membership in coNP follows from the algorithm
Answer s(DB, D, q,t) and from Theorem 3.9. Indeed, in
the algorithm the problem of establishing whether ¢ ¢
ansis(q, DB, D), that is the complement of our problem, is
carried out by guessing a database and checking conditions
(1), (2), and (3) that can be verified in polynomial time.

We prove coNP-hardness of the problem even if we restrict
to database schemata without IDs. Actually, this hardness
result can be immediately derived from the results reported
in [10] (although obtained under a different semantics): how-
ever, in the following we provide an alternative proof, in
which we use a reduction of the 3-colorability problem to our
problem. Consider a graph G = (V, F) with a set of vertices
V and edges E. We define a database schema DB = (S, 0, K)
where S consists of the two binary relations edge and col,
and K contains the dependency key(col) = {1}. The in-
stance D is defined as follows:

D = {col(c,i)|i €{1,2,3} and ce V} U
{edge(z,y)|(z, y) € E}
Finally, we define the query
q — edge(X,Y),col(X,2Z), col(Y, Z)

We prove that G is 3-colorable (i.e., for each pair of adjacent
vertices, the vertices are associated with different colors) if
and only if () & ansi;(¢, DB, D) (i.e., the boolean query ¢
has an affirmative answer). In fact, it is immediate to verify
that, for each possible coloring C' of the graph (i.e., a set of
pairs of vertices and colors, where the three colors are rep-
resented by the values 1,2,3) there exists B € semys (DB, D)
that exactly corresponds to C, i.e., col® is exactly the set of
pairs in the coloring C'. Therefore, if there exists a coloring



that is a 3-coloring, then () & ¢® for some B € semy;(DB, D),
consequently () & ansis(q, DB, D). Conversely, it is immedi-
ate to verify that, for each B € sem, (DB, D), col®"P cor-
responds to a possible coloring of the graph. Hence, if each
possible coloring is not a 3-coloring, then () € q®, therefore
() € ansi;(q, DB, D).

THEOREM 5.4. Let DB = (S,Z,K) be a NKC database
schema, D be a database instance for DB, q be a query of
arity n over DB, andt be a n-tuple of values of I'. The prob-
lem of establishing whether t € ansis(q, DB, D) is PSPACE-
complete with respect to combined complexity.

Proor. Hardness follows from Corollary 3.10 and from
the fact that, when D is conmsistent with X, # €
ansis(q, DB, D) if and only if t € anss(q, DB, D).

Membership in PSPACE follows from algorithm
Answer s(DB, D, q,t) and Theorem 3.9. Indeed, it is easy to
see that conditions (1), (2), and (3) can be verified in poly-
nomial space, and furthermore NPSPACE=PSPACE [22].
O

5.2 Query answering under the loosely-exact
semantics

We now study the query answering problem under the
loosely-exact semantics. We recall that, differently from the
loosely-sound semantics, in this case IDs can be satisfied
by either adding or deleting facts. Hence, sem;. (DB, D) ac-
counts for databases that minimize both elimination and
insertion of facts, i.e., that are “as exact as possible”.

We first prove that query answering under the loosely-
exact semantics is undecidable in the general case, i.e., when
no restriction is imposed on the form of IDs and KDs.

THEOREM 5.5. Let DB = (S,Z,K) be a database schema,
D a database instance for DB, q a query of arity n over DB,
and t a n-tuple of values of I'. The problem of establishing
whether t € ansi.(q, DB, D) is undecidable.

Proor. We reduce query answering in the loosely-sound
semantics to query answering in the loosely-exact seman-
tics. We can restrict to instances D consistent with K,
since by Theorem 5.1 for this class of instances the prob-
lem of establishing whether t € ans;s(q, DB, D) is undecid-
able. Starting from such a problem instance (DB, D, q,1),
we define a new problem instance (DB’,D’,¢',t’) such that
1 € ansis(q, DB, D) iff T’ € ans;.(q, DB, D’). Precisely:

e DB’ =(8',7',K') is obtained from DB by:

— defining S’ as the schema obtained from S by
adding an attribute to each relation in S (in the
last position);

— changing each inclusion in order to propa-
gate such a new attribute from r to s,
i.e., I’ is obtained from Z by replacing each
I = rlin,...,ix) € s[j1,...,58) with I' =
rli1, ... ik,n] C s[ji,...,J%, m], where n is the
arity of r in &’ and m is the arity of s in &’;

e D’ is the set D} UD5, where D] = { r(u, to)|r(u) € D }
and
Dy, ={r(@t) | reS and
u is a tuple of values of I'p U {t1} }

where I'p denotes the set of symbols from I' appearing
in D, and to, t1 are values not belonging to I'p. Notice
that the set D’ is finite;

e if the query ¢ has the form
q(X) — conjy(X,¥1) V-V conj (X, ¥r)
the query ¢ is as follows:

q(XY) —
conj, (X, ¥1,to) V-V conj (X, ¥k, to) V body’

where body’ is the disjunction

\/{7‘(ﬂ7 t1) | r(@) € D and there is a KD for r in K}

e 7 is obtained from 7 by adding the value to at the end
of the tuple .

It can be shown that ¢ € ansis(q, DB, D) iff
U € anse(q,DB,D'), since for each database B in
semy. (DB, D), there are two possible cases:

1. BND = D. In this case, due to the key dependencies K,
B does not contain any tuple of the form r(w,t1) such
that r(u) € D and a key dependency for r is defined
in /. Consequently, T e ¢Biff T € ¢B. Moreover, it is
immediate to verify that there exists at least one such
B in sem. (DB, D');

2. BND C D. In this case, there exists at least one
tuple in B of the form (%@, t1) such that r(@) € D and
a key dependency for r is defined in IC, consequently
t' € ¢'B for each such B. In other words, this kind of
databases does not affect ans;.(q', DB’, D), since in B
every possible tuple is in the answer of ¢’.

Therefore, t € ans;s(q, DB, D) iff T € ansi.(¢', DB, D').
Finally, since the above reduction is effectively com-

putable and since, by Theorem 5.1, establishing whether

t € ansi;(q, DB, D) is undecidable, the thesis follows. O

Differently from the previous semantics, in the case when
the instance D is consistent with I, we obtain a surprising
result: query answering is decidable under the loosely-exact
semantics even without any restriction on the form of KDs
and IDs.

THEOREM 5.6. Let DB = (S,Z,K) be a database schema,
D a database instance consistent with IC, q a query of arity
n over DB, and t be a n-tuple of values of I'. The problem
of establishing whether t € ansi.(q, DB, D) can be decided
in polynomial time with respect to data complezity and is
NP-complete with respect to combined complexity.

