Seminars in Software Engineering
Semantic Data and Service Integration
Part 1: First-Order Queries

Giuseppe De Giacomo
Sapienza Universita di Roma
Laurea Specialistica in Ingegneria Informatica - Master in Computer Engineering

2007/08

Overview of Part 1: First-order queries

© First-order logic

@ Syntax of first-order logic
@ Semantics of first-order logic
© First-order logic queries

@ First-order query evaluation

©® Query evaluation problem
@ Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries

(2/66)

Overview of Part 1: First-order queries

@ First-order logic

@ Syntax of first-order logic
@ Semantics of first-order logic
© First-order logic queries

G. De Giacomo Part 1: First-Order Queries

Overview of Part 1: First-order queries

© First-order logic

@ Syntax of first-order logic
@ Semantics of first-order logic
© First-order logic queries

@ First-order query evaluation

© Query evaluation problem
@ Complexity of query evaluation

© Conjunctive queries

@ Evaluation of conjunctive queries
@ Containment of conjunctive queries
© Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries

(2/66)

(2/66)

Syntax of first-order logic Semantics of first-order logic
[eYele) 0000

Chapter |

First-Order Logic

First-order logic queries
0000

Chap. 1: First-Order Logic

G. De Giacomo Part 1: First-Order Queries

Syntax of first-order logic Semantics of first-order logic
000 0000

Outline

@ Syntax of first-order logic

G. De Giacomo Part 1: First-Order Queries

(3/66)

First-order logic queries
0000

Chap. 1: First-Order Logic

(5/66)

Syntax of first-order logic Semantics of first-order logic
[eYele) 0000

QOutline

@ Syntax of first-order logic
© Semantics of first-order logic

© First-order logic queries

G. De Giacomo Part 1: First-Order Queries

Syntax of first-order logic Semantics of first-order logic
®00 0000

First-order logic

First-order logic queries
0000

Chap. 1: First-Order Logic

(4/66)

First-order logic queries
0000

Chap. 1: First-Order Logic

o First-order logic (FOL) is the logic to speak about objects, which

are the domain of discourse or universe.

@ FOL is concerned about properties of these objects and relations

over objects (resp., unary and n-ary predicates).

@ FOL also has functions including constants that denote objects.

G. De Giacomo Part 1: First-Order Queries

(6/66)

Syntax of first-order logic Semantics of first-order logic
oeo 0000

FOL syntax — Terms

We first introduce:

o Aset Vars = {x,..
that denote single objects).

@ A set of functions symbols, each of given arity > 0.

Functions of arity 0 are called constants.

Def.: The set of Terms is defined inductively as follows:

o Vars C Terms;
o If tl, .
fE(ty, ..

@ Nothing else is in Terms.

., tx) € Terms;

G. De Giacomo Part 1: First-Order Queries

Syntax of first-order logic Semantics of first-order logic
feYele} 0000

Outline

© Semantics of first-order logic

G. De Giacomo Part 1: First-Order Queries

., Tp t of individual variables (i.e., variables

.., t, € Terms and f* is a k-ary function symbol, then

First-order logic queries Syntax of first-order logic
0000 ooe

Chap. 1: First-Order Logic

Semantics of first-order logic
0000

First-order logic queries
0000

Chap. 1: First-Order Logic

FOL syntax — Formulas

Def.: The set of Formulas is defined inductively as follows:

o Ift1,...,ty € Terms and P* is a k-ary predicate, then
Pk(ty,...,tx) € Formulas (atomic formulas).

@ If t1,ty € Terms, then t; =ty € Formulas.
o If ¢ € Formulas and ¥ € Formulas then

o —p € Formulas

o p A € Formulas
o ¢V € Formulas
o ¢ — ¢ € Formulas

o If ¢ € Formulas and x € Vars then

o Jx.p € Formulas
o Vz.p € Formulas

@ Nothing else is in Formulas.

Note: a predicate of arity O is a proposition of propositional logic.

