Anno accademico 2006/2007

Universita di Roma '""La Sapienza"
Facolta di Ingegneria
Corso di Laurea Specialistica in Ingegneria Informatica

Tesina di Seminari di Ingegneria del software

Composizione automatica di servizi:
I'approccio ASTRO

Autore:
Vanda Piacentini

Indice

INTRODUZIONEooiiiieiesieiese s inscsms s s s s s e sm s s e sm s s e m s s e e amne s e e nmn e e nnnan 3
Capitolo 1 - Il problema della Web service composition 5
1.1 WS COMPOSTEION ...ttt ettt ettt sttt e bt e bt eateeateeb e e s bt e bt et e eabesaeesbeesbtenbe e bt embeeabeebaesbaenbeenbeenbeensesaees 5
1.2 TOIMUNOLOZIA. ...ttt sttt ettt et et e bt e bt e bt e bt e s bt s aeesht e s bt e nbe e bt emt e eabeebaesbte bt enbeenseeneesaees 6
Capitolo 2 - Il progetto Astro 7
2.1 PanoramiCa el PIOZEILO.ceetiieiieiiieeite ettt ettt st e e st e et e st eeab e e s bt e sabeesabeesabee s bt esabeesabeesabeesabeenateesabeenanees 7
2.2 WS Composition in ASTROcociiiiiiiii ettt et et e 8
2.2.1 Basi teoriche della cOMPOSIZIONE 1N ASIIOcueeruiiiieiieiieienienieeeee et sttt e ae st eneeanes 9

2.2.2 Rappresentazione dei Component Services come STSc..cooiiiiiiiiiiiiiiieeeee e 10

2.2.3 Nozione di BPEL ...c..cciiiiiiiiiii et s s 12

2.2.4 Nozione di EAGLEc..oooiiiiiiiiiii ettt s et 13
Capitolo 3 - L’installazione del Toolset 14
BT JAVA 15X ottt b e sa e bt b e sa e eb et n et besae e 14
B2 ECHPSE IDE 3.2.2 .ottt et ettt st st h e bttt et e h e bt bt e bt et et st sbtesbeenbeenae e 14
3.3 TOMCAL SEIVET 5.5.X...euiiuiiiieiieiieientiete ettt ettt sttt et b e sae bt stesse s et e b saeebe e st ensesnestesnesueas 15
3.4 ACtiVeBPEL ENZINeE 2.0.....ccuiiiiiiiiiiiiieet ettt sttt ettt ettt e e s s sae e 15
3.5 Graphical Editing Framework & Graphical Modeling Framework Eclipse plugins............cc.ccccceeeeeiiiiniencennenne. 16
3.6 ASLIO WSTOOISEE 1.8.0 ...ciiiiiiiiiiiieeee ettt ettt st b e et e et e s b et e bt e e be e e bt e sabaeebeeeabaeeneeeabee 16
3.7 ASLIO WSIMONIEOT 1.6.0 ..couiiiiiiiiiiiiiiie ettt ettt ettt st b e st e et e e b et e bt e e bt e eabeeeabaeebeeeabeeeseeeabes 17
3.8 Astro wsRequirement 0.2.0 ECLIpSe PIUZINcocuiiiiiiiiiiiiieieec et 17
3.9 Astro wsChainManager 2.4.0 EClipSe PIUZIN.....c..cocuiiiiiiiiiiiiiieeicee ettt 18
3.10 Astro wsAnimator 0.0.7 ECLIPSE PIUZIN ..cc..eeuiiiiiiiiiiiieiieiceeee ettt et st st s 18
3.11 Astro wsUseCases 1.0.0 ECIPSE PIUZII ..ccveetiiiiriiriiiiieiieieeieete ettt ettt et st st 18
312 ACHVEBPEL DIESIZIIETcouveeniieiiiiiieiite ettt ettt ettt et st st b ettt et e it e s bt e s bt e bt e bt e bt satesbtesbeenbeenaeenee 18
Capitolo 4 — La demo VTA 19
4.1 Scenario di fUNZIONAMENTO.couiiuiiiiiiiiiiie ittt sa e s ettt s ebe et sa s ae b saeenes 19
4.2 Dagli STS agli abstract BPEL..........coccoiiiiiiiiiiiiiieieiteeee ettt ettt ettt et ettt st sbe et e e eanesaaenbeens 20
4.2.1 Flight COMPONENE SEIVICEc.veeniieirieiiieiieeiienieesieete et e st e st et ettt et e siae st e e bt e seeaneeanesaeesaee st enseenneenneeanennnens 20

4.2.2 HOtEl COMPONEIIE SEIVICE ..c.uuvteuiieiiieriieenittenieeeitee st e sttt e site e sttt e sate e sttt e sabeesbteesabeesbeeensbeebeeesabeeabteenseesbeeenaeesnses 22

4.2.3 USET COMPONENLE SEIVICE ...c.eeeneienrienrieitieiteeitesieesteereeteeresaeesaeesseesatesaeessessaesteesseesneenseennesanesaeesseenseenseenneesnensnens 24

4.2.4 VTA COMPOSIE SEIVICE ...c.eeenvieniienrieitieiieeitesieesie et eteerestesitesteeaeesatesaestaestee st eseeanesanesaeesaeesseenseenseenneesnensnens 26

4.3 Creazione del fIle .CROTooiiiiiiie ettt ettt e s bt e et e s bt e st e sbaesabee et 27
4.4 1.a COMPOSIZIONE AULOIMALICA. ...e.vvevteteenteeteeuteetteattentteteeteestesetesbeesbeentee bt euteebaesbaenbeenbeenbeestesatesbeenbeenteenteennessnenseens 34
4.5 Process VEITTICALIONccueiuiriiiiiiieiieicicietese sttt sttt st sttt s e bt et a e besaeenes 35
4.0 PrOCESS IMOMIEOTING ...nvventeenieinteeiieiitentteteet ettt et ett bt e bt e bt et sateshe e s bt e bt et eat e ebaesb e e bt e bt embeestesatesbeenbee bt enteeanesbaenbeens 37
4.7 Process eXeCUtiON STMULALIONc..eeuiiiiiiiiiiiie ittt sttt sttt s e e ea b saeenes 39
Capitolo 5 — Provare a realizzare una demo 41
5.1 Dagli STS agli abstract BPEL.........cc.cooiiiiiiiiiiiieieeeeeeetet ettt ettt ettt st e b enae e 41
5.1.1 BUY COMPONENE SEIVICEeenvienrienieeiieeiieritentiett et et eiee st et et eneenesaeesaee st esseeaseeunesunesseeseenneeasesanesaeesaeenneenns 41

5.1.2 MP3 COMPONENE SEIVICEeeuvienrieuiieiieiiieriienttett et et et sttt e st eneeaesaeesaee st esseesseeaaesuaesse e seenneemnesanesaeesaeenneenne 44

5.1.3 USETr COMPONENLE SEIVICEeeuveeuiienrieniieieriieniiett et et eteesteeste et esneenesaee s st e st esseesseeasesanesseeseenneennesanesaeesaeenneenns 45

5.2 Creazione del fIle .CROTcoiuiiiiiiii ettt sttt e st e st e sabe e st e e s bt e sabeesabeesabee e 45
5.3 Perché NON fUNZIONANTEooiuiiiiiiiiiieiieee ettt st sat e st esat e e s bt e sabeesabeeeabeesabeesabeesabeesabeesabaesabeenas 48
L0010 050 | 50
BIBLIOGRAFIA ...t n s aammmnnn s e e e nnnnnan 51

Introduzione

Questa tesina si colloca nell’ampio mondo dei Web Services. Secondo la definizione data dal World
Wide Web Consortium (W3C) un Web Service (servizio web) ¢ un sistema software progettato per
supportare l'interoperabilita tra diversi elaboratori su di una medesima rete. Caratteristica
fondamentale di un Web Service ¢ quella di offrire un’interfaccia software (descritta in un formato
automaticamente elaborabile quale, ad esempio, il Web Services Description Language) utilizzando
la quale altri sistemi possono interagire con il Web Service stesso attivando le operazioni descritte
nell'interfaccia tramite appositi “messaggi” inclusi in una “busta” SOAP. Tali messaggi sono,
solitamente, trasportati tramite il protocollo HTTP e formattati secondo lo standard XML. Proprio
grazie all'utilizzo di standard basati su XML, tramite un’architettura basata sui Web Service
(chiamata, con terminologia inglese, Service oriented Architecture - SOA), applicazioni software
scritte in diversi linguaggi di programmazione e implementate su diverse piattaforme hardware
possono quindi essere utilizzate, tramite le interfacce che queste “espongono” pubblicamente e
mediante 1’utilizzo delle funzioni che sono in grado di effettuare (i “servizi” che mettono a
disposizione) per lo scambio di informazioni e 1'effettuazione di operazioni complesse (quali, ad
esempio, la realizzazione di processi di business che coinvolgono pill aree di una medesima
azienda) sia su reti aziendali come anche su Internet. La ragione principale per la creazione e
l'utilizzo di Web Service ¢ il “disaccoppiamento” che l'interfaccia standard esposta dal Web Service
rende possibile fra il sistema utente ed il Web Service stesso: modifiche ad una o all'altra delle
applicazioni possono essere attuate in maniera “trasparente” all'interfaccia tra i due sistemi; tale
flessibilita consente la creazione di sistemi software complessi costituiti da componenti svincolati

I'uno dall'altro e consente una forte riusabilita di codice ed applicazioni gia sviluppate.

Lo scopo della tesina, svolta per il corso di Seminari di Ingegneria del software, ¢ lo studio del tool
realizzato dal Progetto ASTRO per la composizione automatica di servizi e lo studio di una demo
esistente basata su un semplice esempio di Web Services: VTA, che possiamo definire un’agenzia
di viaggi virtuale. In realta si ¢ provato anche a realizzare un esempio di demo sulla base di quella
gia esistente, ma a causa della mancanza di documentazione e tutorial e soprattutto delle numerosi
limitazioni del tool, non si ¢ riusciti a giungere ad una demo funzionante.

Nel primo capitolo si parlera in linea generale del problema della Web service composition. Nel
secondo capitolo si iniziera a parlare del Progetto ASTRO e di come viene affrontata la
composizione automatica di servizi e quindi del tool sviluppato. Nel terzo capitolo si spieghera

I’installazione del tool, chiamato Astro suite o Astro toolset. Nel quarto capitolo si analizza la demo

VTA nell’intero processo di composizione. Nel quinto capitolo si accennera all’esempio di demo

che si ¢ provato a realizzare.

Capitolo 1 - Il problema della Web service
composition

1.1 WS Composition

L’ampia diffusione di applicazioni service - oriented e in particolare dei web services, all’interno di
numerose organizzazioni, ha introdotto nel campo della ricerca tematiche interessanti su come poter
sfruttare 1 componenti di business gia esistenti, in modo da poter costruire a partire da questi e in
modo automatico, nuovi servizi composti di valore aggiunto per il cliente. La composizione di
servizi viene attualmente affrontata in modo manuale: il cliente specifica i suoi requisiti e il
progettista si occupa di concepire un nuovo processo di business che invochi adeguatamente le
componenti applicative esistenti. Come si puo ben intuire, tale compito si presenta abbastanza
laborioso e non privo di difficolta. Cid a cui si vuole arrivare al contrario, € un procedimento
efficiente, affidabile e di facile uso che permetta, a partire da specifici requisiti, di comporre in

modo automatico web service e in generale frammenti di applicazioni.

