
Anno accademico 2006/2007

Università di Roma "La Sapienza"

Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

Tesina di Seminari di Ingegneria del software

Composizione automatica di servizi:

l’approccio ASTRO

Autore:

Vanda Piacentini

 2

Indice

INTRODUZIONE ... 3

Capitolo 1 - Il problema della Web service composition .. 5

1.1 WS Composition .. 5

1.2 Terminologia .. 6

Capitolo 2 - Il progetto Astro ... 7

2.1 Panoramica del progetto... 7

2.2 WS Composition in ASTRO .. 8

2.2.1 Basi teoriche della composizione in Astro ... 9

2.2.2 Rappresentazione dei Component Services come STS .. 10

2.2.3 Nozione di BPEL ... 12

2.2.4 Nozione di EAGLE .. 13

Capitolo 3 - L’installazione del Toolset ... 14

3.1 Java 1.5.x ... 14

3.2 Eclipse IDE 3.2.2 ... 14

3.3 Tomcat server 5.5.x .. 15

3.4 ActiveBPEL Engine 2.0 ... 15

3.5 Graphical Editing Framework & Graphical Modeling Framework Eclipse plugins .. 16

3.6 Astro wsToolset 1.8.0 .. 16

3.7 Astro wsMonitor 1.6.0 ... 17

3.8 Astro wsRequirement 0.2.0 Eclipse plugin .. 17

3.9 Astro wsChainManager 2.4.0 Eclipse plugin ... 18

3.10 Astro wsAnimator 0.0.7 Eclipse plugin ... 18

3.11 Astro wsUseCases 1.0.0 Eclipse plugin ... 18

3.12 ActiveBpel Designer .. 18

Capitolo 4 – La demo VTA .. 19

4.1 Scenario di funzionamento ... 19

4.2 Dagli STS agli abstract BPEL .. 20

4.2.1 Flight component service ... 20

4.2.2 Hotel component service .. 22

4.2.3 User component service ... 24

4.2.4 VTA Composite service ... 26

4.3 Creazione del file .chor .. 27

4.4 La composizione automatica .. 34

4.5 Process Verification ... 35

4.6 Process Monitoring .. 37

4.7 Process execution simulation ... 39

Capitolo 5 – Provare a realizzare una demo... 41

5.1 Dagli STS agli abstract BPEL .. 41

5.1.1 Buy component service .. 41

5.1.2 MP3 component service ... 44

5.1.3 User component service ... 45

5.2 Creazione del file .chor .. 45

5.3 Perché non funzionante .. 48

CONCLUSIONI .. 50

BIBLIOGRAFIA ... 51

 3

Introduzione

Questa tesina si colloca nell’ampio mondo dei Web Services. Secondo la definizione data dal World

Wide Web Consortium (W3C) un Web Service (servizio web) è un sistema software progettato per

supportare l'interoperabilità tra diversi elaboratori su di una medesima rete. Caratteristica

fondamentale di un Web Service è quella di offrire un’interfaccia software (descritta in un formato

automaticamente elaborabile quale, ad esempio, il Web Services Description Language) utilizzando

la quale altri sistemi possono interagire con il Web Service stesso attivando le operazioni descritte

nell'interfaccia tramite appositi “messaggi” inclusi in una “busta” SOAP. Tali messaggi sono,

solitamente, trasportati tramite il protocollo HTTP e formattati secondo lo standard XML. Proprio

grazie all'utilizzo di standard basati su XML, tramite un’architettura basata sui Web Service

(chiamata, con terminologia inglese, Service oriented Architecture - SOA), applicazioni software

scritte in diversi linguaggi di programmazione e implementate su diverse piattaforme hardware

possono quindi essere utilizzate, tramite le interfacce che queste “espongono” pubblicamente e

mediante l’utilizzo delle funzioni che sono in grado di effettuare (i “servizi” che mettono a

disposizione) per lo scambio di informazioni e l'effettuazione di operazioni complesse (quali, ad

esempio, la realizzazione di processi di business che coinvolgono più aree di una medesima

azienda) sia su reti aziendali come anche su Internet. La ragione principale per la creazione e

l'utilizzo di Web Service è il “disaccoppiamento” che l'interfaccia standard esposta dal Web Service

rende possibile fra il sistema utente ed il Web Service stesso: modifiche ad una o all'altra delle

applicazioni possono essere attuate in maniera “trasparente” all'interfaccia tra i due sistemi; tale

flessibilità consente la creazione di sistemi software complessi costituiti da componenti svincolati

l'uno dall'altro e consente una forte riusabilità di codice ed applicazioni già sviluppate.

Lo scopo della tesina, svolta per il corso di Seminari di Ingegneria del software, è lo studio del tool

realizzato dal Progetto ASTRO per la composizione automatica di servizi e lo studio di una demo

esistente basata su un semplice esempio di Web Services: VTA, che possiamo definire un’agenzia

di viaggi virtuale. In realtà si è provato anche a realizzare un esempio di demo sulla base di quella

già esistente, ma a causa della mancanza di documentazione e tutorial e soprattutto delle numerosi

limitazioni del tool, non si è riusciti a giungere ad una demo funzionante.

Nel primo capitolo si parlerà in linea generale del problema della Web service composition. Nel

secondo capitolo si inizierà a parlare del Progetto ASTRO e di come viene affrontata la

composizione automatica di servizi e quindi del tool sviluppato. Nel terzo capitolo si spiegherà

l’installazione del tool, chiamato Astro suite o Astro toolset. Nel quarto capitolo si analizza la demo

 4

VTA nell’intero processo di composizione. Nel quinto capitolo si accennerà all’esempio di demo

che si è provato a realizzare.

 5

Capitolo 1 - Il problema della Web service

composition

1.1 WS Composition

L’ampia diffusione di applicazioni service - oriented e in particolare dei web services, all’interno di

numerose organizzazioni, ha introdotto nel campo della ricerca tematiche interessanti su come poter

sfruttare i componenti di business già esistenti, in modo da poter costruire a partire da questi e in

modo automatico, nuovi servizi composti di valore aggiunto per il cliente. La composizione di

servizi viene attualmente affrontata in modo manuale: il cliente specifica i suoi requisiti e il

progettista si occupa di concepire un nuovo processo di business che invochi adeguatamente le

componenti applicative esistenti. Come si può ben intuire, tale compito si presenta abbastanza

laborioso e non privo di difficoltà. Ciò a cui si vuole arrivare al contrario, è un procedimento

efficiente, affidabile e di facile uso che permetta, a partire da specifici requisiti, di comporre in

modo automatico web service e in generale frammenti di applicazioni.

La Service Composition è una metodologia che ha per fine l'implementazione di Composite

Service, un Web Service che offre servizi da una sua interfaccia come qualsiasi altro Web Service,

sebbene dal punto di vista implementativo i servizi offerti siano il risultato di un'opportuna

interazione con altri Web Services, indipendenti tra loro e non pensati a priori per cooperare in un

Web Service comune.

Nella Web Service Composition si vuole trovare, dati dei requisiti opportunamente espressi, un

piano d'esecuzione in cui siano indicati quali Web Services invocare, in che ordine farlo e come

gestire condizioni di errore e imprevisti.