PrOOF. To prove the thesis, we define the following algo-
rithm:

Algorithm AnswerCons (DB, D, q,1)
Input: database schema DB = (S,Z,K),
instance D consistent with IC,
conjunctive query q of arity n, n-tuple ¢
Output: true if t € ans;.(q, DB, D), false otherwise
Dy, =7D;
repeat
Do = Dy;
for each r(f') € Dy



if there exists r[i1,...
such that
for each s(#") € D1, T'[j1,. ..
then D; = Dy — {r(1)}
until D; = Dy;
ift e g™
then return true
else return false

ik Cslir, ., Jk] €T

Lkl # T i, ik

Correctness of the algorithm AnswerConsi g follows from
the fact that the database D: computed by the algorithm
is such that (i) D1 € semy.(DB,D); (it) for each B €
semy.(DB,D), B O D;. Therefore, t € ansi..(q,DB,D) if
and only if # € ¢P1. It is well-known that this last condi-
tion (corresponding to standard query answering over a re-
lational database) can be computed in polynomial time with
respect to data complexity and in nondeterministic polyno-
mial time with respect to combined complexity. O

Let us turn our attention on query answering under
the loosely-exact semantics in the case of NKC database
schemata. To this aim, we first define a particular query
Q(I,t) associated with a tuple ¢ and an inclusion depen-
dency I.

DEFINITION 5.7. Let I be an inclusion dependency of the
form rliv, ... ik] C s[j1,...,Jk], where r has arity n and s
has arity m, and let t be an n-tuple. We denote as Q(I,%)
the boolean conjunctive query q «— s(z1,...,2zm), where, for
each 0 such that 1 < ¢ < m, each z; is as follows: if there
exists h such that £ = jj, then z¢ = t[in], otherwise zp = X.

In the following, the query Q(Z, %) is used in order to verify
whether a database schema DB and an instance D imply the
existence in all databases B € sem;(DB, D) of a fact of the
form s(Z') such that i1, ..., k] = [j1, ..., jx].

Below we define the algorithm Answer g for query answer-
ing under the loosely-exact semantics.

Algorithm Answer (DB, D, q,1)
Input: NKC database schema DB = (S,Z, K), instance D,
query q of arity n over D3, n-tuple t of values of T'
Output: true if t € ans;.(q, DB, D), false otherwise
if there exists D’ C D such that
(a) D’ is consistent with K and
(b) Answers({S,Z,0),D’, q,t) returns false and
(c) for each D" such that D' C D" C D
(c1) D” is not consistent with K or
(c2) there exists I € Z and r(t1) € D"
such that
Answers ((S,,0), D', Q(,F1), ()) returns false and
Answers ((S,0,0), D", Q(I,t1), () returns false
then return false
else return true

Intuitively, to return false the algorithm looks for the ex-
istence of a database B’ in semy. (DB, D) such that t ¢ qB/.
As in the algorithm Answer s, the database B’ is represented
by its intersection with the initial instance D (denoted as D’
in the algorithm): the fact that t ¢ ¢% is verified by condi-
tion (b), while the fact that B’ € semy.(DB, D) is verified by
conditions (a) and (c) of the algorithm. In particular, con-
dition (c) verifies that, for each database B’ (represented
by its intersection with D denoted as D), it is not the case
that B” >p B’. In conditions (c1) and (c2), the symbol ()
denotes the empty tuple.

Soundness and completeness of the algorithm is estab-
lished by the following theorem.

THEOREM 5.8. Let DB = (S,Z,K) be a NKC database
schema, D be a database instance, q be a query of arity n

over S, and t be a n-tuple of values from I'. Then, t €
ansi.(q, DB, D) iff Answer e(DB, D, q,t) returns true.

PRrROOF. In order to prove correctness of the above al-
gorithm, we need a preliminary lemma. In the following,
given an instance D of a database schema DB = (S,Z,0),
we denote as chase; (DB, D) the set of new facts obtained
by applying the chase rule to the facts in D, i.e., the
set of facts of the form s(f2) such that there exist I =
T[il,...,ik} C S[jl,...,jk] € 7 and T(fl) € D such that
tili1,...,9%] = t2[j1,...,Jx] and there exists no s(t3) € D
such that z1[’i1, ey ’Lk] = z3[j1, N 7]k]

LEMMA 5.9. Let D', D" be instances of a database schema
DB = (S8,Z,0) such that D' C D" and, for each I €
T of the form I = rli1,...,ik] € s[j1,...,Jk] and for
each r(t1) € D", either Answers((S,Z,0), D', Q(I,11),()) re-
turns true or Answers((S,0,0), D", Q(I,1),{)) returns true.
Then, chase(DB,D") — D" C chase(DB,D’) —D'.

PROOF. It is straightforward to verify that the hypothesis
implies that chasei (DB, D") C chasei (DB, D’); this in turn
implies that each new fact added in chase(DB,D") by an
application of the chase rule in chase(DB, D") is also added
by the chase rule in chase(DB,D’). Consequently, the thesis
follows. O

We now prove the theorem.

“=” Suppose Answer g(DB, D, q,t) returns false. Then,
there exists D’ C D such that conditions (a), (b) and (c) of
the algorithm hold for D'. Let B’ = chase(DB,D’). Now,
suppose B’ & sem;.(DB, D): hence, there exists a database
instance B” such that B” is consistent with K and B” >p
B’, which implies that B” —D C B’ —D. Since by hypothesis
condition (c) holds for D’, it follows that condition (c2) holds
for D", i.e., there exists a fact r(¢1) € D" and an inclusion
I=rfi1,... i) C slj1,...,Jk] €T such that:

1. Answers((S,Z,0),D’',Q(I,%1),()) returns false, which
implies that there is no fact in B’ of the form s(Z2)
such that fl[il, R A EQ[jl, ooy IR

2. Answers((S,0,0),D",Q(I,t1),()) returns false, which
implies that there is no fact in D" of the form s(%2)
such that #1[i1,...,ix] = €[j1,...,Jk]. On the other
hand, a fact of the form s(¢2) such that t1[i1,...,ix] =
ta[41,- - ., jr] must be present in B”, due to the pres-
ence of r(#1) in D" and to the inclusion 1.