(7/66) G. De Giacomo Part 1: First-Order Queries (8/66)

First-order logic queries Syntax of first-order logic
0000 000

Chap. 1: First-Order Logic

Semantics of first-order logic
©000

First-order logic queries
0000

Chap. 1: First-Order Logic

Interpretations

Given an alphabet of predicates Py, P, ... and functions f1, fo,...,
each with an associated arity, a FOL interpretation is:

T=(AT,PEPE . fEfE)

where:
@ A7 is the domain (a set of objects)
o if P is a k-ary predicate, then PZ C AT x ... x AT (k times)
e if f; is a k-ary function, then f7 : AT x ... x AT — AT (k times)
@ if f; is a constant (i.e., a 0-ary function), then fZ : () — AZ
(i.e., fi denotes exactly one object of the domain)

(9/66) G. De Giacomo Part 1: First-Order Queries (10/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries Syntax of first-order logic Semantics of first-order logic First-order logic queries
[eYele) 0®00 0000 [eYele) [oYe] Yol 0000

Chap. 1: First-Order Logic Chap. 1: First-Order Logic

Assignment Truth in an interpretation wrt an assignment

We define when a FOL formula ¢ is true in an interpretation Z wrt an

Let Vars be a set of (individual) variables. i)
assignment «, written 7, v = -

Def.: Given an interpretation Z, an assignment is a function o Z,a k= P(ty,...,ty) if (&(t1),...,a&(ty)) € P*
. T [*] I,a):tl :tg if &(tl) :éé(tg)
a: Vars — A oT,ak—p ifTalty
that assigns to each variable z € Vars an object a(z) € AZ. ’ o Z,aEpNyYy fL,aFypand a1

o Z.aEFeVy ifLaEporZ,akEy
o T,aEFp—1vY ifZ,alEyimpliesZ,a k=

It is conv.erTient to ext.end :che notion of assiIgr.]ment .to terms. We can do o Z,a |=3x.¢0 if for some a € AT we have 7,z — a] = ¢
so by defining a function & : Terms — A* inductively as follows: o Z,a =Vx.po if for every a € AT we have T, afz — a] = ¢
o &(z) =a(z), if x € Vars
. T/ ~ . .
o &(f(ty,....tr) = fE(altr), ..., a(ty)) Here, ajx +— a] stands for the new assignment obtained from « as
follows:
afz — al(x) =a
Note: for constants G(c) = c*. alz = dl(y) = aly) fory#z
G. De Giacomo Part 1: First-Order Queries (11/66) G. De Giacomo Part 1: First-Order Queries (12/66)
Syntax of first-order logic Semantics of first-order logic First-order logic queries Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 oooe 0000 000 0000 0000
Chap. 1: First-Order Logic Chap. 1: First-Order Logic
Open vs. closed formulas Outline
Definitions

@ A variable = in a formula ¢ is free if does not occur in the scope
of any quantifier, otherwise it is bounded.

@ An open formula is a formula that has some free variable.

@ A closed formula, also called sentence, is a formula that has no free
variables.

For closed formulas (but not for open formulas) we can define what it © First-order logic queries

means to be true in an interpretation, written Z): ©, without
mentioning the assignment, since the assignment « does not play any
role in verifying Z, « |= .

Instead, open formulas are strongly related to queries — cf. relational
databases.

G. De Giacomo Part 1: First-Order Queries (13/66) G. De Giacomo Part 1: First-Order Queries (14/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
[eYele) 0000 ®000

Chap. 1: First-Order Logic

FOL queries

Def.: A FOL query is an (open) FOL formula.

When ¢ is a FOL query with free variables (z1,...,x), then we
sometimes write it as ¢(x1,...,xy), and say that ¢ has arity k.

Given an interpretation Z, we are interested in those assignments that

map the variables x1, ...,z (and only those). We write an assignment
ast a(z;)=a; fori=1,...,k, as {(a1,...,ax).
Def.: Given an interpretation Z, the answer to a query ¢(x1,...,xx) is

o(x1,...,2x)t ={(ay,...,ax) | Z,{a1,...,ax) = o(z1,...,2%)}

Note: We will also use the notation (pI, which keeps the free variables
implicit, and ¢(Z) making apparent that ¢ becomes a functions from
interpretations to set of tuples.

G. De Giacomo Part 1: First-Order Queries (15/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 [e]e] le}

Chap. 1: First-Order Logic

FOL formulas: logical tasks

Definitions

o Validity: ¢ is valid iff for all Z and o we have that Z, o = ¢.

@ Satisfiability: ¢ is satisfiable iff there exists an Z and « such that
Z,a = ¢, and unsatisfiable otherwise.

@ Logical implication: ¢ logically implies v, written ¢ |= 1 iff for all
Zand o, if Z,a = ¢ then Z, o |= 9.

@ Logical equivalence: ¢ is logically equivalent to 1, iff for all Z and

a, we have that Z,a = ¢ iff Z,a =1 (i.e., ¢ =¥ and ¢ = ¢).

G. De Giacomo Part 1: First-Order Queries (17/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
[eYele) 0000 0®00

Chap. 1: First-Order Logic

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query ¢() is defined as follows:

207 ={01Z,0 E»0}

Such an answer is

0o (), fIkEy
o (), ifZ .
As an obvious convention we read () as “true” and () as “false”.

