Seminars in Software Engineering
Semantic Data and Service Integration
Part 1: First-Order Queries

Giuseppe De Giacomo

Sapienza Universita di Roma
Laurea Specialistica in Ingegneria Informatica - Master in Computer Engineering

2007/08

Overview of Part 1: First-order queries

@ First-order logic

@ Syntax of first-order logic
@ Semantics of first-order logic
© First-order logic queries

G. De Giacomo Part 1: First-Order Queries (2/66)

Overview of Part 1: First-order queries

@ First-order logic

@ Syntax of first-order logic
@ Semantics of first-order logic
O First-order logic queries

Q First-order query evaluation

©® Query evaluation problem
@ Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries (2/66)

Overview of Part 1: First-order queries

@ First-order logic

@ Syntax of first-order logic
@ Semantics of first-order logic
© First-order logic queries

Q First-order query evaluation

©® Query evaluation problem
@ Complexity of query evaluation

© Conjunctive queries

@ Evaluation of conjunctive queries
@ Containment of conjunctive queries
© Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (2/66)

Chapter |

@ Syntax of first-order logic

@ Semantics of first-order logic

© First-order logic queries

Semantics of first-order logic First-order logic queries
0000

Chap. 1: First-Order Logic

Syntax of first-order logic
000 0000

Outline

@ Syntax of first-order logic

G. De Giacomo Part 1: First-Order Queries (5/66)

First-order logic queries
0000

Chap. 1: First-Order Logic

Syntax of first-order logic Semantics of first-order logic
@00 0000

First-order logic

@ First-order logic (FOL) is the logic to speak about objects, which
are the domain of discourse or universe.

@ FOL is concerned about properties of these objects and relations
over objects (resp., unary and n-ary predicates).

@ FOL also has functions including constants that denote objects.

G. De Giacomo Part 1: First-Order Queries (6/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
oeo 0000 0000

Chap. 1: First-Order Logic

FOL syntax — Terms

We first introduce:

@ Aset Vars = {x1,...,x,} of individual variables (i.e., variables
that denote single objects).

@ A set of functions symbols, each of given arity > 0.
Functions of arity O are called constants.

Def.: The set of Terms is defined inductively as follows:
o Vars C Terms;

@ Ift1,...,t, € Terms and f¥ is a k-ary function symbol, then
fE(ty, ... tg) € Terms;

@ Nothing else is in Terms.

G. De Giacomo Part 1: First-Order Queries (7/66)
Syntax of first-order logic Semantics of first-order logic First-order logic queries
ooe 0000 0000

Chap. 1: First-Order Logic

FOL syntax — Formulas

Def.: The set of Formulas is defined inductively as follows:

@ If t1,...,t, € Terms and P¥ is a k-ary predicate, then
Pk(ty,...,t;) € Formulas (atomic formulas).

o If t1,t5 € Terms, then t; = ty € Formulas.

o If ¢ € Formulas and v € Formulas then

o —p € Formulas
o ¢ AN € Formulas
o ¢V € Formulas
o p — Y € Formulas
o If ¢ € Formulas and x € Vars then

o dz.p € Formulas
o Vz.p € Formulas

@ Nothing else is in Formulas.

Note: a predicate of arity 0 is a proposition of propositional logic.
G. De Giacomo Part 1: First-Order Queries (8/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 0000

Chap. 1: First-Order Logic

Outline

@ Semantics of first-order logic

G. De Giacomo Part 1: First-Order Queries (9/66)
Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 ©000 0000

Chap. 1: First-Order Logic

Interpretations

Given an alphabet of predicates P, P, ... and functions fi, fo,...,
each with an associated arity, a FOL interpretation is:

T=(AL,PLPE, ... fL fE,..)

where:
@ AZ is the domain (a set of objects)
@ if P is a k-ary predicate, then PZ C AT x - x AT (k times)
o if f; is a k-ary function, then ff : AT x ... x AT — AT (k times)

o if f; is a constant (i.e., a 0-ary function), then fZ : () — AT
(i.e., f; denotes exactly one object of the domain)

G. De Giacomo Part 1: First-Order Queries (10/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0@00 0000

Chap. 1: First-Order Logic

Assignment

Let Vars be a set of (individual) variables.
Def.: Given an interpretation Z, an assignment is a function
a: Vars — AT

that assigns to each variable x € Vars an object a(z) € AT,

It is convenient to extend the notion of assignment to terms. We can do
so by defining a function & : Terms — A7 inductively as follows:

o a(x) = a(x), if x € Vars

0 G(f(tr,....ty) = fE(a(tr),. .., a(tk))

Note: for constants a(c) = cZ.

