Universita degli Studi

di Roma "Sapienza”

Facolta di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

anno accademico 2006-2007

Seminario di ingegneria del software

Autore

Cristiano Sticca

Pagina 1

SOMMARIO
Introduzione
Obiettivi
Problematiche

Struttura dei file importati dal sito www.imdb.com

Parser Java

Script SQL

Schema ER

Schema logico

Schema fisico

Schema fisico con vincoli di foreign key
Ontologia: concetti generali
Linguaggi per Ontologie: OWL
Description Logics: concetti generali
DL-Lite family: DL-Lite & DL-Lite
DL-Lite

Ontologia dell’ IMDb

Mapping: GAV & LAV

IMDb mapping

IMDb: data type mapping

IMDb: data to object mapping

Riferimenti

pag.3

pag.4

pag.5

pag.6

pag.13
pag.20
pag.22
pag.23
pag.29
pag.37
pag.49
pag.50
pag.55
pag.56
pag.61
pag.64
pag.79
pag.86
pag.87
pag.93

pag.105

Pagina 2

Introduzione

Il lavoro che é stato fatto con questa tesina ha voluto illustrare come fare essenzial-
mente “data integration” relativamente alla parte sulle ontologie e sui mapping.
Scopo principale della tesina e stato quello di ricreare in ambiente locale cio che e
presente sul sito www.imdb.com , ovvero un database che rappresenta tutta la ci-
nematografia dai suoi albori ad oggi.

Dopo il lavoro di creazione del DB, che ha impiegato gran parte del tempo e delle ri-
sorse, il compito si € concentrato nella stesura dell’ontologia scritta con una descrip-
tion logic, interamente studiata e realizzata nel Dipartimento di Informatica e Si-
stemistica della facolta di Ingegneria dell’ universita “Sapienza” di Roma, vale a dire
DL-Litea.

In seguito si & voluto creare un mapping tra l'ontologia appena descritta e il
database locale.

Pagina 3

Obiettivi

Gli obiettivi del presente lavoro sono stati essenzialmente:

e Creazione di un DB locale rappresentante tutti i film prodotti
dall’inizio della cinematografia ad oggi

e Generazione schema ER dell” “INTERNET MOVIE DB”

* Realizzazione schema logico

e Realizzazione schema fisico

e Creazione ontologia in DL-Litea

* Creazione mapping tra DB e ontologia

Pagina 4

Problematiche

| problemi maggiori si sono riscontrati nella prima parte della tesina, ovvero nel pe-
riodo in cui tutte le risorse sono state impiegate per creare il database locale.
Motivo di tali problemi e stato senza dubbio la grande quantita di file importati dal
sito http://imdb.com/interfaces , in quanto questi ultimi hanno una formattazione
pressoché diversa I'uno dall’altro e cio ha richiesto quindi la realizzazione di moltis-
simi parser java il cui compito e stato quello di creare script SQL per il popolamento
del database.

Ma il problema principale & stato senza ombra di dubbio il tempo impiegato per po-
polare il DB con i script sopra citati.

Pagina 5

Struttura dei file importati dal sito www.imdb.com

Il sito come gia detto in precedenza permette di poter effettuare il download di par-
ticolari file che rappresentano il contenuto informativo del database su internet.
Vengono illustrati ora alcuni file importati dal sito.

movies.LIST

CRC: Ox9A686F55 File: movies.list Date: Fri Sep 14 01:00:00 2007
Copyright 1991-2007 The Internet Movie Database Ltd. All rights reserved.

http://www.imdb.com

movies.list

2007-09-12

MOVIES LIST

#1 (2005) 2005
#1 Fan: A Darkomentary (2005) (V) 2005

#28 (2002) 2002
#2: Drops (2004) 2004

#7 Train: An Immigrant Journey, The (2000) 2000

#Bfl O {ggGX = STWW(cfl x 2s4 (1963) 1963
$(1971) 1971

$1,000 Reward (1913) 1913
$1,000 Reward (1915) 1915
$1,000 Reward (1923) 1923

Pagina 6

actors.LIST

RC: 0xOA29EBAS9 File: actors.list Date: Fri Sep 14 01:00:00 2007
Copyright 1990-2007 The Internet Movie Database, Inc. All rights reserved.