G. De Giacomo Part 1: First-Order Queries (16/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 [elefe]

Chap. 1: First-Order Logic

FOL queries — Logical tasks

@ Validity: if ¢ is valid, then gpz =AT x ... x AL forall Z, i.e., the
query always returns all the tuples of 7.

o Satisfiability: if o is satisfiable, then ¢ # () for some Z, i.e., the
query returns at least one tuple.

@ Logical implication: if ¢ logically implies 1, then p? C 4 for all
Z, written ¢ C 1), i.e., the answer to ¢ is contained in that of 4 in

every interpretation. This is called query containment.

@ Logical equivalence: if ¢ is logically equivalent to 1, then p? = %
for all Z, written o = 1), i.e., the answer to the two queries is the
same in every interpretation. This is called query equivalence and
corresponds to query containment in both directions.

Note: These definitions can be extended to the case where we have
axioms, i.e., constraints on the admissible interpretations.

G. De Giacomo Part 1: First-Order Queries (18/66)

Query evaluation problem Complexity of query evaluation Query evaluation problem Complexity of query evaluation
00000 000000 00000 000000

Chap. 2: First-Order Query Evaluation Chap. 2: First-Order Query Evaluation

QOutline

Chapter Il
@ Query evaluation problem
First-Order ry Evaluation : :
st-Order Que y uat © Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries (19/66) G. De Giacomo Part 1: First-Order Queries (20/66)
Query evaluation problem Complexity of query evaluation Query evaluation problem Complexity of query evaluation
00000 000000 ©0000 000000

Chap. 2: First-Order Query Evaluation Chap. 2: First-Order Query Evaluation
Outline Query evaluation

Let us consider:

@ a finite alphabet, i.e., we have a finite number of predicates and

@ Query evaluation problem functions, and

@ a finite interpretation Z, i.e., an interpretation (over the finite
alphabet) for which A is finite.

Then we can consider query evaluation as an algorithmic problem, and
study its computational properties.

Note: To study the computational complexity of the problem, we need
to define a corresponding decision problem.

G. De Giacomo Part 1: First-Order Queries (21/66) G. De Giacomo Part 1: First-Order Queries (22/66)

Query evaluation problem Complexity of query evaluation
08000 000000

Chap. 2: First-Order Query Evaluation

Query evaluation problem

Definitions
@ Query answering problem: given a finite interpretation Z and a FOL
query ¢(x1,...,x), compute

@I:{(al,...,ak) | Z,{a1,...,ax) F o(x1,...,2%)}

@ Recognition problem (for query answering): given a finite
interpretation Z, a FOL query ¢(z1,...,2x), and a tuple
(ai,...,ax), with a; € AT, check whether (ay,...,a;) € ¢, ie.,
whether

Z,{a1,...,ar) = p(z1,...,2K)

Note: The recognition problem for query answering is the decision
problem corresponding to the query answering problem.

G. De Giacomo Part 1: First-Order Queries (23/66)

Query evaluation problem Complexity of query evaluation
[e]e]e] e} 000000

Chap. 2: First-Order Query Evaluation
Query evaluation algorithm (cont'd)

boolean Truth(Z,a,p) {
if (p is t.1 =1t2)
return TermEval(Z,«,t-1) = TermEval(Z,a,t-2);
if (p is P(t1,...,tk))
return PZ(TermEval(Z,a,t.1),...,TermEval(Z,o,t_k));
if (p is =)
return —Truth(Z,a,v);
if (¢ is o)
return Truth(Z,a,v) o Truth(Z,a,v’);
if (p is Jz.ap) {
boolean b = false;
for all (a € AT)
b = b V Truth(Z,afz — a],¥);
return b;
}
if (p is Vz.ap) {
boolean b = true;
for all (a € AT)
b = b A Truth(Z,afz — a],?¥);
return b;
}
}

G. De Giacomo Part 1: First-Order Queries (25/66)

Query evaluation problem Complexity of query evaluation
00000 000000

Chap. 2: First-Order Query Evaluation

Query evaluation algorithm

We define now an algorithm that computes the function Truth(Z, «,)
in such a way that Truth(Z, o, ¢) = true iff Z, o = .

We make use of an auxiliary function TermEval(Z, «,t) that, given an
interpretation Z and an assignment «, evaluates a term ¢ returning an
object 0 € AT:

AT TermEval(Z,a,t) {
if (¢t is x € Vars)
return a(x);
if (¢ is f(t-1,...,tk))
return fI (TermEval(Z,a,t1),...,TermEval (Z,«a,t k));

Then, Truth(Z, a,) can be defined by structural recursion on .