G. De Giacomo Part 1: First-Order Queries (11/66)
Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 0000

Chap. 1: First-Order Logic

Truth in an interpretation wrt an assignment

We define when a FOL formula ¢ is true in an interpretation Z wrt an
assignment «, written 7, o =

o Z,a = P(ty,...,tx) if (&(t1),...,a(t)) € PL

Q I,Oz |: tl = tQ if (Sz(tl) = (i(tg)

o Z,alEp ifZ,alEp

o Z.aEpNYy fl,aFpandZ,alE=vy

o Z.aEpVy fL,aEFporI,alE1y

e Z,aEp—1Y ifZ alEpimpliesZ,alEy

@ T,a =3z.0 if for some a € AT we have T, afz — a]

@ I,a =Vz.p if for every a € AT we have Z,alz — d]

e
2

Here, afz — a] stands for the new assignment obtained from « as

follows:
alr — a](x) =a

alr —al(y) = aly) fory#uz

G. De Giacomo Part 1: First-Order Queries (12/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 feYele] } 0000

Chap. 1: First-Order Logic

Open vs. closed formulas

Definitions
@ A variable x in a formula ¢ is free if x does not occur in the scope
of any quantifier, otherwise it is bounded.

@ An open formula is a formula that has some free variable.

@ A closed formula, also called sentence, is a formula that has no free

variables.
o

For closed formulas (but not for open formulas) we can define what it

means to be true in an interpretation, written Z |= ¢, without

mentioning the assignment, since the assighment « does not play any

role in verifying Z, o = .

Instead, open formulas are strongly related to queries — cf. relational

databases.
G. De Giacomo Part 1: First-Order Queries (13/66)
Syntax of first-order logic Semantics of first-order logic First-order logic queries

000 0000 0000
Chap. 1: First-Order Logic

Outline

Q First-order logic queries

G. De Giacomo Part 1: First-Order Queries (14/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 ®000

Chap. 1: First-Order Logic

FOL queries

Def.: A FOL query is an (open) FOL formula.

When ¢ is a FOL query with free variables (z1,...,z), then we
sometimes write it as p(x1,...,), and say that ¢ has arity k.

Given an interpretation Z, we are interested in those assignments that
map the variables x1, ...,z (and only those). We write an assignment
ast alz;) =a; fori=1,...,k, as (a1,...,ax).

Def.: Given an interpretation Z, the answer to a query ¢(z1,...,xg) is
o(x1,...,zx)t ={(a1,...,ax) | T, {a1,...,a1) = o(z1,...,78)}

Note: We will also use the notation ©?, which keeps the free variables

implicit, and ¢(Z) making apparent that ¢ becomes a functions from
interpretations to set of tuples.

G. De Giacomo Part 1: First-Order Queries (15/66)
Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 000

Chap. 1: First-Order Logic

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query ¢() is defined as follows:

e()F ={01Z.0 F «0}

Such an answer is

o (), IfZTEy
o (), ifZ .

As an obvious convention we read () as “true” and () as “false”.

G. De Giacomo Part 1: First-Order Queries (16/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 00@0

Chap. 1: First-Order Logic

FOL formulas: logical tasks

Definitions
@ Validity: ¢ is valid iff for all Z and « we have that Z, a = .

@ Satisfiability: ¢ is satisfiable iff there exists an Z and « such that
T,a = ¢, and unsatisfiable otherwise.

@ Logical implication: ¢ logically implies v, written ¢ = 9 iff for all
Zand o, if Z,a = then Z, o = 1.

@ Logical equivalence: ¢ is logically equivalent to ¢, iff for all Z and
a, we have that Z,a = ¢ iff Z,a =9 (i.e., ¢ =¥ and ¢ = ¢).

G. De Giacomo Part 1: First-Order Queries (17/66)
Syntax of first-order logic Semantics of first-order logic First-order logic queries
000 0000 ocooe

Chap. 1: First-Order Logic

FOL queries — Logical tasks

o Validity: if ¢ is valid, then cpI — AL x ... x AL for all Z, i.e., the
query always returns all the tuples of 7.

