
Seminars in Software Engineering
Semantic Data and Service Integration

Part 1: First-Order Queries

Giuseppe De Giacomo

Sapienza Università di Roma
Laurea Specialistica in Ingegneria Informatica - Master in Computer Engineering

2007/08

Overview of Part 1: First-order queries

1 First-order logic
1 Syntax of first-order logic
2 Semantics of first-order logic
3 First-order logic queries

2 First-order query evaluation
1 Query evaluation problem
2 Complexity of query evaluation

3 Conjunctive queries
1 Evaluation of conjunctive queries
2 Containment of conjunctive queries
3 Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (2/66)

Overview of Part 1: First-order queries

1 First-order logic
1 Syntax of first-order logic
2 Semantics of first-order logic
3 First-order logic queries

2 First-order query evaluation
1 Query evaluation problem
2 Complexity of query evaluation

3 Conjunctive queries
1 Evaluation of conjunctive queries
2 Containment of conjunctive queries
3 Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (2/66)

Overview of Part 1: First-order queries

1 First-order logic
1 Syntax of first-order logic
2 Semantics of first-order logic
3 First-order logic queries

2 First-order query evaluation
1 Query evaluation problem
2 Complexity of query evaluation

3 Conjunctive queries
1 Evaluation of conjunctive queries
2 Containment of conjunctive queries
3 Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (2/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Chapter I

First-Order Logic

G. De Giacomo Part 1: First-Order Queries (3/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Outline

1 Syntax of first-order logic

2 Semantics of first-order logic

3 First-order logic queries

G. De Giacomo Part 1: First-Order Queries (4/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Outline

1 Syntax of first-order logic

2 Semantics of first-order logic

3 First-order logic queries

G. De Giacomo Part 1: First-Order Queries (5/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

First-order logic

First-order logic (FOL) is the logic to speak about objects, which
are the domain of discourse or universe.

FOL is concerned about properties of these objects and relations
over objects (resp., unary and n-ary predicates).

FOL also has functions including constants that denote objects.

G. De Giacomo Part 1: First-Order Queries (6/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

FOL syntax – Terms

We first introduce:

A set Vars = {x1, . . . , xn} of individual variables (i.e., variables
that denote single objects).

A set of functions symbols, each of given arity ≥ 0.
Functions of arity 0 are called constants.

Def.: The set of Terms is defined inductively as follows:

Vars ⊆ Terms ;

If t1, . . . , tk ∈ Terms and fk is a k-ary function symbol, then
fk(t1, . . . , tk) ∈ Terms;

Nothing else is in Terms.

G. De Giacomo Part 1: First-Order Queries (7/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

FOL syntax – Formulas

Def.: The set of Formulas is defined inductively as follows:

If t1, . . . , tk ∈ Terms and P k is a k-ary predicate, then
P k(t1, . . . , tk) ∈ Formulas (atomic formulas).

If t1, t2 ∈ Terms, then t1 = t2 ∈ Formulas .

If ϕ ∈ Formulas and ψ ∈ Formulas then
¬ϕ ∈ Formulas

ϕ ∧ ψ ∈ Formulas

ϕ ∨ ψ ∈ Formulas
ϕ → ψ ∈ Formulas

If ϕ ∈ Formulas and x ∈ Vars then
∃x.ϕ ∈ Formulas

∀x.ϕ ∈ Formulas

Nothing else is in Formulas .

Note: a predicate of arity 0 is a proposition of propositional logic.
G. De Giacomo Part 1: First-Order Queries (8/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Outline

1 Syntax of first-order logic

2 Semantics of first-order logic

3 First-order logic queries

G. De Giacomo Part 1: First-Order Queries (9/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Interpretations

Given an alphabet of predicates P1, P2, . . . and functions f1, f2, . . .,
each with an associated arity, a FOL interpretation is:

I = (∆I , P I
1 , P I

2 , . . . , fI
1 , fI

2 , . . .)

where:

∆I is the domain (a set of objects)

if Pi is a k-ary predicate, then P I
i ⊆ ∆I × · · ·× ∆I (k times)

if fi is a k-ary function, then fI
i : ∆I × · · ·×∆I −→ ∆I (k times)

if fi is a constant (i.e., a 0-ary function), then fI
i : () −→ ∆I

(i.e., fi denotes exactly one object of the domain)

G. De Giacomo Part 1: First-Order Queries (10/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Assignment

Let Vars be a set of (individual) variables.