The two above conditions imply that there exists a fact
of the form s(f2) in B” — D which does not belong to
B'. Consequently, B” — D C B’ — D does not hold, thus
contradicting the hypothesis that B” >p B’. Therefore,
B' € semy.(DB,D), and since conditions (a) and (b) hold
for D', it follows that £ & ¢ , hence & ansi.(q, DB, D).
“«<” Suppose t € ansi.(q, DB, D). Therefore, there exists
B’ € semi. (DB, D) such that T & ¢° . Let D' = DNB’. Since
B’ € sem;.(DB, D), condition (a) of the algorithm holds for
B’, and since D’ C B’, condition (a) holds for D’ as well.
From t ¢ ¢® " and from soundness and completeness of the
algorithm Answers it follows that condition (b) holds for D’.
Now, suppose condition (c) does not hold for D’: then, there



exists D" such that conditions (c1) and (c2) do not hold
for D' and D", i.e., D" is consistent with K and, for each
I € T of the form I = rfiy,... i) C s[j1,...,J%] and for
each r(t1) € D", either Answers({S,Z,0),D’,Q(I,%1),{)) re-
turns true or Answers((S,0,0), D", Q(I,t1),()) returns true.
By Lemma 5.9, it follows that chase(DB,D") — D" C
chase(DB,D') — D'. Now let B” = chase(DB,D"): since
B' D chase(DB, D), it follows that B” — D C B’ — D, and
by hypothesis D” D D’, therefore B” N D D> B’ N D, hence
B"” >p B’'. Moreover, since D" is consistent with K, B” is
consistent with K and Z, consequently B’ ¢ sem. (DB, D),
thus contradicting the hypothesis. Therefore, condition (c)
holds for D', which implies that Answer e(DB,D,q,t) re-
turns false. O

Finally, based on the above algorithm, we analyze the
computational complexity of query answering under the
loosely-exact semantics for NKC database schemata.

THEOREM 5.10. Let DB = (S,Z,K) be a NKC database
schema, D a database instance, q a query of arity n over DB,
and t a n-tuple of values of I'. The problem of establishing
whether t € ansi.(q, DB, D) is I15-complete with respect to
data complexity and PSPACE-complete with respect to com-
bined complexity.

Proof sketch. The analysis of the algorithm Answer g shows
that the problem is in IT5 with respect to data complexity.
Indeed, it is immediate to verify that:

e condition (a) can be verified in polynomial time;

e condition (b) can be verified in polynomial time, as
shown in Section 3;

e conditions (c1) and (c2) can be verified in polynomial
time: therefore, condition (c¢) can be verified in non-
deterministic polynomial time.

Consequently, if considered as a nondeterministic procedure,
the algorithm runs in IT5 with respect to data complexity.
Hardness with respect to II5 can be proved by a reduction
from 2-QBF validity, i.e., the validity problem for quantified
boolean formulae having the form VZ3y f(Z,y) where f(T,7)
is a 3-CNF, i.e., a propositional formula in 3-conjunctive nor-
mal form. The reduction generalizes the scheme employed
in the proof of Theorem 5.3.

As concerns combined complexity, it is immediate to ver-
ify that each of the conditions of the algorithm is computed
in nondeterministic polynomial space, therefore the algo-
rithm runs in nondeterministic polynomial space with re-
spect to combined complexity, which proves membership in
PSPACE of the problem. PSPACE-hardness can be proved
by reducing query answering under loosely-sound seman-
tics for databases without key dependencies to this problem.
The reduction is obtained by a slight modification of the re-
duction from query answering under loosely-sound seman-
tics exhibited in the proof of Theorem 5.5, and observing
that, if the original problem instance is such that, for each
I = r[A] C s[B] € Z, B does not cover the set of all the
attributes of s, then the derived database schema DB’ is a
NKC schema. Moreover, it is immediate to verify that re-
stricting to such a kind of problem instances does not affect
PSPACE-hardness of the query answering problem under
the loosely-sound semantics. Finally, the reduction is mod-
ified in a way such that the database instance D’ obtained
from the original instance D has size polynomial with re-
spect to data complexity.

6. DISCUSSION

6.1 Summary of results

The summary of the results we have obtained is reported
in Figure 12, in which we have two distinct tables, that
present, respectively, the complexity of query answering for
the class of general database instances and for instances con-
sistent with KDs. Each column (with the exception of the
first two) corresponds to a different semantics, while each
row corresponds to a different class of dependencies (speci-
fied in the first two columns). Each cell of the tables reports
data complexity and combined complexity of query answer-
ing: for each decidable case, the complexity of the problem
is complete with respect to the class reported. We have
marked with the symbol # the cells corresponding either to
already known results or to results straightforwardly implied
by known results.

We point out that, due to the correspondence between
query answering and query containment illustrated in Sec-
tion 3, all the complexity results established for the problem
of query answering also hold for the conjunctive query con-
tainment problem.

6.2 Related work

The problem of reasoning with inconsistent databases is
closely related to the studies in belief revision and update
[2]. This area of Artificial Intelligence studies the problem
of integrating new information with previous knowledge. In
general, the problem is studied in a logical framework, in
which the new information is a logical formula f and the
previous knowledge is a logical theory (also called knowledge
base) T'. Of course, f may in general be inconsistent with 7.
The revised (or updated) knowledge base is denoted as T'o f,
and several semantics have been proposed for the operator o.
The semantics for belief revision can be divided into revision
semantics, when the new information f is interpreted as a
modification of the knowledge about the world, and update
semantics, when f reflects a change in the world.

The problem of reasoning with inconsistent databases can
be actually seen as a problem of belief revision. In fact,
with respect to the above illustrated knowledge base revi-
sion framework, if we consider the database instance D as
the initial knowledge base T', and the set of integrity con-
straints Z U K as the new information f, then the problem
of deciding whether a tuple ¢ is in the answer set of a query
g with respect to the database schema DB = (S,Z,K) and
the instance D corresponds to the belief revision problem
Do (ZUK) = q(t). Based on such a correspondence, the
studies in belief revision appear very relevant for the field of
inconsistent databases: indeed, almost all the approaches to
inconsistent databases that we have considered in this sec-
tion can be reconstructed in terms of direct applications of
well-known semantics for belief revision/update in a partic-
ular class of theories.

On the other hand, from a computational perspective,
there are no results concerning the particular kind of belief
revision/update that is of interest for database applications:
in particular, the class of relational integrity constraints as
revision/update knowledge has not been taken into account
in the belief revision literature, where the computational

3Due to space limitations, in the present version of the paper
we have not been able to include the proofs of all the results
reported in Figure 1.



Data complexity/combined complexity for general database instances:

[KDs| 1Ds | strictly-sound | loosely-sound | loosely-exact |
no GEN PTIME/PSPACE® | PTIME/PSPACE PTIME/NP
yes no PTIME/NP* coNP /II5* coNP /TI5*
yes FK PTIME/PSPACE coNP/PSPACE | coNP/PSPACE
yes | FK,UN || PTIME/PSPACE coNP/PSPACE 115 /PSPACE
yes NKC PTIME/PSPACE coNP/PSPACE 115 /PSPACE
yes 1KC undecidable undecidable undecidable
yes GEN undecidable® undecidable undecidable

Data complexity/combined complexity for key-consistent database instances:

| KDs | IDs H strictly-sound | loosely-sound | loosely-exact |
no GEN PTIME/PSPACE®* | PTIME/PSPACE | PTIME/NP
yes no PTIME/NP* PTIME/NP* PTIME/NP*
yes FK PTIME/PSPACE | PTIME/PSPACE | PTIME/NP
yes | FK,UN || PTIME/PSPACE | PTIME/PSPACE | PTIME/NP
yes | NKCID | PTIME/PSPACE | PTIME/PSPACE | PTIME/NP
yes | 1KCID undecidable undecidable PTIME/NP
yes GEN undecidable® undecidable PTIME/NP

Legenda: FK = foreign key dependencies, GEN = general IDs, UN = unary IDs; & = already known result.

