

Pagina 1

Seminario di ingegneria del software

Autore

Cristiano Sticca

Pagina 2

SOMMARIO

Introduzione pag.3

Obiettivi pag.4

Problematiche pag.5

Struttura dei file importati dal sito www.imdb.com pag.6

Parser Java pag.13

Script SQL pag.20

Schema ER pag.22

Schema logico pag.23

Schema fisico pag.29

Schema fisico con vincoli di foreign key pag.37

Ontologia: concetti generali pag.49

Linguaggi per Ontologie: OWL pag.50

Description Logics: concetti generali pag.55

DL-Lite family: DL-Lite & DL-Lite pag.56

DL-Lite pag.61

Ontologia dell’ IMDb pag.64

Mapping: GAV & LAV pag.79

IMDb mapping pag.86

IMDb: data type mapping pag.87

IMDb: data to object mapping pag.93

Riferimenti pag.105

Pagina 3

Introduzione

Il lavoro che è stato fatto con questa tesina ha voluto illustrare come fare essenzial-

mente “data integration” relativamente alla parte sulle ontologie e sui mapping.

Scopo principale della tesina è stato quello di ricreare in ambiente locale ciò che è

presente sul sito www.imdb.com , ovvero un database che rappresenta tutta la ci-

nematografia dai suoi albori ad oggi.

Dopo il lavoro di creazione del DB, che ha impiegato gran parte del tempo e delle ri-

sorse, il compito si è concentrato nella stesura dell’ontologia scritta con una descrip-

tion logic, interamente studiata e realizzata nel Dipartimento di Informatica e Si-

stemistica della facoltà di Ingegneria dell’ università “Sapienza” di Roma, vale a dire

DL-LiteA.

In seguito si è voluto creare un mapping tra l’ontologia appena descritta e il

database locale.

Pagina 4

Obiettivi

Gli obiettivi del presente lavoro sono stati essenzialmente:

• Creazione di un DB locale rappresentante tutti i film prodotti

dall’inizio della cinematografia ad oggi

• Generazione schema ER dell’ “INTERNET MOVIE DB”

• Realizzazione schema logico

• Realizzazione schema fisico

• Creazione ontologia in DL-LiteA

• Creazione mapping tra DB e ontologia

Pagina 5

Problematiche

I problemi maggiori si sono riscontrati nella prima parte della tesina, ovvero nel pe-

riodo in cui tutte le risorse sono state impiegate per creare il database locale.

Motivo di tali problemi è stato senza dubbio la grande quantità di file importati dal

sito http://imdb.com/interfaces , in quanto questi ultimi hanno una formattazione

pressoché diversa l’uno dall’altro e ciò ha richiesto quindi la realizzazione di moltis-

simi parser java il cui compito è stato quello di creare script SQL per il popolamento

del database.

Ma il problema principale è stato senza ombra di dubbio il tempo impiegato per po-

polare il DB con i script sopra citati.

Pagina 6

Struttura dei file importati dal sito www.imdb.com

Il sito come già detto in precedenza permette di poter effettuare il download di par-

ticolari file che rappresentano il contenuto informativo del database su internet.

Vengono illustrati ora alcuni file importati dal sito.

movies.LIST

CRC: 0x9A686F55 File: movies.list Date: Fri Sep 14 01:00:00 2007

Copyright 1991-2007 The Internet Movie Database Ltd. All rights reserved.

http://www.imdb.com

movies.list

2007-09-12

MOVIES LIST

===========

#1 (2005) 2005

#1 Fan: A Darkomentary (2005) (V) 2005

#28 (2002) 2002

#2: Drops (2004) 2004

#7 Train: An Immigrant Journey, The (2000) 2000

#Bfl O {ggGX = STwWcfl x 2s4 (1963) 1963

$ (1971) 1971

$1,000 Reward (1913) 1913

$1,000 Reward (1915) 1915

$1,000 Reward (1923) 1923

Pagina 7

actors.LIST

RC: 0x0A29EBA9 File: actors.list Date: Fri Sep 14 01:00:00 2007

Copyright 1990-2007 The Internet Movie Database, Inc. All rights reserved.

COPYING POLICY: Internet Movie Database (IMDb)

==

 This is a database of movie related information compiled by

 Internet Movie Database Ltd (IMDb). While every effort has been

 made to ensure the accuracy of the database IMDb gives no

 warranty as to the accuracy of the information contained in the

 database. IMDb reserves the right to withdraw or delete

 information at any time.

 This service is provided for the information of users only. It is

 not provided with the intention that users rely upon the

 information for any purposes. Accordingly, IMDb shall under no

 circumstances be liable for any loss or damage, including but not

 limited to loss of profits, goodwill or indirect or consequential

 loss arising out of any use of or inaccuracies in the

 information. All warranties express or implied are excluded to

 the fullest extent permissible by law.

 All information in this file is Copyright 2005 Internet Movie

 Database Limited. Reproduction, distribution or transmission by

 any means without the prior permission of IMDb is prohibited. All

 rights reserved.

 For further information contact <licensing@imdb.com>

 All data and software released by Internet Movie Database Ltd is

 freely available to anyone within certain limitations. You are

 encouraged to quote subsets of the database in USENET articles,

 movie related FAQs, magazine articles etc. We do ask, however,

 that you make reference to the source of the data and provide a

 pointer to the database for the benefit of the reader.

 Permission is granted by the copyright holder to allow free

 distribution of this file and any other part of the Internet

 Movie Database in an ELECTRONIC FORM ONLY, providing the

 following conditions are met:

 1. NO FEE OF ANY KIND, however indirect, will be charged

 for its distribution. If this file is being stored

 for later distribution to anyone that can be

 construed as a customer of yourself or your

 organisation YOU MUST contact Internet Movie Database

 Ltd for permission.

 2. Each of the database files may be distributed

 individually but only in an unaltered form. All the

 header and trailer information, including this notice

 and the details on how to access the database, must

Pagina 8

 remain intact.

 3. Specifically the files may NOT be used to construct

 any kind of on-line database (except for individual

 personal use). Clearance for ALL such on-line data

 resources must be requested from Internet Movie

 Database Ltd

 4. In addition, copies of the Internet Movie Database

 frequently asked questions list and additions guide

 must be made available in the same area / by the same

 method as the other database files.

 5. CD-ROM distribution is prohibited without written

 permission from the Internet Movie Database Ltd

 Distribution by e-mail, BBS and Internet systems is positively

 encouraged within these limitations.

 The files and software which make up the movie database may be

 uploaded to commercial BBS systems providing that the above

 conditions are met and no *additional* fees are applied above the

 standard connect time or downloading charges.

 For further information contact <licensing@imdb.com>

Welcome to the latest version of the actors list.

Please feel free to submit entries for actors not already on the list,

or new entries for existing actors.

This list is managed by Giancarlo Cairella <actresses@imdb.com>; from

1990-1998 it was managed by Col Needham <col@imdb.com>.

If you have any additions or corrections please respond by e-mail only. The

section at the end of the list contains details on the formats to use. The

copying policy is also described at the end of the list.

The Internet Movie Database consists of the following lists:

 List | Maintained by | Updated

 ---------------------|---|----------

 Actors | Giancarlo Cairella http://imdb.com/contact| 24-06-05

 Actresses | Giancarlo Cairella http://imdb.com/contact| 24-06-05

 Alternative Names | Duncan Smith http://imdb.com/contact/ | 24-06-05

 Alternative Titles | Michel Hafner http://imdb.com/contact/ | 17-06-05

 Alternative Versions | Giancarlo Cairella http://imdb.com/contact| 17-06-05

 Biographies | Geoff Leonard http://imdb.com/contact/ | 24-06-05

 Business | Giancarlo Cairella http://imdb.com/contact| 17-06-05

 Cast Completion | Giancarlo Cairella http://imdb.com/contact| 17-06-05

 Certificates | Peter Simeon http://imdb.com/contact/ | 24-06-05

 Cinematographers | Michel Hafner http://imdb.com/contact/ | 17-06-05

 Color Information | Mark Bailey http://imdb.com/contact/ | 24-06-05

 Composers | Michel Hafner http://imdb.com/contact/ | 17-06-05

 Costume Designers | Duncan Smith http://imdb.com/contact/ | 17-06-05

Pagina 9

 Countries | Peter Simeon http://imdb.com/contact/ | 17-06-05

 Crazy Credits | Mark Bailey http://imdb.com/contact/ | 17-06-05

 Crew Completion | Giancarlo Cairella http://imdb.com/contact| 17-06-05

 Directors | Duncan Smith http://imdb.com/contact/ | 17-06-05

 Distributors | Peter Simeon http://imdb.com/contact/ | 24-06-05

 Editors | Duncan Smith http://imdb.com/contact/ | 17-06-05

 Genres | Jake Dias http://imdb.com/contact/ | 24-06-05

 Goofs | Col Needham http://imdb.com/contact/ | 24-06-05

 Keywords | Jake Dias http://imdb.com/contact/ | 24-06-05

 Languages | Peter Simeon http://imdb.com/contact/ | 24-06-05

 Laser Discs | Peter Simeon http://imdb.com/contact/ | 07-21/00

 Literature | Giancarlo Cairella http://imdb.com/contact| 17-06-05

 Locations | Mark Bailey http://imdb.com/contact/ | 17-06-05

 MPAA Ratings Reasons | Jon Reeves http://imdb.com/contact/ | 17-06-05

 Misc. Companies | Mark Bailey http://imdb.com/contact/ | 24-06-05

 Misc. Filmography | Peter Simeon http://imdb.com/contact/ | 24-06-05

 Movie Links | Ron Higgins http://imdb.com/contact/ | 24-06-05

 Movies | Michel Hafner http://imdb.com/contact/ | 17-06-05

 Plot Summaries | Colin Tinto http://imdb.com/contact/ | 24-06-05

 Producers | Andre Bernhardt http://imdb.com/contact/ | 17-06-05

 Production Companies | Mark Bailey http://imdb.com/contact/ | 24-06-05

 Production Designers | Duncan Smith http://imdb.com/contact/ | 17-06-05

 Quotes | Col Needham http://imdb.com/contact/ | 24-06-05

 Ratings | IMDb Helpdesk http://imdb.com/contact/ | 24-06-05

 Release Dates | Mark Bailey http://imdb.com/contact/ | 24-06-05

 Running Times | Mark Bailey http://imdb.com/contact/ | 24-06-05

 SFX Companies | Mark Bailey http://imdb.com/contact/ | 24-06-05

 Sound Mix | Mark Bailey http://imdb.com/contact/ | 24-06-05

 Soundtracks | Ron Higgins http://imdb.com/contact/ | 24-06-05

 Tag Lines | Mark Bailey http://imdb.com/contact/ | 24-06-05

 Technical Info | Peter Simeon http://imdb.com/contact/ | 24-06-05

 Trivia | Tim Norris http://imdb.com/contact/ | 24-06-05

 Writers | Duncan Smith http://imdb.com/contact/ | 17-06-05

 --

 dd/mm/yy

SEARCHING THE DATABASE

======================

The movie database frequently asked questions list contains more information

on the whole movie database project. For a copy send an e-mail message with

the subject "HELP FAQ" to <mail-server@imdb.com>. Here is a summary of the

ways to access the database:

(1) WWW interface

 The Internet Movie Database is available over the WWW. The following sites

 are owned and operated by or for the IMDb:

 http://us.imdb.com/ [USA]

 http://uk.imdb.com/ [UK]

 News and pointers to all IMDb sites are available at IMDb HQ:

 http://www.imdb.com/

(2) e-mail interface

 Pagina

10

 For details send a message with the subject HELP to <mail-server@imdb.com>

(3) local installation (Unix/Amiga)

 The movie database package enables you to install the data locally and

 provides a variety of search tools. It is available via anonymous FTP:

 uiarchive.cso.uiuc.edu in /pub/info/imdb/tools/moviedb-3.4a.tar.gz

 ftp.funet.fi in /pub/culture/tv+film/database/tools/moviedb-3.4a.tar.gz

 ftp.fu-berlin.de in /pub/misc/movies/database/tools/moviedb-3.4a.tar.gz

 ftp.sunet.se in /pub/tv+movies/imdb/tools/moviedb-3.4a.tar.gz

 see the README file in the same directories for more information. The

 Amiga version is in the file imdb3_5_Amiga.lha

(4) local installation (OS/2)

 The Alternative Movie Database package provides a graphical and text

 based interface for OS/2:

 uiarchive.cso.uiuc.edu in /pub/info/imdb/tools/os2/

 ftp.funet.fi in /pub/culture/tv+film/database/tools/os2/

 ftp.fu-berlin.de in pub/misc/movies/database/tools/os2/

 ftp.sunet.se in /pub/tv+movies/imdb/tools/os2/

(5) local installation (Windows 9x/Windows NT)

 The Alternative Movie Database package is also available as a text only

 interface for Win-32 systems (9x/NT):

 uiarchive.cso.uiuc.edu in /pub/info/imdb/tools/w32/

 ftp.funet.fi in /pub/culture/tv+film/database/tools/w32/

 ftp.fu-berlin.de in pub/misc/movies/database/tools/w32/

 ftp.sunet.se in /pub/tv+movies/imdb/tools/w32/

RULES:

1 Movies and recurring TV roles only, no TV guest appearances

2 Please submit entries in the format outlined at the end of the list

3 Feel free to submit new actors

"xxxxx" = a television series

"xxxxx" (mini) = a television mini-series

[xxxxx] = character name

<xx> = number to indicate billing position in credits

(TV) = TV movie, or made for cable movie

 Pagina

11

(V) = made for video movie (this category does NOT include TV

 episodes repackaged for video, guest appearances in

 variety/comedy specials released on video, or

 self-help/physical fitness videos)

THE ACTORS LIST

===============

Name Titles

---- ------

$, Steve E.R. Sluts (2003) (V) <12>

'babeepower' Viera, Michael Rock Steady (2002) [Stevie]

 "Lyricist Lounge Show, The" (2000) [Various/lyricist]

'Cartucho' Pena, Ramon Natas es Satan (1977) [Nigth Club Owner]

'Chincheta', Eloy ¡Ja me maaten...! (2000) [Gitano 1] <20>

'El de Chipiona', Antonio Guitarra muda, La (1953) [Himself]

'El Francés', José Alma gitana (1996) <45>

 Premios Amigo 2000 (2000) (TV) [Himself]

 Que dis que din, O (2003) [Himself]

 "Al salir de clase" (1997) {Por una buena causa (#6.4)} [Himself]

 "Música uno" (2004) {(2004-05-08)} [Himself]

'El Gato', Félix Noche de los inocentes, La (1997) (TV) [Himself]

 Pelotazo nacional (1993) <12>

 "Esto es espectáculo" (1994) {(1994-12-23)}

 "Noche de fiesta" (1999) {(2003-07-12)}

 "Noche de fiesta" (1999) {(2003-08-16)}

 "Querida Concha" (1992)

 "Uno para todas" (1995) {(1996-02-13)} [Staff Humorist] <3>

 "Uno para todas" (1995) {(1996-02-20)} [Staff Humorist] <3>

 "Uno para todas" (1995) {(1996-02-27)} [Staff Humorist] <3>

 "VIP noche" (1990) {(1990-11-25)}

 Pagina

12

times.LIST

RUNNING TIMES LIST

==================

0016643225059 (1994) Singapore:5 (Singapore International Film Festival)

002 agenti segretissimi (1964) 83

002 operazione Luna (1965) 90

"003 y medio" (1979) Spain:160

007 in Egypt (2006) (V) UK:6

007 in Rio (1979) UK:13

007: Licence to Restore (2006) (V) USA:13

007 Stage Dedication (1977) UK:2

007: The Return (1995) (TV) UK:60

008 (2003) USA:7

008 - Agent wider Willen (2000) (TV) 93

00h17 (2005) France:8

00 Schneider - Jagd auf Nihil Baxter (1994) 90

00Sex, es ist niemals zu spät! (1998) (V) Germany:115

011 Beograd (2003) 83

[0-1] (2003) 15 (original version)

01412 pasasingeum (2000) 95

01-99 (1959) 22

0!1 (Zero Bang One) (2000) USA:20

02 Wireless Festival (2007) (TV) UK:48

03/02/05 (2005) (V) 80

:03 from Gold (2002) (TV) 59

"0416-os szökevény, A" (1970) (mini) Hungary:254

04:44 (2005) 5

'04: How Was It for You? (2005) (TV) Ireland:65 (including commercials)

0506HK (2007) 63

0567 - Appunti per un documentario su Pozzuoli (1987) Germany:83

05h42 (2003) South Africa:42

'05: How Was It for You? (2005) (TV) Ireland:60 (including commercials)

0-600-Amor ya (1998) Argentina:25

06/05 (2004) Netherlands:117

06 (1994) 87

0623-ZN (Sentenciados) (2003) 7

'06: The Big One (2006) USA:6

Da come è facile notare questi file, come già detto prima, sono strutturati in manie-

ra diversa l’uno dall’altro e questo ha portato dunque alla realizzazione di molteplici

parser che descriviamo adesso.

 Pagina

13

Parser Java

Vediamo la struttura ora di qualche parser. Più precisamente analizziamo la struttu-

ra dei parser adibiti alla realizzazione degli script SQL per l’inserimento di movie e

actors (i file presentati nella sezione precedente).

movies.java

import java.sql.*;

import java.net.*;

import java.io.*;

import java.lang.*;

import java.util.*;

public class movies {

 public static void main (String[] args) throws Exception

 {

 String primo,secondo;

 secondo = null;

 int movieid=0;

 String[]res;

 //script SQL
FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\movies.sql");

 PrintWriter out=new PrintWriter(fi);

 //file sorgente da cui estrapolare i “movie”

 FileReader f = new FileReader("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\file IMDB\\movies.txt");

 BufferedReader filebuf = new BufferedReader(f);

 String nextStr;

 nextStr = filebuf.readLine();

 while (!nextStr.equals("MOVIES LIST")){

 nextStr = filebuf.readLine();

 }

 nextStr = filebuf.readLine();

 nextStr = filebuf.readLine();

 //inserimento su DB… è stata fatta la scelta di utilizzare I “multiple inserts” molto più effi-

cienti

 out.print("INSERT IGNORE INTO movies VALUES\n");

 while (nextStr!=null){

 if (nextStr.equals("---")){

 System.out.println("Movies inseriti nel db");

 break;

 }

 nextStr=nextStr.replace("'","");

 Pagina

14

//da qui in poi inizia il vero e proprio parsing

 res=nextStr.split("\t");

 for (int x=1; x<res.length; x++){

 if (!res[x].equals("\t")){

 secondo= res[x];

 }

 }

 primo=res[0];

 if (primo.contains("(")){

 int indice = primo.indexOf("(");

 primo = primo.substring(0,indice);

 // primo=primo.replace("\"","");

 }

//inserimento dei “movie”

out.append("('"+movieid+"','"+primo+"','"+secondo+"',null,null,null,null,null,null,null,null,null),\n");

 nextStr = filebuf.readLine();// legge una riga del file

 movieid++;

 }

 filebuf.close(); // chiude il file

 out.close();

 }

 }

 Pagina

15

actors.java

import java.sql.*;

import java.net.*;

import java.io.*;

import java.lang.*;

import java.util.*;

public class actors {

 public static void main (String[] args) throws Exception

 {

 String primo,secondo,as;

 primo = null;

 secondo = null;

 as = null;

 String[]res;

 int inizio=0;

 int inizio2=0;

 String nome = null;

 String cognome = null;

 String year=null;

 String[] arr=null;

 int attoreid=1;

 int movieid=0;

 String nomecognome=null;

//script SQL per gli “actors”

 FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\actors.sql");

PrintWriter out=new PrintWriter(fi);

//script SQL per la relazione “actor2movie” ovvero gli attori con i relativi movie

FileWriter fi3 = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\actors2movie.sql");

PrintWriter out3=new PrintWriter(fi3);

//file sorgente da cui estrapolare gli “actors”

FileReader f = new FileReader("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\file IMDB\\actors.txt");

BufferedReader filebuf = new BufferedReader(f);

//connessione al database necessaria per poter individuare l’ID del movie

Connection conn2 = null;

ResultSet rs3=null;

 try

 {

 String userName = "root";

 String password = "041524";

 String url = "jdbc:mysql://localhost/imdb";

 Class.forName ("com.mysql.jdbc.Driver").newInstance ();

 conn2 = DriverManager.getConnection (url, userName, password);

 //System.out.println ("Database connection established");

 }

 catch (Exception e)

 {

 e.printStackTrace();

 System.err.println ("Cannot connect to database server");

 }

 out.print("INSERT IGNORE INTO actor VALUES\n");

 Pagina

16

 out3.print("INSERT IGNORE INTO actor2movie VALUES\n");

 //inizio parsing

 String nextStr;

 nextStr = filebuf.readLine();

 if (args[0].equals("-") && (args[1].startsWith("*"))){

 String num=args[1].substring(1);

 attoreid=Integer.parseInt(num);

 while (!nextStr.equals("THE ACTORS LIST")) {

 nextStr=filebuf.readLine();

 }

 nextStr = filebuf.readLine();

 nextStr = filebuf.readLine();

 nextStr = filebuf.readLine();

 nextStr = filebuf.readLine();

 nextStr = filebuf.readLine();

 }

 if (!args[0].equals("-")){

while (!nextStr.startsWith(args[0])) {

 nextStr=filebuf.readLine();

 }

 attoreid=Integer.parseInt(args[1]);

 }

 while (nextStr!=null){

 try{

 if (nextStr.equals("SUBMITTING UPDATES")){

 System.out.println("Actors inseriti nel db");

 break;

 }

 nextStr = nextStr.replace("'","");

 if(nextStr.equals("")){

 attoreid++;

 nextStr=filebuf.readLine();

 }

 if (nextStr.startsWith("\t")){

 secondo=nextStr;

 secondo=secondo.replace("'","");

 secondo=secondo.replace("\t","");

 if (secondo.contains("(")){

 Pagina

17

 int aperta=secondo.indexOf("(");

 int chiusa=secondo.indexOf(")");

 year = secondo.substring(aperta+1,chiusa);

 }

 else {

 year=null;

 }

 if (secondo.contains("[")){

 int aperta2=secondo.indexOf("[");

 int chiusa2=secondo.indexOf("]");

 as = secondo.substring(aperta2+1,chiusa2);

 }

 else {

 as=null;

 }

 }

 else {

 primo=nextStr;

 primo=primo.replace("'","");

 int tab=primo.indexOf("\t");

 nomecognome = primo.substring(0,tab);

 if (nomecognome.contains(",")){

 int virgola=nomecognome.indexOf(",");

 cognome = nomecognome.substring(0,virgola);

 nome= nomecognome.substring(virgola+2,tab);

 }

 else {

 nome = null;

 cognome = nomecognome;

 }

 //inserimento nello script relativo ad “actors”

 out.append("('"+attoreid+"','"+nome+"','"+cognome+"','M'),\n");

 secondo=primo.substring(tab);

 secondo=secondo.replace("'","");

 secondo=secondo.replace("\t","");

 if (secondo.contains("(")){

 int aperta=secondo.indexOf("(");

 int chiusa=secondo.indexOf(")");

 year = secondo.substring(aperta+1,chiusa);

 }

 Pagina

18

 else {

 year=null;

 }

 if (secondo.contains("[")){

 int aperta2=secondo.indexOf("[");

 int chiusa2=secondo.indexOf("]");

 as = secondo.substring(aperta2+1,chiusa2);

 }

 else {

 as=null;

 }

 }

 if (secondo.contains("[")){

 int quadra=secondo.indexOf("[");

 secondo=secondo.substring(0,quadra);

 }

 if (secondo.contains("(")){

 int tonda=secondo.indexOf("(");

 secondo=secondo.substring(0,tonda);

 }

 try{

 //prelievo ID del movie dal database

 Statement s2 = conn2.createStatement ();

 rs3=s2.executeQuery("SELECT id FROM movies WHERE title='"+secondo+"' and year='"+year+"'");

 rs3.last();

 movieid =(Integer)rs3.getObject(1);

 s2.close ();

 }

 catch(Exception e){

 }

 //inserimento nello script relativo alla relazione “actor2movie”

 out3.append("('"+attoreid+"','"+movieid+"','"+as+"'),\n");

 Pagina

19

 nextStr = filebuf.readLine();// legge una riga del file

 }

 catch(Exception e){

 e.printStackTrace();

 break;

 }

 }

 filebuf.close(); // chiude il file

 out.close();

 }

 }

 Pagina

20

Script SQL

Di seguito vengono mostrati gli script SQL generati dai parser di cui si è parlato nella

sezione precedente.

movies.sql

 Pagina

21

actors.sql

actor2movie.sql

 Pagina

22

Schema ER

 Pagina

23

Schema logico

key2movie(MOVIE,KEYWORD)

 FK: key2movie[MOVIE] ⊆ MOVIES[ID]

 FK:key2movie[KEYWORD] ⊆ KEYWORD[word]

plot2movie(MOVIE,PLOT)

 FK: plot2movie[MOVIE] ⊆ MOVIES[ID]

 FK:plot2movie[PLOT] ⊆ PLOT[ID]

goof2movie(MOVIE,GOOF)

 FK: goof2movie[MOVIE] ⊆ MOVIES[ID]

 FK:goof2movie[GOOF] ⊆ GOOF[ID]

altver2movie(MOVIE,ALTVERSION)

 FK:altver2movie[MOVIE] ⊆ MOVIES[ID]

 FK:altver2movie[ALTVERSION] ⊆ ALTVERSION[ID]

trivia2movie(MOVIE,TRIVIA)

 FK: trivia2movie[MOVIE] ⊆ MOVIES[ID]

 FK:trivia2movie[TRIVIA] ⊆ TRIVIA[ID]

tag2movie(MOVIE,TAG)

 FK: tag2movie[MOVIE] ⊆ MOVIES[ID]

 FK:tag2movie[TAG] ⊆ TAG[ID]

crazy2movie(MOVIE,CRAZYCREDIT)

 FK: crazy2movie[MOVIE] ⊆ MOVIES[ID]

 FK:crazy2movie[CRAZYCREDIT] ⊆ CRAZYCREDIT[ID]

lang2movie(MOVIE,LANGUAGE)

 FK: lang2movie[MOVIE] ⊆ MOVIES[ID]

 FK:lang2movie[LANGUAGE] ⊆ LANGUAGE[name]

movielinks(MOVIE,LINK)

 FK: movielinks[MOVIE] ⊆ MOVIES[ID]