@ Satisfiability: if ¢ is satisfiable, then ¢ # () for some Z, i.e., the
query returns at least one tuple.

@ Logical implication: if ¢ logically implies v, then ¢ C ¢? for all
7T, written ¢ C 1), i.e., the answer to ¢ is contained in that of % in
every interpretation. This is called query containment.

@ Logical equivalence: if ¢ is logically equivalent to 1, then ©? = ¢T
for all Z, written ¢ = 1, i.e., the answer to the two queries is the
same in every interpretation. This is called query equivalence and
corresponds to query containment in both directions.

Note: These definitions can be extended to the case where we have
axioms, i.e., constraints on the admissible interpretations.

G. De Giacomo Part 1: First-Order Queries (18/66)

Chapter Il

@ Query evaluation problem

© Complexity of query evaluation

Query evaluation problem Complexity of query evaluation
00000 000000

Chap. 2: First-Order Query Evaluation

Outline

@ Query evaluation problem

G. De Giacomo Part 1: First-Order Queries (21/66)
Query evaluation problem Complexity of query evaluation
©0000 000000

Chap. 2: First-Order Query Evaluation

Query evaluation

Let us consider:

@ a finite alphabet, i.e., we have a finite number of predicates and
functions, and

@ a finite interpretation Z, i.e., an interpretation (over the finite
alphabet) for which A7 is finite.

Then we can consider query evaluation as an algorithmic problem, and
study its computational properties.

Note: To study the computational complexity of the problem, we need
to define a corresponding decision problem.

G. De Giacomo Part 1: First-Order Queries (22/66)

Query evaluation problem Complexity of query evaluation
0000 000000

Chap. 2: First-Order Query Evaluation

Query evaluation problem

Definitions

@ Query answering problem: given a finite interpretation Z and a FOL
query ¢(x1,...,xx), compute

@I:{(al,...,ak) | Z,{a1,...,a) E o(x1,...,28)}

@ Recognition problem (for query answering): given a finite
interpretation Z, a FOL query ¢(z1,...,x%), and a tuple
(ai,...,ax), with a; € A%, check whether (ay,...,a;) € ©7, ie.,
whether

Z,{a,...,ax) = o(x1,...,2k)

Note: The recognition problem for query answering is the decision
problem corresponding to the query answering problem.

G. De Giacomo Part 1: First-Order Queries (23/66)
Query evaluation problem Complexity of query evaluation
00@00 000000

Chap. 2: First-Order Query Evaluation

Query evaluation algorithm

We define now an algorithm that computes the function Truth(Z, a, ¢)
in such a way that Truth(Z, «,) = true iff Z, a |= .

We make use of an auxiliary function TermEval(Z, o, t) that, given an
interpretation Z and an assignment «, evaluates a term ¢ returning an
object 0 € AT:

AT TermEval(Z,a,t) {
if (¢t is x € Vars)
return o(x);
if (¢ is f(t1,...,tk))
return fZ(TermEval(Z,«,t1),...,TermEval(Z,a,tk));

Then, Truth(Z, a,) can be defined by structural recursion on .

G. De Giacomo Part 1: First-Order Queries (24/66)

Query evaluation problem
[eeJe] le]

Query evaluation algorithm (cont'd)

boolean Truth(Z,a,p) {
if (p is t.1=1t.2)
return TermEval(Z,a,t_.1) = TermEval(Z,«,t_2);
if (p is P(t-1,...,t-k))

return PZ (TermEval(Z,a,t_1),...,TermEval (Z,«,t_k));

if (¢ is —)
return —Truth(Z,a,y);
if (¢ is Yo ’)
return Truth(Z,a,vy) o Truth(Z,a,v’);
if (¢ is Jx.p) {
boolean b = false;
for all (a € AT)
b = b V Truth(Z,afr — a],¥);
return b;
}
if (¢ is Vz.p) {
boolean b = true;
for all (a € A7T)
b = b A Truth(Z,a[r — a],);
return b;
}
}

G. De Giacomo Part 1: First-Order Queries

Query evaluation problem
[eJeJele])

Query evaluation — Results

Theorem (Termination of Truth(Z, «, ¢))

The algorithm Truth terminates.

Proof. Immediate.