Def.: Given an interpretation I, an assignment is a function

α : Vars −→ ∆I

that assigns to each variable x ∈ Vars an object α(x) ∈ ∆I .

It is convenient to extend the notion of assignment to terms. We can do
so by defining a function α̂ : Terms −→ ∆I inductively as follows:

α̂(x) = α(x), if x ∈ Vars

α̂(f(t1, . . . , tk)) = fI(α̂(t1), . . . , α̂(tk))

Note: for constants α̂(c) = cI .

G. De Giacomo Part 1: First-Order Queries (11/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Truth in an interpretation wrt an assignment

We define when a FOL formula ϕ is true in an interpretation I wrt an
assignment α, written I,α |= ϕ:

I,α |= P (t1, . . . , tk) if (α̂(t1), . . . , α̂(tk)) ∈ P I

I,α |= t1 = t2 if α̂(t1) = α̂(t2)
I,α |= ¬ϕ if I,α +|= ϕ
I,α |= ϕ ∧ ψ if I,α |= ϕ and I,α |= ψ
I,α |= ϕ ∨ ψ if I,α |= ϕ or I,α |= ψ
I,α |= ϕ → ψ if I,α |= ϕ implies I,α |= ψ
I,α |= ∃x.ϕ if for some a ∈ ∆I we have I,α[x ,→ a] |= ϕ
I,α |= ∀x.ϕ if for every a ∈ ∆I we have I,α[x ,→ a] |= ϕ

Here, α[x ,→ a] stands for the new assignment obtained from α as
follows:

α[x ,→ a](x) = a
α[x ,→ a](y) = α(y) for y += x

G. De Giacomo Part 1: First-Order Queries (12/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Open vs. closed formulas

Definitions

A variable x in a formula ϕ is free if x does not occur in the scope
of any quantifier, otherwise it is bounded.

An open formula is a formula that has some free variable.

A closed formula, also called sentence, is a formula that has no free
variables.

For closed formulas (but not for open formulas) we can define what it
means to be true in an interpretation, written I |= ϕ, without
mentioning the assignment, since the assignment α does not play any
role in verifying I,α |= ϕ.

Instead, open formulas are strongly related to queries — cf. relational
databases.

G. De Giacomo Part 1: First-Order Queries (13/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

Outline

1 Syntax of first-order logic

2 Semantics of first-order logic

3 First-order logic queries

G. De Giacomo Part 1: First-Order Queries (14/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

FOL queries

Def.: A FOL query is an (open) FOL formula.

When ϕ is a FOL query with free variables (x1, . . . , xk), then we
sometimes write it as ϕ(x1, . . . , xk), and say that ϕ has arity k.

Given an interpretation I, we are interested in those assignments that
map the variables x1, . . . , xk (and only those). We write an assignment
α s.t. α(xi) = ai, for i = 1, . . . , k, as 〈a1, . . . , ak〉.

Def.: Given an interpretation I, the answer to a query ϕ(x1, . . . , xk) is

ϕ(x1, . . . , xk)I = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Note: We will also use the notation ϕI , which keeps the free variables
implicit, and ϕ(I) making apparent that ϕ becomes a functions from
interpretations to set of tuples.

G. De Giacomo Part 1: First-Order Queries (15/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query ϕ() is defined as follows:

ϕ()I = {() | I, 〈〉 |= ϕ()}

Such an answer is

(), if I |= ϕ

∅, if I +|= ϕ.