G. De Giacomo Part 1: First-Order Queries (24/66)

Query evaluation problem Complexity of query evaluation
[e]e]ele]] 000000

Chap. 2: First-Order Query Evaluation

Query evaluation — Results

Theorem (Termination of Truth(Z, «, ¢))

The algorithm Truth terminates.

Proof. Immediate. O

Theorem (Correctness)

The algorithm Truth is sound and complete, i.e., Z,« |= ¢ if and only if
Truth(Z, «, @) = true.

Proof. Easy, since the algorithm is very close to the semantic definition
of Z,a = . O

G. De Giacomo Part 1: First-Order Queries (26/66)

Query evaluation problem

00000

Complexity of query evaluation
000000

Chap. 2: First-Order Query Evaluation

Outline

Q Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries (27/66)

Query evaluation problem

00000

Complexity of query evaluation
©00000

Chap. 2: First-Order Query Evaluation

Query evaluation — Time complexity |

P (of arity k) can be represented as k-dimensional boolean array,
hence accessing the required element can be done in time linear in
121

Truth(...) for the boolean cases simply visits the formula, so
generates either one or two recursive calls.

Truth(...) for the quantified cases 3z. and V.1 involves looping
for all elements in AT and testing the resulting assignments.

@ The total number of such testings is O(|Z|#Vo").
Hence the claim holds. O
G. De Giacomo Part 1: First-Order Queries (29/66)

Query evaluation problem
00000 ©00000

Chap. 2: First-Order Query Evaluation

Query evaluation problem
00000 [efe] 1 lele}

Chap. 2: First-Order Query Evaluation

Query evaluation — Time complexity |

Theorem (Time complexity of Truth(Z, «, ¢))

The time complexity of Truth(Z, a, ¢) is (|Z| + |a| + |¢])¢!, i.e.,
polynomial in the size of Z and exponential in the size of ¢.

Proof.

o f7T (of arity k) can be represented as k-dimensional array, hence
accessing the required element can be done in time linear in |Z|.

@ TermEval(...) visits the term, so it generates a polynomial number
of recursive calls, hence is time polynomial in (|Z] + |a| + |¢]).

G. De Giacomo Part 1: First-Order Queries (28/66)

Query evaluation — Space complexity |

Theorem (Space complexity of Truth(Z, a, ¢))

The space complexity of Truth(Z, a, @) is |¢| - (|| - log |Z
logarithmic in the size of Z and polynomial in the size of .

), i.e.,

Proof.

@ fZ(...) can be represented as k-dimensional array, hence accessing
the required element requires O(log|Z|);

@ TermEval(...) simply visits the term, so it generates a polynomial
number of recursive calls. Each activation record has a constant
size, and we need O(|p|) activation records;

@ PZ(...) can be represented as k-dimensional boolean array, hence
accessing the required element requires O(log|Z|);

G. De Giacomo Part 1: First-Order Queries (30/66)

Complexity of query evaluation

Complexity of query evaluation

Query evaluation problem Complexity of query evaluation
00000 000000

Chap. 2: First-Order Query Evaluation

Query evaluation — Space complexity Il

@ Truth(...) for the boolean cases simply visits the formula, so
generates either one or two recursive calls, each requiring constant
size;

@ Truth(...) for the quantified cases 3x.¢ and V.1 involves looping
for all elements in AT and testing the resulting assignments;

@ The total number of activation records that need to be at the same
time on the stack is O(# Vars) < O(|¢]).

Hence the claim holds. O

Note: the worst case form for the formula is

Vai.dxe. - Va,—1.3x,.P(x1, 22, ..., Tp_1, Zn).

G. De Giacomo Part 1: First-Order Queries (31/66)

Query evaluation problem Complexity of query evaluation
00000 00000e

Chap. 2: First-Order Query Evaluation

Query evaluation — Combined, data, query complexity

Theorem (Combined complexity of query evaluation)
The complexity of {(Z,a,¢) | Z,a = ¢} is:

@ time: exponential
@ space: PSPACE-complete — see [Var82| for hardness

Theorem (Data complexity of query evaluation)
The complexity of {(Z,a) | Z,a |= ¢} is:

@ time: polynomial

@ space: LOGSPACE
Theorem (Query complexity of query evaluation)

The complexity of {{o,p) | Z,a = ¢} is:

@ time: exponential
@ space: PSPACE-complete — see [Var82] for hardness

G. De Giacomo Part 1: First-Order Queries (33/66)

Query evaluation problem Complexity of query evaluation
00000 000000

Chap. 2: First-Order Query Evaluation

Query evaluation — Complexity measures [\Var82]

Definition (Combined complexity)

The combined complexity is the complexity of {(Z,a,) | Z, o = p},
i.e., interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)

The data complexity is the complexity of {(Z, o) | Z, = ¢}, i.e., the
query ¢ is fixed (and hence not considered part of the input).