 FK:movielinks[LINK] ⊆ LINK[ID]

KEYWORD(word)

PLOT(ID,plot,author)

 FK: PLOT[ID] ⊆ plot2movie[PLOT]

GOOF(ID,goof)

 FK: GOOF[ID] ⊆ goof2movie[GOOF]

ALTVERSION(ID,version)

 Pagina

24

 FK: ALTVERSION[ID] ⊆ altversion2movie[ALTVERSION]

TRIVIA(ID,trivia)

 FK: TRIVIA[ID] ⊆ trivia2movie[TRIVIA]

TAG(ID,tag)

 FK: TAG[ID] ⊆ tag2movie[TAG]

CRAZYCREDIT(ID,credit)

 FK: CRAZYCREDIT[ID] ⊆ crazycredit2movie[CRAZYCREDIT]

LANGUAGE(name)

 inclusione: LANGUAGE[name] ⊆ lang2movie[LANGUAGE]

musicby(COMPOSERN,COMPOSERS,MOVIE)

 FK: musicby[COMPOSERN,COMPOSERS] ⊆ COMPOSER[name,surname]

 FK:musicby[MOVIE] ⊆ MOVIES[ID]

COMPOSER(name,surname)

 inclusione: COMPOSER[name,surname] ⊆ musicby[COMPOSERN,COMPOSERS]

EDITOR(name,surname)

 inclusione: EDITOR[name,surname] ⊆ editbyby[EDITORN,EDITORS]

writerby(WRITERN,WRITERS,MOVIE)

 FK: writerby[WRITERN,WRITERS] ⊆ WRITER[name,surname]

 FK:writerby[MOVIE] ⊆ MOVIES[ID]

WRITER(name,surname)

 inclusione: WRITER[name,surname] ⊆ writerby[WRITERN,WRITERS]

tracklist(SOUNDTRACK,MOVIE)

 FK:tracklist[SOUNDTRACK] ⊆ SOUNDTRACK[name]

 FK:tracklist[MOVIE] ⊆ MOVIES[ID]

LINK(ID,featuredin,referencedin,spin,spoofed,version,followed,features,remake,follows,referencs)

 FK: LINK[ID] ⊆ movielinks[LINK]

 Pagina

25

SOUNDTRACK(name,writer,composer,singer)

prodcompany2movie(PRODCOMPANY,MOVIE)

 FK: prodcompany2movie[PRODCOMPANY] ⊆ PRODCOMPANY[name]

 FK: prodcompany2movie[MOVIE] ⊆ MOVIES[ID]

actors2movie(ACTOR,MOVIE,role)

 FK: actor2movie[ACTOR] ⊆ ACTOR[ID]

 FK: actor2movie[MOVIE] ⊆ MOVIES[ID]

ACTOR(ID,name,surname,sex)

 chiave: name,surname

inclusione: ACTOR[ID] ⊆ actor2movie[ACTOR]

AKANAME(akaname,akasurname)

 FK: AKANAME[akaname,akasurname] ⊆ actorsaka[AKANAME,AKASURNAME]

PRODDESIGNER(name,surname)

 inclusione: PRODDESIGNER[name,surname] ⊆ proddesignby[PRODDESIGNERN,PRODDESIGNERS]

DIRECTOR(name,surname)

 inclusione: DIRECTOR[name,surname] ⊆ directedby[DIRECTORN,DIRECTORS]

prodby(PRODUCERN,PRODUCERS,MOVIE)

 FK: prodby[PRODUCERN,PRODUCERS] ⊆ PRODUCER[name,surname]

 FK: prodby[MOVIE] ⊆ MOVIES[ID]

PRODUCER(name,surname)

 inclusione: PRODUCER[name,surname] ⊆ prodby[PRODUCERN,PRODUCERS]

prodcompany2country(PRODCOMPANY,COUNTRY)

 FK: prodcompany2country[PRODCOMPANY] ⊆ PRODCOMPANY[name]

 FK: prodcompany2country[COUNTRY] ⊆ COUNTRY[name]

AKATITLE(title)

 FK: AKATITLE[title] ⊆ moviesaka[AKATITLE]

ITAKATITLE(title)

 Pagina

26

 FK:IT AKATITLE[title] ⊆ moviesitaka[ITAKATITLE]

CINEMATOGRAPHER(name,surname)

inclusione: CINEMATOGRAPHER[name,surname] ⊆ cinematographer-

by[CINEMATOGRAPHERN,CINEMATOGRAPHERS]

designer2movie(DESIGNERN,DESIGNERS,MOVIE)

 FK: designer2movie[DESIGNERN,DESIGNERS] ⊆ DESIGNER[name,surname]

 FK: designer2movie[MOVIE] ⊆ MOVIES[ID]

DESIGNER(name,surname)

 Inclusione: DESIGNER[name,surname] ⊆ designer2movie[DESIGNERN,DESIGNERS]

distributed(DISTRIBUTOR,MOVIE)

 FK: distributed[DISTRIBUTOR] ⊆ DISTRIBUTOR[name]

 FK: distributed[MOVIE] ⊆ MOVIES[ID]

DISTRIBUTOR(name)

 inclusione: DISTRIBUTOR[name] ⊆ distributed[DISTRIBUTOR]

 FK: DISTRIBUTOR[name] ⊆ distributor2country[DISTRIBUTOR]

sfxby(SFXCOMPANY,MOVIE)

 FK: sfxby[SFXCOMPANY] ⊆ SFXCOMPANY[name]

 FK: sfxby[MOVIE] ⊆ MOVIES[ID]

SFXCOMPANY(name)

 inclusione: SFXCOMPANY[name] ⊆ sfxby[SFXCOMPANY]

 FK: SFXCOMPANY[name] ⊆ country2sfx[SFXCOMPANY]

actorsaka(ACTOR,AKANAME,AKASURNAME)

 FK: actorsaka[ACTOR] ⊆ ACTOR[ID]

 FK: actorsaka[AKANAME,AKASURNAME] ⊆ AKANAME[name,surname]

located(LOCATIONCITY,LOCATIONCOUNTRY,MOVIE)

 FK: located[LOCATIONCITY] ⊆ LOCATION[city]

 FK: located[LOCATIONCOUNTRY] ⊆ COUNTRY[name]

 FK: located[MOVIE] ⊆ MOVIES[ID]

LOCATION(city,COUNTRY)

 Pagina

27

 FK: LOCATION[COUNTRY] ⊆ COUNTRY[name]

shotin(COUNTRY,MOVIE,year)

 FK: shotin[COUNTRY] ⊆ COUNTRY[name]

 FK: shotin[MOVIE] ⊆ MOVIES[ID]

COUNTRY(name)

 inclusione: COUNTRY[name] ⊆ releasein[COUNTRY]

CERTIFICATE(type,COUNTRY,MOVIE)

 FK: CERTIFICATE[COUNTRY] ⊆ COUNTRY[name]

 FK: CERTIFICATE[MOVIE] ⊆ MOVIES[ID]

editby(MOVIE,EDITORN,EDITORS)

 FK: editby[EDITORN,EDITORS] ⊆ EDITOR[name,surname]

 FK: editby[MOVIE] ⊆ MOVIES[ID]

proddesignby(MOVIE,PRODDESIGNERN,PRODDESIGNERS)

 FK: proddesignby[PRODDESIGNERN,PRODDESIGNERS] ⊆ PRODDESIGNER[name,surname]

 FK: proddesignby[MOVIE] ⊆ MOVIES[ID]

directedby(MOVIE,DIRECTORN,DIRECTORS)

 FK: directedby[DIRECTORN,DIRECTORS] ⊆ DIRECTOR[name,surname]

 FK: directedby[MOVIE] ⊆ MOVIES[ID]

cinematographyby(MOVIE,CINEMATOGRAPHERN,CINEMATOGRAPHERS)

FK: cinematographyby[CINEMATOGRAPHERN, CINEMATOGRAPHERS] ⊆ CINEMATOGRAPHER[name,surname]

 FK: cinematographyby[MOVIE] ⊆ MOVIES[ID]

releasein(MOVIE,COUNTRY,date)

 FK: releasein[COUNTRY] ⊆ COUNTRY[name]

 FK: releasein[MOVIE] ⊆ MOVIES[ID]

moviesaka(AKATITLE, MOVIE)

 FK: moviesaka[AKATITLE] ⊆ AKATITLE[title]

 FK: moviesaka[MOVIE] ⊆ MOVIES[ID]

 Pagina

28

moviesitaka(ITAKATITLE, MOVIE)

 FK: moviesitaka[ITAKATITLE] ⊆ ITAKATITLE[title]

 FK: moviesitaka[MOVIE] ⊆ MOVIES[ID]

distributor2country(DISTRIBUTOR, COUNTRY)

 FK: distributor2country[DISTRIBUTOR] ⊆ DISTRIBUTOR[name]

 FK: distributor2country[COUNTRY] ⊆ COUNTRY[name]

country2sfx(SFXCOMPANY, COUNTRY)

 FK: country2sfx[SFXCOMPANY] ⊆ SFXCOMPANY[name]

 FK: country2sfx[COUNTRY] ⊆ COUNTRY[name]

MOVIES(ID,title,year,runtime,sound,genre,colortype,castcoverage,crewcoverage,votes,rank,mpaa)

 inclusione: MOVIES[ID] ⊆ releasein[MOVIE]

inclusione: MOVIES[ID] ⊆ musicby[MOVIE]

 inclusione: MOVIES[ID] ⊆ lang2movie[MOVIE]

 inclusione: MOVIES[ID] ⊆ writerby[MOVIE]

 inclusione: MOVIES[ID] ⊆ prodcompany2movie[MOVIE]

 inclusione: MOVIES[ID] ⊆ actor2movie[MOVIE]

 inclusione: MOVIES[ID] ⊆ prodby[MOVIE]

 inclusione: MOVIES[ID] ⊆ designer2movie[MOVIE]

 inclusione: MOVIES[ID] ⊆ distributor[MOVIE]

 inclusione: MOVIES[ID] ⊆ located[MOVIE]

 inclusione: MOVIES[ID] ⊆ shotin[MOVIE]

 FK: MOVIES[ID] ⊆ editby[MOVIE]

 FK: MOVIES[ID] ⊆ proddesignby[MOVIE]

 FK: MOVIES[ID] ⊆ directedby[MOVIE]

 FK: MOVIES[ID] ⊆ cinematographyby[MOVIE]

 Pagina

29

Schema fisico

drop database if exists imdb;

create database imdb;

use imdb;

drop table if exists keyword;

create table keyword (

 word varchar(200) primary key

);

drop table if exists key2movie;

create table key2movie (

 movie int(8),

 keyword varchar(200),

 primary key (movie,keyword)

);

drop table if exists plot;

create table plot (

 id int(8) primary key,

 plot longtext,

 author varchar(200)

);

drop table if exists plot2movie;

create table plot2movie (

 plot int(8) primary key,

 movie int(8)

);

drop table if exists goof;

create table goof (

 id int(8) primary key,

 goof longtext

);

drop table if exists goof2movie;

create table goof2movie (

 goof int(8) primary key,

 movie int(8)

);

drop table if exists altversion;

create table altversion (

 id int(8) primary key,

 version longtext

);

drop table if exists altversion2movie;

create table altversion2movie (

 Pagina

30

 altversion int(8) primary key,

 movie int(8)

);

drop table if exists trivia;

create table trivia (

 id int(8) primary key,

 trivia longtext

);

drop table if exists trivia2movies;

create table trivia2movies (

 trivia int(8) primary key,

 movie int(8)

);

drop table if exists tag;

create table tag (

 id int(8) primary key,

 tag longtext

);

drop table if exists tag2movie;

create table tag2movie (

 tag int(8) primary key,

 movie int(8)

);

drop table if exists crazycredit;

create table crazycredit (

 id int(8) primary key,

 credit longtext

);

drop table if exists crazycredit2movie;

create table crazycredit2movie (

 credit int(8) primary key,

 movie int(8)

);

drop table if exists language;

create table language (

 name varchar(200) primary key,

 check (name in (select language from lang2movie))

);

drop table if exists lang2movie;

create table lang2movie (

 movie int(8),

 language varchar(200),

 primary key(movie,language)

);

 Pagina

31

drop table if exists composer;

create table composer (

 name varchar(200),

 surname varchar(200),

 primary key (name,surname),

 check (name,surname in (select composerN,composerS from musicby))

);

drop table if exists musicby;

create table musicby (

 composerN varchar(200),

 composerS varchar(200),

 movie int(8),

 primary key(composerN,composerS,movie)

);

drop table if exists editby;

create table editby (

 movie int(8) primary key,

 editorN varchar(200),

 editorS varchar(200)

);

drop table if exists editor;

create table editor (

 name varchar(200),

 surname varchar(200),

 primary key (name,surname),

 check (name,surname in (select editorN,editorS from editby))

);

drop table if exists writer;

create table writer (

 name varchar(200),

 surname varchar(200),

 primary key (name,surname),

 check (name,surname in (select writerN,writerS from writerby))

);

drop table if exists writerby;

create table writerby (

 writerN varchar(200),

 writerS varchar(200),

 movie int(8),

 primary key (writerN,writerS,movie)

);

drop table if exists soundtrack;

create table soundtrack (

 name varchar(200) primary key,

 writer varchar(200),

 composer varchar(200),

 musician varchar(200)