Figure 1: Complexity of query answering under KDs and IDs (decision problem)

results mostly concern a setting in which knowledge is spec-
ified in terms of propositional formulae of classical logic [12,
13]. Instead, the typical database setting is considered by
the literature on inconsistent databases, which we briefly
survey in the following.

The notion of consistent query answers over inconsistent
databases was originally given in [5]. However, the approach
in [5] is completely proof-theoretic, and no computational
technique for obtaining consistent answers from inconsistent
database is provided.

In [21] the authors describe an operator for merging
databases under constraints which allows for obtaining a
maximal amount of information from each database by
means of a majority criterion used in case of conflict. Even
if a large set of constraints is considered, namely the con-
straints that can be expressed as first-order formulae, the
computational complexity of the merging procedure is not
explored, and no algorithm to compute consistent query an-
swers is provided. Furthermore, the problem of dealing with
incomplete databases is not taken into account. Notice also
that, different from all the other studies mentioned in the
following, this approach relies on a cardinality-based order-
ing between databases (rather than a set-containment-based
ordering).

In [15] the authors propose a framework for updating the-
ories and logical databases (i.e., databases obtained by giv-
ing priorities to sentences in the databases) that can be
extended also to the case of updating views. The seman-
tics proposed in such a paper is based on a particular set-
containment based ordering between theories that “accom-
plish” an update to an original theory, which is similar to
the loosely-sound semantics above presented.

In [3] the authors define an algorithm for consistent query
answers in inconsistent databases based on the notion of
residues, originally defined in the context of semantic query

optimization. The method is proved to be sound and com-
plete only for the class of universally quantified binary con-
straints, i.e., constraints that involve two database relations.
In [4] the same authors propose a new method that can
handle arbitrary universally quantified constraints by spec-
ifying the database repairs into logic rules with exceptions
(LPe). The semantics underlying the notion of consistent
query answers both in [3] and in [4] is defined on a set-
containment ordering between databases, which corresponds
to the loosely-exact semantics of our framework.

Moreover, a different semantics for database repairing has
been considered in [10, 9]. Specifically, in such works a se-
mantics is defined in which only tuple elimination is allowed;
therefore, the problem of dealing with infinite models is not
addressed. Then, a preference order over the database re-
pairs is defined, in such a way that only minimal repairs (in
terms of set containment) are considered. Hence, the se-
mantics is a “maximal complete” one, in the sense that only
maximal consistent subsets of the database instance are con-
sidered as repairs of such an instance. In [10] the authors
establish complexity results for query answering under such
a semantics in the presence of denial constraints, a gener-
alization of key dependencies and functional dependencies,
while in [9] also inclusion dependencies are considered. Such
a “maximal complete” semantics is different from the com-
plete semantics considered in the present paper.

Finally, [16] proposes a technique to deal with inconsis-
tencies that is based on the reformulation of integrity con-
straints into a disjunctive datalog program with two different
forms of negation: negation as failure and classical negation.
Such a program can be used both to repair databases, i.e.,
modify the data in the databases in order to satisfy integrity
constraints, and to compute consistent query answers. The
technique is proved to be sound and complete for universally
quantified constraints. The semantics adopted to support



this method corresponds to our loosely-exact semantics.

We point out that none of the above mentioned works
provides a general solution for the case of cyclic inclusion
dependencies under the semantics (both strict and loose)
considered in this paper.

6.3 Future work

Although obtained in a single database context, many
of the techniques and results presented here are directly
applicable to data integration, where multiple information
sources may provide data that are inconsistent with respect
to the global view of the sources. Indeed, we believe that
one important development of the research presented in this
paper is towards both the computational analysis of query
answering in data integration systems and the definition of
effective query processing techniques in such a setting.

Moreover, we are currently working on the extension of
the present framework with more complex forms of depen-
dencies, e.g., functional dependencies and exclusion depen-
dencies.
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Abstract

We propose a new Description Logic, called DL-Lite, specif-
ically tailored to capture basic ontology languages, while
keeping low complexity of reasoning. Reasoning here means
not only computing subsumption between concepts, and
checking satisfiability of the whole knowledge base, but
also answering complex queries (in particular, conjunctive
queries) over the set of instances maintained in secondary
storage. We show that in DL-Lite the usual DL reasoning
tasks are polynomial in the size of the TBox, and query an-
swering is polynomial in the size of the ABox (i.e., in data
complexity). To the best of our knowledge, this is the first re-
sult of polynomial data complexity for query answering over
DL knowledge bases. A notable feature of our logic is to al-
low for a separation between TBox and ABox reasoning dur-
ing query evaluation: the part of the process requiring TBox
reasoning is independent of the ABox, and the part of the
process requiring access to the ABox can be carried out by an
SQL engine, thus taking advantage of the query optimization
strategies provided by current DBMSs.

Introduction

One of the most important lines of research in Description
Logics (DLs) is concerned with the trade-off between ex-
pressive power and computational complexity of sound and
complete reasoning. Research carried out in the past on this
topic has shown that many DLs with efficient, i.e., worst-
case polynomial time, reasoning algorithms lack modeling
power required in capturing conceptual models and basic
ontology languages, while most DLs with sufficient mod-
eling power suffer from inherently worst-case exponential
time behavior of reasoning [4, 5].

Although the requirement of polynomially tractable rea-
soning might be less stringent when dealing with relatively
small ontologies, we believe that the need of efficient rea-
soning algorithms is of paramount importance when the on-
tology system is to manage large amount of objects (e.g.,
from thousands to millions of instances). This is the case
of several important applications where the use of ontolo-
gies is advocated nowadays. For example, in the Semantic
Web, ontologies are often used to describe the relevant con-
cepts of Web repositories, and such repositories may incor-
porate very large data sets, which constitute the instances
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of the concepts in the ontology. In such cases, two require-
ments emerge that are typically overlooked in DLs. First, the
number of objects in the knowledge bases requires manag-
ing instances of concepts (i.e., ABoxes) in secondary stor-
age. Second, significant queries to be posed to the knowl-
edge bases are more complex than the simple queries (i.e.,
concepts and roles) usually considered in DL research. Un-
fortunately, in these contexts, whenever the complexity of
reasoning is exponential in the size of the instances (as for
example in Fact!, Racer? and in [11]), there is little hope for
effective instance management and query answering algo-
rithms.

In this paper we propose a new DL, called DL-Lite, specif-
ically tailored to capture basic ontology languages, while
keeping low complexity of reasoning, in particular, poly-
nomial in the size of the instances in the knowledge base.
Reasoning here means not only computing subsumption be-
tween concepts, and checking satisfiability of the whole
knowledge base, but also answering complex queries over
the set of instances maintained in secondary storage.