Definition (Query complexity)

The query complexity is the complexity of {(a, ¢) | Z,a |= ¢}, i.e., the
interpretation Z is fixed (and hence not considered part of the input).

G. De Giacomo Part 1: First-Order Queries (32/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Chapter Il

Conjunctive Queries

G. De Giacomo Part 1: First-Order Queries (34/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Outline

@ Evaluation of conjunctive queries
@ Containment of conjunctive queries

© Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (35/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
9000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form
3. conj(7, §)
where conj(Z,) is a conjunction (i.e., an “and”) of atoms and

equalities, over the free variables #, the existentially quantified
variables 3/, and possibly constants.

Note:

@ CQs contain no disjunction, no negation, no universal
quantification, and no function symbols besides constants.

@ Hence, they correspond to relational algebra select-project-join
(SPJ) queries.

@ CQs are the most frequently asked queries.

G. De Giacomo Part 1: First-Order Queries (37/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

QOutline

@ Evaluation of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (36/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0®00000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries
0®00000000 00000000000 0000000

Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example
Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age

Evaluation of conjunctive queries
0®00000000 00000000000 0000000

Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2 FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = Ll.person AND P.name = M.employee AND WHERE P.name = Ll.person AND P.name = M.employee AND
M.boss = L2.person AND Ll.city = L2.city M.boss = L2.person AND Ll.city = L2.city

Expressed as a CQ:

3b, e, p1, c1,p2, co.Person(n, a) A Manages(b, e) A Lives(pl, c1) A Lives(p2, ¢2) A
n=pl An=e N b=p2 N cl =c2

G. De Giacomo Part 1: First-Order Queries (38/66) G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0®00000000 00000000000 0000000 00®0000000 00000000000 0000000

Chap. 3: Conjunctive Queries Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example Datalog notation for CQs

Relational alphabet: A CQ g = Jy.conj(Z,y) can also be written using datalog notation as

Person(name, age), Lives(person,city), Manages(boss,employee) (1) — conj'(Z1, 1)

Query: return name and age of all persons that live in the same city as where conj’(Z1, 1) is the list of atoms in conj(Z, §) obtained by

their boss. equating the variables ¥, ¢ according to the equalities in conj(Z, 7).

Expressed in SQL: As a result of such an equality elimination, we have that Z; and 4 can

SELECT P.name, P.age contain constants and multiple occurrences of the same variable.

FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = Ll.person AND P.name = M.employee AND

M.boss = L2.person AND Lil.city = L2.city D3 e clsee ey g i Lt
@ ¢(¥1) the head;

Expressed as a CQ: @ conj'(Z1, 1) the body;

3b, e, p1, c1,p2, ca.Person(n, a) A Manages(b, e) A Lives(pl, c1) A Lives(p2, ¢2) A
n=pl An=e N b=p2 N cl =c2
Or simpler: 3b, c.Person(n, a) A Manages(b, n) A Lives(n, ¢) A Lives(b, c)

@ the variables in 77 the distinguished variables;

@ the variables in g the non-distinguished variables.

G. De Giacomo Part 1: First-Order Queries (38/66) G. De Giacomo Part 1: First-Order Queries (39/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000®000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Conjunctive queries — Example

o Consider an interpretation Z = (A%, EZ), where E7 is a binary
relation — note that such interpretation is a (directed) graph.

@ The following CQ ¢ returns all nodes that participate to a triangle
in the graph:

Jy, 2.E(z,y) N E(y,2) N E(2,2)
@ The query ¢ in datalog notation becomes:
q(x) — E(z,y), E(y,2), E(z,z)

@ The query ¢ in SQL is (we use Edge (£f,s) for E(x,y):
SELECT E1.f
FROM Edge E1, Edge E2, Edge E3
WHERE El.s = E2.f AND E2.s = E3.f AND E3.s = El1.f

G. De Giacomo Part 1: First-Order Queries (40/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
00000@0000 00000000000 0000000