Theorem (Correctness)

Complexity of query evaluation
000000

Chap. 2: First-Order Query Evaluation

(25/66)

Complexity of query evaluation
000000

Chap. 2: First-Order Query Evaluation

The algorithm Truth is sound and complete, i.e., Z,« = ¢ if and only if

Truth(Z, a, ¢) = true.

Proof. Easy, since the algorithm is very close to the semantic definition

of 7, = .

G. De Giacomo Part 1: First-Order Queries

[

(26/66)

Query evaluation problem

Complexity of query evaluation
00000

000000

Chap. 2: First-Order Query Evaluation

Outline

Q Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries (27/66)

Query evaluation problem

Complexity of query evaluation
00000

00000
Chap. 2: First-Order Query Evaluation

Query evaluation — Time complexity |

Theorem (Time complexity of Truth(Z, «, ¢))

The time complexity of Truth(Z, a, @) is (|Z| + |o| +)], i.e.,
polynomial in the size of Z and exponential in the size of .

Proof.

o fZ (of arity k) can be represented as k-dimensional array, hence
accessing the required element can be done in time linear in |Z|.

@ TermEval(...) visits the term, so it generates a polynomial number
of recursive calls, hence is time polynomial in (|Z| + || + |¢]).

G. De Giacomo Part 1: First-Order Queries (28/66)

Query evaluation problem Complexity of query evaluation
00000 00000

Chap. 2: First-Order Query Evaluation

Query evaluation — Time complexity Il

@ P7T (of arity k) can be represented as k-dimensional boolean array,
hence accessing the required element can be done in time linear in
Z].

@ Truth(...) for the boolean cases simply visits the formula, so
generates either one or two recursive calls.

@ Truth(...) for the quantified cases Jx.p and V.1 involves looping
for all elements in AT and testing the resulting assignments.

@ The total number of such testings is O(|Z|fVe").

Hence the claim holds. [
G. De Giacomo Part 1: First-Order Queries (29/66)
Query evaluation problem Complexity of query evaluation
00000 [ee] I lele]

Chap. 2: First-Order Query Evaluation

Query evaluation — Space complexity |

Theorem (Space complexity of Truth(Z, a, ¢))

The space complexity of Truth(Z, «, @) is || - (|| - log |Z
logarithmic in the size of Z and polynomial in the size of .

), i.e.,

Proof.

@ fZ(...) can be represented as k-dimensional array, hence accessing
the required element requires O(log |Z]);

@ TermEval(...) simply visits the term, so it generates a polynomial
number of recursive calls. Each activation record has a constant
size, and we need O(|y|) activation records;

@ PZ(...) can be represented as k-dimensional boolean array, hence
accessing the required element requires O(log |Z]);

G. De Giacomo Part 1: First-Order Queries (30/66)

Query evaluation problem Complexity of query evaluation

00000 (e]e] 1 Jele)

Chap. 2: First-Order Query Evaluation

Query evaluation — Space complexity Il

@ Truth(...) for the boolean cases simply visits the formula, so
generates either one or two recursive calls, each requiring constant
size;

@ Truth(...) for the quantified cases Jzx.p and V.1 involves looping
for all elements in AZ and testing the resulting assignments;

@ The total number of activation records that need to be at the same
time on the stack is O(#Vars) < O(|p|).

Hence the claim holds. []

Note: the worst case form for the formula is

Vry.3xg. - Va,—1.32,.P(21,22, ..., Tp_1,Tp).
G. De Giacomo Part 1: First-Order Queries (31/66)
Query evaluation problem Complexity of query evaluation
00000 [eJe]ele] le]

Chap. 2: First-Order Query Evaluation

Query evaluation — Complexity measures [Var82]

Definition (Combined complexity)

The combined complexity is the complexity of {(Z,, ¢) | Z, o = ¢},
i.e., interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)

The data complexity is the complexity of {(Z,«) | Z, o |= ¢}, i.e., the
query ¢ is fixed (and hence not considered part of the input).

Definition (Query complexity)

The query complexity is the complexity of {{(a, p) | Z,a = ¢}, i.e., the
interpretation Z is fixed (and hence not considered part of the input).