As an obvious convention we read () as “true” and ∅ as “false”.

G. De Giacomo Part 1: First-Order Queries (16/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

FOL formulas: logical tasks

Definitions

Validity: ϕ is valid iff for all I and α we have that I,α |= ϕ.

Satisfiability: ϕ is satisfiable iff there exists an I and α such that
I,α |= ϕ, and unsatisfiable otherwise.

Logical implication: ϕ logically implies ψ, written ϕ |= ψ iff for all
I and α, if I,α |= ϕ then I,α |= ψ.

Logical equivalence: ϕ is logically equivalent to ψ, iff for all I and
α, we have that I,α |= ϕ iff I,α |= ψ (i.e., ϕ |= ψ and ψ |= ϕ).

G. De Giacomo Part 1: First-Order Queries (17/66)

Syntax of first-order logic Semantics of first-order logic First-order logic queries

Chap. 1: First-Order Logic

FOL queries – Logical tasks

Validity: if ϕ is valid, then ϕI = ∆I × · · ·× ∆I for all I, i.e., the
query always returns all the tuples of I.

Satisfiability: if ϕ is satisfiable, then ϕI += ∅ for some I, i.e., the
query returns at least one tuple.

Logical implication: if ϕ logically implies ψ, then ϕI ⊆ ψI for all
I, written ϕ ⊆ ψ, i.e., the answer to ϕ is contained in that of ψ in
every interpretation. This is called query containment.

Logical equivalence: if ϕ is logically equivalent to ψ, then ϕI = ψI

for all I, written ϕ ≡ ψ, i.e., the answer to the two queries is the
same in every interpretation. This is called query equivalence and
corresponds to query containment in both directions.

Note: These definitions can be extended to the case where we have
axioms, i.e., constraints on the admissible interpretations.

G. De Giacomo Part 1: First-Order Queries (18/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Chapter II

First-Order Query Evaluation

G. De Giacomo Part 1: First-Order Queries (19/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Outline

4 Query evaluation problem

5 Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries (20/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Outline

4 Query evaluation problem

5 Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries (21/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation

Let us consider:

a finite alphabet, i.e., we have a finite number of predicates and
functions, and

a finite interpretation I, i.e., an interpretation (over the finite
alphabet) for which ∆I is finite.

Then we can consider query evaluation as an algorithmic problem, and
study its computational properties.

Note: To study the computational complexity of the problem, we need
to define a corresponding decision problem.

G. De Giacomo Part 1: First-Order Queries (22/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation problem

Definitions

Query answering problem: given a finite interpretation I and a FOL
query ϕ(x1, . . . , xk), compute

ϕI = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Recognition problem (for query answering): given a finite
interpretation I, a FOL query ϕ(x1, . . . , xk), and a tuple
(a1, . . . , ak), with ai ∈ ∆I , check whether (a1, . . . , ak) ∈ ϕI , i.e.,
whether

I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)

Note: The recognition problem for query answering is the decision
problem corresponding to the query answering problem.

G. De Giacomo Part 1: First-Order Queries (23/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation algorithm

We define now an algorithm that computes the function Truth(I,α,ϕ)
in such a way that Truth(I,α,ϕ) = true iff I,α |= ϕ.

We make use of an auxiliary function TermEval(I,α, t) that, given an
interpretation I and an assignment α, evaluates a term t returning an
object o ∈ ∆I :

∆I TermEval(I,α,t) {
if (t is x ∈ Vars)

return α(x);
if (t is f(t 1, . . . , t k))

return fI(TermEval(I,α,t 1),...,TermEval(I,α,t k));
}

Then, Truth(I, α, ϕ) can be defined by structural recursion on ϕ.