Our contributions are the following:

1. We define DL-Lite, and show that it is rich enough to

capture a significant ontology language. Although at a
first sight DL-Lite appears to be a very simple DL, the
kind of modeling constructs in our logic makes it suit-
able for expressing a variety of representation languages
widely adopted in different contexts, such as basic on-
tology languages, conceptual data models (e.g., Entity-
Relationship [2]), and object-oriented formalisms (e.g.,
basic UML class diagrams?).

2. For such a DL we propose novel reasoning techniques for

a variety of tasks, including conjunctive query answering
and containment between conjunctive queries over con-
cepts and roles. Our presentation is focused especially
on the problem of answering conjunctive queries over a
knowledge base. We observe that this is one of the few re-
sults on answering complex queries (i.e., not correspond-
ing simply to a concept or a role) over a DL knowledge
base [11]. Indeed, answering conjunctive queries over a
knowledge base is a challenging problem, even in the case

1
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of DL-Lite, where the combination of constructs express-
ible in the knowledge base does not pose particular dif-
ficulties in computing subsumption. Notice that, in spite
of the simplicity of DL-Lite TBoxes, the ability of tak-
ing TBox knowledge into account during the process of
answering conjunctive queries goes beyond the “variable-
free” fragments of first-order logic represented by DLs.

3. An important feature of our approach is that it is per-
fectly suited to representing ABox assertions managed in
secondary storage by a Data Base Management System
(DBMS). Indeed, our query answering algorithm is based
on the idea of expanding the original query into a set of
queries that can be directly evaluated by an SQL engine
over the ABox, thus taking advantage of well established
query optimization strategies. Notably, this was one of
the motivations behind several research works done on
CLASSIC in the 80’s [6].

4. We analyze the complexity of reasoning in DL-Lite. We
show that the usual reasoning tasks considered in DLs
(i.e., subsumption and satisfiability) can be done in poly-
nomial time. As for query answering, computing the an-
swers to a conjunctive query is worst-case exponential in
the size of the TBox and the query, but is polynomial in
the size of the ABox, i.e., in data complexity [17]. Hence,
the complexity of answering queries is no worse than tra-
ditional query evaluation in relational databases®.

A prototype implementation of DL-Lite has been devel-
oped and tested within a research project carried out jointly
by our institution and the IBM Tivoli Laboratory. First ex-
periments show that our approach is extremely effective:
complex domains can be modeled in DL-Lite, and it takes
no more than a few minutes to answer conjunctive queries
over knowledge bases with millions of instances.

DL-Lite

As usual in DLs, DL-Lite allows for representing the domain
of interest in terms of concepts, denoting sets of objects, and
roles, denoting binary relations between objects. DL-Lite
concepts are defined as follows:

B == A| 3R | 3R

C B | =B | Ci1Cqy
where A denotes an atomic concept and R denotes an
(atomic) role; B denotes a basic concept that can be either
an atomic concept, a concept of the form 3R, i.e., the stan-
dard DL construct of unqualified existential quantification
on roles, or a concept of the form 3R~, which involves an
inverse role. C (possibly with subscript) denotes a (general)
concept. Note that we use negation of basic concepts only,
and we do not allow for disjunction.

A DL-Lite knowledge base (KB) is constituted by two
components: a TBox used to represent intensional knowl-
edge, and an ABox, used to represent extensional informa-
tion. DL-Lite TBox assertions are of the form

BCC inclusion assertions
(funct R), (funct R™) functionality assertions

“We remind the reader that the algorithms for answering a con-
junctive query posed to a relational database are exponential in the
size of the query.

An inclusion assertion expresses that a basic concept is sub-
sumed by a general concept, while a functionality assertion
expresses the (global) functionality of a role, or of the in-
verse of a role.

As for the ABox, DL-Lite allows for assertions of the
form:

B(a), R(a,b) membership assertions

where a and b are constants. These assertions state respec-
tively that the object denoted by a is an instance of the basic
concept B, and that the pair of objects denoted by (a, b) is
an instance of the role R.

Although DL-Lite is quite simple from the language point
of view, it allows for querying the extensional knowledge of
a KB in a much more powerful way than usual DLs, in which
only membership to a concept or to a role can be asked.
Specifically, DL-Lite allows for using conjunctive queries
of arbitrary complexity. A conjunctive query (CQ) ¢ over a
knowledge base C is an expression of the form

q(¥) — 3g.conj(Z, )

where & are the so-called distinguished variables, j are ex-
istentially quantified variables called the non-distinguished
variables, and conj (%, %) is a conjunction of atoms of the
form B(z), or R(z1, z2), where B and R are respectively a
basic concept and a role in /C, and z, z1, 2o are constants
in /C or variables in & or 3. Sometimes, for simplifying no-
tation, we will use the Datalog syntax, and write queries of
the above form as ¢(Z) «— body(Z, §), where the existential
quantification 3¢ has been made implicit, and the symbol “,”
is used for conjunction in body(Z, 7).

The semantics of DL-Lite is given in terms of interpre-
tations over a fixed infinite domain A. We assume to have
one constant for each object, denoting exactly that object. In
other words, we have standard names [15], and we will not
distinguish between the alphabet of constants and A.

An interpretation T = (A,-T) consists of a first order

structure over A with an interpretation function -~ such
that:

AT ca
(-B)f = A\ B
(cin CQ)I =Ccincyt

RICAXxA
(BR)T = {c|3c.(c,¢) € RT}
BR™)E ={c|3.(d,c) € RT}

An interpretation 7 is a model of an inclusion assertion
B C Ciff B C 07; T is a model of a functionality asser-
tion (funct R) if (¢,¢’) € RT A (c,d’) € RT D = ¢,
similarly for (funct R™); 7 is a model of a membership as-
sertion B(a) (resp. R(a,b))if a € BT (resp. (a,b) € RY).
A model of a KB K is an interpretation Z that is a model
of all the assertions in K. A KB is satisfiable if it has at
least one model. A KB K logically implies an assertion
« if all the models of K are also models of . A query
q(¥) < 3Tg.conj(Z,7) is interpreted in an interpretation 7
as the set g% of tuples ¢ € A x --- x A such that when we
substitute the variables £ with the constants ¢, the formula
3y.conj (Z, ) evaluates to true in Z.

Since DL-Lite deals with conjunctive queries, the basic
reasoning services that are of interest are:



e query answering: given a query ¢ with distinguished vari-
ables 7 and a KB K, return the set ans(q, K) of tuples ¢ of
constants of /C such that in every model Z of K we have
¢ € ¢*. Note that this task generalizes instance checking
in DLs, i.e., checking whether a given object is an instance
of a specified concept in every model of the knowledge
base.