 Pagina

32

);

drop table if exists tracklist;

create table tracklist (

 soundtrack varchar(200),

 movie int(8),

 primary key (soundtrack,movie)

);

drop table if exists prodcompany;

create table prodcompany (

 name varchar(200) primary key,

 check (name in (select prodcompany from prodcompany2movie))

);

drop table if exists prodcompany2movie;

create table prodcompany2movie (

 prodcompany varchar(200),

 movie int(8),

 primary key (prodcompany,movie)

);

drop table if exists actor;

create table actor (

 id int(8) primary key,

 name varchar(200),

 surname varchar(200),

 sex enum('M','F'),

 unique(name,surname),

 index(name,surname),

 check (id in (select actor from actor2movie))

);

drop table if exists actor2movie;

create table actor2movie (

 actor int(8),

 movie int(8),

 role varchar(200),

 primary key(actor,movie)

);

drop table if exists akaname;

create table akaname (

 akaname varchar(200),

 akasurname varchar(200),

 primary key (akaname,akasurname)

);

drop table if exists actorsAka;

create table actorsAka (

 actor int(8),

 akaname varchar(200),

 akasurname varchar(200),

 primary key (akaname,akasurname)

);

drop table if exists proddesigner;

 Pagina

33

create table proddesigner (

 name varchar(200),

 surname varchar(200),

 primary key(name,surname),

 check (name,surname in (select proddesignerN,proddesignerS from proddesignby))

);

drop table if exists proddesignby;

create table proddesignby (

 movie int(8) primary key,

 proddesignerN varchar(200),

 proddesignerS varchar(200)

);

drop table if exists director;

create table director (

 name varchar(200),

 surname varchar(200),

 primary key (name,surname),

 check (name,surname in (select directorN,directorS from directedby))

);

drop table if exists directedby;

create table directedby (

 movie int(8) primary key,

 directorN varchar(200),

 directorS varchar(200)

);

drop table if exists producer;

create table producer (

 name varchar(200),

 surname varchar(200),

 primary key (name,surname),

 check (name,surname in (select producerN,producerS from prodby))

);

drop table if exists prodby;

create table prodby (

 producerN varchar(200),

 producerS varchar(200),

 movie int(8),

 primary key (producerN,producerS,movie)

);

drop table if exists akatitle;

create table akatitle (

 title varchar(200) primary key

);

drop table if exists itakatitle;

create table itakatitle (

 title varchar(200) primary key

);

 Pagina

34

drop table if exists cinematographer;

create table cinematographer (

 name varchar(200),

 surname varchar(200),

 primary key (name,surname),

 check (name,surname in (select cinematographerN,cinematographerS from cinematographyby))

);

drop table if exists cinematographyby;

create table cinematographyby (

 movie int(8) primary key,

 cinematographerN varchar(200),

 cinematographerS varchar(200)

);

drop table if exists designer;

create table designer (

 name varchar(200),

 surname varchar(200),

 primary key (name,surname),

 check (name,surname in (select designerN,designerS from designer2movie))

);

drop table if exists designer2movie;

create table designer2movie (

 designerN varchar(200),

 designerS varchar(200),

 movie int(8),

 primary key (designerN,designerS,movie)

);

drop table if exists distributor;

create table distributor (

 name varchar(200) primary key,

 check (name in (select distributor from distributed))

);

drop table if exists distributed;

create table distributed (

 distributor varchar(200),

 movie int(8),

 primary key (distributor,movie)

);

drop table if exists sfxcompany;

create table sfxcompany (

 name varchar(200) primary key,

 check (name in (select sfxcompany from sfxby))

);

drop table if exists sfxby;

 Pagina

35

create table sfxby (

 sfxcompany varchar(200),

 movie int(8),

 primary key (sfxcompany,movie)

);

drop table if exists location;

create table location (

 city varchar(200),

 country varchar(200),

 primary key(city,country)

);

drop table if exists located;

create table located (

 locationcity varchar(200),

 locationcountry varchar(200),

 movie int(8),

 primary key(locationcity,locationcountry,movie)

);

drop table if exists country;

create table country (

 name varchar(200) primary key,

 check (name in (select country from location))

);

drop table if exists shotin;

create table shotin (

 country varchar(200),

 movie int(8),

 year varchar(100),

 primary key (country,movie)

);

drop table if exists certificate;

create table certificate (

 country varchar(200),

 movie int(8),

 type varchar(100),

 primary key(country,movie,type)

);

drop table if exists movies;

create table movies (

 id int(8) primary key,

 title varchar(200),

 year varchar(100),

 runtimes varchar(100),

 sound varchar(100),

 genre varchar(100),

 colortype varchar(100),

 crewcoverage varchar(100),

 castcoverage varchar(100),

 votes int(8),

 rank float,

 mpaa longtext,

 index(title),

 index(title,year),

 Pagina

36

 unique(title,year),

 check (id in (select movie from musicby)),

 check (id in (select movie from lang2movie)),

 check (id in (select movie from writerby)),

 check (id in (select movie from prodcompany2movie)),

 check (id in (select movie from actor2movie)),

 check (id in (select movie from prodby)),

 check (id in (select movie from designer2movie)),

 check (id in (select movie from distributor)),

 check (id in (select movie from located)),

 check (id in (select movie from shotin)),

 check (id in (select movie from releasein))

);

drop table if exists moviesAka;

create table moviesAka (

 akatitle varchar(200) primary key,

 movie int(8)

);

drop table if exists moviesItaka;

create table moviesItaka (

 itakatitle varchar(200) primary key,

 movie int(8)

);

drop table if exists distributor2country;

create table distributor2country (

 distributor varchar(200) primary key,

 country varchar(200)

);

drop table if exists country2sfx;

create table country2sfx (

 sfxcompany varchar(200) primary key,

 country varchar(200)

);

drop table if exists prodcompany2country;

create table prodcompany2country (

 prodcompany varchar(200) primary key,

 country varchar(200)

);

drop table if exists releasein;

create table releasein (

 movie int(8),

 country varchar(200),

 primary key(movie,country),

 date varchar(200)

);

drop table if exists link;

create table link (

 id int(8) primary key,

 Pagina

37

 featured_in varchar(200),

 referenced_in varchar(200),

 spin varchar(200),

 spoofed varchar(200),

 version varchar(200),

 followed varchar(200),

 features varchar(200),

 remake varchar(200),

 follows varchar(200),

 ref varchar(200)

);

drop table if exists movieLinks;

create table movieLinks (

 link int(8) primary key,

 movie int(8)

);

 Pagina

38

Schema fisico con vincoli di chiave esterna

alter table key2movie

add foreign key (movie)

references movies(id);

alter table key2movie

add foreign key (keyword)

references keyword(word);

alter table plot2movie

add foreign key (movie)

references movies(id);

alter table plot2movie

add foreign key (plot)

references plot(id);

alter table movieLinks

add foreign key (link)

references link(id);

alter table goof2movie

add foreign key (movie)

references movies(id);

alter table goof2movie

add foreign key (goof)

references goof(id);

 Pagina

39

alter table altversion2movie

add foreign key (movie)

references movies(id);

alter table altversion2movie

add foreign key (altversion)

references altversion(id);

alter table trivia2movies

add foreign key (movie)

references movies(id);

alter table trivia2movies

add foreign key (trivia)

references trivia(id);

alter table tag2movie

add foreign key (movie)

references movies(id);

alter table tag2movie

add foreign key (tag)

references tag(id);

alter table crazycredit2movie

add foreign key (movie)

references movies(id);

alter table crazycredit2movie

add foreign key (credit)

references crazycredit(id);

 Pagina

40

alter table lang2movie

add foreign key (movie)

references movies(id);

alter table lang2movie

add foreign key (language)

references language(name);

alter table plot

add foreign key (id)

references plot2movie(plot);

alter table link

add foreign key (id)

references movieLinks (link);

alter table goof

add foreign key (id)

references goof2movie(goof);

alter table altversion

add foreign key (id)

references altversion2movie(altversion);

alter table trivia

add foreign key (id)

references trivia2movies(trivia);

alter table crazycredit

add foreign key (id)

references crazycredit2movie(credit);

 Pagina

41

alter table musicby

add foreign key (composerN,composerS)

references composer(name,surname);

alter table musicby

add foreign key (movie)

references movies(id);

alter table writerby

add foreign key (writerN,writerS)

references writer(name,surname);

alter table writerby

add foreign key (movie)

references movies(id);

alter table tracklist

add foreign key (soundtrack)

references soundtrack(name);

alter table tracklist

add foreign key (movie)

references movies(id);

alter table prodcompany2movie

add foreign key (prodcompany)

references prodcompany(name);

alter table prodcompany2movie

add foreign key (movie)

references movies(id);

 Pagina

42

alter table prodcompany

add foreign key (name)

references prodcompany2country(prodcompany);

alter table actor2movie

add foreign key (movie)

references movies(id);

alter table actor2movie

add foreign key (actor)

references actor(id);

alter table akaname

add foreign key (akaname,akasurname)

references actorsAka(akaname,akasurname);

alter table actorsAka

add foreign key (actor)

references actor(id);

alter table actorsAka

add foreign key (akaname,akasurname)

references akaname(akaname,akasurname);

alter table prodby

add foreign key (producerN,producerS)

references producer(name,surname);

alter table prodby

add foreign key (movie)

references movies(id);

 Pagina

43

alter table prodcompany2country

add foreign key (prodcompany)

references prodcompany(name);

alter table prodcompany2country

add foreign key (country)

references country(name);

alter table akatitle

add foreign key (title)

references moviesaka(akatitle);

alter table itakatitle

add foreign key (title)

references moviesItaka(itakatitle);

alter table designer2movie

add foreign key (designerN,designerS)

references designer(name,surname);

alter table designer2movie

add foreign key (movie)

references movies(id);

alter table distributed

add foreign key (movie)

references movies(id);

alter table distributed

add foreign key (distributor)

references distributor(name);

 Pagina

44

alter table distributor

add foreign key (name)

references distributor2country(distributor);

alter table sfxby

add foreign key (sfxcompany)

references sfxcompany(name);

alter table sfxby

add foreign key (movie)

references movies(id);

alter table sfxcompany

add foreign key (name)

references country2sfx(sfxcompany);

alter table located

add foreign key (locationcity)

references location(city);

alter table located

add foreign key (locationcountry)

references country(name);

alter table located

add foreign key (movie)

references movies(id);

 Pagina

45

alter table location

add foreign key (country)

references country(name);

alter table shotin

add foreign key (country)

references country(name);

alter table shotin

add foreign key (movie)

references movies(id);

alter table certificate

add foreign key (movie)

references movies(id);

alter table certificate

add foreign key (country)

references country(name);

alter table editby

add foreign key (movie)

references movies(id);

alter table editby

add foreign key (editorN,editorS)

references editor(name,surname);

alter table proddesignby

add foreign key (movie)

references movies(id);

 Pagina

46

alter table proddesignby

add foreign key (proddesignerN,proddesignerS)

references proddesigner(name,surname);

alter table directedby

add foreign key (movie)

references movies(id);

alter table directedby

add foreign key (directorN,directorS)

references director(name,surname);

alter table cinematographyby

add foreign key (movie)

references movies(id);

alter table cinematographyby

add foreign key (cinematographerN,cinematographerS)

references cinematographer(name,surname);

alter table releasein

add foreign key (movie)

references movies(id);

alter table releasein

add foreign key (country)

references country(name);

alter table movies

add foreign key (id)

references proddesignby(movie);

 Pagina

47

alter table movies

add foreign key (id)

references directedby(movie);

alter table movies

add foreign key (id)

references editby(movie);

alter table movies

add foreign key (id)

references cinematographyby(movie);

alter table moviesAka

add foreign key (akatitle)

references akatitle(title);

alter table moviesAka

add foreign key (movie)

references movies(id);

alter table moviesItaka

add foreign key (itakatitle)

references itakatitle(title);

alter table moviesItaka

add foreign key (movie)

references movies(id);

 Pagina

48

alter table distributor2country

add foreign key (distributor)

references distributor(name);

alter table distributor2country

add foreign key (country)

references country(name);

alter table country2sfx

add foreign key (sfxcompany)

references sfxcompany(name);

alter table country2sfx

add foreign key (country)

references country(name);

 Pagina

49

Ontology

In both computer science and information science, an ontology is a data model that
represents a set of concepts within a domain and the relationships between those con-
cepts. It is used to reason about the objects within that domain.

Ontologies generally describe:

• Individuals: the basic or "ground level" objects

• Classes: sets, collections, or types of objects

• Attributes: properties, features, characteristics, or parameters that objects

can have and share

• Relations: ways that objects can be related to one another

• Events: the changing of attributes or relations

 Pagina

50

Languages for ontologies

An ontology language is a formal language used to encode the ontology. There are a
number of such languages for ontologies, both proprietary and standards-based:

• OWL is a language for making ontological statements, developed as a follow-

on from RDF and RDFS. OWL is intended to be used over the World Wide

Web, and all its elements (classes, properties and individuals) are defined as

RDF resources, and identified by URIs.