La Service Composition ¢ una metodologia che ha per fine 1implementazione di Composite
Service, un Web Service che offre servizi da una sua interfaccia come qualsiasi altro Web Service,
sebbene dal punto di vista implementativo 1 servizi offerti siano il risultato di un'opportuna
interazione con altri Web Services, indipendenti tra loro e non pensati a priori per cooperare in un

Web Service comune.

Nella Web Service Composition si vuole trovare, dati dei requisiti opportunamente espressi, un

piano d'esecuzione in cui siano indicati quali Web Services invocare, in che ordine farlo e come

gestire condizioni di errore e imprevisti.

In generale gli strumenti necessari per risolvere il problema sono:

« un linguaggio per la rappresentazione comportamentale di Web Services, in modo da
modellare efficacemente il loro flow d'esecuzione e le funzionalita che offrono;

¢ una logica di composizione, ovvero un procedimento generale che partendo dai requisiti
(Business Requirements) e dai Web Services di partenza (Component Services) realizzi il
Composite Service finale in una qualche forma eseguibile; questo punto rappresenta il cuore
di un approccio per la WS Composition, una sorta di algoritmo di base;

% un ambiente di sviluppo, possibilmente ricco di componenti GUI, che aiuti il progettista a
creare il servizio ad alto livello, automatizzando la metodologia definita dalla logica di
composizione;

¢ un composition engine per eseguire e monitorare le istanze della composizione trovate.

Gli approcci che cercano di affrontare il problema della Web service composition, mirano alla

realizzazione pratica del workflow descritto dalla seguente figura:

Component > | Ahstractim
Services' Module Transition System
hebawioral Fepresentation of
Descriptions ﬂ Components and
Fequirements
Synthesis
Engine
Ahstract repres.
of Composition ﬂ Concrete
Regquirements of Schemaasa TS Composite Setvice

Clients for Target apecification

Cormposite Serce Building
F Muopdule :> %

Figura 1: The general WS composition workflow

1.2 Terminologia

Il termine conversazione rappresenta un'interazione con un Web Service consistente nell'esecuzione
sequenziale di pill operazioni, in un particolare ordine.

Il termine coreografia indica un piano per la coordinazione di pill conversazioni, volta ad un preciso
scopo d'insieme.

Con il termine sintesi di un Composite Service si intende la costruzione delle specifiche necessarie
all'esecuzione del servizio a partire da requirements ben definiti; tali specifiche sono conosciute
come Composition Schema.

Il termine orchestrazione indica la gestione runtime dell'esecuzione del Composite Service.

Capitolo 2 - Il progetto Astro

2.1 Panoramica del progetto

Il Progetto Astro ¢ un'iniziativa di ricerca congiunta riguardo l'integrazione di Web Services, sia
intra- che inter-organizzazione, promossa dall'Universita di Trento e 1TTC-IRST, il Centro di
Ricerca Scientifica e Tecnologica della Fondazione Bruno Kessler.

Il suo scopo principale ¢ favorire 1'adozione worldwide di Web Services compositi prestando
attenzione a metriche fondamentali quali efficacia, flessibilita, facilita d'uso, basso costo ed
efficienza temporale.

Astro vuole fornire:

» un framework generale per la composizione automatica di servizi;

» dei tools concreti per la realizzazione del framework, utilizzanti una larga serie di tecnologie
affermate;

» supporto software per l'intero ciclo di vita delle applicazioni, dalle prime fasi di design fino
al monitoraggio e verifica a runtime;

» evitare di delegare allo sviluppatore dei compiti noiosi, complessi ed error-prone, in modo
da permettergli di concentrarsi in modo trasparente e user-centered sulla logica
dell'applicazione ad un alto livello di astrazione.

I tools dovrebbero essere capaci di analizzare i processi in dettaglio e di scoprire i problemi sia a
livello di design sia a livello di run-time, e fornire soluzioni alternative. Le attivita di ricerca sono
strutturate secondo i seguenti settori:

¢ Business Requirements: questo settore mira allo sviluppo di un framework per

rappresentare efficacemente la definizione di strategie, obiettivi e business
requirements aziendali, con particolare riguardo anche alle interazioni tra differenti
business processes;

s Service Synthesis: il settore della sintesi offre un modello per ottenere dei servizi
compositi in maniera generale ed efficiente, nonché supportata da una teoria di fondo
che garantisce la correttezza e 1’affidabilita dei risultati; questo ramo ha una
controparte pratica incarnata dai tools eseguibili per la composizione di Web
services;

s Service Verification: il tool offre anche strumenti di supporto per controllare se i
requirements definiti sono violati dal servizio risultante ottenuto;

¢ Service Monitoring: il corrispettivo a runtime della service verification;

s Semantics: parte degli sforzi di ricerca sono volti all’adozione di supporto per
integrare semantic web services, rendendo il tools interoperabile con OWL-S e

WSMO.

2.2 WS Composition in ASTRO

Nell’approccio ASTRO gli input al problema sono costituiti da un set di Component Services,
espressi come Abstract BPEL Processes, € da una specifica di Composition Requirements come
EAGLE formula, e si vuole generare automaticamente un nuovo servizio W, il target composite
service, che utilizza i component services esistenti e soddisfa i nostri composition requirements.

Inoltre si hanno le seguenti assunzioni:

e essere in un dominio asincrono: ogni web service evolve indipendentemente e con velocita
imprevedibile, sincronizzandosi con gli altri tramite scambio di messaggi ed evidentemente,
in implementazioni reali, vengono impiegati dei buffer che consentono di non perdere i

messaggi che non possono essere immediatamente processati;

® i component services offrono osservabilita parziale, cioe non espongono le loro operazioni

interne ma solamente le interazioni con l'esterno;

® i composition requirements devono essere espressi come extended goals, in grado di

catturare condizioni esistenti sui percorsi dell’intero piano.

La composizione viene modellata come un problema di pianificazione, basata sull’approccio
“Planning as Model Checking”, concepite per poter lavorare anche in domini non-deterministici,
con condizioni di parziale osservabilita ed “extended goals”. Il risultato finale ¢ un piano di
esecuzione nel quale, a partire da alcune condizioni iniziali, esso specifica I’'insieme di azioni da
eseguire per raggiungere il goal.

La rappresentazione comportamentale dei servizi ¢ basata su STSs che distinguono azioni di input,

di output ed interne(t-transitions).

L’interfaccia pubblica di invocazione del servizio viene specificata con WSDL, mentre per
codificare una descrizione “comportamentale” viene utilizzato il linguaggio BPEL4WS che
permette di modellare ad alto livello le interazioni che si verificano in un singolo web service (per

esempio invio e ricezione di messaggi).

La figura seguente mostra come sia possibile giungere dagli input definiti sopra, al Concrete BPEL

Process eseguibile che implementa il Composite Service desiderato.

Component Services as Composition
ahstract BFEL proceszes Fequirement
Wy W, E

ﬂ Plaxmipg l

r EAGLE formla

Dotnain
EFPELZSTH o l
I ! X
ST3s 5, ... 5, MEF
E}/ JFlanp
1 FLAMZETE
BT E2DOn
A | TRANSLATOR STSS;
X Concrete
QTeREPEL P BPEL Proc
W

Figura 2: The Astro composition workflow

Da un’analisi generale della figura possiamo vedere che si parte da due input: un set di component
services espressi come abstract BPEL processes W;...W,, che descrivono il comportamento
“visibile dall’esterno” dei component services; € i composition requirements espressi tramite una
formula EAGLE r. Tramite un modulo software BPEL2STS, 1 processi BPEL sono trasformati in
rappresentazioni STS e si ottengono cosi gli STS S;...S;. Questi vengono manipolati per creare un
nuovo STS Sy, definito come prodotto parallelo dei S;...S,. Intuitivamente possiamo pensare al
Prodotto Parallelo come ad un STS che combina tutte le possibili evoluzioni dei Web Services
componenti. A questo punto viene creato un dominio D che, insieme alla formula r, viene utilizzato
per individuare un piano P, da cui in seguito si ricava I’STS del mediatore (una forma di
orchestratore), che si occupera di inviare/ricevere le invocazioni riguardanti 1 servizi componenti.
L’ultima fase prevede la traduzione dell’ orchestratore in un processo BPEL concreto che puo essere

eseguito su un ambiente runtime, come ad esempio Active BPEL.

2.2.1 Basi teoriche della composizione in Astro

Ora presentiamo alcuni concetti teorici che sono dietro questo processo di composizione.

Lo scopo finale ¢ la realizzazione del Composite Service a partire dai nostri requirements, che si
concretizza nel trovare un STS Sc¢, che soddisfa particolari proprieta: esso deve “muoversi”
all'interno di S; per “controllare” i component services, allo stesso tempo rispettando il goal r ed

evitando di porsi in stati pericolosi, come ad esempio un deadlock.

Si definiscono quindi due attori, entrambi STS: Sc e S, facendo in modo che il primo controlli il
secondo, cioe Sc ¢ il Controller e S il Sistema Controllato. La nozione di controllo deriva
principalmente dalla corrispondenza input-output delle azioni: l'input del Controller & l'output
dell'STS controllato, ovvero il controllato fornisce all'output le informazioni generate, mentre
I'output del Controller ¢ l'input del controllato, ovvero il Controller “istruisce” I'STS controllato
sulle prossime azioni.

Le assunzioni di sistema asincrono in cui ci poniamo pongono di fronte a noi una difficolta: non
tutti gli STS controllers per un dato STS sono adatti ai nostri scopi: vorremmo evitare deadlocks,
piu precisamente vorremmo che ogniqualvolta il Controller “invii” un messaggio in output all'STS
controllato, questo sia pronto a ricevere tale messaggio. Dobbiamo pertanto definire un sottoinsieme
dei Controllers possibili, tale che I'STS controllato possa ricevere gli input forniti, eventualmente
dopo una catena, arbitrariamente lunga ma finita, di t-transitions. Si introduce cosi il deadlock-free
controller, cio¢ esiste una input transition raggiungibile dallo stato presente per accettare l'input
lanciato dal sistema controllato.

Per soddisfare il composition goal r, abbiamo bisogno di esplorare tutte le possibili esecuzioni del
Sistema Controllato e le proprieta soddisfatte in tali esecuzioni. Non possiamo fare cio sotto ipotesi
di osservabilita parziale (il Controller non ha piena osservabilita sul Prodotto Parallelo Controllato).
Ci portiamo quindi al Belief-Level, ovvero consideriamo set di stati ugualmente plausibili date le
nostre conoscenze, che evolvono tramite external transitions includendo nel nuovo Belief State stati
raggiungibili tramite z-closure (set di stati raggiungibili da transizioni interne).

Quindi possiamo definire formalmente il problema della composizione in Astro con la seguente
definizione.

Definizione: Astro Composition Problem

Siano Sy, ..., Sp un insieme di STSs, e r un composition requirement.

Il problema di composizione per Sy, ..., S, e r ¢ il problema di trovare un Controller S¢ che ¢

deadlock-free e tale che Sg I=r, dove Sp ¢ il Belief-Level System dell'STS Sc¢ > (Sq Il ...I1 Sp).