G. De Giacomo Part 1: First-Order Queries (32/66)

Query evaluation problem Complexity of query evaluation

00000 (e]e]elele] J

Chap. 2: First-Order Query Evaluation

Query evaluation — Combined, data, query complexity

Theorem (Combined complexity of query evaluation)
The complexity of {{(Z,a,) | Z,a = ¢} is:
@ time: exponential

@ space: PSPACE-complete — see [\Var82] for hardness

Theorem (Data complexity of query evaluation)
The complexity of {(Z,«) | Z, = ¢} is:

@ time: polynomial

@ space: LOGSPACE
Theorem (Query complexity of query evaluation)
The complexity of {{a, p) | Z,a |= ¢} is:

@ time: exponential
@ space: PSPACE-complete — see [\Var82] for hardness

G. De Giacomo Part 1: First-Order Queries

o

(33/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Chapter Il

Conjunctive Queries

G. De Giacomo Part 1: First-Order Queries

(34/66)

@ Evaluation of conjunctive queries

@ Containment of conjunctive queries

© Unions of conjunctive queries

@ Evaluation of conjunctive queries

@ Containment of conjunctive queries

© Unions of conjunctive queries

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
©000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form
3y.conj (Z,9)
where conj(Z,¥) is a conjunction (i.e., an “and”) of atoms and

equalities, over the free variables Z, the existentially quantified
variables 7/, and possibly constants.

Note:

@ CQs contain no disjunction, no negation, no universal
quantification, and no function symbols besides constants.

@ Hence, they correspond to relational algebra select-project-join
(SPJ) queries.

@ CQs are the most frequently asked queries.

G. De Giacomo Part 1: First-Order Queries (37/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0@00000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
O@00000000 00000000000 O000000

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND Ll.city = L2.city
G. De Giacomo Part 1: First-Order Queries (38/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
O@00000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = L1.person AND P.name = M.employee AND
M.boss = L2.person AND Ll.city = L2.city

Expressed as a CQ:

Jb, e, p1, c1, p2, c2.Person(n, a) A Manages(b,) A Lives(pl, cl) A Lives(p2, ¢2) A
n=pl ANn=e ANb=p2 N cl =c2

G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
O@00000000 00000000000 O000000

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = L1.person AND P.name = M.employee AND
M.boss = L2.person AND Ll.city = L2.city

Expressed as a CQ:

Jb, e, p1, c1, p2, c2.Person(n, a) A Manages(b,) A Lives(pl, cl) A Lives(p2, ¢2) A
n=pl ANn=e ANb=p2 N cl =c2

Or simpler: 3b, c.Person(n, a) A Manages(b,n) A Lives(n, ¢) A Lives(b, ¢)

G. De Giacomo Part 1: First-Order Queries (38/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
O0@0000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Datalog notation for CQs

A CQ g = Jy.conj (¥, 1) can also be written using datalog notation as
q(Z1) — conj’(Z1, 1)

where conj’(¥1,71) is the list of atoms in conj (¥, %) obtained by
equating the variables &, i/ according to the equalities in conj (7).

As a result of such an equality elimination, we have that x; and %7 can
contain constants and multiple occurrences of the same variable.

Def.: In the above query ¢, we call:
@ q(Z1) the head;
@ conj'(Z1,41) the body;

@ the variables in I the distinguished variables;

@ the variables in g the non-distinguished variables.

v

G. De Giacomo Part 1: First-Order Queries (39/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000@000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Conjunctive queries — Example

@ Consider an interpretation Z = (A%, EZ), where EZ is a binary
relation — note that such interpretation is a (directed) graph.

@ The following CQ ¢ returns all nodes that participate to a triangle
in the graph:

3y, 2.B(z,y) A E(y, 2) A E(z,z)
@ The query ¢ in datalog notation becomes:
¢(z) — E(z,y), E(y, 2), E(2, 7)

@ The query ¢ in SQL is (we use Edge (f,s) for E(x,y):
SELECT E1.f

FROM Edge E1, Edge E2, Edge E3
WHERE El.s = E2.f AND E2.s = E3.f AND E3.s = E1.f

G. De Giacomo Part 1: First-Order Queries (40/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000@00000 00000000000 0000000

Chap. 3: Conjunctive Queries

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it
by:

@ guessing a truth assignment for the non-distinguished variables;

Q@ evaluating the resulting formula (that has no quantifications).

boolean ConjTruth(Z,a,3y.conj(Z,y)) {
GUESS assignment afy — d] {
return Truth(Z,aly— al, conj(Z,¥)) ;

+

where Truth(Z, o,) is defined as for FOL queries, considering only the
required cases.