COPYING POLICY: Internet Movie Database (IMDb)

This is a database of movie related information compiled by
Internet Movie Database Ltd (IMDb). While every effort has been
made to ensure the accuracy of the database IMDb gives no
warranty as to the accuracy of the information contained in the
database. IMDb reserves the right to withdraw or delete
information at any time.

This service is provided for the information of users only. It is

not provided with the intention that users rely upon the
information for any purposes. Accordingly, IMDb shall under no
circumstances be liable for any loss or damage, including but not
limited to loss of profits, goodwill or indirect or consequential
loss arising out of any use of or inaccuracies in the
information. All warranties express or implied are excluded to
the fullest extent permissible by law.

All information in this file is Copyright 2005 Internet Movie
Database Limited. Reproduction, distribution or transmission by
any means without the prior permission of IMDb is prohibited. All
rights reserved.

For further information contact <licensing@imdb.com>

All data and software released by Internet Movie Database Ltd is
freely available to anyone within certain limitations. You are
encouraged to quote subsets of the database in USENET articles,
movie related FAQs, magazine articles etc. We do ask, however,
that you make reference to the source of the data and provide a
pointer to the database for the benefit of the reader.

Permission is granted by the copyright holder to allow free
distribution of this file and any other part of the Internet

Movie Database in an ELECTRONIC FORM ONLY, providing the
following conditions are met:

1. NO FEE OF ANY KIND, however indirect, will be charged
for its distribution. If this file is being stored
for later distribution to anyone that can be
construed as a customer of yourself or your
organisation YOU MUST contact Internet Movie Database
Ltd for permission.

2. Each of the database files may be distributed
individually but only in an unaltered form. All the
header and trailer information, including this notice
and the details on how to access the database, must

Pagina 7

remain intact.

3. Specifically the files may NOT be used to construct
any kind of on-line database (except for individual
personal use). Clearance for ALL such on-line data
resources must be requested from Internet Movie
Database Ltd

4. In addition, copies of the Internet Movie Database
frequently asked questions list and additions guide
must be made available in the same area / by the same
method as the other database files.

5. CD-ROM distribution is prohibited without written
permission from the Internet Movie Database Ltd

Distribution by e-mail, BBS and Internet systems is positively
encouraged within these limitations.

The files and software which make up the movie database may be
uploaded to commercial BBS systems providing that the above
conditions are met and no *additional* fees are applied above the
standard connect time or downloading charges.

For further information contact <licensing@imdb.com>

Welcome to the latest version of the actors list.

Please feel free to submit entries for actors not already on the list,
or new entries for existing actors.

This list is managed by Giancarlo Cairella <actresses@imdb.com>; from
1990-1998 it was managed by Col Needham <col@imdb.com>.

If you have any additions or corrections please respond by e-mail only. The

section at the end of the list contains details on the formats to use. The
copying policy is also described at the end of the list.

The Internet Movie Database consists of the following lists:

List | Maintained by | Updated

I I
Actors | Giancarlo Cairella http://imdb.com/contact| 24-06-05
Actresses | Giancarlo Cairella http://imdb.com/contact| 24-06-05

Alternative Names | Duncan Smith http://imdb.com/contact/ | 24-06-05
Alternative Titles | Michel Hafner http://imdb.com/contact/ | 17-06-05
Alternative Versions | Giancarlo Cairella http://imdb.com/contact| 17-06-05

Biographies | Geoff Leonard http://imdb.com/contact/ | 24-06-05
Business | Giancarlo Cairella http://imdb.com/contact| 17-06-05
Cast Completion | Giancarlo Cairella http://imdb.com/contact| 17-06-05
Certificates | Peter Simeon http://imdb.com/contact/ | 24-06-05