In generale gli strumenti necessari per risolvere il problema sono:

� un linguaggio per la rappresentazione comportamentale di Web Services, in modo da

modellare efficacemente il loro flow d'esecuzione e le funzionalità che offrono;

� una logica di composizione, ovvero un procedimento generale che partendo dai requisiti

(Business Requirements) e dai Web Services di partenza (Component Services) realizzi il

Composite Service finale in una qualche forma eseguibile; questo punto rappresenta il cuore

di un approccio per la WS Composition, una sorta di algoritmo di base;

� un ambiente di sviluppo, possibilmente ricco di componenti GUI, che aiuti il progettista a

creare il servizio ad alto livello, automatizzando la metodologia definita dalla logica di

composizione;

� un composition engine per eseguire e monitorare le istanze della composizione trovate.

 6

Gli approcci che cercano di affrontare il problema della Web service composition, mirano alla

realizzazione pratica del workflow descritto dalla seguente figura:

Figura 1: The general WS composition workflow

1.2 Terminologia

Il termine conversazione rappresenta un'interazione con un Web Service consistente nell'esecuzione

sequenziale di più operazioni, in un particolare ordine.

Il termine coreografia indica un piano per la coordinazione di più conversazioni, volta ad un preciso

scopo d'insieme.

Con il termine sintesi di un Composite Service si intende la costruzione delle specifiche necessarie

all'esecuzione del servizio a partire da requirements ben definiti; tali specifiche sono conosciute

come Composition Schema.

Il termine orchestrazione indica la gestione runtime dell'esecuzione del Composite Service.

 7

Capitolo 2 - Il progetto Astro

2.1 Panoramica del progetto

Il Progetto Astro è un'iniziativa di ricerca congiunta riguardo l'integrazione di Web Services, sia

intra- che inter-organizzazione, promossa dall'Università di Trento e l'ITC-IRST, il Centro di

Ricerca Scientifica e Tecnologica della Fondazione Bruno Kessler.

Il suo scopo principale è favorire l'adozione worldwide di Web Services compositi prestando

attenzione a metriche fondamentali quali efficacia, flessibilità, facilità d'uso, basso costo ed

efficienza temporale.

Astro vuole fornire:

� un framework generale per la composizione automatica di servizi;

� dei tools concreti per la realizzazione del framework, utilizzanti una larga serie di tecnologie

affermate;

� supporto software per l'intero ciclo di vita delle applicazioni, dalle prime fasi di design fino

al monitoraggio e verifica a runtime;

� evitare di delegare allo sviluppatore dei compiti noiosi, complessi ed error-prone, in modo

da permettergli di concentrarsi in modo trasparente e user-centered sulla logica

dell'applicazione ad un alto livello di astrazione.

I tools dovrebbero essere capaci di analizzare i processi in dettaglio e di scoprire i problemi sia a

livello di design sia a livello di run-time, e fornire soluzioni alternative. Le attività di ricerca sono

strutturate secondo i seguenti settori:

� Business Requirements: questo settore mira allo sviluppo di un framework per

rappresentare efficacemente la definizione di strategie, obiettivi e business

requirements aziendali, con particolare riguardo anche alle interazioni tra differenti

business processes;

� Service Synthesis: il settore della sintesi offre un modello per ottenere dei servizi

compositi in maniera generale ed efficiente, nonché supportata da una teoria di fondo

che garantisce la correttezza e l’affidabilità dei risultati; questo ramo ha una

controparte pratica incarnata dai tools eseguibili per la composizione di Web

services;

� Service Verification: il tool offre anche strumenti di supporto per controllare se i

requirements definiti sono violati dal servizio risultante ottenuto;

� Service Monitoring: il corrispettivo a runtime della service verification;

 8

� Semantics: parte degli sforzi di ricerca sono volti all’adozione di supporto per

integrare semantic web services, rendendo il tools interoperabile con OWL-S e

WSMO.

2.2 WS Composition in ASTRO

Nell’approccio ASTRO gli input al problema sono costituiti da un set di Component Services,

espressi come Abstract BPEL Processes, e da una specifica di Composition Requirements come

EAGLE formula, e si vuole generare automaticamente un nuovo servizio W, il target composite

service, che utilizza i component services esistenti e soddisfa i nostri composition requirements.

Inoltre si hanno le seguenti assunzioni:

• essere in un dominio asincrono: ogni web service evolve indipendentemente e con velocità

imprevedibile, sincronizzandosi con gli altri tramite scambio di messaggi ed evidentemente,

in implementazioni reali, vengono impiegati dei buffer che consentono di non perdere i

messaggi che non possono essere immediatamente processati;

• i component services offrono osservabilità parziale, cioè non espongono le loro operazioni

interne ma solamente le interazioni con l'esterno;

• i composition requirements devono essere espressi come extended goals, in grado di

catturare condizioni esistenti sui percorsi dell’intero piano.

La composizione viene modellata come un problema di pianificazione, basata sull’approccio

“Planning as Model Checking”, concepite per poter lavorare anche in domini non-deterministici,

con condizioni di parziale osservabilità ed “extended goals”. Il risultato finale è un piano di

esecuzione nel quale, a partire da alcune condizioni iniziali, esso specifica l’insieme di azioni da

eseguire per raggiungere il goal.

La rappresentazione comportamentale dei servizi è basata su STSs che distinguono azioni di input,

di output ed interne(t-transitions).

L’interfaccia pubblica di invocazione del servizio viene specificata con WSDL, mentre per

codificare una descrizione “comportamentale” viene utilizzato il linguaggio BPEL4WS che

permette di modellare ad alto livello le interazioni che si verificano in un singolo web service (per

esempio invio e ricezione di messaggi).

La figura seguente mostra come sia possibile giungere dagli input definiti sopra, al Concrete BPEL

Process eseguibile che implementa il Composite Service desiderato.

 9

Figura 2: The Astro composition workflow

Da un’analisi generale della figura possiamo vedere che si parte da due input: un set di component

services espressi come abstract BPEL processes W1…Wn, che descrivono il comportamento

“visibile dall’esterno” dei component services; e i composition requirements espressi tramite una

formula EAGLE r. Tramite un modulo software BPEL2STS, i processi BPEL sono trasformati in

rappresentazioni STS e si ottengono così gli STS S1…Sn. Questi vengono manipolati per creare un

nuovo STS S||, definito come prodotto parallelo dei S1…Sn. Intuitivamente possiamo pensare al

Prodotto Parallelo come ad un STS che combina tutte le possibili evoluzioni dei Web Services

componenti. A questo punto viene creato un dominio D che, insieme alla formula r, viene utilizzato

per individuare un piano p, da cui in seguito si ricava l’STS del mediatore (una forma di

orchestratore), che si occuperà di inviare/ricevere le invocazioni riguardanti i servizi componenti.

L’ultima fase prevede la traduzione dell’orchestratore in un processo BPEL concreto che può essere

eseguito su un ambiente runtime, come ad esempio Active BPEL.

2.2.1 Basi teoriche della composizione in Astro

Ora presentiamo alcuni concetti teorici che sono dietro questo processo di composizione.

Lo scopo finale è la realizzazione del Composite Service a partire dai nostri requirements, che si

concretizza nel trovare un STS SC, che soddisfa particolari proprietà: esso deve “muoversi”

all'interno di S|| per “controllare” i component services, allo stesso tempo rispettando il goal r ed

evitando di porsi in stati pericolosi, come ad esempio un deadlock.

 10

Si definiscono quindi due attori, entrambi STS: SC e S, facendo in modo che il primo controlli il

secondo, cioè SC è il Controller e S il Sistema Controllato. La nozione di controllo deriva

principalmente dalla corrispondenza input-output delle azioni: l'input del Controller è l'output

dell'STS controllato, ovvero il controllato fornisce all'output le informazioni generate, mentre

l'output del Controller è l'input del controllato, ovvero il Controller “istruisce” l'STS controllato

sulle prossime azioni.