® query containment: given two queries ¢; and ¢o and a KB
KC, verify whether in every model Z of K ¢¥ C ¢Z. Note
that this task generalizes logical implication of inclusion
assertions in DLs.

o KB satisfiability: verify whether a KB is satisfiable.

Example 1 Consider the atomic concepts Professor and
Student, the roles TeachesTo and HasTutor, and the fol-
lowing DL-Lite TBox 7T:

Professor C dTeachesTo  Student T dHasTutor
JTeachesTo™ C Student JHasTutor™ T Professor
Professor C —=Student (funct HasTutor).

Assume that the ABox A contains only the asser-
tion HasTutor(John,Mary). Finally, consider the query
q(z) <« TeachesTo(x,y), HasTutor(y, z), asking for
professors that teach to students that have a tutor. [

Although equipped with advanced reasoning services, at
first sight DL-Lite might seem rather weak in modeling in-
tensional knowledge, and hence of limited use in practice.
In fact, this is not the case. Despite the simplicity of its lan-
guage and the specific form of inclusion assertions allowed,
DL-Lite is able to capture the main notions (though not all,
obviously) of both ontologies, and of conceptual modeling
formalisms used in databases and software engineering (i.e.,
ER and UML class diagrams). In particular, DL-Lite asser-
tions allow us to specify ISA, e.g., stating that concept A is
subsumed by concept Ag, using A; T As; disjointness, e.g.,
between concepts A; and As, using A1 = —Asg; role-typing,
e.g., stating that the first (resp., second) component of the
relation R is an instance of A; (resp., As), using 3R C A,
(resp., AR~ T A»); participation constraints, e.g., stating
that all instances of concept A participate to the relation R
as the first (resp., second) component, using A = 3R (resp.,
A C 3R7); non-participation constraints, using A C —=3R
and A C —3R~; functionality restrictions on relations, us-
ing (funct R) and (funct R~). Notice that DL-Lite is a
strict subset of OWL Lite, the less expressive sublanguage
of OWL?, which presents some constructs (e.g., some kinds
of role restrictions) that are non expressible in DL-Lite, and
that make reasoning in OWL Lite non-tractable in general.

Reasoning in DL-Lite

It can be shown that query containment can be reformulated
as query answering using techniques similar to the ones
in [1]. Hence, we concentrate on query answering only.

We first address some preliminary issues, and then we de-
fine the query reformulation algorithm PerfectRef, which
is at the heart of our query evaluation algorithm Answer.
Finally, we address correctness and complexity issues.

>http://www.w3.org/TR/owl-features

KB normalization We denote by Normalize(K) the
DL-Lite KB obtained by transforming the KB K = (7, A)
as follows. The ABox A is expanded by adding to A the
assertions IR (a) and IR~ (b) for each R(a,b) € A.

Then, assertions of X in which conjunctive concepts oc-
cur are rewritten by iterative application of the rule: if
B C C; 1 Cy occurs in 7, then replace it with the two
assertions B C Cy, BC (5.

The TBox 7 resulting from such a transformation con-
tains assertions of the form (i) By C By, where B; and
Bs are basic concepts (i.e., each of them is either an atomic
or an existential concept), which we call positive inclusions
(PIs); (it) By C —Bs, where B and Bs are basic concepts,
which we call negative inclusions (NIs); (iii) functionality
assertions on roles of the form (funct R) or (funct R™).

Then, the TBox 7 is expanded by computing all (non-
trivial) NIs between basic concepts implied by 7. More pre-
cisely, the TBox 7 is closed with respect to the following in-
ference rule: if By C By occurs in 7 and either By T — B3
or Bs C By occurs in 7 (where By, By, B3 are arbitrary
basic concepts), then add By C —Bj3 to 7. It can be shown
that, after the above closure of 7, for every pair of basic
concepts By, Bs, we have that 7 = By T —Bjy iff either
BiC-BycTorBy, C-ByeT.

It is immediate to verify that, for every DL-Lite KB K,
Normalize(KC) is equivalent to /C, in the sense that the set
of models of K coincides with that of Normalize(KC). In the
following, without loss of generality we assume that every
concept name or role name occurring in 4 also occurs in 7.

ABox storage Once the ABox is normalized, we store it
under the control of a DBMS, in order to effectively manage
objects in the knowledge base by means of an SQL engine.
To this aim, we construct a relational database which faith-
fully represents a normalized ABox 4. More precisely,

e for each basic concept B occurring in A, we define a re-
lational table tabp of arity 1, such that (a) € tabp iff
B(a) € A;

e foreachrole R occurring in 4, we define a relational table
tabpr of arity 2, such that (a,b) € tabp iff R(a,b) € A.

We denote with DB(.A) the relational database thus con-
structed.

KB satisfiability The algorithm Consistent takes as in-
put a normalized KB K = (7, .A) and verifies the following
conditions:

(i) there exists a NI By C —B5 in 7 and a constant a such
that the assertions By (a) and Bz (a) belong to A,

(ii) there exists an assertion (funct R) (respectively,
(funct R7)) in 7 and three constants a, b, ¢ such that both
R(a,b) and R(a, c) (resp., R(b,a) and R(c, a)) belong to A.

Informally, condition (i) corresponds to checking whether
A explicitly contradicts some NI in 7, and condition (ii)
corresponds to check whether A violates some functionality
assertion in 7. If one of the above conditions holds, then the
algorithm returns false (i.e., IC is not satisfiable); otherwise,
the algorithm returns frue.

Notably, the algorithm verifies such conditions by posing
to DB(.A) suitable conjunctive queries expressed in SQL.
For instance, condition (i) holds for a given NI By C —Bs
iff the query ¢(z) « tabp, (), tabp, (x) has a non-empty



answer in DB(A), while condition (ii) holds for (funct R)
iff the query g(z) « tabg(x,y),tabr(z,2),y # z has
a non-empty answer in DB(.A), where # is the “not equal”
predicate of SQL. Notice that the algorithm does not con-
sider the PIs occurring in 7 during its execution. Indeed, we
will show that PIs do not affect the consistency of a DL-Lite
KB, if the TBox is normalized.

Query reformulation Query reformulation is at the heart
of our query answering method. Given the limited expres-
sive power of DL-Lite TBoxes, it might seem that in order
to answer a query ¢ over a KB K, we could simply build a
finite first-order structure on the basis of C, and then evalu-
ate the query as an expression over this first-order structure.
Actually, it is possible to show that this is not the case. In
particular, it can be shown that, in general, given a KB IC,
there exists no finite structure S such that, for every con-
junctive query g, the set of answers to ¢ over K is the result
of evaluating g over S. This property demonstrates that an-
swering queries in DL-Lite goes beyond both propositional
logic and relational databases. The basic idea of our method
is to reformulate the query taking into account the TBox: in
particular, given a query ¢ over K, we compile the asser-
tions of the TBox into the query itself, thus obtaining a new
query ¢’. Such a new query ¢’ is then evaluated over the
ABox of I, as if the ABox were a simple relational data-
base. Since the size of ¢’ does not depend on the ABox,
the data complexity of the whole query answering algorithm
is polynomial. In the following, we illustrate our approach
from a technical point of view.

