
Using TLV for Web Service Composition via

Simulation

Abstract.

1 Introduction

2 Composition of Web Services

2.1 The problem

– Web services and web service composition
– Available services, community, target service
– Problem statement

2.2 Composing Web Services via simulation

– Simulation
– Composing Web Services via simulation
– References to Simulation Paper: Orchhestrator generator, orchestartor, etc...

3 Formalizing the problem for TLV

3.1 Target and available services as Transition Systems

We deal with deterministic target service and non-deterministic available ser-
vices, described as transition systems, according to the following definition:

Definition 1 (Transition System). A transition system (TS) is a tuple
TSi = 〈Si, Ai, s

0

i
, δi, Fi〉 (i = 1, . . . , n, t) where, for i = 1, . . . , n, t:

– Si is the finite set of TSi states;
– Ai is the set of TSi actions. A =

⋃n

i=1
Ai is called the shared action alpha-

bet;
– s0

i
is the initial state of TSi;

– δi is the transition relation δi ⊆ Si×Ai×Si of TSi. For i = t δt is functional
and can be rewritten, for convenience, as δt : St×At → St where δt(s, a) = s′

iff 〈s, a, s′〉 ∈ δt;
– Fi ⊆ Si is the set of TSi final states.

Moreover, TSt is called target service, while TSi, for i 6= t, is called available
service.

Figures 1(a) and 1(b) represent two sample fragments of target and available
service, respectively. Note that the target service of Figure 1(a) is deterministic
while available service of Figure 1(b) is not.

Our aim is to provide an exact procedure for describing a community of
available services plus a target service in the language smv and, consequenlty,
exploiting the tool tlv for synthesizing the target service automatically, using a
procedure which relies on the notion of simulation.

loc
′

act act
′

2

act
′

1

act
′

3

loc

(a) A target service fragment

act
′

2,2

loc

act

act

act
′

1,2

act
′

1,3

loc
′

1

act
′

2,3

loc
′

2

act
′

1,1

act
′

2,1

(b) An available service fragment

Fig. 1. Sample transition system fragments

2

3.2 Writing transition systems for web service composition via TLV

We will present our methodology by using, as an example, the problem instance
depicted in Figure 2, where a community composed of 2 available services, C =
{S1, S2}, and a target service T1 are described. Note that available service S1

is non-deterministic and all services include final states, represented by double
circles.

display

search

search

return

s0 s1

(a) Available service S1

display

s0

(b) Available service
S2

display

search

s0 s1

(c) Target service T1

Fig. 2. Available and target services

The module main In order to perform the synthesis, we need two basic compo-
nents: the system and the environment, both modeled as smv modules, properly
interconnected. In addition, an assertion good needs to be defined which repre-
sents the invariant property that has to be guaranteed by the synthesized con-
troller (which, indeed, implements the strategy). Specification always include the
following module main, which is independent of the particular instance, where
modules Input and Output are described in forthcoming paragraphs:

MODULE main

VAR

In: system Input(Out.index);

Out: system Output;

DEFINE

good := !In.failure;

3

-- end of module main

Basically, the synthesis procedure computes a restriction, if any, on the transi-
tion relation of Out, which represents the orchestrator, such that property good is
always satisfied (2good) however module In behaves (according to its own spec-
ification). The way Out may affect In evolution is through parameter index,
which is a write-only parameter for the latter module and, thus, does not affect
Out.

The module Output This module represents the orchestrator. It implements a
strategy which selects, at each time point, an available service for executing
current target action. At each time point, it assigns the variable index a value
representing such service. Of course, each available service is assigned a different
index value. Hence, if we deal with 2 available services, smv specification of
module Ouptut is as follows, where index=0 corresponds to assigning available
services no action and is needed only for system initialization:

MODULE Output

VAR

index:0..2;

ASSIGN

init(index) := 0;

next(index) := 1..2;

-- end of module Output

As it can be seen, apart from initialization, no restriction on Output’s transition
relation is given. That is, Output may produce, upon execution, any sequence
of index assignments of the form: 0(1|2)∗. The synthesis procedure is exactly
aimed at restricting the set of such sequences, in order to properly constrain
environment evolution in a way such that invariant property good is guaranteed.