Le assunzioni di sistema asincrono in cui ci poniamo pongono di fronte a noi una difficoltà: non

tutti gli STS controllers per un dato STS sono adatti ai nostri scopi: vorremmo evitare deadlocks,

più precisamente vorremmo che ogniqualvolta il Controller “invii” un messaggio in output all'STS

controllato, questo sia pronto a ricevere tale messaggio. Dobbiamo pertanto definire un sottoinsieme

dei Controllers possibili, tale che l'STS controllato possa ricevere gli input forniti, eventualmente

dopo una catena, arbitrariamente lunga ma finita, di t-transitions. Si introduce così il deadlock-free

controller, cioè esiste una input transition raggiungibile dallo stato presente per accettare l'input

lanciato dal sistema controllato.

Per soddisfare il composition goal r, abbiamo bisogno di esplorare tutte le possibili esecuzioni del

Sistema Controllato e le proprietà soddisfatte in tali esecuzioni. Non possiamo fare ciò sotto ipotesi

di osservabilità parziale (il Controller non ha piena osservabilità sul Prodotto Parallelo Controllato).

Ci portiamo quindi al Belief-Level, ovvero consideriamo set di stati ugualmente plausibili date le

nostre conoscenze, che evolvono tramite external transitions includendo nel nuovo Belief State stati

raggiungibili tramite t-closure (set di stati raggiungibili da transizioni interne).

Quindi possiamo definire formalmente il problema della composizione in Astro con la seguente

definizione.

Definizione: Astro Composition Problem

Siano S1, ..., Sn un insieme di STSs, e r un composition requirement.

Il problema di composizione per S1, ..., Sn e r è il problema di trovare un Controller SC che è

deadlock-free e tale che SB |= r , dove SB è il Belief-Level System dell'STS SC |> (S1 || ...|| Sn).

2.2.2 Rappresentazione dei Component Services come STS

Un metodo efficace per rappresentare Web services, consiste nell’utilizzare State Transistion

System (STS), un tipo di macchine a stati finiti. In generale infatti un web service può essere

caratterizzato dalle operazioni (atomiche) che esso espone all’esterno, inserite opportunamente in

particolari sequenze di esecuzione (conversazioni); negli STS le operazioni sono rappresentate dalle

transizioni, mentre gli stati codificano le condizioni in cui i web services si trovano.

 11

Gli STS definiti in Astro distinguono possibili stati, e i cambiamenti tra stati avvengono attraverso

azioni, le quali possono essere classificate in azioni di input (ricezione di messaggi), azioni di

output (invio di messaggi) e t-transitions, ovvero azioni di evoluzione interna e non visibile alle

entità esterne.

Di seguito viene riportata una ridefinizione di STS secondo il progetto Astro:

Definizione: Astro State-Transition Sytem (STS)

Un Transition System S è una tupla < S, S0, I, O, R, L >, dove:

• S è l'insieme finito degli stati;

• S0, sottoinsieme di S, è l'insieme di stati iniziali;

• I è l'insieme finito di input actions (cioè ricezione di messaggi);

• O è l'insieme finito di output actions (cioè invio di messaggi);

• R è la relazione di transizione da S x (I U O U {t}) → S;

• L: S → 2Prop è una funzione di etichettatura.

Sostanzialmente quindi, uno STS rappresenta il servizio come un sistema che può trovarsi in uno di

diversi stati possibili (alcuni marcati come iniziali altri come finali in cui il servizio può terminare)

e che può transitare in altri stati per mezzo di azioni. Tali azioni possono essere di input, output

(invio e ricezione di messaggi a/da altri web services) o interne, ovvero il sistema evolve senza

produrre output e indipendentemente dalla ricezione di input (t-transitions). La relazione di

transizione spiega invece come passare da uno stato all’altro, al verificarsi delle azioni appena

descritte. Infine, la funzione di etichettatura associa ad ogni stato l’insieme delle proprietà valide in

quel determinato stato.

Vengono effettuate alcune assunzioni sulla modellazione in STS di Component Services: l'assenza

di loops infiniti su t-actions e l'impossibilità che uno stato abbia origine sia da input che da output

transitions.

Inoltre il modulo di traduzione, BPEL2STS non supporta tutti i costrutti BPEL, ad esempio

nell'ultima versione 3.4 dell’Astro suite i costrutti “Scope” e “Fault” non sono supportati; tuttavia il

range di operatori attualmente disponibili permette un certo livello di complessità.

Ricordiamo infine come lo stato di un STS dipenda dalle sue variabili interne, così come le

transizioni definite da R dipendono da queste stesse variabili; perché il file .smv che incarna l'STS

dei Component Services sia trattabile, vengono definiti ranges finiti per le variabili in gioco.

 12

2.2.3 Nozione di BPEL

L'acronimo BPEL sta per Business Process Execution Language, ed è un linguaggio appositamente

creato per la definizione ed esecuzione di processi i cui passi di esecuzione possono rappresentare

invocazioni a Web Services. Il linguaggio è basato su XML (ovvero un file BPEL è a tutti gli effetti

un file xml con dei costrutti particolari e processabile da tools appositi) ed è il fulcro centrale su cui

orbita la realizzazione dell'intero Astro toolset: sia parte dei composition requirements, sia l'output

eseguibile finale sono file BPEL.

Un’importante distinzione tra i files BPEL è quella tra Abstract e Concrete files. Entrambi

descrivono un (composite) Web service attraverso xml, ma mentre un Abstract process definisce

solo il comportamento visibile “dall'esterno” dello scambio di messaggi tra web services, un

Concrete process è un file a tutti gli effetti eseguibile, dettaglia anche le evoluzioni interne dei

servizi, cioè le t-transitions, e può concretizzarsi in un processo deployable su un BPEL engine e

monitorabile.

I costrutti BPEL più importanti ed usati dal tool Astro sono:

• un processo abstract che definisce un set di messaggi scambiati tra web services, senza però

definire la internal business logic;

• un processo concrete che definisce la business logic di un servizio servendosi di attività

constituenti, partners coinvolti nel servizio, message exchange necessario e procedure di

exception handling.

Per quanto riguarda le attività BPEL, esse possono essere primitive o strutturate.

Le attività primitive principali includono:

• invoke: per invocare un Web Service;

• receive e reply: per ricevere messaggi da una sorgente esterna o inviarli verso l'esterno;

• wait ed empty: per rimanere inattivi, rispettivamente per un certo periodo di tempo e

indefinitamente;

• assign: per assegnare valori alle variabili interne che costituiscono lo stato del Web service;

• throw: per lanciare eccezioni.

Le attività strutturate includono:

• sequence: per eseguire una catena di azioni sequenziali;

• switch: simile al noto costrutto informatico, effettua una singola decisione basandosi su una

variabile;

• pick: per “ascoltare” i cambiamenti su un dato set di eventi; non appena accade un certo

evento, viene scelta ed eseguita una certa azione (legato al non-determinismo);

 13

• while: per il tradizionale ciclo di iterazioni;

• flow: per gestire esecuzioni parallele (Astro non lo usa nella versione corrente 3.4).

2.2.4 Nozione di EAGLE

I requisiti in ASTRO vengono descritti nel linguaggio EAGLE che rispetto a logiche temporali

come CTL e LTL permette di specificare un tipo di soddisfacibilità “best-effort”; è possibile

indicare un obiettivo principale (main goal) e alcune condizioni che devono invece verificarsi in

caso di fallimento (exception handling). Il linguaggio fornisce costrutti per esprimere condizioni

che il sistema deve garantire di raggiungere o mantenere, o in alternativa effettuare solo un

tentativo, prevedendo delle proprietà da soddisfare in caso di fallimento.