We say that an argument of an atom in a query is bound if
it corresponds to either a distinguished variable or a shared
variable, i.e., a variable occurring at least twice in the query
body, or a constant, while we say that it is unbound if it
corresponds to a non-distinguished non-shared variable (as
usual, we use the symbol _ to represent non-distinguished
non-shared variables). Notice that, an atom of the form
JR(x) (resp. IR~ (z)) has the same meaning as R(x,_)
(resp. R(_,x)). For ease of exposition, in the following we
will use the latter form only.

A PI I is applicable to an atom B(z), if I has B in its
right-hand side, and I is applicable to an atom R(x1,x2),
if either (i) zo = _ and the right-hand side of [ is IR, or
(i1) 1 = - and the right-hand side of I is 3R~. Roughly
speaking, an inclusion [ is applicable to an atom g if all
bound arguments of g are propagated by I. Obviously, since
all PIs in the TBox 7 are unary, they are never applicable to
atoms with two bound arguments.

We indicate with gr(g, ) the atom obtained from the atom
g by applying the inclusion 7, i.e., if g = B;(x) (resp., g =
Ri(xz,_)org = Ri(_,x))and I = By C By (resp., I =
By T 3Ry or I = By T 3Ry ), we have:

o gr(ga I) = R2(5E7 *)? if Bo = JRy;
d gl"(g,]) = R2(77x)7 1fB2 = ElRZ_’
e gr(g,I) = A(x), if By = A, where A is a basic concept.

We are now ready to define the algorithm PerfectRef.
Algorithm PerfectRef(q, 7)

Input: conjunctive query g, DL-Lite TBox T
QOutput: set of conjunctive queries P

Pi={q}

repeat

P =P;

for each ¢ € P’ do

(a) for each g in ¢q do

for each PI1 ] in 7 do
if ] is applicable to g
then P := P U{ q[g/gr(g, )] }
(b) for each g1, g2 in g do
if g1 and g2 unify
then P := P U {7(reduce(q, g1,92))};
until P’ = P;
return P

In the algorithm, ¢[g/¢’] denotes the query obtained from
q by replacing the atom g with a new atom g¢'.

Informally, the algorithm first reformulates the atoms of
each query g € P’, and produces a new query for each atom
reformulation (step (a)). Roughly speaking, PIs are used as
rewriting rules, applied from right to left, that allow to com-
pile away in the reformulation the knowledge of 7 that is
relevant for answering q.

At step (b), for each pair of atoms g, go that unify, the
algorithm computes the query ¢’ = reduce(q, g1, g2), by ap-
plying to g the most general unifier between g; and gs. Due
to the unification, variables that were bound in ¢ may be-
come unbound in ¢’. Hence, Pls that were not applicable to
atoms of g, may become applicable to atoms of ¢’ (in the
next executions of step (a)). Function 7 applied to ¢’ re-
places with _ each unbound variable in ¢'.

It can be shown that the algorithm always terminates,
since the maximum number of atoms in the body of a gen-
erated query is equal to the length of the initial query, and
the number of different atoms that can be generated by the
algorithm is polynomial in the size of the input.

Example 1 (contd.). Let us analyze PerfectRef(q,7),
where q(z) «— TeachesTo(x,y), HasTutor(y, _). At the
first execution of step (a), the algorithm inserts in P the new
query q(x) «— TeachesTo(x,y), Student(y), by applying
to the atom HasTutor(y, - ) the PI Student = IHasTutor.
Then, at a second execution of step (a), the query ¢(z) «—
TeachesTo(x,y), TeachesTo(_,y) is added to P, accord-
ing to application of the PI 3TeachesTo™ LT Student to
the atom Student(y). Since the two atoms of the sec-
ond query unify, step (b) of the algorithm inserts the query
q(x) <« TeachesTo(xz,_) into P. At a next iteration,
step (a) produces the query q(z) « Professor(x), by ap-
plying Professor C 3TeachesTo to TeachesTo(x,_), and
then, at a further execution of step (a), it generates the query
q(x) < HasTutor(_,x) by applying 3HasTutor™ L
Professor to Professor(xz). The set constituted by the
above five queries and the original query ¢ is then returned
by the algorithm. m

Query evaluation In order to compute the answers to ¢
over the KB K = (7,.A), we need to evaluate the set of
conjunctive queries P produced by the algorithm Perfec-
tRef over the ABox A. Obviously, in doing so we want to
exploit the relational database DB(.A). To this aim, we need
to transform each query ¢ in P into an SQL query expressed
over DB(A). The transformation (which we omit for lack
of space) is conceptually very simple. The only non-trivial



case concerns binary atoms with unbound terms: for an atom
of the form R(_, x), we introduce a view predicate that rep-
resents the union of tabg[2] with tabsr-, where tabg[2]
indicates projection of tabg on its second column (similarly
for R(z,-)). All SQL queries obtained from P, together
with the views introduced in the transformation, denoted by
SQL(P), can be easily dispatched to an SQL query engine
and evaluated over DB(A).

Below we define the algorithm Answer that, given a sat-
isfiable KB K and a query ¢, computes ans(q, K). In the
algorithm, Eval(Q, D) denotes the evaluation of the SQL
query @ over the database D.

Algorithm Answer(q, K)

Input: CQ ¢, DL-Lite KB K = (7, A)
Output: ans(q, K)

K := Normalize(K);

return Eval(SQL (PerfectRef(q, 7)), DB(A))

Example 1 (contd.). Since our ABox A contains only the
assertion HasTutor(John, Mary), it is trivial to establish
satisfiability of /C (which can be done by means of the algo-
rithm Consistent). Then, by executing Answer(q, K), we
first obtain Normalize(K), which is computed by adding to
7T all NIs implied by 7, i.e.,:

dTeachesTo™ C = Professor JHasTutor™ E —Student.

Then, Eval(SQL(PerfectRef(¢,7)),DB(.A)) returns the
set {Mary}. In particular, Mary is returned by the eval-
uation of the SQL transformation of the query ¢(z) <«
HasTutor(_, x). "

Correctness We now prove correctness of the above de-
scribed query answering technique. To this aim, we use
a chase-like technique [2]. Given a normalized KB K =
(T, A), we call chase of KC (denoted by chase(K)) the (pos-
sibly infinite) ABox obtained starting from A and clos-
ing it with respect to the following chase rules: (i) if
Bi(a) € chase(K) and By T By € 7T, then add
Bs(a) to chase(KC); (i) if AR(a) € chase(K) (respectively,
IR~ (a) € chase(K)) and there exists no individual b such
that R(a,b) € chase(K) (resp., R(b,a) € chase(K)), then
add the assertions R(a,n) and AR~ (n) (resp., R(n,a) and
JR(n)) to chase(K), where n is a new constant of A not
already occurring in chase(KC).