2.2.2 Rappresentazione dei Component Services come STS

Un metodo efficace per rappresentare Web services, consiste nell’utilizzare State Transistion
System (STS), un tipo di macchine a stati finiti. In generale infatti un web service pud essere
caratterizzato dalle operazioni (atomiche) che esso espone all’esterno, inserite opportunamente in
particolari sequenze di esecuzione (conversazioni); negli STS le operazioni sono rappresentate dalle

transizioni, mentre gli stati codificano le condizioni in cui i web services si trovano.

10

Gli STS definiti in Astro distinguono possibili stati, € i cambiamenti tra stati avvengono attraverso
azioni, le quali possono essere classificate in azioni di input (ricezione di messaggi), azioni di
output (invio di messaggi) e t-transitions, ovvero azioni di evoluzione interna e non visibile alle
entita esterne.
Di seguito viene riportata una ridefinizione di STS secondo il progetto Astro:
Definizione: Astro State-Transition Sytem (STS)
Un Transition System S ¢ una tupla < S, S’ 1,0, R, L >, dove:

e S ¢ l'insieme finito degli stati;

° SO, sottoinsieme di S, € l'insieme di stati iniziali;

e [¢ l'insieme finito di input actions (cioe ricezione di messaggi);

e O ¢ l'insieme finito di output actions (cio¢ invio di messaggi);

e R ¢larelazione di transizionedaSx IUO U {t}) — S;

L: S — 277P & una funzione di etichettatura.

Sostanzialmente quindi, uno STS rappresenta il servizio come un sistema che puo trovarsi in uno di
diversi stati possibili (alcuni marcati come iniziali altri come finali in cui il servizio puo terminare)
e che puo transitare in altri stati per mezzo di azioni. Tali azioni possono essere di input, output
(invio e ricezione di messaggi a/da altri web services) o interne, ovvero il sistema evolve senza
produrre output e indipendentemente dalla ricezione di input (t-transitions). La relazione di
transizione spiega invece come passare da uno stato all’altro, al verificarsi delle azioni appena
descritte. Infine, la funzione di etichettatura associa ad ogni stato I’insieme delle proprieta valide in
quel determinato stato.

Vengono effettuate alcune assunzioni sulla modellazione in STS di Component Services: 'assenza
di loops infiniti su t-actions e 1'impossibilita che uno stato abbia origine sia da input che da output
transitions.

Inoltre il modulo di traduzione, BPEL2STS non supporta tutti i costrutti BPEL, ad esempio
nell'ultima versione 3.4 dell’ Astro suite i costrutti “Scope” e “Fault” non sono supportati; tuttavia il
range di operatori attualmente disponibili permette un certo livello di complessita.

Ricordiamo infine come lo stato di un STS dipenda dalle sue variabili interne, cosi come le
transizioni definite da R dipendono da queste stesse variabili; perché il file .smv che incarna I'STS

dei Component Services sia trattabile, vengono definiti ranges finiti per le variabili in gioco.

11

2.2.3 Nozione di BPEL

L'acronimo BPEL sta per Business Process Execution Language, ed ¢ un linguaggio appositamente
creato per la definizione ed esecuzione di processi i cui passi di esecuzione possono rappresentare
invocazioni a Web Services. Il linguaggio ¢ basato su XML (ovvero un file BPEL ¢ a tutti gli effetti
un file xml con dei costrutti particolari e processabile da tools appositi) ed ¢ il fulcro centrale su cui
orbita la realizzazione dell'intero Astro toolset: sia parte dei composition requirements, sia l'output
eseguibile finale sono file BPEL.
Un’importante distinzione tra i files BPEL ¢ quella tra Abstract e Concrete files. Entrambi
descrivono un (composite) Web service attraverso xml, ma mentre un Abstract process definisce
solo il comportamento visibile “dall'esterno” dello scambio di messaggi tra web services, un
Concrete process ¢ un file a tutti gli effetti eseguibile, dettaglia anche le evoluzioni interne dei
servizi, cioe le t-transitions, e pud concretizzarsi in un processo deployable su un BPEL engine e
monitorabile.
I costrutti BPEL piu importanti ed usati dal tool Astro sono:
® un processo abstract che definisce un set di messaggi scambiati tra web services, senza pero
definire la internal business logic;
® un processo concrete che definisce la business logic di un servizio servendosi di attivita
constituenti, partners coinvolti nel servizio, message exchange necessario e procedure di
exception handling.
Per quanto riguarda le attivita BPEL, esse possono essere primitive o strutturate.
Le attivita primitive principali includono:
® invoke: per invocare un Web Service;
® receive e reply: per ricevere messaggi da una sorgente esterna o inviarli verso 1'esterno;
® wait ed empty: per rimanere inattivi, rispettivamente per un certo periodo di tempo e
indefinitamente;
® assign: per assegnare valori alle variabili interne che costituiscono lo stato del Web service;
e throw: per lanciare eccezioni.
Le attivita strutturate includono:
® sequence: per eseguire una catena di azioni sequenziali;
e switch: simile al noto costrutto informatico, effettua una singola decisione basandosi su una
variabile;
® pick: per “ascoltare” i cambiamenti su un dato set di eventi; non appena accade un certo

evento, viene scelta ed eseguita una certa azione (legato al non-determinismo);

12

® while: per il tradizionale ciclo di iterazioni;

e flow: per gestire esecuzioni parallele (Astro non lo usa nella versione corrente 3.4).

2.2.4 Nozione di EAGLE

I requisiti in ASTRO vengono descritti nel linguaggio EAGLE che rispetto a logiche temporali
come CTL e LTL permette di specificare un tipo di soddisfacibilita “best-effort”; ¢ possibile
indicare un obiettivo principale (main goal) e alcune condizioni che devono invece verificarsi in
caso di fallimento (exception handling). Il linguaggio fornisce costrutti per esprimere condizioni
che il sistema deve garantire di raggiungere o mantenere, o in alternativa effettuare solo un
tentativo, prevedendo delle proprieta da soddisfare in caso di fallimento.

Le formule EAGLE sono utilizzate per esprimere business goals del target composite service; esse
consistono in blocchi contenenti formule proposizionali che intuitivamente definiscono dei
particolari stati che il sistema puo0 raggiungere; ogni blocco ¢ associato ad un particolare operatore

che definisce la funzione stessa di quel blocco all'interno del sistema.

13

Capitolo 3 - L’installazione del Toolset

Per questa tesina ¢ stata presa in considerazione la versione 3.4 dell’ Astro toolset. Esso & formato
da numerosi componenti software, alcuni sviluppati interamente dal team Astro, altri sono
programmi di terze parti con le quali il toolset interagisce. La documentazione che accompagna il
toolset e gli esempi di demo, ¢ praticamente inesistente.

Di seguito viene riportato un elenco dei vari componenti, accompagnato da brevi spiegazioni sul

loro ruolo e dalle rispettive modalita di installazione.

3.1 Java 1.5.x

La JVM ¢ un componente essenziale del toolset, poiché molte parti di esso sono scritte in Java e
producono/usano files Java.
Quindi ¢ necessario verificare se la Java Runtime Enviroment versione 1.5 ¢ gia installata sul

proprio sistema attraverso 1’esecuzione della seguente linea di comando:
java —-version

Se la JVM non ¢ installata allora pud essere scaricata dal sito della Sun, installata e settate le

seguenti variabili d’ambiente:

JAVA_HOME = <J2SE_INSTALL_DIR>
PATH = <J2SE_INSTALL_DIR>\bin

dove <J2SE_INSTALL_DIR> ¢ la directory in cui ¢ stata installata la JVM.

3.2 Eclipse IDE 3.2.2

L'ambiente di sviluppo Eclipse ¢ stato scelto dal team Astro come la colonna portante di tutta la
sezione grafica del toolset; molte componenti della Suite sono state sviluppate come Eclipse
plugins. Se non si ha gia installato Eclipse sul proprio sistema, bisogna provvedere a scaricarlo.
L’installazione consiste semplicemente nello “scompattare” il file in una folder a piacere. Si
consiglia di creare una folder in C:\ o al massimo in C:\Programmi, perché percorsi troppo lunghi

potrebbero “dar fastidio” all’esecuzione del toolset.

14

3.3 Tomcat server 5.5.x

Il server Tomcat ¢ utilizzato per il deployment e running dei processi BPEL che incarnano i Web
Services offerti. Consiglio di installare la versione 5.5.20, perché ¢ quella che ho utilizzato per
analizzare la demo.

Anche I’installazione del Tomcat consiste semplicemente nello “scompattare” il file in una folder a
piacere. Dopodiche bisogna settare alcuni parametri, in particolare:

v’ creare una variabile d’ambiente chiamata CATALINA_HOME e assegnarle il valore
<TOMCAT_INSTALL_DIR>, che rappresenta la directory in cui si ¢ deciso di installare il
server web;

v la demo ASTRO si aspetta che Tomcat giri sulla porta 50000. Quindi bisogna verificare se
nel file “server.xml” all’interno della folder “conf” della directory di Tomcat, esiste un

‘Connector’ su questa porta. Se non esiste aggiungere il seguente pezzo di codice

<Connector port="50000" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" redirectPort="8443" acceptCount="100"

connectionTimeout="20000" disableUploadTimeout="true" />

subito dopo la seguente linea di commento

<!—— You should set jvmRoute to support load-balancing via AJP ie :
<Engine name="Standalone" defaultHost="localhost" jvmRoute="jvml">

——>

3.4 ActiveBPEL Engine 2.0

L'ActiveBPEL engine ¢ un prodotto freeware che permette di eseguire deployment e running di
processi BPEL su un application server. Pud essere scaricato dal sito dell’active-endpoints

http://www.active-endpoints.com. La sua installazione ¢ particolarmente semplice, poiché consiste

nello “scompattare” il file ed eseguire install.bat (per sistema Windows) contenuto all’interno
della folder. Tale esecuzione comporta la copia del contenuto della folder °‘lib’ in
$CATALINA_HOME/shared/lib e crea la directory SCATALINA_HOME/bpr, dove i processi
BPEL .bpr sono archiviati e deployed.

Il deployment di un BPEL process avviene eseguendo un packaging del file .bpel, wsdl relativi e

files di deployment .xml e .pdd in un file .bpr, che viene copiato nella directory /bpr del server e

15

rilevato automaticamente e deployed quando il server ¢ running. Il deployed process pud essere

monitorato via Web browser alla seguente URL http://localhost:50000/BpelAdminExt ed invocato

da programmi client appositi per l'invocazione di Web Services.

3.5 Graphical Editing Framework & Graphical Modeling Framework
Eclipse plugins

Questi due insiemi di plugins per Eclipse sono necessari per far funzionare l'aspetto visuale delle
applicazioni Astro. Vengono installati con la classica procedura di installazione dei plugin di

eclipse.

3.6 Astro wsToolset 1.8.0

Scaricabile dal sito del progetto http://www.astroproject.org. Per installare il Toolset basta eseguire

la seguente linea di comando:

java —jar wsToolset-1.8.0_installer. jar
Durante I’installazione sara chiesto di indicare la folder in cui installare il Toolset. Il pathname della
folder di installazione non deve contenere spazi bianchi, e sara creata se non esiste. Per completare

I’installazione ¢ necessario configurare 1’applicazione settando alcune variabili d’ambiente:

v’ creare la variabile d’ambiente wsTranslator_HOME e assegnargli il valore

<WSTOOLSET_INSTALL_DIR>\tools\wsTranslator;
v’ aggiornare la variabile d’ambiente PATH al seguente valore

PATH=<WSTOOLSET_INSTALL_DIR>\tools\wsTranslator\bin;
<WSTOOLSET_INSTALL_DIR>\tools\synTools\bin;
<WSTOOLSET_INSTALL_DIR>\tools\NuSMV\bin

dove <WSTOOLSET_INSTALL_DIR> corrisponde alla folder di installazione che ¢ stata

scelta appunto durante I’installazione.