G. De Giacomo Part 1: First-Order Queries (24/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation algorithm (cont’d)

boolean Truth(I,α,ϕ) {

if (ϕ is t 1 = t 2)
return TermEval(I,α,t 1) = TermEval(I,α,t 2);

if (ϕ is P (t 1, . . . , t k))
return PI(TermEval(I,α,t 1),...,TermEval(I,α,t k));

if (ϕ is ¬ψ)
return ¬Truth(I,α,ψ);

if (ϕ is ψ ◦ ψ′)

return Truth(I,α,ψ) ◦ Truth(I,α,ψ′);

if (ϕ is ∃x.ψ) {

boolean b = false;

for all (a ∈ ∆I)

b = b ∨ Truth(I,α[x %→ a],ψ);
return b;

}

if (ϕ is ∀x.ψ) {

boolean b = true;

for all (a ∈ ∆I)

b = b ∧ Truth(I,α[x %→ a],ψ);
return b;

}

}

G. De Giacomo Part 1: First-Order Queries (25/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Results

Theorem (Termination of Truth(I,α,ϕ))

The algorithm Truth terminates.

Proof. Immediate.

Theorem (Correctness)

The algorithm Truth is sound and complete, i.e., I,α |= ϕ if and only if
Truth(I,α,ϕ) = true.

Proof. Easy, since the algorithm is very close to the semantic definition
of I,α |= ϕ.

G. De Giacomo Part 1: First-Order Queries (26/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Outline

4 Query evaluation problem

5 Complexity of query evaluation

G. De Giacomo Part 1: First-Order Queries (27/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Time complexity I

Theorem (Time complexity of Truth(I,α,ϕ))

The time complexity of Truth(I,α,ϕ) is (|I| + |α| + |ϕ|)|ϕ|, i.e.,
polynomial in the size of I and exponential in the size of ϕ.

Proof.

fI (of arity k) can be represented as k-dimensional array, hence
accessing the required element can be done in time linear in |I|.

TermEval(. . .) visits the term, so it generates a polynomial number
of recursive calls, hence is time polynomial in (|I| + |α| + |ϕ|).

G. De Giacomo Part 1: First-Order Queries (28/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Time complexity II

P I (of arity k) can be represented as k-dimensional boolean array,
hence accessing the required element can be done in time linear in
|I|.

Truth(. . .) for the boolean cases simply visits the formula, so
generates either one or two recursive calls.

Truth(. . .) for the quantified cases ∃x.ϕ and ∀x.ψ involves looping
for all elements in ∆I and testing the resulting assignments.

The total number of such testings is O(|I|$Vars).

Hence the claim holds.

G. De Giacomo Part 1: First-Order Queries (29/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Space complexity I

Theorem (Space complexity of Truth(I,α,ϕ))

The space complexity of Truth(I,α,ϕ) is |ϕ| · (|ϕ| · log |I|), i.e.,
logarithmic in the size of I and polynomial in the size of ϕ.

Proof.

fI(. . .) can be represented as k-dimensional array, hence accessing
the required element requires O(log |I|);

TermEval(. . .) simply visits the term, so it generates a polynomial
number of recursive calls. Each activation record has a constant
size, and we need O(|ϕ|) activation records;

P I(. . .) can be represented as k-dimensional boolean array, hence
accessing the required element requires O(log |I|);

G. De Giacomo Part 1: First-Order Queries (30/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Space complexity II

Truth(. . .) for the boolean cases simply visits the formula, so
generates either one or two recursive calls, each requiring constant
size;

Truth(. . .) for the quantified cases ∃x.ϕ and ∀x.ψ involves looping
for all elements in ∆I and testing the resulting assignments;

The total number of activation records that need to be at the same
time on the stack is O($Vars) ≤ O(|ϕ|).

Hence the claim holds.

Note: the worst case form for the formula is

∀x1.∃x2. · · · ∀xn−1.∃xn.P (x1, x2, . . . , xn−1, xn).

G. De Giacomo Part 1: First-Order Queries (31/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Complexity measures [Var82]

Definition (Combined complexity)

The combined complexity is the complexity of {〈I,α,ϕ〉 | I,α |= ϕ},
i.e., interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)

The data complexity is the complexity of {〈I,α〉 | I,α |= ϕ}, i.e., the
query ϕ is fixed (and hence not considered part of the input).