The module Input This is the central module of our specification. Refer again
to the community C and the target service T1 of Figure 2. Provided all systems
start in their respective initial state, T1 can be obtained by composition of S1

and S2 if and only if any sequence of actions it produces can be reproduced by
properly assigning each action to either S1 or S2, according to their transition
relations. In addition, whenever T1 is in a final state, all community services are
required to be in a final state.

Consider the following smv code fragment, which represents module Input

specification for community C = {S1, S2}, with shared action alphabet A =
{search, return, display}:

MODULE Input(index)

VAR

action : {nil,search,display,return};

T1 : mT1(action);

S1 : mS1(index,action);

4

S2 : mS2(index,action);

DEFINE

failure := (S1.failure | S2.failure) |

!(T1.final -> (S1.final & S2.final));

-- end of module Input

Basically, this module represents the synchronous product (i.e., all systems
evolve at each clock tick) of transition systems T1, S1 and S2, which respec-
tively model services T 1, S1 and S2. Variable action and assertion failure

are defined. The former may take values from the shared action alphabet
{search,display,return} plus the special action nil (needed for initilization)
and represents the current target service action to be performed by available
services, while the latter depends on all services evolution and represents the
violation of some constraint. In particular, it is TRUE iff:

– either S1 or S2 generate a failure (see below), or
– it is not the case that whenever T1 reaches a final state, both S1 and S2 also

do.

Note that invariant property good, defined within module main, corresponds
exactly to the negation of failure. Hence, assuming mT1, mS1 and mS2 properly
defined, when tlv is executed with such a specification as input, it tries to
synthesize a strategy (or orchestrator, or controller) for Out which forces In to
evolve in a way such that i) no available system generates a failure and ii) the
target service being in a final state implies each available service being in a
final state, too. The intuition behind module Input is to encode the following
behavior:

– according to its state at time step t−1, T1 evolves and produces a new action
(initial action is nil);

– Out assigns index a new value (initial value is 0);
– if i = index at time step t−1, then service Si executes target action of time

step t− 1 and reaches consequent state at time step t; otherwise, Si remains
still (initially, available services are in their respective initial state).

Note how the use of index allows, at each time step, only one available service
to change state, while target service and orchestrator are always allowed to.

The target service module As already discussed, a target service is a deterministic
finite state machine TSt = 〈St, At, s

0

t , δt, Ft〉, where δt is, indeed, a function. In
smv, we associate each service a module which describes a transition system.
In particular, the following module represents an smv specification for target
service T1 of Figure 2(c):

MODULE mT1(act)

VAR

loc : 0..1;

ASSIGN

5

init(loc) := 0;

init(act) := nil;

next(loc) :=

case

loc = 0 & act = search : 1;

loc = 1 & act = display : 0;

TRUE : loc;

esac;

next(act) :=

case

act = nil : {search};

loc = 0 & act = search : {display};

loc = 1 & act = display : {search};

TRUE : {act};

esac;

DEFINE

final := (loc = 0);

-- end of module mT1

Each state of the smv target transition system is characterized by:

– the current location loc, that is, the state of the computation it is in. The
domain of variable loc is the set of St state indices, with obvious correspon-
dences (loc=0 corresponds to state s0 and so on). Let ind(si) = i be the
bijection which defines such correspondences.

– the current action act, that is, the action to be executed next (by some
available service). The domain of act is exactly the domain At plus the
special action nil.

Since act needs to be passed as input to other modules (in particular, to module
Input) it has been defined externally of the target module. However, a mecha-
nism analogous to the one exploited for making variable index of module Out

available to module In (see module main above) might be equivalently used. Re-
call that we interpret the target service as an action producer and, consequenlty,
it is the module which assigns (output parameter) act some value. The way such
values are assigned depends on transition function δt, as it directly defines the
ASSIGN section of module mT1.

Initially, the system is in location 0 (init(loc):=0), which is, by convention,
the initial one. Since target and orchestrator evolve one time step before available
services –”first, choose action and service, then execute”–, a nil action is initially
performed (init(act):=nil) which forces all services to remain still without
generating any failure (see available service smv specification below). Then, next
location and action can be defined, depending on current ones. Note that target
evolution does not depend on any other variables but location and action, i.e.,
no feedback from available services is considered.