Il package wsToolset ¢ composto da quattro programmi necessari a vari stadi della composizione,

attivabili da linea di comando:

» Astro wsToolset 1.8.0 - wsTranslator 0.14.0: il programma wsTranslator ¢ 1’importantissimo
primo modulo adibito alle traduzioni dei files di “coreografia” (.chor) in vari formati di STS,
ad esempio files .smv o Spin, per poi realizzare il prodotto parallelo dei Component Services

e preparare il terreno per il planning via Model Checking;

16

» Astro wsToolset 1.8.0 - synTools 0.13.1: il package synTools contiene due programmi,
wmon € wsynth: il primo ¢ adibito al monitoring dei processi BPEL, e quindi alla
generazione del codice Java che controlla a runtime il verificarsi di eventi d’interesse e fa
rapporto all'utente nelle schermate di monitoring dei processi (accessibili via browser); la
seconda applicazione, wsynth, ¢ la responsabile del vero e proprio processo di sintesi che
restituisce il file concrete BPEL eseguibile e con un certo livello di ottimizzazione per
realizzare il composite service obiettivo;

» Astro wsToolset 1.8.0 NuSMV 2.2.5 - prodotto da terze parti, NuSMV ¢ essenziale per

eseguire operazioni di model checking su STSs, il che ¢ al cuore dell'approccio Astro.

3.7 Astro wsMonitor 1.6.0

Scaricabile dal sito del progetto http://www.astroproject.org. Per installare il wsMonitor basta

eseguire la seguente linea di comando:
java —-jar wsMonitor-1.6.0_installer. jar

Durante 1’installazione verra chiesto di indicare la folder in cui installare il wsMonitor: il
wsMonitor deve essere installato nella folder CATALINA_HOME dell’engine ActiveBpel che si

intende usare.

Si ¢ gia accennato a come l'installazione del BPEL Engine permetta di utilizzare una schermata
accessibile via browser per monitorare i deployed BPEL processes; questa applicazione Astro ¢
un'estensione a Tomcat che aggiunge funzionalita ulteriori di monitoring online all'interfaccia
dell'Engine; del codice Java viene pre-generato ed eseguito a runtime dal wsMonitor per cercare
situazioni insolite o di errore e fare rapporto all'utente via browser. E quindi sostanzialmente

un’estensione dell'interfaccia offerta dal BPEL engine per il monitoraggio dei processi.

3.8 Astro wsRequirement 0.2.0 Eclipse plugin

Questa plugin permette di integrare i files di input necessari alla composizione (Abstract BPEL
processes per component and target services, EAGLE requirements) creando in output un unico file
xml con estensione .chor (file "di coreografia" che caratterizza completamente il problema) da dare
in pasto a wsTranslator e wSynth per il processo di composizione. Oltre alla creazione del file
.chor, la plugin di Eclipse permette anche di analizzare le sue proprieta (come i component

services, 1 “main” e “recovery” goals, gli interessi nel monitoring ecc) tramite un'efficace GUI.

17

3.9 Astro wsChainManager 2.4.0 Eclipse plugin

La plugin permette di eseguire, a partire da un file .chor, vari servizi di composizione automatica,
verification offline e preparazione per l'online monitoring, attivabili tramite la pressione di un
singolo tasto. Il nome deriva dallo stile di esecuzione: le varie funzionalita sono delle catene di

chiamate ai vari componenti dell' Astro Suite.

3.10 Astro wsAnimator 0.0.7 Eclipse plugin

La plugin ¢ dedicata alla simulazione dei composite services impiegando lo stile grafico di
ActiveWebFlow/ActiveBPEL Designer per mandare in esecuzione diverse tipologie di scenari di
simulazione; usa files grafici con estensioni .adf. Questa parte perd0 ¢ ancora in fase di

ingegnerizzazione e quindi attualmente non ¢ banale creare file .adf per la simulazione dei processi.

3.11 Astro wsUseCases 1.0.0 Eclipse plugin

Questa plugin ¢ semplicemente un insieme di folders che rappresentano due esempi di demo di
composizione, chiamati VOS e VTA, rispettivamente dedicati a scenari “classici” come 1'acquisto
User-Store-Bank e la prenotazione User-Hotel-Flight; i folders contengono tutto 1'occorrente per
testare tutte le funzionalita offerte. E importante studiarne la struttura per capire il funzionamento

del Toolset.

3.12 ActiveBpel Designer

Per creare i file abstract BPEL ho utilizzato ActiveBpel Designer 2.0; non ¢ 1’ultima versione ma ¢
stato necessario utilizzare questa perché i tool di Astro allo stato attuale supportano WS-BPEL 1.1.
Inoltre attualmente la loro roadmap non prevede attivita legate al supporto WS-BPEL 2.0. Il

designer ¢ un prodotto freeware, scaricabile dal sito dell'Active-Endpoints http://www.active-

endpoints.com, ha documentazione e tutorial.
In realta per creare file .bpel e relativi file .wsdl, si possono utilizzare altri tool, ma bisogna fare
attenzione che il .bpel/.wsdl che ne esce sia compatibile con il sottoinsieme di bpel wsdl definito nei

file .xsd che sono utilizzati dal traduttore (wsTranslator).

18

Capitolo 4 — La demo VTA

4.1 Scenario di funzionamento

Il cuore di questa tesina ¢ stato cercare di analizzare la demo VTA gia esistente per poi provare a
realizzare una nuova demo funzionante, ma come detto nell’introduzione cid non ¢ stato possibile a
causa di numerosi problemi.

Per capire meglio la struttura della demo VTA basta analizzare la seguente figura:

Request(time, location)

Offer flight
< Flight
Request(time, location) not_available Wi
> ack/nack
Offer hotel-flight VTA >
User P w Request(time, location)
W; -
not_available >
< Offer hotel
ack/nack < Hv(z]t el
> not_available :
ack/nack

Figura 3: The VTA scenario

I component services sono: User, Flight e Hotel. VTA ¢ il target composite service che funge da
mediatore tra W; e W5, Wi,

Lo User prepara il messaggio di richiesta contenente il periodo e il luogo del viaggio.

VTA, ricevendo la richiesta dallo User, a sua volta prepara un messaggio di richiesta per il service
Flight e un messaggio di richiesta per il service Hotel.

Flight verifica la disponibilita del volo per il periodo e il luogo indicati nella richiesta e puo inviare
a VTA [D’offerta o un not_available. Hotel verifica la disponibilita dell’hotel per il periodo e il luogo
indicati nella richiesta e puo inviare a VT A 1’offerta o un not_available. VTA se riceve I’offerta da

Flight e Hotel, la invia allo User: se lo User 1’accetta, allora VTA invia un ack a Flight e Hotel,

19

altrimenti un nack; oppure VTA puo ricevere un not_available da Flight o da Hotel o da entrambi e

di conseguenza invia un not_available allo User.

4.2 Dagli STS agli abstract BPEL

Il primo passo per la realizzazione di una demo, ¢ partire dalla rappresentazione in STS dei servizi
Wi, W, e W; e tradurli in file BPEL astratti. Presentiamo i tre component services e il target

composite service della demo VTA.

4.2.1 Flight component service

L’STS del Flight component service ¢ il seguente:

l

isNotAvailable
isAvailable

Figura 4: STS del Flight component service

Si parte da uno stato iniziale in cui si riceve la richiesta; viene verificata la disponibilita del volo per
il periodo e il luogo indicati nella richiesta: se non c’¢ disponibilita si invia un not_available e si
termina passando quindi in uno stato finale. Altrimenti si prepara 1’offerta e tramite la transizione
“offerFlight” si passa in un nuovo stato di attesa: se ¢ stata accettata la richiesta si riceve un ack
altrimenti un nack; in entrambi i casi si termina e si passa in uno stato finale.

Entrando piu nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la
prima attivita da inserire nel file BPEL ¢ Receive. Da questa partono le due transizioni e quindi ¢

necessario inserire come successiva attivita lo Switch con un Case condition corrispondente alla

20

transizione “isAvailable” e un otherwise corrispondente alla transizione “isNotAvailable”, con la
quale si prepara il messaggio not_available per 1’utente, tramite le attivita Assign e Invoke, e si
termina con un’attivita Empty. La transizione “isAvailable” porta in uno stato in cui vengono
invocate le t-transitions del Web service, quindi ¢ necessario assegnare i valori delle variabili
contenute nel messaggio ricevuto alle variabili interne del Web service, cioe si inserisce ’attivita
Assign. Successivamente 1’invocazione del web service avviene tramite I’attivita Invoke. Inviata
I’offerta, si rimane in attesa di un ack/nack, quindi ¢ necessario inserire ’attivita Pick con due
attivita onMessage, una relativa all’operazione di ack, 1’altra all’operazione di nack. Quindi il file

.bpel risultante ¢ il seguente:

r MMair

(’ Receive_request

l_l

el Is_available

r 7
> Sequence 4 Sequence
-
Ly I Ly Ir
= | Prepare_offer = | Prepare_answer
(5 Flight_offer (5 Mot _Available

- -

[] SUCC E] FAIL_MACK
=
| 3

4 3 —s

Figura S: File Flight_ABS.bpel

21

4.2.2 Hotel component service

L’STS del Hotel component service ¢ praticamente simile a quello del Flight ed ¢ il seguente:

isNotAvailable
isAvailable

Figura 6: STS del Hotel component service

Anche in questo caso si parte da uno stato iniziale in cui si riceve la richiesta; viene verificata la
disponibilita dell’hotel per il periodo e il luogo indicati nella richiesta: se non c’¢ disponibilita si
invia un not_available e si termina passando quindi in uno stato finale. Altrimenti si prepara
I’ offerta e tramite la transizione “offerHotel” si passa in un nuovo stato di attesa: se ¢ stata accettata
la richiesta si riceve un ack altrimenti un nack; in entrambi 1 casi si termina e si passa in uno stato
finale.

Entrando piu nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la
prima attivita da inserire nel file BPEL ¢ Receive. Da questa partono le due transizioni e quindi ¢
necessario inserire come successiva attivita lo Switch con un Case condition corrispondente alla
transizione “isAvailable” e un otherwise corrispondente alla transizione “isNotAvailable”, con la
quale si prepara il messaggio not_available per 1’utente, tramite le attivita Assign e Invoke, e si
termina con un’attivita Empty. La transizione “isAvailable” porta in uno stato in cui vengono
invocate le t-transitions del Web service, quindi ¢ necessario assegnare i valori delle variabili
contenute nel messaggio ricevuto alle variabili interne del Web service, cioe si inserisce 1’attivita
Assign. Successivamente 1’invocazione del web service avviene tramite 1’attivita Invoke. Inviata

I’offerta, si rimane in attesa di un ack/nack, quindi ¢ necessario inserire ’attivita Pick con due

22

attivita onMessage, una relativa all’operazione di ack, I’altra all’operazione di nack. Quindi il file

.bpel risultante ¢ il seguente:

4 (Sequence
(I Receive_request
o

l_l

i~
= :
a Is_available
i i
)(Sequence)(Sequence
* Prepare_offer * Prepare_answer

| |

| >

| »

6/ Hotel_offer (5./ Mot _available
g Pick. r 1 FalL
<I I 3

i i |
Jlu- | o

Figura 7: File Hotel_ABS.bpel

23

4.2.3 User component service

L’STS dello User component service ¢ il seguente:

Invia_request

Not_available

Figura 8: STS dello User component service

Lo User parte da uno stato iniziale in cui prepara la richiesta specificando il periodo e la locazione
del viaggio e la invia con la transizione “Invia_request”, passando in nuovo stato di attesa. Se si
riceve un not_available, allora si termina in uno stato finale; se si riceve un’offerta, lo User decide
se accettare o no e quindi invia un ack o un nack rispettivamente, passando in entrambi i casi in uno
stato finale.