Definition (Query complexity)

The query complexity is the complexity of {〈α,ϕ〉 | I,α |= ϕ}, i.e., the
interpretation I is fixed (and hence not considered part of the input).

G. De Giacomo Part 1: First-Order Queries (32/66)

Query evaluation problem Complexity of query evaluation

Chap. 2: First-Order Query Evaluation

Query evaluation – Combined, data, query complexity

Theorem (Combined complexity of query evaluation)

The complexity of {〈I,α,ϕ〉 | I,α |= ϕ} is:

time: exponential
space: PSpace-complete — see [Var82] for hardness

Theorem (Data complexity of query evaluation)

The complexity of {〈I,α〉 | I,α |= ϕ} is:

time: polynomial
space: LogSpace

Theorem (Query complexity of query evaluation)

The complexity of {〈α,ϕ〉 | I,α |= ϕ} is:

time: exponential
space: PSpace-complete — see [Var82] for hardness

G. De Giacomo Part 1: First-Order Queries (33/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Chapter III

Conjunctive Queries

G. De Giacomo Part 1: First-Order Queries (34/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Outline

6 Evaluation of conjunctive queries

7 Containment of conjunctive queries

8 Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (35/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Outline

6 Evaluation of conjunctive queries

7 Containment of conjunctive queries

8 Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (36/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

∃%y.conj (%x, %y)

where conj (%x, %y) is a conjunction (i.e., an “and”) of atoms and
equalities, over the free variables %x, the existentially quantified
variables %y, and possibly constants.

Note:

CQs contain no disjunction, no negation, no universal
quantification, and no function symbols besides constants.

Hence, they correspond to relational algebra select-project-join
(SPJ) queries.

CQs are the most frequently asked queries.

G. De Giacomo Part 1: First-Order Queries (37/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

∃b, e, p1, c1, p2, c2.Person(n, a) ∧ Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

∃b, e, p1, c1, p2, c2.Person(n, a) ∧ Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧ Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)

G. De Giacomo Part 1: First-Order Queries (38/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Datalog notation for CQs

A CQ q = ∃%y.conj (%x, %y) can also be written using datalog notation as

q(%x1) ← conj ′(%x1, %y1)

where conj′(%x1, %y1) is the list of atoms in conj (%x, %y) obtained by
equating the variables %x, %y according to the equalities in conj (%x, %y).

As a result of such an equality elimination, we have that %x1 and %y1 can
contain constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

q(%x1) the head;

conj ′(%x1, %y1) the body;

the variables in %x1 the distinguished variables;

the variables in %y1 the non-distinguished variables.

G. De Giacomo Part 1: First-Order Queries (39/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Conjunctive queries – Example

Consider an interpretation I = (∆I , EI), where EI is a binary
relation – note that such interpretation is a (directed) graph.

The following CQ q returns all nodes that participate to a triangle
in the graph:

∃y, z.E(x, y) ∧ E(y, z) ∧ E(z, x)

The query q in datalog notation becomes:

q(x) ← E(x, y), E(y, z), E(z, x)

The query q in SQL is (we use Edge(f,s) for E(x, y):

SELECT E1.f

FROM Edge E1, Edge E2, Edge E3

WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f

G. De Giacomo Part 1: First-Order Queries (40/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it
by:

1 guessing a truth assignment for the non-distinguished variables;

2 evaluating the resulting formula (that has no quantifications).

boolean ConjTruth(I,α,∃%y.conj(%x, %y)) {

GUESS assignment α[%y ,→ %a] {

return Truth(I,α[%y ,→ %a],conj (%x, %y));
}

where Truth(I,α,ϕ) is defined as for FOL queries, considering only the
required cases.