Le formule EAGLE sono utilizzate per esprimere business goals del target composite service; esse

consistono in blocchi contenenti formule proposizionali che intuitivamente definiscono dei

particolari stati che il sistema può raggiungere; ogni blocco è associato ad un particolare operatore

che definisce la funzione stessa di quel blocco all'interno del sistema.

 14

Capitolo 3 - L’installazione del Toolset

Per questa tesina è stata presa in considerazione la versione 3.4 dell’Astro toolset. Esso è formato

da numerosi componenti software, alcuni sviluppati interamente dal team Astro, altri sono

programmi di terze parti con le quali il toolset interagisce. La documentazione che accompagna il

toolset e gli esempi di demo, è praticamente inesistente.

Di seguito viene riportato un elenco dei vari componenti, accompagnato da brevi spiegazioni sul

loro ruolo e dalle rispettive modalità di installazione.

3.1 Java 1.5.x

La JVM è un componente essenziale del toolset, poiché molte parti di esso sono scritte in Java e

producono/usano files Java.

Quindi è necessario verificare se la Java Runtime Enviroment versione 1.5 è già installata sul

proprio sistema attraverso l’esecuzione della seguente linea di comando:

java -version

Se la JVM non è installata allora può essere scaricata dal sito della Sun, installata e settate le

seguenti variabili d’ambiente:

JAVA_HOME = <J2SE_INSTALL_DIR>

PATH = <J2SE_INSTALL_DIR>\bin

dove <J2SE_INSTALL_DIR> è la directory in cui è stata installata la JVM.

3.2 Eclipse IDE 3.2.2

L'ambiente di sviluppo Eclipse è stato scelto dal team Astro come la colonna portante di tutta la

sezione grafica del toolset; molte componenti della Suite sono state sviluppate come Eclipse

plugins. Se non si ha già installato Eclipse sul proprio sistema, bisogna provvedere a scaricarlo.

L’installazione consiste semplicemente nello “scompattare” il file in una folder a piacere. Si

consiglia di creare una folder in C:\ o al massimo in C:\Programmi, perché percorsi troppo lunghi

potrebbero “dar fastidio” all’esecuzione del toolset.

 15

3.3 Tomcat server 5.5.x

Il server Tomcat è utilizzato per il deployment e running dei processi BPEL che incarnano i Web

Services offerti. Consiglio di installare la versione 5.5.20, perché è quella che ho utilizzato per

analizzare la demo.

Anche l’installazione del Tomcat consiste semplicemente nello “scompattare” il file in una folder a

piacere. Dopodichè bisogna settare alcuni parametri, in particolare:

� creare una variabile d’ambiente chiamata CATALINA_HOME e assegnarle il valore

<TOMCAT_INSTALL_DIR>, che rappresenta la directory in cui si è deciso di installare il

server web;

� la demo ASTRO si aspetta che Tomcat giri sulla porta 50000. Quindi bisogna verificare se

nel file “server.xml” all’interno della folder “conf” della directory di Tomcat, esiste un

‘Connector’ su questa porta. Se non esiste aggiungere il seguente pezzo di codice

<Connector port="50000" maxHttpHeaderSize="8192"

 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

 enableLookups="false" redirectPort="8443" acceptCount="100"

 connectionTimeout="20000" disableUploadTimeout="true" />

subito dopo la seguente linea di commento

<!-- You should set jvmRoute to support load-balancing via AJP ie :

 <Engine name="Standalone" defaultHost="localhost" jvmRoute="jvm1">

 -->

3.4 ActiveBPEL Engine 2.0

L'ActiveBPEL engine è un prodotto freeware che permette di eseguire deployment e running di

processi BPEL su un application server. Può essere scaricato dal sito dell’active-endpoints

http://www.active-endpoints.com. La sua installazione è particolarmente semplice, poiché consiste

nello “scompattare” il file ed eseguire install.bat (per sistema Windows) contenuto all’interno

della folder. Tale esecuzione comporta la copia del contenuto della folder ‘lib’ in

$CATALINA_HOME/shared/lib e crea la directory $CATALINA_HOME/bpr, dove i processi

BPEL .bpr sono archiviati e deployed.

Il deployment di un BPEL process avviene eseguendo un packaging del file .bpel, wsdl relativi e

files di deployment .xml e .pdd in un file .bpr, che viene copiato nella directory /bpr del server e

 16

rilevato automaticamente e deployed quando il server è running. Il deployed process può essere

monitorato via Web browser alla seguente URL http://localhost:50000/BpelAdminExt ed invocato

da programmi client appositi per l'invocazione di Web Services.

3.5 Graphical Editing Framework & Graphical Modeling Framework

Eclipse plugins

Questi due insiemi di plugins per Eclipse sono necessari per far funzionare l'aspetto visuale delle

applicazioni Astro. Vengono installati con la classica procedura di installazione dei plugin di

eclipse.

3.6 Astro wsToolset 1.8.0

Scaricabile dal sito del progetto http://www.astroproject.org. Per installare il Toolset basta eseguire

la seguente linea di comando:

java -jar wsToolset-1.8.0_installer.jar

Durante l’installazione sarà chiesto di indicare la folder in cui installare il Toolset. Il pathname della

folder di installazione non deve contenere spazi bianchi, e sarà creata se non esiste. Per completare

l’installazione è necessario configurare l’applicazione settando alcune variabili d’ambiente:

� creare la variabile d’ambiente wsTranslator_HOME e assegnargli il valore

<WSTOOLSET_INSTALL_DIR>\tools\wsTranslator;

� aggiornare la variabile d’ambiente PATH al seguente valore

PATH=<WSTOOLSET_INSTALL_DIR>\tools\wsTranslator\bin;

<WSTOOLSET_INSTALL_DIR>\tools\synTools\bin;

<WSTOOLSET_INSTALL_DIR>\tools\NuSMV\bin

dove <WSTOOLSET_INSTALL_DIR> corrisponde alla folder di installazione che è stata

scelta appunto durante l’installazione.

Il package wsToolset è composto da quattro programmi necessari a vari stadi della composizione,

attivabili da linea di comando:

� Astro wsToolset 1.8.0 - wsTranslator 0.14.0: il programma wsTranslator è l’importantissimo

primo modulo adibito alle traduzioni dei files di “coreografia” (.chor) in vari formati di STS,

ad esempio files .smv o Spin, per poi realizzare il prodotto parallelo dei Component Services

e preparare il terreno per il planning via Model Checking;

 17

� Astro wsToolset 1.8.0 - synTools 0.13.1: il package synTools contiene due programmi,

wmon e wsynth: il primo è adibito al monitoring dei processi BPEL, e quindi alla

generazione del codice Java che controlla a runtime il verificarsi di eventi d’interesse e fa

rapporto all'utente nelle schermate di monitoring dei processi (accessibili via browser); la

seconda applicazione, wsynth, è la responsabile del vero e proprio processo di sintesi che

restituisce il file concrete BPEL eseguibile e con un certo livello di ottimizzazione per

realizzare il composite service obiettivo;

� Astro wsToolset 1.8.0 NuSMV 2.2.5 - prodotto da terze parti, NuSMV è essenziale per

eseguire operazioni di model checking su STSs, il che è al cuore dell'approccio Astro.