Chap. 3: Conjunctive Queries

Nondeterministic CQ evaluation algorithm

boolean Truth(Z,a,p) {
if (p is t-1=12)
return TermEval (Z,a,t_1) = TermEval(Z,a,t2);
if (p is P(t1,...,t_k))
return PZ(TermEval(Z,«,t1),...,TermEval(Z,a,tk));
if (¢ is Y AY)
return Truth(Z,a,¥) A Truth(Z,a,vy’);
}

AT TermEval(Z,a,t) {

if (¢t is a variable z) return o(z);
if (¢t is a constant ¢) return ¢Z;

G. De Giacomo Part 1: First-Order Queries (42/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000®00000 00000000000 0000000

Chap. 3: Conjunctive Queries

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it
by:
© guessing a truth assignment for the non-distinguished variables;

Q evaluating the resulting formula (that has no quantifications).

boolean ConjTruth(Z,«,3y.conj(Z,y)) {
GUESS assignment o[y — d] {
return Truth(Z,a[y— d], conj(Z, 7)) ;

}

where Truth(Z, «, ¢) is defined as for FOL queries, considering only the
required cases.

G. De Giacomo Part 1: First-Order Queries (41/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000@000 00000000000 0000000

Chap. 3: Conjunctive Queries

CQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)
{{Z,0,q) | Z,a |= q} is NP-complete — see below for hardness
@ time: exponential
@ space: polynomial
Theorem (Data complexity of CQ evaluation)
{{Z,a) | Z,a = q} is LOGSPACE
@ time: polynomial
@ space: logarithmic
Theorem (Query complexity of CQ evaluation)
{{o,q) | T, |= ¢} is NP-complete — see below for hardness

@ time: exponential
@ space: polynomial

G. De Giacomo Part 1: First-Order Queries (43/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

G. De Giacomo Part 1: First-Order Queries (44/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000080 00000000000 0000000

Chap. 3: Conjunctive Queries

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph. We define:
@ An Interpretation: T = (A%, ET) where:
o AT ={r g b}
o BT = {(r,g), (g, 1) (r;b), (b, 1), (g, b), (b,)}

@ A conjunctive query: Let V = {x1,...,z,}, then consider the
boolean conjunctive query defined as:

G = Hmla"'axn' /\ E(.TZ,J,'])/\E(ZU],JLL)

(wi,Zj)EE
Theorem
G is 3-colorable iff 7 = qq.
G. De Giacomo Part 1: First-Order Queries (45/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

G. De Giacomo Part 1: First-Order Queries (44/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000000e 00000000000 0000000

Chap. 3: Conjunctive Queries

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity. J

G. De Giacomo Part 1: First-Order Queries (46/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000000e 00000000000 0000000 0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries Chap. 3: Conjunctive Queries

NP-hardness of CQ evaluation Outline

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.
@ Containment of conjunctive queries

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound
for query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity. J
G. De Giacomo Part 1: First-Order Queries (46/66) G. De Giacomo Part 1: First-Order Queries (47/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 ©0000000000 0000000 0000000000 08000000000 0000000
Chap. 3: Conjunctive Queries Chap. 3: Conjunctive Queries
Homomorphism Recognition problem and boolean query evaluation

Let Z= (AL, P%,...;cF,..)and J = (A7, P7,...,¢7,...) be two
interpretations over the same alphabet (for simplicity, we consider only

constants as functions). Consider the recognition problem associated to the evaluation of a query

q of arity k. Then
Def.: A homomorphism from Z to J

is a mapping h : AT — A7 such that: I,a =gz, an) iff Zacl=aler, .. cr)

C h(CI) = ¢J where 7, z is identical to Z but includes new constants ¢y, ..., ¢ that
Z i T =
o h(P*(ar,...,a)) = PI(h(ar),.. ., h(ax)) are interpreted as ¢; " = a(x;).
Note: An isomorphism is a homomorphism that is one-to-one and onto. That is, we can reduce the recognition problem to the evaluation of a
Theorem boolean query. J
FOL is unable to distinguish between interpretations that are isomorphic.J

Proof. See any standard book on logic. [

G. De Giacomo Part 1: First-Order Queries (48/66) G. De Giacomo Part 1: First-Order Queries (49/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries Chap. 3: Conjunctive Queries
Canonical interpretation of a (boolean) CQ Canonical interpretation of a (boolean) CQ — Example
Let g be a conjunctive query Jxq,...,Z,.conj Consider the boolean query ¢
Def.: The canonical interpretation Z, associated with ¢ g(c) — E(c,y), E(y, 2), E(z, ¢)

is the interpretation Z, = (A%e, PZa, ... e ...), where

o Ala = {z1,...,2,} U{c]| c constant occurring in ¢},
i.e., all the variables and constants in g;

: _ (AZy Iy
o cfa =¢, for each constant c in g; I, = (A", E%1)

o (t1,...,tg) € PTa iff the atom P(ty,...,t) occurs in q.