Cinematographers | Michel Hafner http://imdb.com/contact/ | 17-06-05
Color Information | Mark Bailey http://imdb.com/contact/ | 24-06-05
Composers | Michel Hafner http://imdb.com/contact/ | 17-06-05
Costume Designers | Duncan Smith http://imdb.com/contact/ | 17-06-05

Pagina 8

Countries | Peter Simeon http://imdb.com/contact/ | 17-06-05

Crazy Credits | Mark Bailey http://imdb.com/contact/ | 17-06-05
Crew Completion | Giancarlo Cairella http://imdb.com/contact| 17-06-05
Directors | Duncan Smith http://imdb.com/contact/ | 17-06-05
Distributors | Peter Simeon http://imdb.com/contact/ | 24-06-05
Editors | Duncan Smith http://imdb.com/contact/ | 17-06-05
Genres | Jake Dias http://imdb.com/contact/ | 24-06-05
Goofs | Col Needham http://imdb.com/contact/ | 24-06-05
Keywords | Jake Dias http://imdb.com/contact/ | 24-06-05
Languages | Peter Simeon http://imdb.com/contact/ | 24-06-05
Laser Discs | Peter Simeon http://imdb.com/contact/ | 07-21/00
Literature | Giancarlo Cairella http://imdb.com/contact| 17-06-05
Locations | Mark Bailey http://imdb.com/contact/ | 17-06-05

MPAA Ratings Reasons | Jon Reeves http://imdb.com/contact/ | 17-06-05
Misc. Companies | Mark Bailey http://imdb.com/contact/ | 24-06-05
Misc. Filmography | Peter Simeon http://imdb.com/contact/ | 24-06-05

Movie Links | Ron Higgins http://imdb.com/contact/ | 24-06-05
Movies | Michel Hafner http://imdb.com/contact/ | 17-06-05
Plot Summaries | Colin Tinto http://imdb.com/contact/ | 24-06-05
Producers | Andre Bernhardt http://imdb.com/contact/ | 17-06-05

Production Companies | Mark Bailey http://imdb.com/contact/ | 24-06-05
Production Designers | Duncan Smith http://imdb.com/contact/ | 17-06-05

Quotes | Col Needham http://imdb.com/contact/ | 24-06-05
Ratings | IMDb Helpdesk http://imdb.com/contact/ | 24-06-05
Release Dates | Mark Bailey http://imdb.com/contact/ | 24-06-05
Running Times | Mark Bailey http://imdb.com/contact/ | 24-06-05
SFX Companies | Mark Bailey http://imdb.com/contact/ | 24-06-05
Sound Mix | Mark Bailey http://imdb.com/contact/ | 24-06-05
Soundtracks | Ron Higgins http://imdb.com/contact/ | 24-06-05
Tag Lines | Mark Bailey http://imdb.com/contact/ | 24-06-05
Technical Info | Peter Simeon http://imdb.com/contact/ | 24-06-05
Trivia | Tim Norris http://imdb.com/contact/ | 24-06-05
Writers | Duncan Smith http://imdb.com/contact/ | 17-06-05
dd/mm/yy

SEARCHING THE DATABASE

The movie database frequently asked questions list contains more information
on the whole movie database project. For a copy send an e-mail message with

the subject "HELP FAQ" to <mail-server@imdb.com>. Here is a summary of the
ways to access the database:

(1) WWW interface

The Internet Movie Database is available over the WWW. The following sites
are owned and operated by or for the IMDb:

http://us.imdb.com/ [USA]
http://uk.imdb.com/ [UK]

News and pointers to all IMDb sites are available at IMDb HQ:
http://www.imdb.com/

(2) e-mail interface

Pagina 9

For details send a message with the subject HELP to <mail-server@imdb.com>
(3) local installation (Unix/Amiga)