3.7 Astro wsMonitor 1.6.0

Scaricabile dal sito del progetto http://www.astroproject.org. Per installare il wsMonitor basta

eseguire la seguente linea di comando:

java -jar wsMonitor-1.6.0_installer.jar

Durante l’installazione verrà chiesto di indicare la folder in cui installare il wsMonitor: il

wsMonitor deve essere installato nella folder CATALINA_HOME dell’engine ActiveBpel che si

intende usare.

Si è gia accennato a come l'installazione del BPEL Engine permetta di utilizzare una schermata

accessibile via browser per monitorare i deployed BPEL processes; questa applicazione Astro è

un'estensione a Tomcat che aggiunge funzionalità ulteriori di monitoring online all'interfaccia

dell'Engine; del codice Java viene pre-generato ed eseguito a runtime dal wsMonitor per cercare

situazioni insolite o di errore e fare rapporto all'utente via browser. È quindi sostanzialmente

un’estensione dell'interfaccia offerta dal BPEL engine per il monitoraggio dei processi.

3.8 Astro wsRequirement 0.2.0 Eclipse plugin

Questa plugin permette di integrare i files di input necessari alla composizione (Abstract BPEL

processes per component and target services, EAGLE requirements) creando in output un unico file

xml con estensione .chor (file "di coreografia" che caratterizza completamente il problema) da dare

in pasto a wsTranslator e wSynth per il processo di composizione. Oltre alla creazione del file

.chor, la plugin di Eclipse permette anche di analizzare le sue proprietà (come i component

services, i “main” e “recovery” goals, gli interessi nel monitoring ecc) tramite un'efficace GUI.

 18

3.9 Astro wsChainManager 2.4.0 Eclipse plugin

La plugin permette di eseguire, a partire da un file .chor, vari servizi di composizione automatica,

verification offline e preparazione per l'online monitoring, attivabili tramite la pressione di un

singolo tasto. Il nome deriva dallo stile di esecuzione: le varie funzionalità sono delle catene di

chiamate ai vari componenti dell'Astro Suite.

3.10 Astro wsAnimator 0.0.7 Eclipse plugin

La plugin è dedicata alla simulazione dei composite services impiegando lo stile grafico di

ActiveWebFlow/ActiveBPEL Designer per mandare in esecuzione diverse tipologie di scenari di

simulazione; usa files grafici con estensioni .adf. Questa parte però è ancora in fase di

ingegnerizzazione e quindi attualmente non è banale creare file .adf per la simulazione dei processi.

3.11 Astro wsUseCases 1.0.0 Eclipse plugin

Questa plugin è semplicemente un insieme di folders che rappresentano due esempi di demo di

composizione, chiamati VOS e VTA, rispettivamente dedicati a scenari “classici” come l'acquisto

User-Store-Bank e la prenotazione User-Hotel-Flight; i folders contengono tutto l'occorrente per

testare tutte le funzionalità offerte. È importante studiarne la struttura per capire il funzionamento

del Toolset.

3.12 ActiveBpel Designer

Per creare i file abstract BPEL ho utilizzato ActiveBpel Designer 2.0; non è l’ultima versione ma è

stato necessario utilizzare questa perché i tool di Astro allo stato attuale supportano WS-BPEL 1.1.

Inoltre attualmente la loro roadmap non prevede attività legate al supporto WS-BPEL 2.0. Il

designer è un prodotto freeware, scaricabile dal sito dell'Active-Endpoints http://www.active-

endpoints.com, ha documentazione e tutorial.

In realtà per creare file .bpel e relativi file .wsdl, si possono utilizzare altri tool, ma bisogna fare

attenzione che il .bpel/.wsdl che ne esce sia compatibile con il sottoinsieme di bpel wsdl definito nei

file .xsd che sono utilizzati dal traduttore (wsTranslator).

 19

Capitolo 4 – La demo VTA

4.1 Scenario di funzionamento

Il cuore di questa tesina è stato cercare di analizzare la demo VTA già esistente per poi provare a

realizzare una nuova demo funzionante, ma come detto nell’introduzione ciò non è stato possibile a

causa di numerosi problemi.

Per capire meglio la struttura della demo VTA basta analizzare la seguente figura:

Figura 3: The VTA scenario

I component services sono: User, Flight e Hotel. VTA è il target composite service che funge da

mediatore tra W1 e W2, W3.

Lo User prepara il messaggio di richiesta contenente il periodo e il luogo del viaggio.

VTA, ricevendo la richiesta dallo User, a sua volta prepara un messaggio di richiesta per il service

Flight e un messaggio di richiesta per il service Hotel.

Flight verifica la disponibilità del volo per il periodo e il luogo indicati nella richiesta e può inviare

a VTA l’offerta o un not_available. Hotel verifica la disponibilità dell’hotel per il periodo e il luogo

indicati nella richiesta e può inviare a VTA l’offerta o un not_available. VTA se riceve l’offerta da

Flight e Hotel, la invia allo User: se lo User l’accetta, allora VTA invia un ack a Flight e Hotel,

User
W3

VTA
W

Flight
W1

Hotel
W2

Request(time, location)

Offer hotel-flight

not_available

ack/nack

Offer flight

ack/nack

not_available

Request(time, location)

Request(time, location)

Offer hotel

not_available

ack/nack

 20

altrimenti un nack; oppure VTA può ricevere un not_available da Flight o da Hotel o da entrambi e

di conseguenza invia un not_available allo User.

4.2 Dagli STS agli abstract BPEL

Il primo passo per la realizzazione di una demo, è partire dalla rappresentazione in STS dei servizi

W1, W2 e W3 e tradurli in file BPEL astratti. Presentiamo i tre component services e il target

composite service della demo VTA.

4.2.1 Flight component service

L’STS del Flight component service è il seguente:

Figura 4: STS del Flight component service

Si parte da uno stato iniziale in cui si riceve la richiesta; viene verificata la disponibilità del volo per

il periodo e il luogo indicati nella richiesta: se non c’è disponibilità si invia un not_available e si

termina passando quindi in uno stato finale. Altrimenti si prepara l’offerta e tramite la transizione

“offerFlight” si passa in un nuovo stato di attesa: se è stata accettata la richiesta si riceve un ack

altrimenti un nack; in entrambi i casi si termina e si passa in uno stato finale.

Entrando più nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la

prima attività da inserire nel file BPEL è Receive. Da questa partono le due transizioni e quindi è

necessario inserire come successiva attività lo Switch con un Case condition corrispondente alla

isNotAvailable
isAvailable

offerFlight

nack ack

 21

transizione “isAvailable” e un otherwise corrispondente alla transizione “isNotAvailable”, con la

quale si prepara il messaggio not_available per l’utente, tramite le attività Assign e Invoke, e si

termina con un’attività Empty. La transizione “isAvailable” porta in uno stato in cui vengono

invocate le t-transitions del Web service, quindi è necessario assegnare i valori delle variabili

contenute nel messaggio ricevuto alle variabili interne del Web service, cioè si inserisce l’attività

Assign. Successivamente l’invocazione del web service avviene tramite l’attività Invoke. Inviata

l’offerta, si rimane in attesa di un ack/nack, quindi è necessario inserire l’attività Pick con due

attività onMessage, una relativa all’operazione di ack, l’altra all’operazione di nack. Quindi il file

.bpel risultante è il seguente:

Figura 5: File Flight_ABS.bpel

 22

4.2.2 Hotel component service

L’STS del Hotel component service è praticamente simile a quello del Flight ed è il seguente:

Figura 6: STS del Hotel component service

Anche in questo caso si parte da uno stato iniziale in cui si riceve la richiesta; viene verificata la

disponibilità dell’hotel per il periodo e il luogo indicati nella richiesta: se non c’è disponibilità si

invia un not_available e si termina passando quindi in uno stato finale. Altrimenti si prepara

l’offerta e tramite la transizione “offerHotel” si passa in un nuovo stato di attesa: se è stata accettata

la richiesta si riceve un ack altrimenti un nack; in entrambi i casi si termina e si passa in uno stato

finale.