Entrando nel dettaglio possiamo dire che nello stato iniziale si deve preparare la richiesta, quindi
tramite I’attivita Assign si assegnano i valori alle variabili che vengono date in input al Web service
invocato tramite 1’attivita Invoke. Inviata la richiesta si rimane in attesa, percid si inserisce
un’attivita Pick con due attivita onMessage, corrispondenti alle transizioni “Not_available” e
“offer”. Nel primo caso si termina in un stato finale rappresentato da un’attivita Empty. Nel secondo
caso partono due transizioni, quindi si inserisce un’attivita Switch con un Case condition in cui
viene accettata 1’offerta e tramite le attivita Assign e Invoke si invia un ack; e un otherwise in cui
viene rifiutata 1’offerta e sempre tramite le attivita Assign e Invoke si invia invece un nack. In

entrambi 1 casi si termina con un’attivita Empty. Quindi il file .bpel risultante ¢ il seguente:

24

D { Sequence

@ PrepareRequest

|

“ 2) Invioke

|

i i

] FAIL D(Sequence

‘ ﬁ Assign

|

k2
[y acknowledge

¥ ?

D (Sequence

D (Sequence

@ Prepare_ack

|

6/ ack

|

[1ex

@ Prepare_nack.

|

G) nack

|

[] FAIL_MNACK

Figura 9: File User_ABS.bpel

25

4.2.4 VTA Composite service

L’STS del VTA Composite service ¢ il seguente:

l

isNotAvailable isAvailable

offer

ack

nack

©

Figura 10: STS del VTA composite service

Si parte in uno stato iniziale in cui si riceve la richiesta dallo User e si verifica la disponibilita: se
non ¢ disponibile si prepara un messaggio di not_available e si termina in uno stato finale;
altrimenti si prepara I’offerta allo User e tramite la transizione “offer” si passa in un nuovo stato di
attesa: se ¢ stata accettata la richiesta si riceve un ack altrimenti un nack; in entrambi i casi si
termina e si passa in uno stato finale.

Entrando piu nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la
prima attivita da inserire nel file BPEL ¢ Receive. Da questa partono le due transizioni e quindi ¢
necessario inserire come successiva attivita lo Switch con un Case condition corrispondente alla
transizione “isNotAvailable” con la quale si prepara il messaggio not_available per I’utente, tramite
le attivita Assign e Invoke, e si termina con un’attivita Empty; e un otherwise corrispondente alla
transizione “isAvailable”. Questa porta in uno stato in cui vengono invocate le t-transitions del Web
service, quindi & necessario assegnare 1 valori delle variabili contenute nel messaggio ricevuto alle
variabili interne del Web service, cioe si inserisce 1’attivita Assign. Successivamente 1’invocazione
del web service avviene tramite 1’attivita Invoke. Inviata 1’ offerta, si rimane in attesa di un ack/nack,
quindi ¢ necessario inserire I’attivita Pick con due attivita onMessage, una relativa all’operazione di

ack, I’altra all’operazione di nack. Quindi il file .bpel risultante ¢ il seguente:

26

7 Sequence
(I Receive

l_l

- - checkavailability

i s

7 Sequence 7 Sequence
T
= | Frepare_Notavailable = | PrepareUserOffer
(s Tokdwvail (5 UserOffer

r -I FAILL Jﬂ JJL Pick
4 4

Figura 11: File VTA_ABS.bpel

4.3 Creazione del file .chor

Una volta creati i file abstract .bpel e i rispettivi .wsdl, ci si posiziona in eclipse e si caricano i
progetti nel workspace tramite il task File—Import — Astro suite wsUsesCases. A questo punto i

progetti sono visibili nella view Navigator a sinistra.

27

& Astro Suite wsRequirement - Eclipse SDK I

File Edit MNavigate Search Project Run Window Help

wilhd BB - - A TR A IR SR EjEA;tm
T Mavigator &2 =0

|le%~

= bJ VT4 _demo

1= VTA_Flight

#-l=+ VTA_Hotel

-l VTA_User

-l VTAVTA

= Properties 22

Property Value

i&i
q

I
u]

Figura 12: View Navigator

Questa demo ¢ gia fornita completa del file .chor, pero di seguito descriviamo lo stesso come viene
creato questo file.
Tutti gli input sono riuniti insieme tramite un Wizard sviluppato da Astro per la creazione di files di
coreografia (.chor files) grazie alla plugin wsRequirement. La realizzazione del file .chor si struttura
in 5 passi:

v" Definizione del nome del file .chor e della directory di appartenenza;

v’ Specifica dei file .bpel e relativi .wsdl da comporre;

v’ Specifica dei Process references for Composition;

v' Specifica dei Process references for Verification;

v" Specifica dei Process references for Monitoring.
Di seguito vengono mostrate delle immagini a titolo di esempio, non riferibili alla demo VTA,

corrispondenti ai 5 passi della creazione.

28

& New ASTRO Requirement File Wiza

Step 1 of 5: New ASTRO Requirement File

Enter or seleck the parent Folder:

| co-Mania_cD-Mania

1= CD-Mania_Buy
=5 CD-Mania_CD-Mania
= CD-Mania_MP3
= CD-Mania_User
=5 WOS_Bank

22 vos_dema
= W05 _Stare
=5 WS _User
Tk VOS5 YOS

b‘l WTA_demo
=5 WTa_Flight
T=F WTA_Hotel
= WTA_User

=5 WTA_VTA

File name: | CD-Mania_DN

@

Cancel

Figura 13: Step 1

& New ASTRO Requirement File Wizard

Step 3 of 5: Process References for Composition

Process Composition References:

Process Direction
MP3_ABS uses
Buy_ABS uses
B
User_ABS none
@ [< Back,][Next = H Finish H Cancel

£ New ASTRO Requirement File Wizard X

Step 2 of 5: BPEL Processes Selection

BPEL File:

|

WSDL File:

Selected Processes:

Process BPEL WSDL

CD-Mania_AES CD-Mania_AES.bpel By wsdl, MP3.wsd), ..
Buy_ABS Buy_ABS bpel By wsdl

MP3_ABS MP3_ABS.bpel MP3.wsdl

User_ABS User_aBS.bpel CD-Mania, wsdl

®

Figura 15: Step 3

Figura 14: Step 2

& New ASTRO Requirement File Wizard

Step 4 of 5: Process References for Yerification

Process Yerification References:

Process Direction
MP3_ABS uses
Buy_ABS uses

CD-Mania_AEBS none
L il L

2 [< Back][Mext > H Finish H Cancel

Figura 16: Step 4

29

& New ASTRO Requirement File Wizard E‘

Step 5 of 5: Process References for Monitoring

Process Monitoring References:

Process Direction
MP3_ABS uses
Buy_ABS uses

implements

User_ABS none

Figura 17: Step 5

Il file VTA_DN.chor include le descrizioni dei processi, il main goal, 1 recovery goals (che non
devono avere molti vincoli, altrimenti il traduttore fara fatica a trovare un piano), le proprieta
d'interesse da monitorare, quelle da verificare, ed altro.
Per quanto riguarda la definizione del goal, esso ¢ composto da una parte di definizione del flusso di
controllo (control flow) e da una parte di definizione del flusso dei dati (data flow). Entrambe
queste parti sono definibili tramite 1'utilizzo di wsRequirement. La parte di controllo viene definita
tramite una semplice stringa mentre la parte di dati viene definita in modo grafico con un grafo che
si chiama datanet. I file .datanet sono dei files di servizio del wsRequirment utilizzati per
memorizzare la definizione della componente di data flow del goal. Da un punto di vista interno la
parte di control flow del goal viene utilizzata come un normale goal di pianificazione che definisce
gli stati finali del “main goal” e del “recovery goal” mentre la parte di dataflow va a modellare un
insieme di macchine a stati che arricchiscono il dominio di planning.
La plugin wsRequirement consente anche di ispezionare il file coreografico tramite delle views:

¢ Process definition—contiene la definizione dei processi facente parte della composizione;

e Composition ControlFlow—contiene la specifica dei main e recovery goal, che ¢ possibile

anche modificare;
e Composition DataFlow—-contiene il grafo datanet, che pud essere creato con le apposite

Palette;

30

Monitor—-contiene le proprieta da monitorare on-line, possono essere aggiunte o eliminate

altre proprieta;

Verify—contiene le proprieta da verificare off-line, possono essere aggiunte o eliminate
altre proprieta;

¢ XML—-contiene il codice xml del file .chor.

Di seguito vengono mostrate le views del file coreografico.

Astro Suite wsRequirement - VTA_DN.chor - Eclipse SDK

File Edit MNavigate Search Project Run Window Help

- WS Q- IR I oy D & [ElAstra
. Navigator &7 = B (%] vTA_DN.chor 52
@525~
@12 VTA_Hotel & er .. Supporting the Composition of
B VTA User Distributed Business Processes
B VTA VTA L
= ‘se.ttmgs Process reference:
-z build
-[B .project Process Epel Wsdl
|= HandWrittenVTA.bpel VTA SVTANTANTA_ABS. b, VTANTANTAwsdl, /VTA_Hotel/Hotel wsdl, ./VTA_Flight/Flight.wsd|
|5 VTA_ABS.bpel Hotel VTA_Hotel/Hotel_ABS... ./VTA_Hotel/Hotel wsdl
-5 VTA_ABS~vbpel Flight /VTA_Flight/Flight_ABS... ./VTA_Flight/Flight.wsdl
#i53] VT4 DN.chor L VTA_COMPOSED ./VTA VTA/NTA.bpel VTANTANTAwsdl, . /VTA_Hotel/Hotel.wsdl, ../VTA_Flight/Flight.wsd
-5 VTA_DM.datanet T User LVTA User/User_ABS.b... ./VTANTANTAwsdI
--|Z] VTA_DM.datanet_diagram
-5 VTAbpel
= VTApdd Add bpel prc
= VTApdd-local
- £ VTAvbpel Delete bpel pr
-5 VTAwsdl
- 5] VTAwsdl-local

E Properties &2 :=¢:> =]
Property Value
= Info
derived false
editable true
last modified 09,/11/07 10:07
linked false
location CEclipse3.2.2\eclipse\works...
name VTA_DN.chor
path /NTANTA/VTA_DN.chor
size 11218

q

Process Definition | Composition ContmlF\ow‘ Composition DataF\ow‘ Momtor| VenfleMLl