G. De Giacomo Part 1: First-Order Queries (41/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Nondeterministic CQ evaluation algorithm

boolean Truth(I,α,ϕ) {

if (ϕ is t 1 = t 2)
return TermEval(I,α,t 1) = TermEval(I,α,t 2);

if (ϕ is P (t 1, . . . , t k))
return P I(TermEval(I,α,t 1),...,TermEval(I,α,t k));

if (ϕ is ψ ∧ ψ′)

return Truth(I,α,ψ) ∧ Truth(I,α,ψ′);

}

∆I TermEval(I,α,t) {

if (t is a variable x) return α(x);
if (t is a constant c) return cI;

}

G. De Giacomo Part 1: First-Order Queries (42/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

CQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

{〈I,α, q〉 | I,α |= q} is NP-complete — see below for hardness

time: exponential
space: polynomial

Theorem (Data complexity of CQ evaluation)

{〈I,α〉 | I,α |= q} is LogSpace

time: polynomial
space: logarithmic

Theorem (Query complexity of CQ evaluation)

{〈α, q〉 | I,α |= q} is NP-complete — see below for hardness

time: exponential
space: polynomial

G. De Giacomo Part 1: First-Order Queries (43/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem

Given a graph G = (V,E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

G. De Giacomo Part 1: First-Order Queries (44/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem

Given a graph G = (V,E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

G. De Giacomo Part 1: First-Order Queries (44/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Reduction from 3-colorability to CQ evaluation

Let G = (V,E) be a graph. We define:

An Interpretation: I = (∆I , EI) where:
∆I = {r, g, b}
EI = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}

A conjunctive query: Let V = {x1, . . . , xn}, then consider the
boolean conjunctive query defined as:

qG = ∃x1, . . . , xn.

∧

(xi,xj)∈E

E(xi, xj) ∧ E(xj , xi)

Theorem

G is 3-colorable iff I |= qG.

G. De Giacomo Part 1: First-Order Queries (45/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound
for query complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.

G. De Giacomo Part 1: First-Order Queries (46/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound
for query complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.

G. De Giacomo Part 1: First-Order Queries (46/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Outline

6 Evaluation of conjunctive queries

7 Containment of conjunctive queries

8 Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (47/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Homomorphism

Let I = (∆I , P I , . . . , cI , . . .) and J = (∆J , PJ , . . . , cJ , . . .) be two
interpretations over the same alphabet (for simplicity, we consider only
constants as functions).

Def.: A homomorphism from I to J

is a mapping h : ∆I → ∆J such that:

h(cI) = cJ

h(P I(a1, . . . , ak)) = PJ (h(a1), . . . , h(ak))

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic.
G. De Giacomo Part 1: First-Order Queries (48/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query
q of arity k. Then

I,α |= q(x1, . . . , xk) iff Iα,%c |= q(c1, . . . , ck)

where Iα,%c is identical to I but includes new constants c1, . . . , ck that

are interpreted as c
Iα,"c

i = α(xi).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.

G. De Giacomo Part 1: First-Order Queries (49/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query ∃x1, . . . , xn.conj

Def.: The canonical interpretation Iq associated with q

is the interpretation Iq = (∆Iq , P Iq , . . . , cIq , . . .), where

∆Iq = {x1, . . . , xn} ∪ {c | c constant occurring in q},
i.e., all the variables and constants in q;

cIq = c, for each constant c in q;

(t1, . . . , tk) ∈ P Iq iff the atom P (t1, . . . , tk) occurs in q.

Sometimes the procedure for obtaining the canonical interpretation is
called freezing of q.

G. De Giacomo Part 1: First-Order Queries (50/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Canonical interpretation of a (boolean) CQ – Example

Consider the boolean query q

q(c) ← E(c, y), E(y, z), E(z, c)

Then, the canonical interpretation Iq is defined as

Iq = (∆Iq , EIq , cIq)

where

∆Iq = {y, z, c}

EIq = {(c, y), (y, z), (z, c)}

cIq = c

G. De Giacomo Part 1: First-Order Queries (51/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Canonical interpretation and (boolean) CQ evaluation

Theorem ([CM77])

For boolean CQs, I |= q iff there exists a homomorphism from Iq to I.