Entrando più nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la

prima attività da inserire nel file BPEL è Receive. Da questa partono le due transizioni e quindi è

necessario inserire come successiva attività lo Switch con un Case condition corrispondente alla

transizione “isAvailable” e un otherwise corrispondente alla transizione “isNotAvailable”, con la

quale si prepara il messaggio not_available per l’utente, tramite le attività Assign e Invoke, e si

termina con un’attività Empty. La transizione “isAvailable” porta in uno stato in cui vengono

invocate le t-transitions del Web service, quindi è necessario assegnare i valori delle variabili

contenute nel messaggio ricevuto alle variabili interne del Web service, cioè si inserisce l’attività

Assign. Successivamente l’invocazione del web service avviene tramite l’attività Invoke. Inviata

l’offerta, si rimane in attesa di un ack/nack, quindi è necessario inserire l’attività Pick con due

isNotAvailable
isAvailable

offerHotel

nack ack

 23

attività onMessage, una relativa all’operazione di ack, l’altra all’operazione di nack. Quindi il file

.bpel risultante è il seguente:

Figura 7: File Hotel_ABS.bpel

 24

4.2.3 User component service

L’STS dello User component service è il seguente:

Figura 8: STS dello User component service

Lo User parte da uno stato iniziale in cui prepara la richiesta specificando il periodo e la locazione

del viaggio e la invia con la transizione “Invia_request”, passando in nuovo stato di attesa. Se si

riceve un not_available, allora si termina in uno stato finale; se si riceve un’offerta, lo User decide

se accettare o no e quindi invia un ack o un nack rispettivamente, passando in entrambi i casi in uno

stato finale.

Entrando nel dettaglio possiamo dire che nello stato iniziale si deve preparare la richiesta, quindi

tramite l’attività Assign si assegnano i valori alle variabili che vengono date in input al Web service

invocato tramite l’attività Invoke. Inviata la richiesta si rimane in attesa, perciò si inserisce

un’attività Pick con due attività onMessage, corrispondenti alle transizioni “Not_available” e

“offer”. Nel primo caso si termina in un stato finale rappresentato da un’attività Empty. Nel secondo

caso partono due transizioni, quindi si inserisce un’attività Switch con un Case condition in cui

viene accettata l’offerta e tramite le attività Assign e Invoke si invia un ack; e un otherwise in cui

viene rifiutata l’offerta e sempre tramite le attività Assign e Invoke si invia invece un nack. In

entrambi i casi si termina con un’attività Empty. Quindi il file .bpel risultante è il seguente:

offer

ack

Not_available

nack

Invia_request

 25

Figura 9: File User_ABS.bpel

 26

4.2.4 VTA Composite service

L’STS del VTA Composite service è il seguente:

Figura 10: STS del VTA composite service

Si parte in uno stato iniziale in cui si riceve la richiesta dallo User e si verifica la disponibilità: se

non è disponibile si prepara un messaggio di not_available e si termina in uno stato finale;

altrimenti si prepara l’offerta allo User e tramite la transizione “offer” si passa in un nuovo stato di

attesa: se è stata accettata la richiesta si riceve un ack altrimenti un nack; in entrambi i casi si

termina e si passa in uno stato finale.

Entrando più nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la

prima attività da inserire nel file BPEL è Receive. Da questa partono le due transizioni e quindi è

necessario inserire come successiva attività lo Switch con un Case condition corrispondente alla

transizione “isNotAvailable” con la quale si prepara il messaggio not_available per l’utente, tramite

le attività Assign e Invoke, e si termina con un’attività Empty; e un otherwise corrispondente alla

transizione “isAvailable”. Questa porta in uno stato in cui vengono invocate le t-transitions del Web

service, quindi è necessario assegnare i valori delle variabili contenute nel messaggio ricevuto alle

variabili interne del Web service, cioè si inserisce l’attività Assign. Successivamente l’invocazione

del web service avviene tramite l’attività Invoke. Inviata l’offerta, si rimane in attesa di un ack/nack,

quindi è necessario inserire l’attività Pick con due attività onMessage, una relativa all’operazione di

ack, l’altra all’operazione di nack. Quindi il file .bpel risultante è il seguente:

isNotAvailable isAvailable

offer

nack
ack

 27

Figura 11: File VTA_ABS.bpel

4.3 Creazione del file .chor

Una volta creati i file abstract .bpel e i rispettivi .wsdl, ci si posiziona in eclipse e si caricano i

progetti nel workspace tramite il task File→Import → Astro suite wsUsesCases. A questo punto i

progetti sono visibili nella view Navigator a sinistra.

 28

Figura 12: View Navigator

Questa demo è già fornita completa del file .chor, però di seguito descriviamo lo stesso come viene

creato questo file.

Tutti gli input sono riuniti insieme tramite un Wizard sviluppato da Astro per la creazione di files di

coreografia (.chor files) grazie alla plugin wsRequirement. La realizzazione del file .chor si struttura

in 5 passi:

� Definizione del nome del file .chor e della directory di appartenenza;

� Specifica dei file .bpel e relativi .wsdl da comporre;

� Specifica dei Process references for Composition;

� Specifica dei Process references for Verification;

� Specifica dei Process references for Monitoring.

Di seguito vengono mostrate delle immagini a titolo di esempio, non riferibili alla demo VTA,

corrispondenti ai 5 passi della creazione.

 29

Figura 13: Step 1 Figura 14: Step 2

Figura 15: Step 3

Figura 16: Step 4

 30

Il file VTA_DN.chor include le descrizioni dei processi, il main goal, i recovery goals (che non

devono avere molti vincoli, altrimenti il traduttore farà fatica a trovare un piano), le proprietà

d'interesse da monitorare, quelle da verificare, ed altro.

Per quanto riguarda la definizione del goal, esso è composto da una parte di definizione del flusso di

controllo (control flow) e da una parte di definizione del flusso dei dati (data flow). Entrambe

queste parti sono definibili tramite l'utilizzo di wsRequirement. La parte di controllo viene definita

tramite una semplice stringa mentre la parte di dati viene definita in modo grafico con un grafo che

si chiama datanet. I file .datanet sono dei files di servizio del wsRequirment utilizzati per

memorizzare la definizione della componente di data flow del goal. Da un punto di vista interno la

parte di control flow del goal viene utilizzata come un normale goal di pianificazione che definisce

gli stati finali del “main goal” e del “recovery goal” mentre la parte di dataflow va a modellare un

insieme di macchine a stati che arricchiscono il dominio di planning.

La plugin wsRequirement consente anche di ispezionare il file coreografico tramite delle views:

• Process definition→contiene la definizione dei processi facente parte della composizione;

• Composition ControlFlow→contiene la specifica dei main e recovery goal, che è possibile

anche modificare;

• Composition DataFlow→contiene il grafo datanet, che può essere creato con le apposite

Palette;

Figura 17: Step 5

 31

• Monitor→contiene le proprietà da monitorare on-line, possono essere aggiunte o eliminate

altre proprietà;

• Verify→contiene le proprietà da verificare off-line, possono essere aggiunte o eliminate

altre proprietà;

• XML→contiene il codice xml del file .chor.

Di seguito vengono mostrate le views del file coreografico.