The rest of mT1 ASSIGN section is directly derived from target service transi-
tion function, according to the following rules:

6

1. A statement of the form:

next(loc):=

case

case_1;

...

case_n;

TRUE : loc;

esac;

is included for defining next loc value. Each case_i expression refers to a
different pair < s, a >∈ St × At such that δt(s, a) is defined (order does not
matter) and assumes the form:

loc = ind(s) & act = a :δt(s, a)

2. A statement of the form:

next(act):=

case

case_0;

case_1;

...

case_n;

TRUE : act;

esac;

is included for defining next act assignment. Let act : St → 2At be defined
as act(s) = {a ∈ At | ∃ s′ ∈ St s.t. s′ = δt(s, a)}. Then, case_0 assumes the
form:

act = nil : act(s0)

For i > 0, each case_i expression refers to a different pair < s, a >∈ St ×At

such that act(δt(s, a)) 6= ∅ (order does not matter) and assumes the form:

loc = ind(s) & act = a : act(δt(s, a))

These rules apply in general, only if a deterministic target service is to be mod-
eled. Otherwise, for the non-deterministic case, a different modeling schema must
be adopted. Note that specifications obtained by applying such procedure are
not optimal, that is, they are not guaranteed to be the most concise and/or of
fastest resolution. However, further (semantics-preserving) modifications can be
applied.

Finally, an expression final is defined within the DEFINE section, which is
TRUE iff target service is in a location corresponding to a final state. As already
discussed, such expression is useful in module Input, for defining failure ex-
pression.

7

The available service module mS1 Now, focus on available service S1 of Fig-
ure 2(a). Such service is modeled in smv by adapting the approach used for
target service T1 to deal with two major differences, that is:

– available services are, in general non-deterministic;
– available services are action consumer, that is, instead of assigning actions,

they execute them (or do nothing, if not selected).

The following excerpt represents the smv code which models the transition sys-
tem associated to available service S1:

MODULE mS1(index,action)

VAR

loc : 0..1;

ASSIGN

init(loc) := 0;

next(loc) :=

case

index != 1 : loc;

loc=0 & action in {search} : {0,1};

loc=1 & action in {display,return} : {0};

TRUE : loc;

esac;

DEFINE

failure :=

index = 1 &

!(

(loc = 0 & action in {search})|

(loc = 1 & action in {display, return})

);

final := (loc = 0);

-- end of module mS1

Note that mS1’s evolution depends on (input) parameters index and action. As
previously anticipated, each service is assigned a unique index value with the
purpose of selecting the service itself. When a service is selected, it is supposed
to execute the current action and evolve consequently.

Previous discussion about variable loc and its respective initialization (see
target service section) also applies to this case. For what concerns sections
ASSIGN and DEFINE, however, some differences have been introduced.

First, ASSIGN section includes no statement involving action since, in fact,
available services simply react to target evolution and, hence, they need only to
read it.

Second, case statement, which defines next system location, includes the
following case_0 condition:

index != 1 : loc

8

which forces the system to remain still whenever index is different from 1, such
value being the unique identifier assigned to service S1. Remaining case condi-
tions are obtained by applying the same construction exploited for target ser-
vices, i.e.,

loc = ind(s) & act = a :δi(s, a)

however, in this case, note that δi is not functional, the service being, in general,
non deterministic and, therefore, δi(s, a) is a set, instead of a single element.

Lastly, as for section DEFINE, assertion final is defined as exactly as within
previous module mT1. In addition, a second assertion, failure, is defined which
is true iff service S1 is selected (index=1) but it is asked for executing some not
allowed action. Recall that the negation of such assertion (cf. modules Input and
main) appears as a conjunct of invariant property good, which must be ensured
by the strategy tlv searches for. In other words, by defining it, we are asking
tlv for synthesizing an orchestrator (i.e., restricting Output transition relation)
which never asks available services for executing actions they cannot execute (at
the given time point).

The available service module mS2 For completeness, we report the smv code
associated to service S2. Note that such service is stateless and deterministic,
leading to the following, simplified, specification:

MODULE mS2(index,action)

DEFINE

failure :=

index = 2 & !(action in {display});

final := TRUE;

-- end of module mS2

9