Proof.
“⇒” Let I |= q, let α be an assignment to the existential variables that
makes q true in I, and let α̂ be its extension to constants. Then α̂ is a
homomorphism from Iq to I.

“⇐” Let h be a homomorphism from Iq to I. Then restricting h to
the variables only we obtain an assignment to the existential variables
that makes q true in I.

G. De Giacomo Part 1: First-Order Queries (52/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be
reduced to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in AI – see also [KV98].

G. De Giacomo Part 1: First-Order Queries (53/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment

Def.: Query containment

Given two FOL queries ϕ and ψ of the same arity, ϕ is contained in ψ,
denoted ϕ ⊆ ψ, if for all interpretations I and all assignments α we
have that

I,α |= ϕ implies I,α |= ψ

(In logical terms: ϕ |= ψ.)

Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.

G. De Giacomo Part 1: First-Order Queries (54/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment

Def.: Query containment

Given two FOL queries ϕ and ψ of the same arity, ϕ is contained in ψ,
denoted ϕ ⊆ ψ, if for all interpretations I and all assignments α we
have that

I,α |= ϕ implies I,α |= ψ

(In logical terms: ϕ |= ψ.)

Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.

G. De Giacomo Part 1: First-Order Queries (54/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment for CQs

For CQs, query containment q1(%x) ⊆ q2(%x) can be reduced to query
evaluation.

1 Freeze the free variables, i.e., consider them as constants.
This is possible, since q1(%x) ⊆ q2(%x) iff

I, α |= q1(%x) implies I, α |= q2(%x), for all I and α; or equivalently
Iα,"c |= q1(%c) implies Iα,"c |= q2(%c), for all Iα,"c, where %c are new
constants, and Iα,"c extends I to the new constants with
cIα,"c = α(x).

2 Construct the canonical interpretation Iq1(%c) of the CQ q1(%c) on the
left hand side . . .

3 . . . and evaluate on Iq1(%c) the CQ q2(%c) on the right hand side,
i.e., check whether Iq1(%c) |= q2(%c).

G. De Giacomo Part 1: First-Order Queries (55/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])

For CQs, q1(%x) ⊆ q2(%x) iff Iq1(%c) |= q2(%c), where %c are new constants.

Proof.
“⇒” Assume that q1(%x) ⊆ q2(%x).

Since Iq1("c) |= q1(%c) it follows that Iq1("c) |= q2(%c).

“⇐” Assume that Iq1("c) |= q2(%c).

By [CM77] on hom., for every I such that I |= q1(%c) there exists a
homomorphism h from Iq1("c) to I.

On the other hand, since Iq1("c) |= q2(%c), again by [CM77] on hom., there
exists a homomorphism h′ from Iq2("c) to Iq1("c).

The mapping h ◦h′ (obtained by composing h and h′) is a homomorphism
from Iq2("c) to I. Hence, once again by [CM77] on hom., I |= q2(%c).

So we can conclude that q1(%c) ⊆ q2(%c), and hence q1(%x) ⊆ q2(%x).
G. De Giacomo Part 1: First-Order Queries (56/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment for CQs

For CQs, we also have that (boolean) query evaluation I |= q can be
reduced to query containment.

Let I = (∆I , P I , . . . , cI , . . .).
We construct the (boolean) CQ qI as follows:

qI has no existential variables (hence no variables at all);

the constants in qI are the elements of ∆I ;

for each relation P interpreted in I and for each fact
(a1, . . . , ak) ∈ P I , qI contains one atom P (a1, . . . , ak) (note that
each ai ∈ ∆I is a constant in qI).

Theorem

For CQs, I |= q iff qI ⊆ q.

G. De Giacomo Part 1: First-Order Queries (57/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity
of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the
above result can be strengthened:

Theorem

Containment q1(%x) ⊆ q2(%x) of CQs is NP-complete, even when q1 is
considered fixed.