Figura 18: View Process definition

31

& Astro Suite wsReq

File Edit Mavigate Search Project Run Window Help
- PRGN B I o] O A e =5 [Astre

%5 Navigator &2 = O|[% VTA_DM.chor &3
= v

T Service Name:
(1= VTA_Hotel -
@1 VTA_User VTA

12 VIAVTA 1 Change Service

= settings
= build Process reference:
-2 .project Process Direction
HandWrittenVTA.bpel Hotel uses
5 VTA_ABS.bpel Flight uses
= VTA_ABS.wbpel User T
TE £ VTA implements
i YIA DNztansy ||| vracomposen nane
WTA_DN.datanet_diagram
- [Z] VTA.bpel
5] VTA.pdd Main goal:
" VT pddlocal Process Expression
-| VTAwbpel
B WTAwsdl Hotel Hotel_pc = SUCC
[VTAwsdl-local L4 Flight Flight_pc = SUCC
Al VTA VTA_ pe = SUCC

El Properties 2 . |

Property Value Add definition
Delete definition

Recovery goal:

Process Expression

Hotel Hotel_pc = FAIL | Hotel_pc = FAIL_NACK | Hotel_pc = START
Flight Flight_pc = FAIL | Flight_pc = FAIL_MACK | Flight_pc = START
VTA VTA_pc = FAIL | VTA_pc = FAIL_ NACK | VTA_pc = START

LA Aefinitinn

<

Process Definition | Composition ControlFlow | Compesition DataFlow | Monitor | Verify | XML

Figura 19: View Composition ControlFlow

File Edit Mavigate Search Project Run Window Help

- FeSB@E Q-4 oo - ~ & - ;}jEA;m
5 Navigator = O |[fe| VTA_DM.chor &2
= s v - Palet
- | Sl ? L] [} Select
- VTA_Hotel B @ e
VTA_offer_time *, Zoomr
1= VTA User lotal_VTA_offer_time b
E- VTAVTA 1 » Conn
- settings Flight_fCffer_time | Fork
- hu\\.d B ° Merg:
D -project local_Hotel hRequest time, = Operz
|=| HandWrittenVTA bpel Hotel_hRequest_time 2 Filter
|5 VTA_ABS.bpel 1) 1denti
VTA_ABS.vbpel +Cl
WTA_DN.chor LL OtnE
| VTA_DN.datanet 3 2 ® =
WTA_DN.datanet_diagram Aol = - TR Input
2 VTA.bpel otel_hOffer_hotel _offer_hotel ® Loc:l
[Z VTA.pdd ® Outpt
| WTA.pdd-local
- |5 VTAvbpel
2 ¥TAwsdl ° ? L] E
=] VTAwsdl-local & | Flight_fRequest_location
- local-Flight_fRequest_location
=l Properties 2 |
VTA_request_location
Property Walue =
L]

local_Hotel_hRequest_location =
Hotel_hRequest_location

? .

VTA_request_time Flight_fRequest_time

4

Process Definition | Composition ControlFlow | Compaosition DataFlow | Monitor | Verify | XML

Figura 20: View Composition DataFlow

32

sRequireme

File

Edit Mavigate Search Project Run Window Help
w2 WG Q- P B P & [ElAax
T Navigator 22 =0 ?g \;'TA_i}’l\i‘.ch‘m x
==
E-1 VTA Hotel - c.r..r. Supporting the Composition of
i W V1A Lser Distributed Business Processes
B-1= VTAVTA E
& settings Process reference:
= build
project Process Direction
- HandWrittenVTA.bpel Hotel uses
VTA_ABS.bpel Flight uses
VTA_ABSvbpel User none
[fe VTA_DN.chor 3 VTA implements
5| VTA DN.datanet ||| vTa_composeD none
WTA_DM.datanet_diagram
=| VTAbpel
VTA.pdd Property:
VA pdd:local Process MName Type Specification Description
VTA.wvhpel
VTA wszl VTA OfferTolvail instance (cause(VTA.pc=FAIL)&!0(cause(VT... if both Flight and Hotel make an ...
B VTA:wsdI-IocaI L VTA AllOffer instance (cause(VTA.pc=FAIL_NACK)&O(ca... if both Flight and Hotel make an ...
- VTA Protocol instance Communication protocol compli...
= Properties 22 E = =]
Property Value
Add property
Delete property
]
Process Defimtionl Composition Contro\F\owl Composition DataFlow | Monitor | Verify ‘ XML|

Astro Suite wsRequirement - VTA

Figura 21: View Monitor

File Edit MNavigate Search Project Run Window Help
]2 N N B R R R R DR S TR R = [RlAe
T3 Navigator & =[] VTA;]V):I\i.c.Iml x|
e
'BEQ—S‘“E‘ o (.F Supporting the Composition of
#12 VTA User Distributed Business Processes
== VTAVTA L
= .se‘.ftmg; Process reference:
= build
.[B .project Process Direction
- HandWrittenVTA.bpel Hotel uses
VTA_ABS.bpel Flight uses
= VTA_ABS.vbpel User uses
| VTA_DM.chor VTA none
VA DN Hatnet “|Il| vTa_comeoseD uses
VTA_DN.datanet_diagram
VTA.bpel
= VTA.pdd Property:
VTA pdd:local Process Name Type Specification Description
VTAvbpel
VA w:;‘ WTA_CO.. SimultaneousSu.. assertion (F (instate{User,SUCC))<-> (F (insta... Services reach their successfull sta...
VTAlwsd\-Iocal WTA_CO.. InconsistentFinal... possibility (F instate{User, SUCC)&G linstate(H... possibility for the user to finish su...
- VTA_CO.. OfferTofvail assertion (F instate{User, FAIL)) -> ((G linstate(... if both Flight and Hotel make an ...
= - = =0 VTA_CO.. AlOffer assertion (F instate{User, FAIL_NACK)&F insta... if both Flight and Hotel make an ...
roperties
[+ VTA_CO.. AllSucceeded possibility (F (instate(User, SUCC))&F (instate(... Services can reach their successfu...
Property Value VTA_CO.. Deadlock deadlock Verification of deadlock states

4

Add property
Delete property

Process Daﬁnition‘ Compeosition Contro\FIowl Composition DataFlow‘ Monitor | Verify XML‘

Figura 22: View Verify

33

4.4 La composizione automatica

Con I'installazione del wsToolset, vengono inseriti nella toolbar di eclipse 5 bottoni rispettivamente
per: avviare Tomcat, iniziare la catena di Process Composition, avviare la Process Verification

(offline), preparare le procedure di Process Monitoring, effettuare lo shutdown di Tomcat.
=

A questo punto, creato il file VTA_DN.chor (nel nostro caso viene gia fornito), si pud procedere
con la composizione tramite wsChainManager: si deve avviare il Tomcat Server tramite toolbar, ed
una volta che l'inizializzazione di Tomcat e del BPEL Engine ¢ completata, si seleziona il file
VTA_DN.chor (e tale azione rende attivi i tasti per composizione, monitoring e verification) e si

invoca la funzionalita di Service Composition, che conduce ad una checklist di steps da affrontare.
)

wsChainManager v.2.4.0 composition

Step = Active = Executed
B create output directory | v
¥ translate the process in smv | |
® compose the processes monitor | |
® compose the BPEL process | v
® deploy the BPEL process]]

@DN OKL 6L

Execute l | Exit

“=* Compasition + BPEL gen. time = 1.747 seconds =+

**** Total preprocessing time = 1.794 seconds ¥

The VTA process has been deployed successfully

Figura 23: wsChainManager nella Process Composition

Nella finestra del wsChainManager possiamo distinguere la checklist delle operazioni in alto, e la
message box in basso, che riporta dati sull'esecuzione, eventuali problemi e tempo impiegato,
dimensioni delle strutture dati in gioco ecc.

Ci0 che il wsChainManager fa ¢ costruire il dominio D dal prodotto parallelo e risolvere il problema
di planning via Model Checking, utilizzando i1 programmi NuSMV, wsTranslator, wSynth.

L'output finale della composizione ¢ il file Concrete BPEL VTA.bpel automaticamente deployed su
ActiveBPEL Engine, e pu0 essere monitorato e testato via browser alla seguente URL:

http://localhost:50000/Bpel Admin.

34

" ActiveBPEL™ Administration - Windows Internet Explorer

2 http://localhost:50000/BpelAdmin/

File Modifica Visualizza Preferiti Strumenti ?

Google™ + | [C] search ~ | 52 [Popupsokay || 4 Check ~ “% Autolink ~ [ed Options
W iggi'iw Libero |2 sim Monison iaActiveBPEL""Administr‘.. x [B~ B - & v [Pagina v &
Norton™ = &
= ™
> activeBPEL Home
¥ engine
Date Started: 2007/12/09 09:43 AM
P Deployed Processes: 1
Description: ActiveBPEL In-Memary Configuration
Engine Status: Running
Configuration Version: 2.0 (1338)
Slorage Stop Engine
Version Detail

Deployment Status
Deployment Log

Deployed Processes
Partner Definitions

WSDL Catalog

Process Status
Active Processes
Alarm Queue
Receive Queue

Process ID

[Gal

Figura 24: Home di ActiveBpel Engine

4.5 Process Verification

L'Astro Suite offre funzionalita per verificare proprieta del modello costruito (ovvero il file .chor)

semplicemente a partire dal file di coreografia.

&
Si seleziona il file VTA_DN.chor e cliccando sul bottone # si avvia, tramite wsChainManager,

la process verification. Trattandosi di una procedura offline, possiamo ricevere risposta
immediatamente, tramite una schermata Web apposita:

. it

wsChainManager v.2.4.0 verification

Step = Active = Executed
B create output directory]]
¥ translate the process in smv vl |
¥ call the model checker]]
@DON DKL ©G6L
Execute] [Exit

Launch comrmand:

"MuSMV -int -load C:\Users\Vanda\AppData\Local\Temp/NuSMV.cmd
C/Eclipse3.2.2/eclipse/workspace/VTA_VTA\builldh\WTA_InconsistentFinalStates.smy
FILE -»>> Ch\Users\Vanda\AppDatatLocal\Temp/MuSMV.cmd

Launch command:
"rundl32 url.dilFileProtocolHandler C:/Eclipse3.2.2/eclipse/workspace/NTA_VTA\build\verification.html "

Figura 25: wsChainManager per la Process Verification

35

/> C\Edipse3.2. \eclipse\workspace\WVTA_VTA\build\verification.html - Windows Internet Explorer

& ChEclipse3.2.2\eclip E\WTA_VTAL ification.html v | #2 | X | Google
File Modifica Visualizza Preferiti Strumenti 7
Google~ ~ | [C] Search | 55 [Popupsokay || ¥ Check = % furalink ~] Autoril B Options
Wk [@C:\Ed\psd.l.l\ecllpse\workspaEE\VTA)"TA\bulI.H [] 5o~ v = v |5} Pagina v {(}
Norton™ ﬂ @ : Monitoraggio frodi attivo, d

Verification result

Deadlock |deadlock Verification of deadlock states |oke

ISEmu}taneousSuccess Iassation XSEWECBS reach their successfull states sinmitaneously iok

!A}ISucceeded Ipossibﬂﬂy lﬁaﬂ-‘mes can reach their successfull states !ok |[example] H example]
|A§Oﬁ'er |asseﬂion ‘rfboth Flight and Hotel make an offer. then user will accept |N0 |[counter-example] “ counter-example]
|OfferToAvail |assertion i both Flight and Hotel make an offer, then User wont receive a not_avail

|ok
IIucomEs:thina]Staies |poss£biﬁ'ty lpossibiﬁiy for the user to finish succesfully. while it is not a case for some partners !NO

Figura 26: Schermata web della verification

Selezionando esempi e controesempi forniti, ci viene mostrato uno scenario ad alto livello stile

UML Sequence Diagram:

= C\Edhipse3.2.2\eclipse\workspace\WTA_VTA\build\verification_AllSucceeded.himl - Windows Intemet Explorer

& C:\Eclipse3.2.2\eclip EWTA VA ification_AllSucceeded.html v |42 | X [ll Google
File Modifica Visualizza Preferiti Strumenti 7
Google™ | [Gl search ~ | 5 [Popups okay || ¥ Check v % futslink = | futcFil [#d Options
v o [@C:\Eclipsd!.l\ecl\pse\workspace\VTA_VTA\bui\‘.. lil M- v = v b Pagina v |
Norton™ = & 4 Fonitoraggio rodia v, 5
request()
-
fRequest()
=
fOffer()
<
hRequest()
=
hOffer()
<
offer()
<
ack()
>
fAck()
g
hAck()
I =

Figura 27: Scenario di un esempio andato a buon fine

36

4.6 Process Monitoring

La funzionalita di Monitoring ¢ il corrispettivo online della Verification, e vuole fornire rapporti
all'utente su stati anormali dell'esecuzioni di processi BPEL in esecuzione.