 Pagina

51

 Pagina

52

 Pagina

53

 Pagina

54

 Pagina

55

Description Logics

Le logiche descrittive (DL) sono frammenti decidibili della FOL per esprimere la co-
noscenza in termini di:

◦ concetti atomici (predicati unari)
◦ ruoli atomici (predicati binari)
◦ individui (costanti)

Una base di conoscenza in DL comprende:

◦ TBox: insieme di assiomi terminologici, ovvero il vocabolario del domi-
nio applicativo (concetti e ruoli)

◦ ABox: contiene asserzioni circa gli individui che

popolano il mondo in oggetto, assegnando loro un nome e asserendo le loro proprietà.

 Pagina

56

DL-Lite family

• Description Logics (DLs) underlie the standard ontology languages for the

Semantic Web (i.e., OWL, OWL-DL)

• DL-Lite is a family of DLs optimized according to the tradeoff between expressive

power and data complexity

• Two maximal languages that enjoy FOL-rewritability: DL-LiteF, DL-LiteR

(we use simply DL-Lite to refer to both languages)

• With minimal additions to DL-Lite, data complexity jumps to NLOGSPACE or

above

�We lose FOL-rewritability

 Pagina

57

DL-LiteF

Ontology language:

• Concept inclusion assertions: Cl ⊑ Cr, with:

Cl → A | ∃R | Cl 1 ⊓ Cl 2

Cr → A | ∃R | ￢A | ￢∃R

R → P | P−

• Functionality assertions: (funct R)

Database facts: A(c), P(c, d), with c, d constants

Observations:

• Captures all the basic constructs of ER and UML Class Diagrams

• Notable exception: covering constraints in generalizations

Capturing basic ontology constructs in DL-Lite

• ISA between classes � A1 ⊑ A2

• disjointness between classes � A1 ⊑ ￢A2

• domain and range of relations � ∃P ⊑ A1 ∃P
-⊑ A2

• mandatory participation � A1 ⊑ ∃P A2 ⊑ ∃P
-

• functionality of relations (in DL-LiteF)� (funct P) (funct P)

• ISA between relations (in DL-LiteR)� R1 ⊑ R2

 Pagina

58

Example

 Pagina

59

DL-LiteR

Ontology language:

• Concept inclusion assertions: Cl ⊑ Cr, with:

Cl → A | ∃R | Cl 1 ⊓ Cl 2

Cr → A | ∃R | ￢A | ￢∃R | ∃R.A

R → P | P−

• Role inclusion assertions: R1 ⊑ R2

Database facts: A(c), P(c, d), with c, d constants

Properties:

• Drops functional restrictions in favor of ISA between roles

• Extends (the DL fragment of) RDFS

 Pagina

60

Query answering in DL-Lite

Given a CQ q, an ontology O, and a database D, we compute cert(q,O,D) as follows:

1. Close ontology O wrt disjointness assertions and check for satisfiability wrt D

2. Using O, reformulate CQ q as a union rq,O of CQs

3. Evaluate rq,O directly over D using the RDBMS

Correctness of this algorithm shows FOL-rewritability of query answering in DL-Lite

�Query answering over DL-Lite ontologies can be done using RDBMS technology

�Prototype system implemented: QuOnto

DL-Lite complexity results

• Consistency checking is

– polynomial in the size of the ontology and of the database

• Query answering is

– exponential in the size of the query (NP-complete)

– polynomial in the size of the ontology and of the database (in fact
LOGSPACE in the database)

 Pagina

61

DL-LiteA

To speak about DL-LiteA we first have to introduce the DL DL-LiteFR, that combines

the main features of two DLs

presented previously, called DL-LiteF and DL-LiteR respectively, and forms the basics

of DL-LiteA. In providing the specification of our logics, we use the following notation:

– A denotes an atomic concept, B a basic concept, and C a general concept;

– D denotes an atomic value-domain, E a basic value-domain, and F a general

value-domain;

– P denotes an atomic role, Q a basic role, and R a general role;

– UC denotes an atomic concept attribute, and VC a general concept attribute;

– UR denotes an atomic role attribute, and VR a general role attribute;

– TC denotes the universal concept, TD denotes the universal value-domain.

Given a concept attribute UC (resp. a role attribute UR), we call the domain of UC

(resp. UR), denoted by δ(UC) (resp. δ(UR)), the set of objects (resp. of pairs of objects)

that UC (resp. UR) relates to values, and we call range of UC (resp. UR), denoted

by ρ(UC) (resp. ρ(UR)), the set of values that UC(resp. UR) relates to objects (resp.

pairs of objects). Notice that the domain δ(UC) of a concept attribute UC is a concept,

whereas the domain δ(UR) of a role attribute UR is a role. Furthermore, we denote

with δF (UC) (resp. δF (UR)) the set of objects (resp. of pairs of objects) that UC (resp.

UR) relates to values in the value-domain F. In particular, DL-LiteFR expressions are

defined as in the next.

 Pagina

62

– Concept expressions:

B ::= A | ∃Q | δ(UC)

C ::= >C | B | ¬B | ∃Q.C | δF (UC) | ∃ δ F (UR) | ∃ δ F (UR) -

– Value-domain expressions (rdfDataType denotes predefined value-domains such

as integers, strings, etc.):

E ::= D | ρ(UC) | ρ(UR)

F ::= >D | E | ¬E | rdfDataType

– Attribute expressions:

VC ::= UC | ¬UC

VR ::= UR | ¬ UR

– Role expressions:

Q ::= P | P- | δ(UR) | δ(UR) -

R ::= Q | ¬Q | δ F (UR) | δ F (UR) -

A DL-LiteFR knowledge base (KB) K = <T , A> is constituted by two components:

a TBox T , used to represent intensional knowledge, and an ABox A, used to

represent extensional knowledge.

DL-LiteFR TBox assertions are of the form:

B ⊆ C concept inclusion assertion

Q ⊆ R role inclusion assertion

E ⊆ F value-domain inclusion assertion

UC ⊆ VC concept attribute inclusion assertion

UR ⊆ VR role attribute inclusion assertion

(funct P) role functionality assertion

(funct P
-
) inverse role functionality assertion

(funct UC) concept attribute functionality assertion

(funct UR) role attribute functionality assertion

 Pagina

63

A DL-Lite A knowledge base is pair <T , A>, where A is a DL-Lite FR

ABox, and T is a DL-Lite FR TBox satisfying the following conditions:

1. for every atomic or inverse of an atomic role Q appearing in a concept of the form

∃ Q.C, the assertions (funct Q) and (funct Q
-
) are not in T ;

2. for every role inclusion assertion Q ⊆ R in T , where R is an atomic role or the

inverse of an atomic role, the assertions (funct R) and (funct R
-
) are not in T ;

3. for every concept attribute inclusion assertion UC ⊆ VC in T , where VC is an

atomic concept attribute, the assertion (funct VC) is not in T ;

4. for every role attribute inclusion assertion UR ⊆ VR in T , where VR is an atomic

role attribute, the assertion (funct VR) is not in T .

Roughly speaking, a DL-LiteA TBox imposes the condition that every functional role

cannot be specialized by using it in the right-hand side of role inclusion assertions;

the same condition is also imposed on every functional (role or concept) attribute.

It can be shown that functionalities specified in a DL-LiteA TBox are not implicitly

propagated in the TBox, and that this allows for LOGSPACE query answering.

 Pagina

64

Ontologia del IMDb

Relativamente allo schema ER presentato precedentemente, viene riportata di se-

guito l’ontologia completa.

CONCEPTS

ACTOR ⊆ actor2movie

ACTOR ⊆ (id)

ACTOR ⊆ (name)

ACTOR ⊆ (surname)

ACTOR ⊆ (sex)

AKANAME ⊆ actorsaka‒

AKANAME ⊆ (akaname)

AKANAME ⊆ (akasurname)

PRODDESIGNER ⊆ proddesignby‒

PRODDESIGNER ⊆ (name)

PRODDESIGNER ⊆ (surname)

DIRECTOR ⊆ directedby‒

DIRECTOR ⊆ (name)

DIRECTOR ⊆ (surname)

PRODUCER ⊆ prodby‒

PRODUCER ⊆ (name)

PRODUCER ⊆ (surname)

AKATITLE ⊆ moviesaka‒

AKATITLE ⊆ (title)

ITAKATITLE ⊆ moviesitaka‒

 Pagina

65

ITAKATITLE ⊆ (title)

CINEMATOGRAPHER ⊆ cinematographyby‒

CINEMATOGRAPHER ⊆ (name)

CINEMATOGRAPHER ⊆ (surname)

DESIGNER ⊆ designer2movie‒

DESIGNER ⊆ (name)

DESIGNER ⊆ (surname)

DISTRIBUTOR ⊆ distributed‒

DISTRIBUTOR ⊆ (name)

KEYWORD ⊆ (word)

PLOT ⊆ plot2movie

PLOT ⊆ (id)

PLOT ⊆ (plot)

PLOT ⊆ (author)

GOOF ⊆ goof2movie

GOOF ⊆ (id)

GOOF ⊆ (goof)

ALTVERSION ⊆ altversion2movie

ALTVERSION ⊆ (id)

ALTVERSION ⊆ (version)

TRIVIA ⊆ trivia2movies

TRIVIA ⊆ (id)

TRIVIA ⊆ (trivia)

TAG ⊆ tag2movie

TAG ⊆ (id)

TAG ⊆ (tag)

 Pagina

66

CRAZYCREDIT ⊆ crazycredit2movie

CRAZYCREDIT ⊆ (id)

CRAZYCREDIT ⊆ (credit)

LANGUAGE ⊆ lang2movie

LANGUAGE ⊆ (name)

LINK ⊆ movielinks‒

LINK ⊆ (id)

LINK ⊆ (featured_in)

LINK ⊆ (referenced_in)

LINK ⊆ (spin)

LINK ⊆ (spoofed)

LINK ⊆ (version)

LINK ⊆ (followed)

LINK ⊆ (features)

LINK ⊆ (remake)

LINK ⊆ (ref)

COUNTRY ⊆ in

COUNTRY ⊆ (name)

LOCATION ⊆ in‒

LOCATION ⊆ (city)

SFXCOMPANY ⊆ country2sfx‒

SFXCOMPANY ⊆ sfxby‒

SFXCOMPANY ⊆ (name)

COMPOSER ⊆ musicby‒

COMPOSER ⊆ (name)

COMPOSER ⊆ (surname)

 Pagina

67

EDITOR ⊆ editby‒

EDITOR ⊆ (name)

EDITOR ⊆ (surname)

WRITER ⊆ writerby‒

WRITER ⊆ (name)

WRITER ⊆ (surname)

SOUNDTRACK ⊆ (name)

SOUNDTRACK ⊆ (writer)

SOUNDTRACK ⊆ (composer)

SOUNDTRACK ⊆ (musician)

PRODCOMPANY ⊆ prodcompany2movie

PRODCOMPANY ⊆ prodcompany2country

PRODCOMPANY ⊆ (name)

MOVIES ⊆ lang2movie‒

MOVIES ⊆ designer2movie‒

MOVIES ⊆ distributed

MOVIES ⊆ releasein

MOVIES ⊆ shotin

MOVIES ⊆ located

MOVIES ⊆ musicby

MOVIES ⊆ editby

MOVIES ⊆ writerby

MOVIES ⊆ prodcompany2movie‒

MOVIES ⊆ actor2movie‒

MOVIES ⊆ proddesignby

MOVIES ⊆ directedby

 Pagina

68

MOVIES ⊆ cinematographyby

MOVIES ⊆ (id)

MOVIES ⊆ (title)

MOVIES ⊆ (year)

MOVIES ⊆ (runtimes)

MOVIES ⊆ (sound)

MOVIES ⊆ (genre)

MOVIES ⊆ (colortype)

MOVIES ⊆ (crewcoverage)

MOVIES ⊆ (castcoverage)

MOVIES ⊆ (votes)

MOVIES ⊆ (rank)

MOVIES ⊆ (mpaa)

CERTIFICATE ⊆ released

CERTIFICATE ⊆ cert2movie

CERTIFICATE ⊆ (type)