Figura 18: View Process definition

 32

Figura 19: View Composition ControlFlow

Figura 20: View Composition DataFlow

 33

Figura 21: View Monitor

Figura 22: View Verify

 34

4.4 La composizione automatica

Con l’installazione del wsToolset, vengono inseriti nella toolbar di eclipse 5 bottoni rispettivamente

per: avviare Tomcat, iniziare la catena di Process Composition, avviare la Process Verification

(offline), preparare le procedure di Process Monitoring, effettuare lo shutdown di Tomcat.

A questo punto, creato il file VTA_DN.chor (nel nostro caso viene già fornito), si può procedere

con la composizione tramite wsChainManager: si deve avviare il Tomcat Server tramite toolbar, ed

una volta che l'inizializzazione di Tomcat e del BPEL Engine è completata, si seleziona il file

VTA_DN.chor (e tale azione rende attivi i tasti per composizione, monitoring e verification) e si

invoca la funzionalità di Service Composition, che conduce ad una checklist di steps da affrontare.

Figura 23: wsChainManager nella Process Composition

Nella finestra del wsChainManager possiamo distinguere la checklist delle operazioni in alto, e la

message box in basso, che riporta dati sull'esecuzione, eventuali problemi e tempo impiegato,

dimensioni delle strutture dati in gioco ecc.

Ciò che il wsChainManager fa è costruire il dominio D dal prodotto parallelo e risolvere il problema

di planning via Model Checking, utilizzando i programmi NuSMV, wsTranslator, wSynth.

L'output finale della composizione è il file Concrete BPEL VTA.bpel automaticamente deployed su

ActiveBPEL Engine, e può essere monitorato e testato via browser alla seguente URL:

http://localhost:50000/BpelAdmin.

 35

Figura 24: Home di ActiveBpel Engine

4.5 Process Verification

L'Astro Suite offre funzionalità per verificare proprietà del modello costruito (ovvero il file .chor)

semplicemente a partire dal file di coreografia.

Si seleziona il file VTA_DN.chor e cliccando sul bottone si avvia, tramite wsChainManager,

la process verification. Trattandosi di una procedura offline, possiamo ricevere risposta

immediatamente, tramite una schermata Web apposita:

Figura 25: wsChainManager per la Process Verification

 36

Figura 26: Schermata web della verification

Selezionando esempi e controesempi forniti, ci viene mostrato uno scenario ad alto livello stile

UML Sequence Diagram:

Figura 27: Scenario di un esempio andato a buon fine

 37

4.6 Process Monitoring

La funzionalità di Monitoring è il corrispettivo online della Verification, e vuole fornire rapporti

all'utente su stati anormali dell'esecuzioni di processi BPEL in esecuzione.

Tramite la consueta schermata wsChainManager vengono creati automaticamente dei files Java (i

cui obiettivi sono definiti ancora una volta nel file .chor), che vengono messi in ascolto su

esecuzioni del processo d'interesse per monitorarlo e fornire informazioni all'utente.

Sempre selezionando il file VTA_DN.chor e cliccando sul bottone si avvia il process

monitoring:

Figura 28: wsChainManager per la Process Monitoring

 38

Di seguito viene mostrato uno dei file .java generati:

Figura 29: File VTA_AllOffer.java generato dal process monitoring

 39

4.7 Process execution simulation

Tramite la plugin wsAnimator sviluppata dal team Astro ed utilizzando un formato file particolare

.adf, è possibile mandare in esecuzione diversi scenari pre-programmati. Nella view Navigator si

aprono i file Flight.adf, Hotel.adf e User.adf e per iniziare la simulazione si possono scegliere una

delle quattro modalità di esecuzione:

• standard: è una simulazione interattiva, in cui noi gestiamo le varie scelte;

• nominal: è una simulazione che avviene in modo automatico e termina con successo;

• fail 1: è una simulazione che avviene in modo automatico e termina con un insuccesso del

Flight;

• fail 2: è una simulazione che avviene in modo automatico e termina con un insuccesso di

Hotel;

Figura 30: File .adf

 40

Figura 31: Process execution simulation

Attualmente, però, questa parte è ancora in fase di ingegnerizzazione.

 41

Capitolo 5 – Provare a realizzare una demo

Dopo aver analizzato la struttura della demo VTA, ho provato a creare una propria demo che ho

chiamato CD-Mania. Per darle un significato reale possiamo immaginarla una vendita di CD

musicali, in cui l’utente richiede il CD inserendo il titolo oppure l’autore e inserisce il denaro. Se il

CD è disponibile e l’utente ha inserito una moneta da 20 o da 10, allora gli viene fornito il CD,

altrimenti gli viene comunicato un not_available. L’utente ha comunque la possibilità di accettare o

rifiutare il CD. Uno scenario di funzionamento è mostrato nella seguente figura:

Figura 32: Scenario di funzionamento della demo CD-Mania

5.1 Dagli STS agli abstract BPEL

Il primo passo per la realizzazione della demo, è stato partire dalla rappresentazione in STS dei

servizi W1, W2 e W3 e tradurli in file BPEL astratti. Ho scelto tre servizi e li ho chiamati Buy, MP3

e User. Di seguito vengono forniti la struttura degli STS e dei corrispondenti file BPEL.

5.1.1 Buy component service

L’STS del Buy component service è il seguente:

User
W3

CD-Mania
W

MP3
W1

Buy
W2

request

offer

not_available

ack/nack

request

fail

succ

request

offer

ack/nack

not_available

 42

Figura 33: STS del Buy component service

Si parte da uno stato iniziale in cui si riceve la richiesta; viene verificato se la moneta inserita è da

20 o da 10, altrimenti si termina con un insuccesso e si passa in uno stato finale.

Entrando più nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la

prima attività da inserire nel file BPEL è Receive. Da questa partono le tre transizioni e quindi è

necessario inserire come successiva attività lo Switch con due Case condition corrispondenti alle

transizioni “isVenti” e “isDieci” e un otherwise che porta in uno stato finale di insuccesso

rappresentato nel file BPEL da un’attività Empty. Le transizioni “isVenti” e “isDieci” portano in

due stati in cui vengono invocate le t-transitions del Web service, quindi è necessario assegnare i

valori delle variabili contenute nel messaggio ricevuto alle variabili interne del Web service, cioè si

inserisce l’attività Assign. Successivamente l’invocazione del web service avviene tramite l’attività

Invoke. In entrambi i case si passa in uno stato finale di successo, rappresentato sempre da una

attività Empty. Quindi il file .bpel risultante è il seguente:

isVenti
isDieci

SUCC SUCC

FAIL

 43

Figura 34: File Buy_ABS.bpel

 44

5.1.2 MP3 component service

L’STS del MP3 component service è il seguente:

Figura 35: STS del MP3 component service

Anche in questo caso si parte da uno stato iniziale in cui si riceve la richiesta; viene verificato se la

stringa rappresentante il CD corrisponde al nome dell’autore o al titolo del CD stesso, altrimenti si

restituisce un not_available e si termina (si passa quindi in uno stato finale). Le due transizioni

“chooseByAuthor” e “chooseByTitle” portano in due stati distinti in cui vengono invocate le t-

transitions del Web-service per effettuare la ricerca del CD rispettivamente per autore e per titolo.

Si presenta l’offerta (cioè il nome del CD) e si rimane in attesa di una risposta: se lo User accetta

allora si termina con successo (si passa nello stato finale tramite SUCC), altrimenti si termina con

un insuccesso (si passa nello stato finale tramite FAIL_NACK).