The movie database package enables you to install the data locally and
provides a variety of search tools. It is available via anonymous FTP:

uiarchive.cso.uiuc.edu in /pub/info/imdb/tools/moviedb-3.4a.tar.gz
ftp.funet.fi in /pub/culture/tv+film/database/tools/moviedb-3.4a.tar.gz
ftp.fu-berlin.de in /pub/misc/movies/database/tools/moviedb-3.4a.tar.gz
ftp.sunet.se in /pub/tv+movies/imdb/tools/moviedb-3.4a.tar.gz

see the README file in the same directories for more information. The
Amiga version is in the file imdb3_5_Amiga.lha

(4) local installation (0S/2)

The Alternative Movie Database package provides a graphical and text
based interface for 0S/2:

uiarchive.cso.uiuc.edu in /pub/info/imdb/tools/o0s2/
ftp.funet.fi in /pub/culture/tv+film/database/tools/0s2/
ftp.fu-berlin.de in pub/misc/movies/database/tools/0s2/
ftp.sunet.se in /pub/tv+movies/imdb/tools/os2/

(5) local installation (Windows 9x/Windows NT)

The Alternative Movie Database package is also available as a text only
interface for Win-32 systems (9x/NT):

uiarchive.cso.uiuc.edu in /pub/info/imdb/tools/w32/
ftp.funet.fi in /pub/culture/tv+film/database/tools/w32/
ftp.fu-berlin.de in pub/misc/movies/database/tools/w32/

ftp.sunet.se in /pub/tv+movies/imdb/tools/w32/

RULES:
1 Movies and recurring TV roles only, no TV guest appearances

2 Please submit entries in the format outlined at the end of the list
3 Feel free to submit new actors

"XXXXX" = a television series

"xxxxx" (mini) = a television mini-series

[xxxxx] = character name

<XX> = number to indicate billing position in credits
(TV) =TV movie, or made for cable movie

Pagina

10

(V) = made for video movie (this category does NOT include TV
episodes repackaged for video, guest appearances in
variety/comedy specials released on video, or
self-help/physical fitness videos)

THE ACTORS LIST

Name Titles
S, Steve E.R. Sluts (2003) (V) <12>
'babeepower' Viera, Michael Rock Steady (2002) [Stevie]

"Lyricist Lounge Show, The" (2000) [Various/lyricist]
'Cartucho' Pena, Ramon Natas es Satan (1977) [Nigth Club Owner]
'‘Chincheta’, Eloy jJa me maaten...! (2000) [Gitano 1] <20>
'El de Chipiona', Antonio Guitarra muda, La (1953) [Himself]

'El Francés', José Alma gitana (1996) <45>
Premios Amigo 2000 (2000) (TV) [Himself]
Que dis que din, O (2003) [Himself]
"Al salir de clase" (1997) {Por una buena causa (#6.4)} [Himself]
"Musica uno" (2004) {(2004-05-08)} [Himself]

'El Gato', Félix Noche de los inocentes, La (1997) (TV) [Himself]
Pelotazo nacional (1993) <12>
"Esto es espectaculo" (1994) {(1994-12-23)}
"Noche de fiesta" (1999) {(2003-07-12)}
"Noche de fiesta" (1999) {(2003-08-16)}
"Querida Concha" (1992)
"Uno para todas" (1995) {(1996-02-13)} [Staff Humorist] <3>
"Uno para todas" (1995) {(1996-02-20)} [Staff Humorist] <3>
"Uno para todas" (1995) {(1996-02-27)} [Staff Humorist] <3>
"VIP noche" (1990) {(1990-11-25)}

Pagina

11

times.LIST

RUNNING TIMES LIST

0016643225059 (1994)

002 agenti segretissimi (1964)

002 operazione Luna (1965)

"003 y medio" (1979)

007 in Egypt (2006) (V)

007 in Rio (1979)

007: Licence to Restore (2006) (V)
007 Stage Dedication (1977)

007: The Return (1995) (TV)

008 (2003)

008 - Agent wider Willen (2000) (TV)
00h17 (2005)