G. De Giacomo Part 1: First-Order Queries (41/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000080000 00000000000 0000000

Chap. 3: Conjunctive Queries

Nondeterministic CQ evaluation algorithm

boolean Truth(Z,a,p) {
if (p is t.1=1t2)
return TermEval(Z,«a,t_1) = TermEval(Z,«a,t 2);
if (¢ is P(t-1,...,tk))
return PZ(TermEval(Z,a,t_1),...,TermEval(Z,a,tk));
if (p is P AY)
return Truth(Z,a,vy) A Truth(Z,a,v’);
}

AL TermEval(Z,a,t) {
if (¢ is a variable x) return «(z);
if (¢t is a constant ¢) return ¢£;

G. De Giacomo Part 1: First-Order Queries (42/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000@000 00000000000 0000000

Chap. 3: Conjunctive Queries

CQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)
{{Z,0,q) | Z,a = q} is NP-complete — see below for hardness
@ time: exponential
@ space: polynomial
Theorem (Data complexity of CQ evaluation)
{{Z,a) | Z, = q} is LOGSPACE
@ time: polynomial
@ space: logarithmic
Theorem (Query complexity of CQ evaluation)
{{a,q) | Z, |= q} is NP-complete — see below for hardness

@ time: exponential
@ space: polynomial

o

G. De Giacomo Part 1: First-Order Queries (43/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000800 00000000000 0000000

Chap. 3: Conjunctive Queries

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

G. De Giacomo Part 1: First-Order Queries (44/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000800 00000000000 0000000

Chap. 3: Conjunctive Queries

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V, E), is it 3-colorable?

Theorem
3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

G. De Giacomo Part 1: First-Order Queries (44/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000080 00000000000 0000000

Chap. 3: Conjunctive Queries

Reduction from 3-colorability to CQ evaluation

Let G = (V, F) be a graph. We define:
@ An Interpretation: Z = (AZ, EZ) where:
o AT ={rg,b}
° ET = {(rv g)7 (gv r)a (r7 b)? (b7 r)? (g7 b)? (ba g>}

@ A conjunctive query: Let V. ={x1,...,x,}, then consider the
boolean conjunctive query defined as:

qgq = dr1,...,Tn- /\ E(CUZ',CL’j)/\E(ZUj,xi)

(zi,x;)eE
Theorem
G is 3-colorable iff Z |= qg.
G. De Giacomo Part 1: First-Order Queries (45/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000000e 00000000000 0000000

Chap. 3: Conjunctive Queries

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity. J

G. De Giacomo Part 1: First-Order Queries (46/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
000000000e 00000000000 0000000

Chap. 3: Conjunctive Queries

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity. J

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound
for query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity.

G. De Giacomo Part 1: First-Order Queries (46/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Outline

@ Containment of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (47/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Homomorphism

Let T = (AL, PL,....cF,..)and T = (A7, P7,...,¢7,...) be two
interpretations over the same alphabet (for simplicity, we consider only
constants as functions).

Def.: A homomorphism from 7 to J
is a mapping h : AT — A7 such that:
@ h(cf) = 7
o h(PX(ay,...,ar)) = P7(h(a1),...,h(a))

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem
FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic. [

G. De Giacomo Part 1: First-Order Queries (48/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0O®000000000 0000000

Chap. 3: Conjunctive Queries

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query
q of arity k. Then

Iaa':q(xla"'axk) iff Ia’g'ZQ(Cl,...,Ck;)

where Z,, ~ is identical to Z but includes new constants cy, ..., ¢ that

: Loz
are interpreted as ¢, = a(x;).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.

G. De Giacomo Part 1: First-Order Queries (49/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00®00000000 0000000

Chap. 3: Conjunctive Queries

Canonical interpretation of a (boolean) CQ

Let ¢ be a conjunctive query dzq,...,x,.conj
Def.: The canonical interpretation Z, associated with ¢

is the interpretation Z, = (AZa, PZa ... cla,...), where
o Aa = {z1,...,2,} U{c]| c constant occurring in ¢},
i.e., all the variables and constants in ¢;

@ e =¢, for each constant ¢ in g;
@ (t1,...,t) € PXa iff the atom P(ty,...,t;) occurs in q.

v
Sometimes the procedure for obtaining the canonical interpretation is
called freezing of q.
G. De Giacomo Part 1: First-Order Queries (50/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