Tramite la consueta schermata wsChainManager vengono creati automaticamente dei files Java (i
cui obiettivi sono definiti ancora una volta nel file .chor), che vengono messi in ascolto su

esecuzioni del processo d'interesse per monitorarlo e fornire informazioni all'utente.

Sempre selezionando il file VTA_DN.chor e cliccando sul bottone si avvia il process
monitoring:
- (S
wsChainManager v.2.4.0 monitoring
Step = Active =% Executed
¥ create output directory v v
¥ translate the process in smv |]
¥ compose the process monitors bl]
undeploy monitor |]
® compile and deploy monitor |]
@DN ®K. ©6L
Execute l [Exit
"jJavac -classpath C:\Tomcat\apache-tomcat-5.5.20\shared\lib\moenitorRuntime,jar -d C\Tomcat\apache-tomcat- | »
5.5.20\shared\classes C:\Eclipse3.2.2\eclipseworkspace\VTA_VTA\build\WTA_AllOffer java "
Launch command:
"javac -classpath ChTomcat\apache-terncat-5.5.20shared\lib\menitorRuntime.jar -d C\Tomcat\apache-tomcat-
5.5.20\shared\classes ChEclipsed 2.2\ eclipsehworkspace\ VTA_VTA\build\WTA_OfferToAvail java " a
Launch command: |

Figura 28: wsChainManager per la Process Monitoring

37

Di seguito viene mostrato uno dei file .java generati:

File Edit Source Refactor Mavigate Search Project Run Window Help
== o E g R
r-E& R B B0 Q- -
| 5. Navigater &2 =0 VTA_ANOfferjava &3
P | = <)==='> = § !package monitor.instance;
- ®import org.astroproject.monitor.core.¥;
public class VIA A110ffer implements IProcessInstanceMonitor, IBooleanPropertyMonitor {

public int status() { retuorn _rstatus; }
private long last_ts;

Eﬁ é Astrc

1= VTA_Flight
1= VTA_Hotel
1=5 VTA_User

private long cur_ts;
private int _rstatus = IMonitor.STATUS_RUNNING:

i [3] VTA_AIOffer,java
=) VTA_AlOffer.smv
[J] VTA_OfferToAwvail java
=] VTA_OfferToAvail.smv
[1] VTA_Protocoljava

VIAMonitor VIA = new VIAMonitor();
HotelMonitor Hotel = new HotelMonitor():
FlightMonitor Flight = new FlightMonitor();
~class VIAMonitor {

private int _state;

boolean just _born = true;

|= VTA_Protocol.smv boolean is_final = false;

-2 project boolean is_valid = true;
HandWrittenVTA.bpel I “public String getErrorNode ()
-2 VTA_ABS.bpel {

2 VTA_ABS.vbpel if (just_born||is_valid) return "VIA no error”;
Tg VTA DN.chor if (_state==0) return "VIA protocol violation";
B VTAiDN datanet retuorn "VTA no error";

-[=1 VTA DN.datanet diaoram b 4

“private final boolean prop_val[]l[] = {

2 Properties 2 { false,false},{ true,false},{ false,trne},{ false, false},{ false, false},{ false, false},{ false, falsel}};

py———
BES =

Property Value boolean lookup(int s, int prop index) {return prop val[6-s3] [prop index]:}
Inf boolean pl () {return lookup(_state,0)
" Inio - boolean p2 () {return lookup(=tate,l):}
derived false e &
“public void init ()
editable true ¢
last modified 09/12/07 10:02 _state=1;
linked false 1
location Ci\Eclipse3.2.2\eclipsetworks... “public void handleEvent (IMonitorEvent event)
name VTA_AllOffer java {
path NTANVTA/build/ VTA_ANIOffe... if (event instanceof ProcessCleoseEvent) { is_walid=just born|| (is_validesis_final): }
size 7406

“public void evolve (BpelMsg msg)
{

4

Figura 29: File VTA_AllOffer.java generato dal process monitoring

38

4.7 Process execution simulation

Tramite la plugin wsAnimator sviluppata dal team Astro ed utilizzando un formato file particolare

.adf, ¢ possibile mandare in esecuzione diversi scenari pre-programmati. Nella view Navigator si

aprono i file Flight.adf, Hotel.adf e User.adf e per iniziare la simulazione si possono scegliere una

delle quattro modalita di esecuzione:

e standard: ¢ una simulazione interattiva, in cui noi gestiamo le varie scelte;

e nominal: € una simulazione che avviene in modo automatico € termina con successo;

e fail 1: € una simulazione che avviene in modo automatico e termina con un insuccesso del

Flight;

e fail 2: € una simulazione che avviene in modo automatico € termina con un insuccesso di

Hotel;

& Astro Suite wsRequirement - User.adf - Eclipse SDK

File Edit Mavigate Search Project Run Window Help

= B[& Flight.adf

=4
L= @

. Mavigator 53

=]

.classpath

.project
demo.properties
e || server-config.wsdd
@-1= VTA_Flight

1= VTA_Hotel

M- VTA User

- = VTA_VTA

Y
bl

)

] Properties &2
Property Value

Name AstroElement
values

EEN

= =5

&

- Al - R | 100% |
A Hotel.adf A Useradf &
ol
'
®
¥
)) |
% []
i\
adl
'
®
4

Figura 30: File .adf

-

:ct

standard

nominal
fail 1
fail 2

39

& Adobe Reader - [ICAPS05demo Astro running es. pdf]

-:'ei File Modifica “ista Documenko Strumenti Finestra ?

2= 8

By

R

SR
e Bl

I Pagine

[commenti “§ Allegsti

.'-_ ks Evaluate_otfor
| i
Bors | B

. '
[Jam | [T |

- || = migheadt 3

CJ Recehe_request
+

= I avaliable?

| Hoeladl ¥ |

G Receive_request
'

S 1s: available?
£

B o

ﬁjlﬂrulln @ :
¥
_:)“. Wait_ack []' AL
T T!

& 20%29Fmm €

[I4 4[35 b PI| © ©]

Attualmente, pero, questa parte ¢ ancora in fase di ingegnerizzazione.

Figura 31: Process execution simulation

40

Capitolo 5 — Provare a realizzare una demo

Dopo aver analizzato la struttura della demo VTA, ho provato a creare una propria demo che ho
chiamato CD-Mania. Per darle un significato reale possiamo immaginarla una vendita di CD
musicali, in cui I'utente richiede il CD inserendo il titolo oppure 1’autore e inserisce il denaro. Se il
CD ¢ disponibile e I’utente ha inserito una moneta da 20 o da 10, allora gli viene fornito il CD,
altrimenti gli viene comunicato un not_available. L utente ha comunque la possibilita di accettare o

rifiutare il CD. Uno scenario di funzionamento ¢ mostrato nella seguente figura:

request
offer
) MP3
request not available W,
> ack/nack
offer >
User <« CD-Mania
W request
W3 not available >
) fail
ack/nack J Buy
> < W,
succ

Figura 32: Scenario di funzionamento della demo CD-Mania

5.1 Dagli STS agli abstract BPEL

Il primo passo per la realizzazione della demo, ¢ stato partire dalla rappresentazione in STS dei
servizi Wi, W, e W3 e tradurli in file BPEL astratti. Ho scelto tre servizi e li ho chiamati Buy, MP3

e User. Di seguito vengono forniti la struttura degli STS e dei corrispondenti file BPEL.

5.1.1 Buy component service

L’STS del Buy component service ¢ il seguente:

41

isVenti
1sDieci

Figura 33: STS del Buy component service

Si parte da uno stato iniziale in cui si riceve la richiesta; viene verificato se la moneta inserita ¢ da
20 o da 10, altrimenti si termina con un insuccesso e si passa in uno stato finale.

Entrando piu nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la
prima attivita da inserire nel file BPEL ¢ Receive. Da questa partono le tre transizioni e quindi ¢
necessario inserire come successiva attivita lo Switch con due Case condition corrispondenti alle
transizioni “isVenti” e “isDieci” e un otherwise che porta in uno stato finale di insuccesso
rappresentato nel file BPEL da un’attivita Empty. Le transizioni “isVenti” e “isDieci” portano in
due stati in cui vengono invocate le t-transitions del Web service, quindi ¢ necessario assegnare i
valori delle variabili contenute nel messaggio ricevuto alle variabili interne del Web service, cioe si
inserisce 1’attivita Assign. Successivamente 1’'invocazione del web service avviene tramite ’attivita
Invoke. In entrambi i case si passa in uno stato finale di successo, rappresentato sempre da una

attivita Empty. Quindi il file .bpel risultante ¢ il seguente:

42

D (Sequence

Receive_request
(-

.
Ly Swikch

s

3

D (Sequence

Dr Sequence

@ Assign_20

G) Invvoke_20

|
[

@ Assign_10

“{_} Irvoke10_10

|
[

[1m

Figura 34: File Buy_ABS.bpel

43

5.1.2 MP3 component service

L’STS del MP3 component service ¢ il seguente:

Not_available

chooseByAuthor
chooseByTitle

FAIL_NACK FAIL NACK

Figura 35: STS del MP3 component service

Anche in questo caso si parte da uno stato iniziale in cui si riceve la richiesta; viene verificato se la
stringa rappresentante il CD corrisponde al nome dell’autore o al titolo del CD stesso, altrimenti si
restituisce un not_available e si termina (si passa quindi in uno stato finale). Le due transizioni
“chooseByAuthor” e “chooseByTitle” portano in due stati distinti in cui vengono invocate le t-
transitions del Web-service per effettuare la ricerca del CD rispettivamente per autore e per titolo.
Si presenta I’offerta (cioe il nome del CD) e si rimane in attesa di una risposta: se lo User accetta
allora si termina con successo (si passa nello stato finale tramite SUCC), altrimenti si termina con
un insuccesso (si passa nello stato finale tramite FAIL_NACK).