00 Schneider - Jagd auf Nihil Baxter (1994) 90
00Sex, es ist niemals zu spat! (1998) (V)
011 Beograd (2003)

[0-1] (2003)

01412 pasasingeum (2000)

01-99 (1959)

0!1 (Zero Bang One) (2000)

02 Wireless Festival (2007) (TV)
03/02/05 (2005) (V)

:03 from Gold (2002) (TV) 59
"0416-0s szokevény, A" (1970) (mini)

04:44 (2005)

'04: How Was It for You? (2005) (TV)

0506HK (2007)

0567 - Appunti per un documentario su Pozzuoli (1987)
05h42 (2003)

'05: How Was It for You? (2005) (TV)

0-600-Amor ya (1998)

06/05 (2004)

06 (1994)

0623-ZN (Sentenciados) (2003)

'06: The Big One (2006)

UK:13
USA:13

UK:48

Singapore:5 (Singapore International Film Festival)
83

90

Spain:160

UK:6

UK:2
UK:60
USA:7
93
France:8

Germany:115

83

15 (original version)
95

22

USA:20

80

Hungary:254

5

Ireland:65

63

Germany:83
South Africa:42
Ireland:60
Argentina:25
Netherlands:117
87

7

USA:6

(including commercials)

(including commercials)

Da come e facile notare questi file, come gia detto prima, sono strutturati in manie-
ra diversa I'uno dall’altro e questo ha portato dunque alla realizzazione di molteplici

parser che descriviamo adesso.

12

Pagina

Parser Java

Vediamo la struttura ora di qualche parser. Piu precisamente analizziamo la struttu-
ra dei parser adibiti alla realizzazione degli script SQL per l'inserimento di movie e
actors (i file presentati nella sezione precedente).

movies.java

import java.sql.*;
import java.net.*;
import java.io.*;
import java.lang.*;
import java.util.*;

public class movies {

public static void main (String[] args) throws Exception

{

String primo,secondo;
secondo = null;
int movieid=0;
String[]res;

//script SQL

FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\movies.sql");
PrintWriter out=new PrintWriter(fi);

//file sorgente da cui estrapolare i “movie”
FileReader f = new FileReader("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\file IMDB\\movies.txt");
BufferedReader filebuf = new BufferedReader(f);

String nextStr;
nextStr = filebuf.readLine();

while (!nextStr.equals("MOVIES LIST")){
nextStr = filebuf.readLine();

}

nextStr = filebuf.readLine();
nextStr = filebuf.readLine();

//inserimento su DB... & stata fatta la scelta di utilizzare | “multiple inserts” molto piu effi-

cienti
out.print("INSERT IGNORE INTO movies VALUES\n");

while (nextStr!=null){

if (nextStr.equals(" ")
System.out.printIn("Movies inseriti nel db");
break;
}
nextStr=nextStr.replace(""","");
Pagina

13

//da qui in poi inizia il vero e proprio parsing
res=nextStr.split("\t");

for (int x=1; x<res.length; x++){

if (Ires[x].equals("\t")){
secondo= res[x];

}

primo=res[0];

if (primo.contains("(")){
int indice = primo.indexOf("(");

primo = primo.substring(0,indice);
// primo=primo.replace("\"","");

//inserimento dei “movie”

out.append("("'+movieid+"',""+primo+"',""+secondo+"",null,null,null,null,null,null,null,null,null),\n");

nextStr = filebuf.readLine();// legge una riga del file
movieid++;

}

filebuf.close(); // chiude il file
out.close();

Pagina

14

actors.java

import java.sql.*;
import java.net.*;
import java.io.*;
import java.lang.*;
import java.util.*;

public class actors {

public static void main (String[] args) throws Exception

String primo,secondo,as;
primo = null;
secondo = null;

as = null;

String[]res;

int inizio=0;

int inizio2=0;

String nome = null;
String cognome = null;
String year=null;

String[] arr=null;

int attoreid=1;

int movieid=0;

String nomecognome=null;

//script SQL per gli “actors”

FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\actors.sql");
PrintWriter out=new PrintWriter(fi);