0000000000 000@0000000 0000000
Chap. 3: Conjunctive Queries

Canonical interpretation of a (boolean) CQ — Example

Consider the boolean query ¢

q(c) — E(c,y), E(y,2), E(z,¢)

Then, the canonical interpretation Z, is defined as
1, = (AI(I,EI‘I,CI(I)

where
o AIq - {y,Z,C}
Q EI = (C,y)p(yyz)a('z?C)}
o cli=¢

G. De Giacomo Part 1: First-Order Queries (51/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0000@000000 0000000

Chap. 3: Conjunctive Queries

Canonical interpretation and (boolean) CQ evaluation

Theorem ([CMT77])
For boolean CQs, 7 = ¢ iff there exists a homomorphism from Z, to Z.

Proof.

“=" Let I |= q, let a be an assignment to the existential variables that
makes ¢ true in Z, and let & be its extension to constants. Then & is a
homomorphism from Z, to 7.

“«<" Let h be a homomorphism from Z, to Z. Then restricting h to
the variables only we obtain an assignment to the existential variables

that makes ¢ true in 7. Il
G. De Giacomo Part 1: First-Order Queries (52/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000@00000 0000000

Chap. 3: Conjunctive Queries

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be
reduced to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in Al — see also [KV/98].

G. De Giacomo Part 1: First-Order Queries (53/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000080000 0000000

Chap. 3: Conjunctive Queries

Query containment

Def.: Query containment

Given two FOL queries and v of the same arity, ¢ is contained in 1),
denoted o C 1), if for all interpretations Z and all assignments o we
have that

Z,a =@ implies Z,aE1v

(In logical terms: ¢ = 1.)

Note: Query containment is of special interest in query optimization.

G. De Giacomo Part 1: First-Order Queries (54/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000080000 0000000

Chap. 3: Conjunctive Queries

Query containment

Def.: Query containment

Given two FOL queries and v of the same arity, ¢ is contained in 1),
denoted ¢ C 1), if for all interpretations Z and all assignments a we
have that

Z,a =@ implies Z,aEv

(In logical terms: ¢ = 1.)

Note: Query containment is of special interest in query optimization.

Theorem
For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication. [

G. De Giacomo Part 1: First-Order Queries (54/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0000000000 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs

For CQs, query containment ¢1 (%) C ¢2() can be reduced to query
evaluation.

Q@ Freeze the free variables, i.e., consider them as constants.
This is possible, since ¢ (%) C ¢o (%) iff
o T,a0 = 1 (%) implies Z, e = o (%), for all Z and «; or equivalently
o oz = q1(C) implies Z,, z = ¢2(¢), for all Z,, z, where ¢ are new
constants, and Z,, z extends Z to the new constants with

cles = a(x).

@ Construct the canonical interpretation Z,, (z of the CQ ¢1(¢) on the
left hand side ...

© ...and evaluate on 7, 5 the CQ ¢2(¢) on the right hand side,
i.e., check whether 7,) = ¢2(C).

G. De Giacomo Part 1: First-Order Queries (55/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000800 0000000

Chap. 3: Conjunctive Queries

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])
For CQs, q1(7) C q2(%) iff T,z = q2(¢), where € are new constants. J

Proof.
“=" Assume that ¢1(Z) C ¢2(7).

@ Since 7, (5 = q1(€) it follows that 7,z = ¢2(c).
“<" Assume that 7, (5 = ¢2(C).

@ By [CM77] on hom., for every 7 such that Z |= ¢1(¢) there exists a
homomorphism h from 7, (# to Z.

@ On the other hand, since 7, (5 = ¢2(7), again by [CM77] on hom., there
exists a homomorphism b’ from 7,z to Z,, (#.

@ The mapping hoh’ (obtained by composing h and h’) is a homomorphism
from 7,z to Z. Hence, once again by [CM77] on hom., Z = ¢2(c).

q2
So we can conclude that ¢;(¢) C ¢2(¢), and hence ¢1(Z) C ¢o(2). O
G. De Giacomo Part 1: First-Order Queries (56/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000080 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs

For CQs, we also have that (boolean) query evaluation 7 |= ¢ can be
reduced to query containment.

Let T = (AL, PT

We construct the (boolean) CQ ¢z as follows:
@ g7 has no existential variables (hence no variables at all);
@ the constants in g7 are the elements of AZ;

@ for each relation P interpreted in Z and for each fact
(ai,...,a;) € P%, qr contains one atom P(ay,...,a;) (note that
each a; € A’ is a constant in g7).