Then, the canonical interpretation Z, is defined as

) where
o Ala ={y 2z}

Sometimes the procedure for obtaining the canonical interpretation is o Eti ={(c,y), (y,2),(z,¢)}

called freezing of q. o Li— ¢
G. De Giacomo Part 1: First-Order Queries (50/66) G. De Giacomo Part 1: First-Order Queries (51/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0000@000000 0000000 0000000000 00000@00000 0000000

Chap. 3: Conjunctive Queries Chap. 3: Conjunctive Queries

Canonical interpretation and (boolean) CQ evaluation Canonical interpretation and (boolean) CQ evaluation

Theorem ([CM77])

. . . Th i | h foll :
For boolean CQs, Z = ¢ iff there exists a homomorphism from Z, to Z. e previous result can be rephrased as follows

(The recognition problem associated to) query evaluation can be
reduced to finding a homomorphism.
Proof.

“=" Let T = q, let o be an assignment to the existential variables that
makes ¢ true in Z, and let & be its extension to constants. Then & is a

homomorphism from Z, to 7. Finding a homomorphism between two interpretations (aka relational

structures) is also known as solving a Constraint Satisfaction Problem

“«" Let h be a homomorphism from Z, to Z. Then restricting h to (CSP), a problem well-studied in Al — see also [K\/98].
the variables only we obtain an assignment to the existential variables
that makes ¢ true in Z. O

G. De Giacomo Part 1: First-Order Queries (52/66) G. De Giacomo Part 1: First-Order Queries (53/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 000000@0000 0000000

Chap. 3: Conjunctive Queries

Query containment

Def.: Query containment

Given two FOL queries ¢ and ¢ of the same arity, is contained in),
denoted ¢ C 1), if for all interpretations Z and all assignments a we
have that

Z,alE= ¢ implies Z,a k=1

(In logical terms: ¢ |=1).)

Note: Query containment is of special interest in query optimization.

G. De Giacomo Part 1: First-Order Queries (54/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0000000e@000 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs

For CQs, query containment ¢; (%) C ¢2(Z) can be reduced to query
evaluation.

@ Freeze the free variables, i.e., consider them as constants.
This is possible, since ¢ (Z) C ¢2(7) iff
o T,a = 1 (%) implies Z, e = ¢2(%), for all Z and «; or equivalently
o Tnz = ¢1(¢) implies Ty 2 = q2(0), for all Z,, z, where € are new
constants, and Z, z extends 7 to the new constants with

cled = a(r).

@ Construct the canonical interpretation Z,, (# of the CQ ¢1(¢) on the
left hand side . ..

© ...and evaluate on Z, & the CQ g2(¢) on the right hand side,

i.e., check whether 7, & [= ¢2(c)

G. De Giacomo Part 1: First-Order Queries (55/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 000000@0000 0000000

Chap. 3: Conjunctive Queries

Query containment

Def.: Query containment

Given two FOL queries ¢ and ¢ of the same arity, is contained in),
denoted ¢ C 1), if for all interpretations Z and all assignments a we
have that

I,a= ¢ implies Z,a k=1

(In logical terms: ¢ |=1).)

Note: Query containment is of special interest in query optimization.

Theorem
For FOL queries, query containment is undecidable. J

Proof.: Reduction from FOL logical implication. [

G. De Giacomo Part 1: First-Order Queries (54/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000800 0000000

Chap. 3: Conjunctive Queries

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])
For CQs, q1(Z) C q2(7) iff I, (& = q2(C), where € are new constants. J

Proof.
“=" Assume that ¢1(Z) C ¢2(7).

@ Since 7,z = qu(€) it follows that Z,, (5 = ¢2(C).
“<" Assume that 7, (o) = ¢2(C).

@ By [CM77] on hom., for every Z such that Z |= ¢, (¢) there exists a
homomorphism h from 7, (z to T.

@ On the other hand, since 7,) [= ¢2(¢), again by [CM77] on hom., there
exists a homomorphism 1/ from 7,) to Z,, (5.

@ The mapping hoh' (obtained by composing h and h') is a homomorphism
from 7., to Z. Hence, once again by [CM77] on hom., T k= ¢2(7).