ROLES

 key2movie‒ ⊆ MOVIES

 key2movie ⊆ KEYWORD

 plot2movie‒ ⊆ MOVIES

 plot2movie ⊆ PLOT

 goof2movie‒ ⊆ MOVIES

 goof2movie ⊆ GOOF

 altversion2movie‒ ⊆ MOVIES

 Pagina

69

 alversion2movie ⊆ ALTVERSION

 trivia2movie‒ ⊆ MOVIES

 trivia2movie ⊆ TRIVIA

 tag2movie‒ ⊆ MOVIES

 tag2movie ⊆ TAG

 crazycredit2movie‒ ⊆ MOVIES

 crazycredit2movie ⊆ CRAZYCREDIT

 lang2movie‒ ⊆ MOVIES

 lang2movie ⊆ LANGUAGE

 movielinks‒ ⊆ LINK

 movielinks ⊆ MOVIES

 moviesaka‒ ⊆ AKATITLE

 moviesaka ⊆ MOVIES

 moviesitaka‒ ⊆ ITAKATITLE

 moviesitaka ⊆ MOVIES

 cinematographyby‒ ⊆ CINEMATOGRAPHER

 cinematographyby ⊆ MOVIES

 designer2movie‒ ⊆ DESIGNER

 designer2movie ⊆ MOVIES

 distributed‒ ⊆ DISTRIBUTOR

 distributed ⊆ MOVIES

 releasein‒ ⊆ COUNTRY

 releasein ⊆ MOVIES

 located‒ ⊆ COUNTRY

 located ⊆ MOVIES

 Pagina

70

 sfxby‒ ⊆ SFXCOMPANY

 sfxby ⊆ MOVIES

 musicby‒ ⊆ COMPOSER

 musicby ⊆ MOVIES

 editby‒ ⊆ EDITOR

 editby ⊆ MOVIES

 writerby‒ ⊆ WRITER

 writerby ⊆ MOVIES

 tracklist‒ ⊆ SOUNDTRACK

 tracklist ⊆ MOVIES

 prodcompany2movie‒ ⊆ PRODCOMPANY

 prodcompany2movie ⊆ MOVIES

 actor2movie‒ ⊆ MOVIES

 actor2movie ⊆ ACTOR

 actorsaka‒ ⊆ AKANAME

 actorsaka ⊆ ACTOR

 proddesignby‒ ⊆ PRODDESIGNER

 proddesignby ⊆ MOVIES

 directedby‒ ⊆ DIRECTOR

 directedby ⊆ MOVIES

 prodby‒ ⊆ PRODUCER

 prodby ⊆ MOVIES

 prodcompany2country‒ ⊆ COUNTRY

 prodcompany2country ⊆ PRODCOMPANY

 country2sfx‒ ⊆ SFXCOMPANY

 Pagina

71

 country2sfx ⊆ COUNTRY

 in‒ ⊆ LOCATION

 in ⊆ COUNTRY

 distributor2country‒ ⊆ COUNTRY

 distributor2country ⊆ DISTRIBUTOR

 released‒ ⊆ COUNTRY

 released ⊆ CERTIFICATE

 cert2movie‒ ⊆ MOVIE

 cert2movie ⊆ CERTIFICATE

CONCEPTS ATTRIBUTES

ρ(id) ⊆ xsd:int

ρ(name) ⊆ xsd:string

ρ(surname) ⊆ xsd:string

ρ(sex) ⊆ xsd:string

ρ(akaname) ⊆ xsd:string

ρ(akasurname) ⊆ xsd:string

ρ(title) ⊆ xsd:string

ρ(version) ⊆ xsd:string

ρ(type) ⊆ xsd:string

ρ(credit) ⊆ xsd:string

ρ(goof) ⊆ xsd:string

ρ(word) ⊆ xsd:string

ρ(featured_in) ⊆ xsd:string

ρ(referenced_in) ⊆ xsd:string

 Pagina

72

ρ(spin) ⊆ xsd:string

ρ(spoofed) ⊆ xsd:string

ρ(followed) ⊆ xsd:string

ρ(features) ⊆ xsd:string

ρ(remake) ⊆ xsd:string

ρ(follows) ⊆ xsd:string

ρ(ref) ⊆ xsd:string

ρ(city) ⊆ xsd:string

ρ(year) ⊆ xsd:string

ρ(runtimes) ⊆ xsd:string

ρ(sound) ⊆ xsd:string

ρ(genre) ⊆ xsd:string

ρ(crewcoverage) ⊆ xsd:string

ρ(castcoverage) ⊆ xsd:string

ρ(colortype) ⊆ xsd:string

ρ(votes) ⊆ xsd:int

ρ(rank) ⊆ xsd:float

ρ(mpaa) ⊆ xsd:string

ρ(akatitle) ⊆ xsd:string

ρ(plot) ⊆ xsd:string

ρ(author) ⊆ xsd:string

ρ(writer) ⊆ xsd:string

ρ(composer) ⊆ xsd:string

ρ(musician) ⊆ xsd:string

ρ(tag) ⊆ xsd:string

ρ(trivia) ⊆ xsd:string

ρ(type) ⊆ xsd:string

 Pagina

73

ROLES ATTRIBUTES

ρ(year) ⊆ xsd:string

ρ(date) ⊆ xsd:string

ρ(role) ⊆ xsd:string

VALUES DOMAIN

ACTOR ⊆ (id)

ACTOR ⊆ (name)

ACTOR ⊆ (surname)

ACTOR ⊆ (sex)

AKANAME ⊆ (akaname)

AKANAME ⊆ (akasurname)

AKATITLE ⊆ (title)

ALTVERSION ⊆ (id)

ALTVERSION ⊆ (version)

CERTIFICATE ⊆ (type)

CINEMATOGRAPHER ⊆ (name)

CINEMATOGRAPHER ⊆ (surname)

COMPOSER ⊆ (name)

COMPOSER ⊆ (surname)

COUNTRY ⊆ (name)

CRAZYCREDIT ⊆ (id)

CRAZYCREDIT ⊆ (credit)

DESIGNER ⊆ (name)

DESIGNER ⊆ (surname)

DIRECTOR ⊆ (name)

DIRECTOR ⊆ (surname)

DISTRIBUTOR ⊆ (name)

 Pagina

74

EDITOR ⊆ (name)

EDITOR ⊆ (surname)

GOOF ⊆ (id)

GOOF ⊆ (goof)

ITAKATITLE ⊆ (title)

CINEMATOGRAPHER ⊆ (name)

CINEMATOGRAPHER ⊆ (surname)

KEYWORD ⊆ (word)

LANGUAGE ⊆ (name)

LINK ⊆ (id)

LINK ⊆ (featured_in)

LINK ⊆ (referenced_in)

LINK ⊆ (spin)

LINK ⊆ (spoofed)

LINK ⊆ (version)

LINK ⊆ (followed)

LINK ⊆ (features)

LINK ⊆ (remake)

LINK ⊆ (follows)

 LINK ⊆ (ref)

LOCATION ⊆ (city)

MOVIES ⊆ (id)

MOVIES ⊆ (title)

MOVIES ⊆ (year)

MOVIES ⊆ (runtimes)

MOVIES ⊆ (sound)

MOVIES ⊆ (genre)

 Pagina

75

MOVIES ⊆ (colortype)

MOVIES ⊆ (castcoverage)

MOVIES ⊆ (crewcoverage)

MOVIES ⊆ (votes)

MOVIES ⊆ (rank)

MOVIES ⊆ (mpaa)

PLOT ⊆ (id)

PLOT ⊆ (plot)

PLOT ⊆ (author)

PRODCOMPANY ⊆ (name)

PRODDESIGNER ⊆ (name)

PRODDESIGNER ⊆ (surname)

PRODUCER ⊆ (name)

PRODUCER ⊆ (surname)

SFXCOMPANY ⊆ (name)

SOUNDTRACK ⊆ (name)

SOUNDTRACK ⊆ (writer)

SOUNDTRACK ⊆ (composer)

SOUNDTRACK ⊆ (musician)

TAG ⊆ (id)

TAG ⊆ (tag)

TRIVIA ⊆ (id)

TRIVIA ⊆ (trivia)

WRITER ⊆ (name)

WRITER ⊆ (surname)

shotin ⊆ (year)

 Pagina

76

releasein ⊆ (date)

actor2movie ⊆ (role)

ATTRIBUTE FUNCTIONALITY

(funct id)

(funct name)

(funct surname)

(funct sex)

(funct akaname)

(funct akasurname)

(funct title)

(funct version)

(funct type)

(funct credit)

(funct goof)

(funct word)

(funct featured_in)

(funct referenced_in)

(funct spin)

(funct spoofed)

(funct followed)

(funct features)

(funct remake)

(funct follows)

(funct ref)

(funct city)

(funct year)

 Pagina

77

(funct runtimes)

(funct sound)

(funct genre)

(funct crewcoverage)

(funct castcoverage)

(funct colortype)

(funct votes)

(funct rank)

(funct mpaa)

(funct akatitle)

(funct plot)

(funct author)

(funct writer)

(funct composer)

(funct musician)

(funct tag)

(funct trivia)

(funct year)

(funct date)

(funct role)

ROLE FUNCTIONALITY

(funct altversion2movie)

(funct cinematographyby)

(funct crazycredit2movie)

(funct directedby)

 Pagina

78

(funct distributor2country)

(funct editby)

(funct goof2movie)

(funct plot2movie)

(funct prodcompany2country)

(funct proddesignby)

(funct tag2movie)

(funct trivia2movie)

(funct actorsaka‒)

(funct moviesaka‒)

(funct moviesitaka‒)

(funct movielinks‒)

(funct in‒)

(funct released)

(funct cert2movie)

 Pagina

79

Mapping

 Pagina

80

An example

 Pagina

81

GAV vs LAV : an example to understand

 Pagina

82

LAV formalization

LAV example

 Pagina

83

GAV formalization

GAV example

 Pagina

84

Example of query processing

 Pagina

85

GAV & LAV: comparison

 Pagina

86

IMDb Mapping

Di seguito vengono presentati i mapping tra l’ontologia costruita in DL-Lite e il

database relazionale.

Ma chiariamo meglio il concetto di mapping.

A DL-LiteA ontology with mappings is characterized by a triple

Om =<T,M,DB> such that:

� T is a DL-LiteA TBox

� DB is a relational database

� M is a set of ma maggiori s pping assertion, partitioned into two sets, Mt and

Ma

Where:

• Mt is a set of so-called typing mapping assertions, each one of the form

φ�Ti

where φ is a query of arity 1 over DB denoting the projection of one relation over

one of its columns, and Ti is one of the DL-LiteA data types;

• Ma is a set of data-to-object mapping assertions (or simply mapping asser-

tions), each one of the form

φ�ψ

 where φ is an arbitrary SQL query of arity n>0 over DB, ψ is a conjunctive query

over T of arity n’>0 without non distinguished variables, that possibly involves varia-

ble terms. A variable term is a term of the same form as the object terms introduced

above, with the difference that variables appear as argument of the function. In

other words, a variable terms has the form f(z), where f is a function symbol in Λ of

arity m, and z denotes an m-tuple of variables.