Entrando piu nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la
prima attivita da inserire nel file BPEL ¢ Receive. Da questa partono le tre transizioni e quindi ¢
necessario inserire come successiva attivita lo Switch con due Case condition corrispondenti alle
transizioni “‘chooseByAuthor” e “chooseByTitle” e un otherwise che porta in uno stato finale di
insuccesso rappresentato nel file BPEL da un’attivita Empty. Come detto prima le transizioni
“chooseByAuthor” e “chooseByTitle” portano in due stati in cui vengono invocate le t-transitions
del Web service, quindi ¢ necessario assegnare i valori delle variabili contenute nel messaggio
ricevuto alle variabili interne del Web service, cio¢ si inserisce 1’attivita Assign. Successivamente
I’invocazione del web service avviene tramite I’attivita Invoke. In entrambi i case si rimane in attesa
di un ack/nack dello User e quindi viene inserita 1’attivita Pick con due attivita onMessage, cio¢ si
rimane in attesa di un messaggio, che potrebbe essere un nack e quindi si termina con un’attivita
Empty FAIL_NACK, oppure un messaggio ack e quindi si termina con un’attivita Empty SUCC. 1l

file .bpel risultante ¢ il seguente:

44

4 Sequence

(’ Receive_request

|

L '_J Switch

f { f
> Sequence r Sequence y SequUEnce
N Ly Ly
= | AssignByaothor = | AssignByTitle =0 | Prepare_answer
(5 IrvokeByAuthor (5 InvokeByTitle (5 Mok _Awailable
Activity: [unnamed]
Type:! Sequence

) . pick &) a Pick ‘ [] FAIL

Ackivity: [unnamed]i = ‘]‘]' = ‘]‘]'
Twpe: Pick

b
] succ E] FALL_NACK ‘ E] succ H [] FAIL_NACK ‘

Figura 36: File MP3_ABS.bpel

5.1.3 User component service

Il servizio User ¢ analogo a quello della demo VTA, cambia solo il contenuto della richiesta, in cui
stavolta abbiamo la specifica del CD (tramite autore o titolo) e della moneta. Omettiamo quindi sia

STS che file .bpel.

5.2 Creazione del file .chor

Una volta creati 1 file abstract .bpel e 1 rispettivi .wsdl, ci si posiziona in eclipse € si caricano i
progetti nel workspace tramite il task File—Import. A questo punto i progetti sono visibili nella
view Navigator a sinistra.

Tramite il Wizard per la creazione dei file .chor, ho creato il file CD-Mania_DN.chor. Di seguito

vengono mostrati i 5 passi per la creazione del suddetto file:

45

& New ASTRO Requirement File Wiza

Step 1 of 5: New ASTRO Requirement File

Enter or seleck the parent Folder:

| co-Mania_cD-Mania

1= CD-Mania_Buy
=5 CD-Mania_CD-Mania
= CD-Mania_MP3
= CD-Mania_User
=5 WOS_Bank

22 vos_dema
= W05 _Stare
=5 WS _User
Tk VOS5 YOS

b‘l WTA_demo
=5 WTa_Flight
T=F WTA_Hotel
= WTA_User

=5 WTA_VTA

File name: | CD-Mania_DN

@

Cancel

Figura 37: Step 1

& New ASTRO Requirement File Wizard

Step 3 of 5: Process References for Composition

Process Composition References:

Process Direction
MP3_ABS uses
Buy_ABS uses
B
User_ABS none
@ [< Back,][Next = H Finish H Cancel

£ New ASTRO Requirement File Wizard X

Step 2 of 5: BPEL Processes Selection

BPEL File:

|

WSDL File:

Selected Processes:

Process BPEL WSDL

CD-Mania_AES CD-Mania_AES.bpel By wsdl, MP3.wsd), ..
Buy_ABS Buy_ABS bpel By wsdl

MP3_ABS MP3_ABS.bpel MP3.wsdl

User_ABS User_aBS.bpel CD-Mania, wsdl

®

Figura 39: Step 3

Figura 38: Step 2

& New ASTRO Requirement File Wizard

Step 4 of 5: Process References for Yerification

Process Yerification References:

Process Direction
MP3_ABS uses
Buy_ABS uses

CD-Mania_AEBS none
L il L

2 [< Back][Mext > H Finish H Cancel

Figura 40: Step 4

46

& New ASTRO Requirement File Wizard |z‘

Step 5 of 5: Process References for Monitoring

Process
MPS_ARS
Buy _ABS
(CD-Mania_ABS
User_ABS

Process Monitoring References:

Direction
uses
Uses

none

Figura 41: Step 5

Nella seguente figura viene mostrata la view Process definition del file CD-Mania_DN.chor, in cui

vengono mostrati i processi.

W3 co-tMania_Di.chor %

Process reference:

Process Epel

MP3_ABS MP3_ABS. bpel
Buy_ABS Buy_ABS.bpel
CD-Mania_aBS CD-Mania_aABS.bpel
User_ABS User_ABS.bpel

a 'S't"r' .0 Supporting the Composition of
Distributed Business Processes

Wsdl

MP3.wsdl

Buy . wsdl

Buy.wsdl, MP3.wsdl, CD-Mania,wsdl
CD-Mania,wsdl

Add bpel proce:
Delete bpel proce

Figura 42: View Process definition del file CD-Mania_DN.chor

47

Nella seguente figura viene mostrata la view Composition ControlFlow del file CD-

Mania_DN.chor, in cui sono specificati i main e recovery goal:

§3 co-tMania_Di.chor % =08

Service Name: A

CD-Mania

[Change Service

Process reference:

Process Direction
MP3_ABS uses
Buy_ABS uses
CD-Mania_aBS implements
User_ABS none

Main goal:
Process Expression
MP3_ABS MP3_ABS_pc = SUCC
Buy_ABS Buy_ABS_pc = SUCC

CD-Mania_ABS C0-Mania_ABS_pc = SUCC

[£dd defirition

[Delete definition

Recovery goal:

Process Expression
MP3_ABS MP3_ABS_pc = FAIL | MP3_ABS_pc = FAIL_MACK | MP3_AES_pc = START
Buy_ABS Buy_ABS_pc = FAIL | Buy_ABS_pc = START

CD-Mania_ABS CD-Mania_aBS_pc = FAIL | CD-Mania_ABS_pc = FAIL_MACK | CD-Mania_AES_pc = START

v

Figura 43: View Composition ControlFlow del file CD-Mania_DN.chor

5.3 Perché non funzionante

Nel creare i file .bpel ho incontrato molti problemi, dovuti alle limitazioni sui tipi di variabili e di
costrutti supportati dal traduttore Astro.

Per esempio avevo inserito in un file BPEL un link e questo automaticamente mi inseriva anche
un’attivita Flow che ¢ tra quelle non supportate dal tool; perd dal messaggio di errore avevo capito
che dipendesse dall’aver specificato in maniera errata il dataflow, perché io non sapevo che con il
link si fosse aggiunta anche I’attivita Flow (in quanto i file .bpel vengono creati tramite palette, non
si scrive codice vero e proprio), solo dopo aver ispezionato in maniera pili approfondita il codice
xml del file, sono riuscita a capire e correggere 1’errore.

Poi avevo creato dei messaggi con dei campi di tipo intero ed eseguivo operazioni matematiche;
invece tutto cid non ¢ supportato e quindi ho dovuto modificare i file .bpel (il che richiede molto
tempo).

Poi avevo utilizzato un tipo di operazione di assegnamento per la variabile “offer” sintatticamente
non corretta e solo grazie all’aiuto del team support di ASTRO sono riuscita a risolvere questo

48

problema, perché la composizione restituiva un messaggio di errore che era fuorviante e quindi non
si riusciva a capire il perché non venisse accettato il messaggio “offer”, nonostante fosse stato
correttamente dichiarato.

Un altro problema che ho dovuto risolvere ¢ stato quello di aver definito dei recovery goal troppo
vincolanti e questo impediva di trovare un piano.

L’ultimo problema incontrato ¢ stato relativo alla semantica dei file .bpel, ma questo non sono
riuscita tuttora a risolvere, percio la demo non ¢ funzionante.

Infatti avere un errore di semantica significa che il processo di composizione avviene, ma non
produce I’output atteso, cioe il file concrete .bpel viene creato, ma al suo interno ci sono solo i tag
degli elementi che dovrebbero essere inseriti ma non la lista degli elementi definiti; per esempio 1
tag delle variabili non contenevano la lista delle variabili definite, di conseguenza il processo non
veniva deployed su engine. Nonostante questo, pero, viene comunque creato il package del file

.bpel, wsdl relativi e files di deployment .xml e .pdd in un file .bpr in Tomcat.
Purtroppo il tempo impiegato per affrontare tutti questi problemi ¢ stato notevole, per via di capire

dove era il problema e come risolverlo, e questo ha impedito di continuare a lavorare su questa

demo.

49

Conclusioni

Il tool presenta ancora numerose limitazioni:

allo stato attuale supporta WS-BPEL 1.1 e la roadmap non prevede attivita legate al
supporto WS-BPEL 2.0;

Il tipo "xsd:positivelnteger" non & gestito al momento e deve essere sostituito dal tipo
"xsd:string". Ovvero non ¢ possibile ragionare sui numeri al momento ma solo sulle stringhe
e su pochi altri tipi come ad esempio i booleani e gli enumerativi;

Manca di robustezza, infatti quando si provano vari scenari di simulazione dei file .adf, dopo

due — tre volte la simulazione rimane bloccata.

Nel corso della realizzazione di questa tesina ho incontrato numerosi problemi, molti dei quali li ho

gia specificati nell’ultimo paragrafo del quinto capitolo e vengono di seguito riassunti.

Problemi incontrati:

Installazione del tool — dovuta a baghi sulla definizione delle variabili d’ambiente e sui
nomi delle directory. In particolare la variabile path doveva essere impostata aggiungendo la
directory \bin al percorso <WSTOOLSET_INSTALL_DIR>\tools\synTools, mentre
all’interno della folder <WSTOOLSET_INSTALL_DIR>\tools bisogna aggiungere una
copia della folder “wsTranslator-0.14.0” rinominandola “wsTranslator-
SWSTRANSLATOR-VERSION”, per ovviare a un bago che ancora non ¢& stato eliminato;
Realizzazione dei file bpel — dovuta alla non conoscenza della versione del linguaggio, dei
tipi di variabili e dei costrutti sintattici supportati.

Problemi relativi alla semantica dei file abstract .bpel della demo che si ¢ provato a

realizzare, e attualmente ancora non si ¢ capito il motivo di questi errori.

50

Bibliografia

® Alonso, Casati, Kuno, Machiraju; 2004; "Web Services - Concepts, Architectures and
Applications"
e The ASTRO Project Website; http://www.astroproject.org

e The BPEL4AWS Specification, v1.1;
http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp
e The ActiveBPEL Engine, http://www.activebpel.org

e The ActiveBPEL Designer v2.0 User's Guide (http://www.active-endpoints.com)

e]l Progetto ASTRO nella Web Service Composition: analisi € confronto con il Roman
Approach — Alessandro Pagliaro

¢ Composizione automatica di servizi: I’approccio ASTRO e il Roman Model a confronto —
Alessandro Dionisi

e M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F. Barbon, P. Bertoli, P.
Traverso - ASTRO: Supporting Composition and Execution of Web Services

51