Intuitively, the correctness of our query processing tech-
nique is based on a crucial property of chase(K): if K is sat-
isfiable, then chase(K) is a representative of all models of /.
This property implies that query answering can be in prin-
ciple done by evaluating the query over chase(K) seen as a
database. However, since chase(K) is in general infinite, we
obviously avoid the construction of the chase. Rather, as we
said before, we are able to compile the TBox into the query,
thus simulating the evaluation of the query over the (in gen-
eral infinite) chase by evaluating a finite reformulation of the
query over the initial ABox.

We first establish correctness of the technique for deciding
satisfiability of a DL-Lite KB.

SNotice that, if K is unsatisfiable, query answering is meaning-
less, since every tuple is in the answer to every query.

Theorem 2 Let K = (T, .A) be a normalized DL-Lite KB.
K is satisfiable iff the algorithm Consistent returns true.

We now establish correctness of the algoritm Answer un-
der the assumption that the KB is satisfiable.

Theorem 3 Let K = (7, .A) be a satisfiable DL-Lite KB, let
q be a CQ, and let ¢ be a tuple of constants from A. Then,
¢ € ans(q,K) iff ¢ € Answer(q, K).

Complexity First, we analyze complexity of KB satisfia-
bility in DL-Lite.

Theorem 4 Satisfiability of a DL-Lite KB K can be decided
in time polynomial in the size of K.

Proof (sketch). The proof immediately follows from the
following facts: (i) the algorithm Normalize runs in time
polynomial in the size of K; (ii) the algorithm Consistent
is correct; (iii) the algorithm Consistent runs in time poly-
nomial in the size of the input. U

Then, from correctness of the algorithm Answer, we are
immediately able to characterize complexity of conjunctive
query answering in DL-Lite w.r.t. data complexity.

Theorem 5 Conjunctive query answering in DL-Lite is in
PTIME in data complexity.

We are also able to characterize the combined complexity
(i.e., the complexity w.r.t. the size of X and ¢) of conjunctive
query answering in DL-Lite.

Theorem 6 Conjunctive query answering in DL-Lite is NP-
complete in combined complexity.

Proof (sketch). Membership in NP is a consequence of
the fact that, given any DL-Lite KB K, if ¢ € ans(q,K),
then it is possible to nondeterministically construct a poly-
nomial fragment of chase(K) which contains an image of
q(&). NP-hardness follows from NP-hardness of conjunctive
query evaluation over relational databases. U

Finally, since in DL-Lite it is possibile to polynomially
reduce containment between CQs to query answering, from
the above results it follows that containment of conjunctive
queries in DL-Lite is NP-complete.

Summarizing, the above results show a very nice compu-
tational behavior of queries in DL-Lite: reasoning in DL-Lite
is computationally no worse than standard conjunctive query
answering (and containment) in relational databases.

Discussion and related work

DL-Lite is a fragment of expressive DLs with assertions and
inverses studied in the 90’s (see [4] for an overview), which
are at the base of current ontology languages such as OWL,
and for which optimized automated reasoning systems such
as Fact and Racer have been developed. Indeed, one could
use, off-the-shelf, a system like Racer to perform KB sat-
isfiability, instance checking (of concepts), and logical im-
plication of inclusion assertions in DL-Lite. Also, reasoning
with conjunctive queries in these DLs has been studied (see
e.g. [11]), although not yet implemented in systems. Un-
fortunately, the reasoning procedures for these DLs are all
EXPTIME-hard, and more importantly they are not tailored



towards obtaining tight complexity bounds with respect to
data complexity. Conjunctive queries combined with DLs
were also considered in [16, 13], but again data complexity
was not the main concern.

There has been a lot of work in DLs on the boundary
between polynomial and exponential reasoning. This work
first concentrated on DLs without the TBox component of
the KB, and led to the development of simple DLs, such as
ALN, that admit polynomial instance checking. However,
for minor variants of ALN, such as ALE (where we in-
troduce qualified existential and drop number restrictions),
FLE (where we additionally drop negated atomic con-
cept), and ALU (where we introduce union and drop num-
ber restrictions), instance checking, and therefore conjunc-
tive query answering, is coNP-complete in data complex-
ity [12]. Indeed, the argument used in the proof of coNP-
hardness of ALE, FLE™, and ALU in [12], immediately
implies the following theorem.

Theorem 7 Answering conjunctive queries is coNP-hard in
data complexity (even in KBs with empty TBoxes), if we ex-
tend DL-Lite with one of the following features: (1) either
VR.A or = A can appear in left-hand sides of inclusion as-
sertions; (2) either VR.A or = A can appear as atoms in the
query; (3) union of concepts can appear in the right-hand
side of inclusion assertions.

If we allow for cyclic inclusion assertions in the KB,
then even subsumption in CLASSIC and ALN becomes in-
tractable [9]7. Observe that DL-Lite does allow for cyclic
assertions without falling into intractability. Indeed, we can
enforce the cyclic propagation of the existence of an R-
successor using the two DL-Lite inclusion assertions A C
dR, dR~ C A. The constraint imposed on a model is
similar to the one imposed by the ALN cyclic assertion
A C JR M VR.A, though stronger, since it additionally en-
forces the second component of R to be typed by A. In
order to keep tractability even in the presence of cycles,
DL-Lite imposes restrictions on the use of the VR.C' con-
struct, which, if used together with inclusion assertions, im-
mediately would lead to intractability [9].

Our work is also tightly related to work in databases on
implication of integrity constraints (ICs) [2] and on query
answering in the presence of ICs under an open world se-
mantics (see, e.g., [8, 3, 14, 7]). Rephrased as ICs, DL-Lite
TBoxes allow for expressing special forms of inclusion de-
pendencies (i.e., ISA, role typing, and participation con-
straints), multiple keys on relations (i.e., functionality re-
strictions), and exclusion dependencies (i.e., disjointness
and non-participation constraints)®. The results that we re-
port here show that DL-Lite inclusion assertions form one of
the largest class of ICs for which query answering remains
polynomial.

Conclusions

We have described DL-Lite, a new DL specifically tailored
to capture conceptual data models and basic ontology lan-

"Note that a TBox with only acyclic inclusion assertions can
always be transformed into an empty TBox.

8Notice that this combination of ICs has only been studied in
[71, but under a different semantics wrt the one adopted in DLs.

guages, while keeping the worst-case complexity of sound
and complete reasoning tractable.

In this paper we focused on binary roles only, but it is pos-
sible to extend our reasoning techniques to n-ary relations
without loosing their nice computational properties. We are
working on other interesting extensions to DL-Lite, such as
the introduction of subset constraints on roles. The results
of [10] imply that finding an adaptation of our query answer-
ing technique is going to be a hard problem.
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