 Pagina

87

IMDb: typing mapping assertion

MMMMt1t1t1t1 : SELECT id FROM ACTOR ⤳ xsd:int

MMMMt2t2t2t2 : SELECT name FROM ACTOR ⤳ xsd:string

 MMMMt3t3t3t3: SELECT surname FROM ACTOR ⤳ xsd:string

 MMMMt4t4t4t4: SELECT sex FROM ACTOR ⤳ xsd:string

MMMMt5t5t5t5: SELECT actor FROM actor2movie ⤳ xsd:int

MMMMt6t6t6t6 : SELECT movie FROM actor2movie ⤳ xsd:int

MMMMt7t7t7t7 : SELECT role FROM actor2movie ⤳ xsd:string

MMMMt8t8t8t8 : SELECT actor FROM actorsaka ⤳ xsd:int

MMMMt9t9t9t9: SELECT akasurname FROM actorsaka ⤳ xsd:string

MMMMt10t10t10t10: SELECT akasurname FROM actorsaka ⤳ xsd:string

MMMMt11t11t11t11: SELECT akaname FROM AKANAME ⤳ xsd:string

MMMMt12t12t12t12 : SELECT akasurname FROM AKANAME ⤳ xsd:string

MMMMt13t13t13t13: SELECT title FROM AKATITLE ⤳ xsd:string

MMMMtttt14141414: SELECT id FROM ALTVERSION ⤳ xsd:int

MMMMt15t15t15t15: SELECT version FROM ALTVERSION ⤳ xsd:string

MMMMt16t16t16t16: SELECT altversion FROM altversion2movie ⤳ xsd:int

MMMMt17t17t17t17: SELECT movie FROM altversion2movie ⤳ xsd:int

MMMMt18t18t18t18: SELECT country FROM CERTIFICATE ⤳ xsd:string

MMMMt19t19t19t19: SELECT movie FROM CERTIFICATE ⤳ xsd:int

MMMMt20t20t20t20: SELECT type FROM CERTIFICATE ⤳ xsd:string

MMMMt21t21t21t21: SELECT name FROM CINEMATOGRAPHER ⤳ xsd:string

MMMMt22t22t22t22: SELECT surname FROM CINEMATOGRAPHER ⤳ xsd:string

 Pagina

88

MMMMt23t23t23t23: SELECT movie FROM cinematographyby ⤳ xsd:int

MMMMt24t24t24t24: SELECT cinematographerN FROM cinematographyby ⤳ xsd:string

MMMMt25t25t25t25: SELECT cinematographerS FROM cinematographyby ⤳ xsd:string

MMMMt26t26t26t26: SELECT name FROM COMPOSER ⤳ xsd:string

MMMMt27t27t27t27: SELECT surname FROM COMPOSER ⤳ xsd:string

MMMMt28t28t28t28: SELECT name FROM COUNTRY ⤳ xsd:string

MMMMt29t29t29t29: SELECT sfxcompany FROM country2sfx ⤳ xsd:string

MMMMt30t30t30t30: SELECT country FROM country2sfx ⤳ xsd:string

MMMMt31t31t31t31: SELECT id FROM CRAZYCREDIT ⤳ xsd:int

MMMMt32t32t32t32: SELECT credit FROM CRAZYCREDIT ⤳ xsd:string

MMMMt33t33t33t33: SELECT credit FROM crazycredit2movie ⤳ xsd:int

MMMMt34t34t34t34: SELECT movie FROM crazycredit2movie ⤳ xsd:int

MMMMt35t35t35t35: SELECT name FROM DESIGNER ⤳ xsd:string

MMMMt36t36t36t36: SELECT surname FROM DESIGNER ⤳ xsd:string

MMMMt37t37t37t37: SELECT movie FROM designer2movie ⤳ xsd:int

MMMMt38t38t38t38: SELECT designerN FROM designer2movie ⤳ xsd:string

MMMMt39t39t39t39: SELECT designerS FROM designer2movie ⤳ xsd:string

MMMMt40t40t40t40: SELECT name FROM DIRECTOR ⤳ xsd:string

MMMMt41t41t41t41: SELECT surname FROM DIRECTOR ⤳ xsd:string

MMMMt42t42t42t42: SELECT movie FROM directedby ⤳ xsd:int

MMMMt43t43t43t43: SELECT directorN FROM directedby ⤳ xsd:string

MMMMt44t44t44t44: SELECT directorS FROM directedby ⤳ xsd:string

MMMMt45t45t45t45: SELECT distributor FROM distributed ⤳ xsd:string

MMMMt46t46t46t46: SELECT movie FROM distributed ⤳ xsd:int

MMMMt47t47t47t47: SELECT name FROM DISTRIBUTOR ⤳ xsd:string

MMMMt48t48t48t48: SELECT distributor FROM distributor2country ⤳ xsd:string

MMMMt49t49t49t49: SELECT country FROM distributor2country ⤳ xsd:string

 Pagina

89

MMMMt50t50t50t50: SELECT name FROM EDITOR ⤳ xsd:string

MMMMt51t51t51t51: SELECT surname FROM EDITOR ⤳ xsd:string

MMMMt52t52t52t52: SELECT movie FROM editby ⤳ xsd:int

MMMMt53t53t53t53: SELECT editorN FROM editby ⤳ xsd:string

MMMMt54t54t54t54: SELECT editorS FROM editby ⤳ xsd:string

MMMMt55t55t55t55: SELECT id FROM GOOF ⤳ xsd:int

MMMMt56t56t56t56: SELECT goof FROM GOOF ⤳ xsd:string

MMMMt57t57t57t57: SELECT goof FROM goof2movie ⤳ xsd:int

MMMMt58t58t58t58: SELECT movie FROM goof2movie ⤳ xsd:int

MMMMt59t59t59t59: SELECT title FROM ITAKATITLE ⤳ xsd:string

MMMMt60t60t60t60: SELECT word FROM KEYWORD ⤳ xsd:string

MMMMt61t61t61t61: SELECT keyword FROM key2movie ⤳ xsd:string

MMMMt62t62t62t62: SELECT movie FROM key2movie ⤳ xsd:int

MMMMt63t63t63t63: SELECT name FROM LANGUAGE ⤳ xsd:string

MMMMt64t64t64t64: SELECT language FROM lang2movie ⤳ xsd:string

MMMMt65t65t65t65: SELECT movie FROM lang2movie ⤳ xsd:int

MMMMt66t66t66t66: SELECT id FROM LINK ⤳ xsd:int

MMMMt67t67t67t67: SELECT featured_in FROM LINK ⤳ xsd:string

MMMMt68t68t68t68: SELECT referenced_in FROM LINK ⤳ xsd:string

MMMMt69t69t69t69: SELECT spin FROM LINK ⤳ xsd:string

MMMMt70t70t70t70: SELECT spoofed FROM LINK ⤳ xsd:string

MMMMt71t71t71t71: SELECT version FROM LINK ⤳ xsd:string

MMMMt72t72t72t72: SELECT followed FROM LINK ⤳ xsd:string

MMMMt73t73t73t73: SELECT features FROM LINK ⤳ xsd:string

MMMMt74t74t74t74: SELECT remake FROM LINK ⤳ xsd:string

MMMMt75t75t75t75: SELECT follows FROM LINK ⤳ xsd:string

MMMMt76t76t76t76: SELECT ref FROM LINK ⤳ xsd:string

 Pagina

90

MMMMt77t77t77t77: SELECT locationcity FROM located ⤳ xsd:string

MMMMt78t78t78t78: SELECT locationcountry FROM located ⤳ xsd:string

MMMMt79t79t79t79: SELECT movie FROM located ⤳ xsd:int

MMMMt80t80t80t80: SELECT city FROM LOCATION ⤳ xsd:string

MMMMt81t81t81t81: SELECT country FROM LOCATION ⤳ xsd:string

MMMMt82t82t82t82: SELECT link FROM movielinks ⤳ xsd:int

MMMMt83t83t83t83: SELECT movie FROM movielinks ⤳ xsd:int

MMMMt84t84t84t84: SELECT id FROM MOVIES ⤳ xsd:int

MMMMt85t85t85t85: SELECT title FROM MOVIES ⤳ xsd:string

MMMMt86t86t86t86: SELECT year FROM MOVIES ⤳ xsd:string

MMMMt87t87t87t87: SELECT runtimes FROM MOVIES ⤳ xsd:string

MMMMt88t88t88t88: SELECT sound FROM MOVIES ⤳ xsd:string

MMMMt89t89t89t89: SELECT genre FROM MOVIES ⤳ xsd:string

MMMMt90t90t90t90: SELECT colortype FROM MOVIES ⤳ xsd:string

MMMMt91t91t91t91: SELECT crewcoverage FROM MOVIES ⤳ xsd:string

MMMMt92t92t92t92: SELECT castcoverage FROM MOVIES ⤳ xsd:string

MMMMt93t93t93t93: SELECT votes FROM MOVIES ⤳ xsd:int

MMMMt94t94t94t94: SELECT rank FROM MOVIES ⤳ xsd:float

MMMMt95t95t95t95: SELECT mpaa FROM MOVIES ⤳ xsd:string

MMMMt96t96t96t96: SELECT akatitle FROM moviesaka ⤳ xsd:string

MMMMt97t97t97t97: SELECT movie FROM moviesaka ⤳ xsd:int

MMMMt98t98t98t98: SELECT itakatitle FROM moviesitaka ⤳ xsd:string

MMMMt99t99t99t99: SELECT movie FROM moviesitaka ⤳ xsd:int

MMMMt100t100t100t100: SELECT movie FROM musicby ⤳ xsd:int

MMMMt101t101t101t101: SELECT composerN FROM musicby ⤳ xsd:string

MMMMt102t102t102t102: SELECT composerS FROM musicby ⤳ xsd:string

MMMMt103t103t103t103: SELECT id FROM PLOT ⤳ xsd:int

 Pagina

91

MMMMt104t104t104t104: SELECT plot FROM PLOT ⤳ xsd:string

MMMMt105t105t105t105: SELECT author FROM PLOT ⤳ xsd:string

MMMMt106t106t106t106: SELECT plot FROM plot2movie ⤳ xsd:int

MMMMt107t107t107t107: SELECT movie FROM plot2movie ⤳ xsd:int

MMMMt108t108t108t108: SELECT movie FROM prodby ⤳ xsd:int

MMMMt109t109t109t109: SELECT producerN FROM prodby ⤳ xsd:string

MMMMt110t110t110t110: SELECT producerS FROM prodby ⤳ xsd:string

MMMMt111t111t111t111: SELECT name FROM PRODCOMPANY ⤳ xsd:string

MMMMt112t112t112t112: SELECT prodcompany FROM prodcompany2country ⤳ xsd:string

MMMMt113t113t113t113: SELECT country FROM prodcompany2country ⤳ xsd:string

MMMMt114t114t114t114: SELECT prodcompany FROM prodcompany2movie ⤳ xsd:string

MMMMt115t115t115t115: SELECT movie FROM prodcompany2movie ⤳ xsd:string

MMMMt116t116t116t116: SELECT name FROM PRODDESIGNER ⤳ xsd:string

MMMMt117t117t117t117: SELECT surname FROM PRODDESIGNER ⤳ xsd:string

MMMMt118t118t118t118: SELECT movie FROM proddesignby ⤳ xsd:int

MMMMt119t119t119t119: SELECT proddesignerN FROM proddesignby ⤳ xsd:string

MMMMt120t120t120t120: SELECT proddesignerS FROM proddesignby ⤳ xsd:string

MMMMt121t121t121t121: SELECT name FROM PRODUCER ⤳ xsd:string

MMMMt122t122t122t122: SELECT surname FROM PRODUCER ⤳ xsd:string

MMMMt123t123t123t123: SELECT movie FROM releasein ⤳ xsd:int

MMMMt124t124t124t124: SELECT country FROM releasein ⤳ xsd:string

MMMMt125t125t125t125: SELECT date FROM releasein ⤳ xsd:string

MMMMt126t126t126t126: SELECT movie FROM sfxby ⤳ xsd:int

MMMMt127t127t127t127: SELECT sfxcompany FROM sfxby ⤳ xsd:string

MMMMt128t128t128t128: SELECT name FROM SFXCOMPANY ⤳ xsd:string

MMMMt129t129t129t129: SELECT movie FROM shotin ⤳ xsd:int

MMMMt130t130t130t130: SELECT country FROM shotin ⤳ xsd:string

 Pagina

92

MMMMt131t131t131t131: SELECT year FROM shotin ⤳ xsd:string

MMMMt132t132t132t132: SELECT name FROM SOUNDTRACK ⤳ xsd:string

MMMMt133t133t133t133: SELECT writer FROM SOUNDTRACK ⤳ xsd:string

MMMMt134t134t134t134: SELECT composer FROM SOUNDTRACK ⤳ xsd:string

MMMMt135t135t135t135: SELECT musician FROM SOUNDTRACK ⤳ xsd:string

MMMMt136t136t136t136: SELECT id FROM TAG ⤳ xsd:int

MMMMt137t137t137t137: SELECT tag FROM TAG ⤳ xsd:string

MMMMt138t138t138t138: SELECT tag FROM tag2movie ⤳ xsd:int

MMMMt139t139t139t139: SELECT movie FROM tag2movie ⤳ xsd:int

MMMMt140t140t140t140: SELECT soundtrack FROM SOUNDTRACK ⤳ xsd:string

MMMMt141t141t141t141: SELECT movie FROM SOUNDTRACK ⤳ xsd:int

MMMMt142t142t142t142: SELECT id FROM TRIVIA ⤳ xsd:int

MMMMt143t143t143t143: SELECT trivia FROM TRIVIA ⤳ xsd:string

MMMMt144t144t144t144: SELECT trivia FROM trivia2movies ⤳ xsd:int

MMMMt145t145t145t145: SELECT movie FROM trivia2movies ⤳ xsd:int

MMMMt146t146t146t146: SELECT name FROM WRITER ⤳ xsd:int

MMMMt147t147t147t147: SELECT surname FROM WRITER ⤳ xsd:string

MMMMt148t148t148t148: SELECT movie FROM writerby ⤳ xsd:int

MMMMt149t149t149t149: SELECT writerN FROM writerby ⤳ xsd:string

MMMMt150t150t150t150: SELECT writerS FROM writerby ⤳ xsd:string

 Pagina

93

IMDb: data-to-object mapping assertions

Λ(Λ(Λ(Λ(OBJECT VARIABLE

TERMS)={)={)={)={actoractoractoractor(x)(x)(x)(x),akaname,akaname,akaname,akaname(x,y)(x,y)(x,y)(x,y),akatitle,akatitle,akatitle,akatitle(x)(x)(x)(x),altversion,altversion,altversion,altversion(x)(x)(x)(x),certificate,certificate,certificate,certificate(x)(x)(x)(x),,,,cinematocinematocinematocinemato

grapgrapgrapgraph-h-h-h-

er(x,y),composer(x,y),country(x),crazycredit(x),designer(x,y),director(x,y),distrier(x,y),composer(x,y),country(x),crazycredit(x),designer(x,y),director(x,y),distrier(x,y),composer(x,y),country(x),crazycredit(x),designer(x,y),director(x,y),distrier(x,y),composer(x,y),country(x),crazycredit(x),designer(x,y),director(x,y),distri

bbbbu-u-u-u-

tor(x),editor(x,y),goof(x),itakatitle(x),keyword(x),language(x),link(x),location(x)tor(x),editor(x,y),goof(x),itakatitle(x),keyword(x),language(x),link(x),location(x)tor(x),editor(x,y),goof(x),itakatitle(x),keyword(x),language(x),link(x),location(x)tor(x),editor(x,y),goof(x),itakatitle(x),keyword(x),language(x),link(x),location(x)

,movie,movie,movie,movie(x),plot(x),prodcompany(x),proddesigner(x,y),producer(x,y),sfxcompany((x),plot(x),prodcompany(x),proddesigner(x,y),producer(x,y),sfxcompany((x),plot(x),prodcompany(x),proddesigner(x,y),producer(x,y),sfxcompany((x),plot(x),prodcompany(x),proddesigner(x,y),producer(x,y),sfxcompany(

x),soundtrack(x),tag(x),trivia(x),writer(x,y)x),soundtrack(x),tag(x),trivia(x),writer(x,y)x),soundtrack(x),tag(x),trivia(x),writer(x,y)x),soundtrack(x),tag(x),trivia(x),writer(x,y)}}}}

Mm1: SELECT ID,name,surname,sex

 FROM ACTOR

 ACTOR(actoactoactoactorrrr(ID)), ID(actoractoractoractor(ID), ID), name(actoractoractoractor(ID),name), sur-

name(actoractoractoractor(ID),surname),sex(actoractoractoractor(ID),sex)

Mm2: SELECT actor,movie,role

 FROM actor2movie

 actor2movie(actoractoractoractor (actor), moviemoviemoviemovie (movie)), role(actoractoractoractor (actor), moviemoviemoviemovie (movie), role)