Theorem
For CQs, Z = ¢ iff qr Cq.

G. De Giacomo Part 1: First-Order Queries (57/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 0000000000e 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity
of CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.

G. De Giacomo Part 1: First-Order Queries (58/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000008 0000000

Chap. 3: Conjunctive Queries

Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity
of CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete. J

Since CQ evaluation is NP-complete even in query complexity, the
above result can be strengthened:

Theorem

Containment ¢ (%) C g2(Z) of CQs is NP-complete, even when ¢ is
considered fixed.

G. De Giacomo Part 1: First-Order Queries (58/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000000

Chap. 3: Conjunctive Queries

Outline

© Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (59/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 ©000000

Chap. 3: Conjunctive Queries

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form
\/ Iy conj (T, Yi)
1=1,....,n

where each conj,(Z,¥;) is a conjunction of atoms and equalities with
free variables ¥ and y;, and possibly constants.

v
Note: Obviously, each conjunctive query is also a of union of
conjunctive queries.
G. De Giacomo Part 1: First-Order Queries (60/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

0000000000 00000000000 0@00000
Chap. 3: Conjunctive Queries

Datalog notation for UCQs

A union of conjunctive queries

¢ = \/ 3Ficonj;(Z,7)

1=1,...,n

is written in datalog notation as
{ o@) — conjy(@,51)

(%) — conjy(Z,yn) }

where each element of the set is the datalog expression corresponding to
the conjunctive query ¢; = 3y;.conj,(Z, y;).

Note: in general, we omit the set brackets.

G. De Giacomo Part 1: First-Order Queries (61/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 00®0000

Chap. 3: Conjunctive Queries

Evaluation of UCQs

From the definition of FOL query we have that:

Lo =\ 3conj,(Z 7)

1=1,...,n

if and only if

T,a | yi.cong; (¥, y;) for some i € {1,...,n}.

Hence to evaluate a UCQ ¢, we simply evaluate a number (linear in the
size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

G. De Giacomo Part 1: First-Order Queries (62/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 000@000

Chap. 3: Conjunctive Queries

UCQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)
{{Z,a,q9) | Z,a = q} is NP-complete.

@ time: exponential
@ space: polynomial

Theorem (Data complexity of UCQ evaluation)

{{Z,q) | Z,a = q} is LOGSPACE-complete (query ¢ fixed).
@ time: polynomial
@ space: logarithmic

Theorem (Query complexity of UCQ evaluation)
{{a,q) | Z,a |= q} is NP-complete (interpretation Z fixed).

@ time: exponential
@ space: polynomial

o

G. De Giacomo Part 1: First-Order Queries (63/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 0000@00

Chap. 3: Conjunctive Queries

Query containment for UCQs

Theorem

For UCQs, {q1,..,ax} € {q,...,q,} iff foreach g; thereis a ¢} such
that ¢; C gj.

Proof.
“<" QObvious.

b 1)

=" If the containment holds, then we have
{1(0),...,q:(O)} CH{q\(€),...,q,(€)}, where ¢ are new constants:
@ Now consider 7, . We have 7,z = ¢;(¢), and hence
Lo EAar(0), ... (D)}
@ By the containment, we have that 7,) = {¢/(c), ..., q,(c)}. le,
there exists a ¢}(¢) such that 7, & = ¢(c).
@ Hence, by [CM77] on containment of CQs, we have that ¢; C q}.

G. De Giacomo Part 1: First-Order Queries (64/66)
Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 00000 @0

Chap. 3: Conjunctive Queries

Query containment for UCQs — Complexity

From the previous result, we have that we can check
{a1,...,q} € {d},...,¢,} by at most k- n CQ containment checks.

We immediately get:

Theorem
Containment of UCQs is NP-complete. J

G. De Giacomo Part 1: First-Order Queries (65/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries
0000000000 00000000000 (e]e]e]e]e)e])

Chap. 3: Conjunctive Queries

References

[CM77] A. K. Chandra and P. M. Merlin.
Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC'77), pages
77-90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.

Conjunctive-query containment and constraint satisfaction.
In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’98), pages 205-213, 1998.

[Var82] M. Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing
(STOC'82), pages 137-146, 1982.

G. De Giacomo Part 1: First-Order Queries (66/66)