So we can conclude that ¢;(¢) C ¢2(¢), and hence ¢; (%) C ¢2(7). O
G. De Giacomo Part 1: First-Order Queries (56/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000080 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs

For CQs, we also have that (boolean) query evaluation 7 |= ¢ can be
reduced to query containment.

Let T = (AL, PZ,....cF,..0).

We construct the (boolean) CQ ¢z as follows:
@ g7 has no existential variables (hence no variables at all);
@ the constants in g7 are the elements of AZ:

@ for each relation P interpreted in Z and for each fact
(ai,...,a;) € P%, qz contains one atom P(ay,...,a;) (note that
each a; € AT is a constant in qz).

Theorem
For CQs, Z = ¢ iff ¢z Cq.

G. De Giacomo Part 1: First-Order Queries (57/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0000000000e 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity
of CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete. J

Since CQ evaluation is NP-complete even in query complexity, the
above result can be strengthened:

Theorem

Containment ¢1(Z) C ¢2(Z) of CQs is NP-complete, even when ¢ is
considered fixed.

G. De Giacomo Part 1: First-Order Queries (58/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0000000000e 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity
of CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete. J

G. De Giacomo Part 1: First-Order Queries (58/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Outline

© Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (59/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 ©000000

Chap. 3: Conjunctive Queries

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form
\/ 3iji-conj (%, 5)
i=1,....,n

where each conj,;(Z,¥;) is a conjunction of atoms and equalities with
free variables & and y;, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of
conjunctive queries.

G. De Giacomo Part 1: First-Order Queries (60/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 00®0000

Chap. 3: Conjunctive Queries

Evaluation of UCQs

From the definition of FOL query we have that:

Lo \/ 3giconj,(Z G)

1=1,...,n
if and only if
Z,a E Iy;.conj;(Z, ;) for some i € {1,...,n}.
Hence to evaluate a UCQ ¢, we simply evaluate a number (linear in the

size of ¢) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

G. De Giacomo Part 1: First-Order Queries (62/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0®00000

Chap. 3: Conjunctive Queries

Datalog notation for UCQs

A union of conjunctive queries

is written in datalog notation as
{ q(@) < conjy(F,91)

o(Z) — conjp(Z,y) }

where each element of the set is the datalog expression corresponding to
the conjunctive query ¢; = 3¥;.conj; (%, ¥i).

Note: in general, we omit the set brackets.

G. De Giacomo Part 1: First-Order Queries (61/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 000®000

Chap. 3: Conjunctive Queries

UCQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)
{{Z,a,q) | Z,a = q} is NP-complete.
@ time: exponential
@ space: polynomial
Theorem (Data complexity of UCQ evaluation)
{{Z,q9) | Z,a |= q} is LoGSPACE-complete (query ¢ fixed).
@ time: polynomial
@ space: logarithmic
Theorem (Query complexity of UCQ evaluation)
{{o,q) | Z, 0 |= ¢} is NP-complete (interpretation Z fixed).

@ time: exponential
@ space: polynomial

v

G. De Giacomo Part 1: First-Order Queries (63/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000@00

Chap. 3: Conjunctive Queries

Query containment for UCQs

Theorem

For UCQs, {q1,..-,qr} € {d},....q,} iff for each g; thereis a ¢ such
that ¢; C ¢

Proof.
“<" Obvious.
“=" If the containment holds, then we have

{1(0), ..., qx(©)} C{d\(©)...., ¢, ()}, where C are new constants:
@ Now consider 7, . We have 7, = ¢i(¢), and hence
Iqi(E) EA{a1(@), ..., a(0)}.
@ By the containment, we have that 7,) = {¢(¢), ..., ¢, (0)}. le,
there exists a ¢}(c) such that 7,z = ¢;(0).
@ Hence, by [CM77] on containment of CQs, we have that ¢; C q;
O

G. De Giacomo Part 1: First-Order Queries (64/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 000000e

Chap. 3: Conjunctive Queries

References

[CMT77] A. K. Chandra and P. M. Merlin.
Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC'77), pages
77-90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.

Conjunctive-query containment and constraint satisfaction.
In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of

Database Systems (PODS’'98), pages 205-213, 1998.
[Var82] M. Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing
(STOC’82), pages 137-146, 1982.

G. De Giacomo Part 1: First-Order Queries (66/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 00000e0

Chap. 3: Conjunctive Queries

Query containment for UCQs — Complexity

From the previous result, we have that we can check
{q1,.. . qx} C{d},....q,} by at most k- n CQ containment checks.

We immediately get:

Theorem
Containment of UCQs is NP-complete.

G. De Giacomo Part 1: First-Order Queries (65/66)