Mm3: SELECT actor,akaname,akasurname

 FROM actorsaka

 actorsaka(actoractoractoractor (actor),aaaakanamekanamekanamekaname (akaname,akasurname))

 Pagina

94

Mm4: SELECT akaname,akasurname

 FROM AKANAME

 AKANAME(akanameakanameakanameakaname (akaname,akasurname)), akaname(akanameakanameakanameakaname (aka-

name,akasurname), akaname), akasurname(akanameakanameakanameakaname (akaname,akasurname), akasurname)

Mm5: SELECT title

 FROM AKATITLE

 AKATITLE(akatitleakatitleakatitleakatitle (title)), title(akatitleakatitleakatitleakatitle (title), title)

Mm6: SELECT id,version

 FROM ALTVERSION

 ALTVERSION(altversionaltversionaltversionaltversion (id)), id(altversionaltversionaltversionaltversion (id), id), version(altversionaltversionaltversionaltversion (id), version)

Mm7: SELECT version,movie

 FROM altversion2movie

 altversion2movie(altversionaltversionaltversionaltversion (version),moviemoviemoviemovie (movie))

Mm8: SELECT country,movie,type

 FROM CERTIFICATE

 CERTIFICATE(countrycountrycountrycountry (country),moviemoviemoviemovie (movie)), type(certificatecertificatecertificatecertificate (type), type)

Mm9: SELECT name,surname

 FROM CINEMATOGRAPHER

 CINEMATOGRAPHER(cinematographercinematographercinematographercinematographer (name, surname)), name(cinematographercinematographercinematographercinematographer

(name, surname), name), surname(cinematographercinematographercinematographercinematographer (name, surname), surname)

 Pagina

95

Mm10: SELECT movie,cinematographerN,cinematographerS

 FROM cinematographyby

 cinematographyby(moviemoviemoviemovie (movie),cinematographercinematographercinematographercinematographer (cinematographerN, cinemato-

grapherS))

Mm11: SELECT name,surname

 FROM COMPOSER

 COMPOSER(composercomposercomposercomposer (name, surname)), name(composercomposercomposercomposer (name, surname), name), sur-

name(composercomposercomposercomposer (name, surname), surname)

Mm12: SELECT name

 FROM COUNTRY

 COUNTRY(countrycountrycountrycountry (name)), name(countrycountrycountrycountry (name), name)

Mm13: SELECT sfxcompany,country

 FROM country2sfx

 country2sfx(sfxcompanysfxcompanysfxcompanysfxcompany (sfxcompany), countrycountrycountrycountry (country))

Mm14: SELECT id,credit

 FROM CRAZYCREDIT

 CRAZYCREDIT(crazycreditcrazycreditcrazycreditcrazycredit (id)), id(crazycreditcrazycreditcrazycreditcrazycredit (id), id), credit(crazycreditcrazycreditcrazycreditcrazycredit (id), credit)

Mm15: SELECT credit,movie

 FROM crazycredit2movie

 crazycredit2movie(crazycreditcrazycreditcrazycreditcrazycredit(credit),moviemoviemoviemovie (movie))

 Pagina

96

Mm16: SELECT name,surname

 FROM DESIGNER

 DESIGNER(designerdesignerdesignerdesigner (name, surname)), name(designerdesignerdesignerdesigner (name, surname), name), sur-

name(designerdesignerdesignerdesigner (name, surname), surname)

Mm17: SELECT designerN,designerS,movie

 FROM designer2movie

 designer2movie(designerdesignerdesignerdesigner (designerN,designerS), moviemoviemoviemovie (movie))

Mm18: SELECT movie,directorN,directorS

 FROM directedby

 directedby(moviemoviemoviemovie (movie), directordirectordirectordirector (directorN,directorS))

Mm19: SELECT name,surname

 FROM DIRECTOR

 DIRECTOR(directordirectordirectordirector (name, surname)), name(directordirectordirectordirector (name, surname), name), sur-

name(directordirectordirectordirector (name, surname), surname)

Mm20: SELECT name

 FROM DISTRIBUTOR

 DISTRIBUTOR(distributor distributor distributor distributor (name)), name(distributor distributor distributor distributor (name), name)

 Pagina

97

Mm21: SELECT distributor,movie

 FROM distributed

 distributed(distributordistributordistributordistributor (distributor), movmovmovmovieieieie (movie))

Mm22: SELECT distributor,country

 FROM distributor2country

 distributor2country (distributordistributordistributordistributor (distributor), countrycountrycountrycountry (country))

Mm23: SELECT movie,editorN,editorS

 FROM editby

 editby(moviemoviemoviemovie (movie), editoreditoreditoreditor (editorN,editorS))

Mm24: SELECT name,surname

 FROM EDITOR

 EDITOR(editoreditoreditoreditor (name, surname)), name(editoreditoreditoreditor (name, surname), name), surname(editoreditoreditoreditor

(name, surname), surname)

Mm25: SELECT id,goof

 FROM GOOF

 GOOF (goofgoofgoofgoof (id)), id(goofgoofgoofgoof (id), id, goof(goofgoofgoofgoof (id), goof)

 Pagina

98

Mm26: SELECT goof,movie

 FROM goof2movie

 goof2movie(goofgoofgoofgoof(goof),moviemoviemoviemovie (movie))

Mm27: SELECT title

 FROM ITAKATITLE

 ITAKATITLE(itakatitleitakatitleitakatitleitakatitle (title)), title(itakatitleitakatitleitakatitleitakatitle (title), title)

Mm28: SELECT word

 FROM KEYWORD

 KEYWORD(keywordkeywordkeywordkeyword (word)), word(keywordkeywordkeywordkeyword (word), word)

Mm29: SELECT keyword,movie

 FROM key2movie

 key2movie(moviemoviemoviemovie (movie),keywordkeywordkeywordkeyword(keyword))

Mm30: SELECT name

 FROM LANGUAGE

 LANGUAGE(languagelanguagelanguagelanguage(name)), name(languagelanguagelanguagelanguage(name), name)

Mm31: SELECT movie,language

 FROM lang2movie

 lang2movie(moviemoviemoviemovie (movie),languagelanguagelanguagelanguage(language))

 Pagina

99

Mm32: SELECT

id,featured_in,referenced_in,spin,spoofed,version,followed,features,remake,follows,ref
 FROM link

 LINK(linklinklinklink (id)), id(linklinklinklink (id), id), featured_in(linklinklinklink (id), featured_in), referenced_in(linklinklinklink (id),

referenced_in), spin(linklinklinklink (id), spin), spoofed(linklinklinklink (id), spoofed), version(linklinklinklink (id), version), fol-

lowed(linklinklinklink (id), followed), features(linklinklinklink (id), features), remake(linklinklinklink (id), remake), follows(linklinklinklink

(id), follows), ref(linklinklinklink (id), ref)

Mm33: SELECT locationcity,locationcountry,movie

 FROM located

 located(countrycountrycountrycountry(locationcity),locationlocationlocationlocation(locationcountry), moviemoviemoviemovie(movie))

Mm34: SELECT link,movie

 FROM movielinks

 movielinks(linklinklinklink (link),moviemoviemoviemovie(movie))

Mm35: SELECT

id,title,year,runtimes,sound,genre,colortype,crewcoverage,castcoverage,votes,rank,mpaa
 FROM MOVIES

 MOVIES(moviemoviemoviemovie(id)), id(moviemoviemoviemovie(id), id), title(moviemoviemoviemovie (id),title), year(moviemoviemoviemovie (id), year), run-

times(moviemoviemoviemovie (id), runtimes), sound(moviemoviemoviemovie (id), sound), genre(moviemoviemoviemovie (id), genre), color-

type(moviemoviemoviemovie (id),colortype), crewcoverage(moviemoviemoviemovie (id), crewcoverage), castcoverage(moviemoviemoviemovie (id),

castcoverage), votes(moviemoviemoviemovie (id),votes), rank(moviemoviemoviemovie (id), rank), mpaa(moviemoviemoviemovie (id), mpaa)

 Pagina

100

Mm36: SELECT akatitle,movie

 FROM moviesaka

 moviesaka(akatakatakatakatitleitleitleitle (akatitle),moviemoviemoviemovie(movie))

Mm37: SELECT itakatitle,movie

 FROM moviesitaka

 moviesitaka(itakatitleitakatitleitakatitleitakatitle(itakatitle),moviemoviemoviemovie(movie))

Mm38: SELECT composerN,composerS,movie

 FROM musicby

 musicby(composercomposercomposercomposer (composerN,composerS),moviemoviemoviemovie (movie))

Mm39: SELECT id,plot,author

 FROM PLOT

 PLOT plotplotplotplot (id)), id(plotplotplotplot (id),id), plot(plotplotplotplot (id), plot), author(plotplotplotplot (id), author)

Mm40: SELECT plot,movie

 FROM plot2movie

 plot2movie(plotplotplotplot(plot), moviemoviemoviemovie (movie))

Mm41: SELECT producerN,producerS,movie

 FROM prodby

 prodby(producerproducerproducerproducer (producerN,producerS),moviemoviemoviemovie (movie))

 Pagina

101

Mm42: SELECT name

 FROM PRODCOMPANY

 PRODCOMPANY (prodcompanyprodcompanyprodcompanyprodcompany(name)), name(prodcompanyprodcompanyprodcompanyprodcompany(name), name)

Mm43: SELECT prodcompany,country

 FROM prodcompany2country

 prodcompany2country (prodcompanyprodcompanyprodcompanyprodcompany (prodcompany), countrycountrycountrycountry (country))

Mm44: SELECT prodcompany,movie

 FROM prodcompany2movie

 prodcompany2movie (pppprodcompanyrodcompanyrodcompanyrodcompany (prodcompany), moviemoviemoviemovie (movie))

Mm45: SELECT movie,proddesignerN,proddesignerS

 FROM proddesignby

 proddesignby(moviemoviemoviemovie (movie), proddesignerproddesignerproddesignerproddesigner (proddesignerN,proddesignerS))

Mm46: SELECT name,surname

 FROM PRODDESIGNER

 PRODDESIGNER(proddesignerproddesignerproddesignerproddesigner (name, surname)), name(proddesignerproddesignerproddesignerproddesigner (name, sur-

name), name), surname(proddesignerproddesignerproddesignerproddesigner (name, surname), surname)

Mm47: SELECT name,surname

 FROM PRODUCER

 PRODUCER(producerproducerproducerproducer (name, surname)), name(producerproducerproducerproducer (name, surname), name), sur-

name(producerproducerproducerproducer (name, surname), surname)

 Pagina

102

Mm48: SELECT movie,country,date

 FROM releasein

 releasein(moviemoviemoviemovie (movie), countrycountrycountrycountry (country)), date(moviemoviemoviemovie (movie),country country country country (coun-

try),date)

Mm49: SELECT sfxcompany,movie

 FROM sfxby

 sfxby(sfxcompanysfxcompanysfxcompanysfxcompany(sfxcompany), moviemoviemoviemovie (movie))

Mm50: SELECT country, movie,year

 FROM shotin

 shotin(countrycountrycountrycountry (country), moviemoviemoviemovie (movie), year(moviemoviemoviemovie (movie),country country country country (country),year))

Mm51: SELECT name,writer,composer,musician

 FROM SOUNDTRACK

 SOUNDTRACK(soundtracksoundtracksoundtracksoundtrack (name)), name(soundtracksoundtracksoundtracksoundtrack (name), name), writ-

er(soundtracksoundtracksoundtracksoundtrack (name), writer), composer(soundtracksoundtracksoundtracksoundtrack (name), composer), musi-

cian(soundtracksoundtracksoundtracksoundtrack (name), musician)

Mm52: SELECT id,tag

 FROM TAG

 TAG(tagtagtagtag(id)), id(tagtagtagtag(id), id), tag(tagtagtagtag (id), tag)

 Pagina

103

Mm53: SELECT tag,movie

 FROM tag2movie

 tag2movie(tagtagtagtag (tag),moviemoviemoviemovie (movie))

Mm54: SELECT soundtrack,movie

 FROM tracklist

 tracklist(soundtracksoundtracksoundtracksoundtrack (soundtrack),moviemoviemoviemovie (movie))

Mm55: SELECT id,trivia

 FROM TRIVIA

 TRIVIA(triviatriviatriviatrivia(id)), id(triviatriviatriviatrivia(id), id), trivia(triviatriviatriviatrivia (id),trivia)

Mm56: SELECT trivia,movie

 FROM trivia2movie

 trivia2movie(triviatriviatriviatrivia (trivia),moviemoviemoviemovie (movie))

Mm57: SELECT name,surname

 FROM WRITER

 WRITER(writerwriterwriterwriter (name, surname)), name(writerwriterwriterwriter (name, surname), name), sur-

name(writerwriterwriterwriter(name, surname), surname)

Mm58: SELECT writerN,writerS, movie,

 FROM writerby

 writerby(writerwriterwriterwriter(writerN,writerS), moviemoviemoviemovie (movie))

 Pagina

104

Mm59: SELECT city,country

 FROM LOCATION

 LOCATION(locationlocationlocationlocation (city)), city(locationlocationlocationlocation (city),city), countrycountrycountrycountry(country)

Mm60: SELECT name

 FROM SFXCOMPANY

 SFXCOMPANY(sfxcompanysfxcompanysfxcompanysfxcompany (name)), name(sfxcompanysfxcompanysfxcompanysfxcompany (name),name)

 Pagina

105

Riferimenti