G. De Giacomo Part 1: First-Order Queries (58/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity
of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the
above result can be strengthened:

Theorem

Containment q1(%x) ⊆ q2(%x) of CQs is NP-complete, even when q1 is
considered fixed.

G. De Giacomo Part 1: First-Order Queries (58/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Outline

6 Evaluation of conjunctive queries

7 Containment of conjunctive queries

8 Unions of conjunctive queries

G. De Giacomo Part 1: First-Order Queries (59/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form
∨

i=1,...,n

∃%yi.conj i(%x, %yi)

where each conj i(%x, %yi) is a conjunction of atoms and equalities with
free variables %x and %yi, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of
conjunctive queries.

G. De Giacomo Part 1: First-Order Queries (60/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Datalog notation for UCQs

A union of conjunctive queries

q =
∨

i=1,...,n

∃%yi.conj i(%x, %yi)

is written in datalog notation as

{ q(%x) ← conj ′1(%x, %y1
′)

...
q(%x) ← conj ′n(%x, %yn

′) }

where each element of the set is the datalog expression corresponding to
the conjunctive query qi = ∃%yi.conj i(%x, %yi).

Note: in general, we omit the set brackets.

G. De Giacomo Part 1: First-Order Queries (61/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Evaluation of UCQs

From the definition of FOL query we have that:

I,α |=
∨

i=1,...,n

∃%yi.conj i(%x, %yi)

if and only if

I,α |= ∃%yi.conj i(%x, %yi) for some i ∈ {1, . . . , n}.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the
size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

G. De Giacomo Part 1: First-Order Queries (62/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

UCQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)

{〈I,α, q〉 | I,α |= q} is NP-complete.

time: exponential
space: polynomial

Theorem (Data complexity of UCQ evaluation)

{〈I, q〉 | I,α |= q} is LogSpace-complete (query q fixed).

time: polynomial
space: logarithmic

Theorem (Query complexity of UCQ evaluation)

{〈α, q〉 | I,α |= q} is NP-complete (interpretation I fixed).

time: exponential
space: polynomial

G. De Giacomo Part 1: First-Order Queries (63/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment for UCQs

Theorem

For UCQs, {q1, . . . , qk} ⊆ {q′1, . . . , q
′
n} iff for each qi there is a q′j such

that qi ⊆ q′j.

Proof.
“⇐” Obvious.

“⇒” If the containment holds, then we have
{q1(%c), . . . , qk(%c)} ⊆ {q′1(%c), . . . , q

′
n(%c)}, where %c are new constants:

Now consider Iqi(%c). We have Iqi(%c) |= qi(%c), and hence
Iqi(%c) |= {q1(%c), . . . , qk(%c)}.
By the containment, we have that Iqi(%c) |= {q′1(%c), . . . , q

′
n(%c)}. I.e.,

there exists a q′j(%c) such that Iqi(%c) |= q′j(%c).
Hence, by [CM77] on containment of CQs, we have that qi ⊆ q′j.

G. De Giacomo Part 1: First-Order Queries (64/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

Query containment for UCQs – Complexity

From the previous result, we have that we can check
{q1, . . . , qk} ⊆ {q′1, . . . , q

′
n} by at most k · n CQ containment checks.

We immediately get:

Theorem

Containment of UCQs is NP-complete.

G. De Giacomo Part 1: First-Order Queries (65/66)

Evaluation of conjunctive queries Containment of conjunctive queries Unions of conjunctive queries

Chap. 3: Conjunctive Queries

References

[CM77] A. K. Chandra and P. M. Merlin.

Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC’77), pages
77–90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.

Conjunctive-query containment and constraint satisfaction.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’98), pages 205–213, 1998.

[Var82] M. Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing
(STOC’82), pages 137–146, 1982.

G. De Giacomo Part 1: First-Order Queries (66/66)