Entrando più nel dettaglio possiamo dire che nello stato iniziale si riceve una richiesta, quindi la

prima attività da inserire nel file BPEL è Receive. Da questa partono le tre transizioni e quindi è

necessario inserire come successiva attività lo Switch con due Case condition corrispondenti alle

transizioni “chooseByAuthor” e “chooseByTitle” e un otherwise che porta in uno stato finale di

insuccesso rappresentato nel file BPEL da un’attività Empty. Come detto prima le transizioni

“chooseByAuthor” e “chooseByTitle” portano in due stati in cui vengono invocate le t-transitions

del Web service, quindi è necessario assegnare i valori delle variabili contenute nel messaggio

ricevuto alle variabili interne del Web service, cioè si inserisce l’attività Assign. Successivamente

l’invocazione del web service avviene tramite l’attività Invoke. In entrambi i case si rimane in attesa

di un ack/nack dello User e quindi viene inserita l’attività Pick con due attività onMessage, cioè si

rimane in attesa di un messaggio, che potrebbe essere un nack e quindi si termina con un’attività

Empty FAIL_NACK, oppure un messaggio ack e quindi si termina con un’attività Empty SUCC. Il

file .bpel risultante è il seguente:

SUCC

chooseByAuthor

chooseByTitle

FAIL_NACK SUCC FAIL_NACK

Not_available

 45

Figura 36: File MP3_ABS.bpel

5.1.3 User component service

Il servizio User è analogo a quello della demo VTA, cambia solo il contenuto della richiesta, in cui

stavolta abbiamo la specifica del CD (tramite autore o titolo) e della moneta. Omettiamo quindi sia

STS che file .bpel.

5.2 Creazione del file .chor

Una volta creati i file abstract .bpel e i rispettivi .wsdl, ci si posiziona in eclipse e si caricano i

progetti nel workspace tramite il task File→Import. A questo punto i progetti sono visibili nella

view Navigator a sinistra.

Tramite il Wizard per la creazione dei file .chor, ho creato il file CD-Mania_DN.chor. Di seguito

vengono mostrati i 5 passi per la creazione del suddetto file:

 46

Figura 37: Step 1 Figura 38: Step 2

Figura 39: Step 3

Figura 40: Step 4

 47

Nella seguente figura viene mostrata la view Process definition del file CD-Mania_DN.chor, in cui

vengono mostrati i processi.

Figura 42: View Process definition del file CD-Mania_DN.chor

Figura 41: Step 5

 48

Nella seguente figura viene mostrata la view Composition ControlFlow del file CD-

Mania_DN.chor, in cui sono specificati i main e recovery goal:

Figura 43: View Composition ControlFlow del file CD-Mania_DN.chor

5.3 Perché non funzionante

Nel creare i file .bpel ho incontrato molti problemi, dovuti alle limitazioni sui tipi di variabili e di

costrutti supportati dal traduttore Astro.

Per esempio avevo inserito in un file BPEL un link e questo automaticamente mi inseriva anche

un’attività Flow che è tra quelle non supportate dal tool; però dal messaggio di errore avevo capito

che dipendesse dall’aver specificato in maniera errata il dataflow, perché io non sapevo che con il

link si fosse aggiunta anche l’attività Flow (in quanto i file .bpel vengono creati tramite palette, non

si scrive codice vero e proprio), solo dopo aver ispezionato in maniera più approfondita il codice

xml del file, sono riuscita a capire e correggere l’errore.

Poi avevo creato dei messaggi con dei campi di tipo intero ed eseguivo operazioni matematiche;

invece tutto ciò non è supportato e quindi ho dovuto modificare i file .bpel (il che richiede molto

tempo).

Poi avevo utilizzato un tipo di operazione di assegnamento per la variabile “offer” sintatticamente

non corretta e solo grazie all’aiuto del team support di ASTRO sono riuscita a risolvere questo

 49

problema, perché la composizione restituiva un messaggio di errore che era fuorviante e quindi non

si riusciva a capire il perché non venisse accettato il messaggio “offer”, nonostante fosse stato

correttamente dichiarato.

Un altro problema che ho dovuto risolvere è stato quello di aver definito dei recovery goal troppo

vincolanti e questo impediva di trovare un piano.

L’ultimo problema incontrato è stato relativo alla semantica dei file .bpel, ma questo non sono

riuscita tuttora a risolvere, perciò la demo non è funzionante.

Infatti avere un errore di semantica significa che il processo di composizione avviene, ma non

produce l’output atteso, cioè il file concrete .bpel viene creato, ma al suo interno ci sono solo i tag

degli elementi che dovrebbero essere inseriti ma non la lista degli elementi definiti; per esempio i

tag delle variabili non contenevano la lista delle variabili definite, di conseguenza il processo non

veniva deployed su engine. Nonostante questo, però, viene comunque creato il package del file

.bpel, wsdl relativi e files di deployment .xml e .pdd in un file .bpr in Tomcat.

Purtroppo il tempo impiegato per affrontare tutti questi problemi è stato notevole, per via di capire

dove era il problema e come risolverlo, e questo ha impedito di continuare a lavorare su questa

demo.

 50

Conclusioni
Il tool presenta ancora numerose limitazioni:

• allo stato attuale supporta WS-BPEL 1.1 e la roadmap non prevede attività legate al

supporto WS-BPEL 2.0;

• Il tipo "xsd:positiveInteger" non è gestito al momento e deve essere sostituito dal tipo

"xsd:string". Ovvero non è possibile ragionare sui numeri al momento ma solo sulle stringhe

e su pochi altri tipi come ad esempio i booleani e gli enumerativi;

• Manca di robustezza, infatti quando si provano vari scenari di simulazione dei file .adf, dopo

due – tre volte la simulazione rimane bloccata.

Nel corso della realizzazione di questa tesina ho incontrato numerosi problemi, molti dei quali li ho

già specificati nell’ultimo paragrafo del quinto capitolo e vengono di seguito riassunti.

Problemi incontrati:

• Installazione del tool → dovuta a baghi sulla definizione delle variabili d’ambiente e sui

nomi delle directory. In particolare la variabile path doveva essere impostata aggiungendo la

directory \bin al percorso <WSTOOLSET_INSTALL_DIR>\tools\synTools, mentre

all’interno della folder <WSTOOLSET_INSTALL_DIR>\tools bisogna aggiungere una

copia della folder “wsTranslator-0.14.0” rinominandola “wsTranslator-

$WSTRANSLATOR-VERSION”, per ovviare a un bago che ancora non è stato eliminato;

• Realizzazione dei file bpel → dovuta alla non conoscenza della versione del linguaggio, dei

tipi di variabili e dei costrutti sintattici supportati.

• Problemi relativi alla semantica dei file abstract .bpel della demo che si è provato a

realizzare, e attualmente ancora non si è capito il motivo di questi errori.

 51

Bibliografia

• Alonso, Casati, Kuno, Machiraju; 2004; "Web Services - Concepts, Architectures and

Applications"

• The ASTRO Project Website; http://www.astroproject.org

• The BPEL4WS Specification, v1.1;

 http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp

• The ActiveBPEL Engine, http://www.activebpel.org

• The ActiveBPEL Designer v2.0 User's Guide (http://www.active-endpoints.com)

• Il Progetto ASTRO nella Web Service Composition: analisi e confronto con il Roman

Approach – Alessandro Pagliaro

• Composizione automatica di servizi: l’approccio ASTRO e il Roman Model a confronto –

Alessandro Dionisi

• M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F. Barbon, P. Bertoli, P.

Traverso - ASTRO: Supporting Composition and Execution of Web Services