//script SQL per la relazione “actor2movie” ovvero gli attori con i relativi movie

FileWriter fi3 = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\actors2movie.sql");
PrintWriter out3=new PrintWriter(fi3);

//file sorgente da cui estrapolare gli “actors”

FileReader f = new FileReader("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\file IMDB\\actors.txt");
BufferedReader filebuf = new BufferedReader(f);

//connessione al database necessaria per poter individuare I'ID del movie
Connection conn2 = null;
ResultSet rs3=null;

try
{
String userName = "root";
String password = "041524";
String url = "jdbc:mysql://localhost/imdb";
Class.forName ("com.mysql.jdbc.Driver").newlnstance ();
conn2 = DriverManager.getConnection (url, userName, password);
//System.out.println ("Database connection established");

}

catch (Exception e)

{

e.printStackTrace();
System.err.println ("Cannot connect to database server");

}

out.print("INSERT IGNORE INTO actor VALUES\n");

Pagina

15

out3.print("INSERT IGNORE INTO actor2movie VALUES\n");

//inizio parsing
String nextStr;
nextStr = filebuf.readLine();

if (args[0].equals("-") && (args[1].startsWith("*")){

String num=args[1].substring(1);
attoreid=Integer.parselnt(num);

while (!nextStr.equals("THE ACTORS LIST")) {
nextStr=filebuf.readLine();

}
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();

}
if (largs[0].equals("-")){

while (InextStr.startsWith(args[0])) {
nextStr=filebuf.readLine();

}

attoreid=Integer.parselnt(args[1]);

while (nextStr!=null){

try{

if (nextStr.equals("SUBMITTING UPDATES")){
System.out.printIn("Actors inseriti nel db");
break;

nextStr = nextStr.replace(""","");

if(nextStr.equals("")){
attoreid++;

nextStr=filebuf.readLine();

if (nextStr.startsWith("\t")){

secondo=nextStr;
secondo=secondo.replace("","");
secondo=secondo.replace("\t","");

if (secondo.contains("(")){

Pagina

16

int aperta=secondo.indexOf("(");
int chiusa=secondo.indexOf(")");

year = secondo.substring(aperta+1,chiusa);

else {
year=null;
}

if (secondo.contains("[")){

int aperta2=secondo.indexOf("[");
int chiusa2=secondo.indexOf("]");

as = secondo.substring(aperta2+1,chiusa2);

else {
as=null;

else {
primo=nextStr;
primo=primo.replace("","");
int tab=primo.indexOf("\t");
nomecognome = primo.substring(0,tab);
if (nomecognome.contains(",")){
int virgola=nomecognome.indexOf(",");

cognome = nomecognome.substring(0,virgola);

nome= nomecognome.substring(virgola+2,tab);

else {
nome = null;
cognome = nomecognome;

//inserimento nello script relativo ad “actors”

out.append("("'+attoreid+","" +nome+"',""+cognome+"','M"),\n");

secondo=primo.substring(tab);

secondo=secondo.replace("",
secondo=secondo.replace("\t","");

if (secondo.contains("(")){

int aperta=secondo.indexOf("(");
int chiusa=secondo.indexOf(")");

year = secondo.substring(aperta+1,chiusa);

Pagina

17

else {
year=null;

}
if (secondo.contains("[")){

int aperta2=secondo.indexOf("[");
int chiusa2=secondo.indexOf("]");

as = secondo.substring(aperta2+1,chiusa2);

else {
as=null;

if (secondo.contains("[")){
int quadra=secondo.indexOf("[");
secondo=secondo.substring(0,quadra);

}

if (secondo.contains("(")){
int tonda=secondo.indexOf("(");
secondo=secondo.substring(0,tonda);

}
try{
//prelievo ID del movie dal database
Statement s2 = conn2.createStatement ();
rs3=s2.executeQuery("SELECT id FROM movies WHERE title=""+secondo+"' and year=""+year+"");
rs3.last();
movieid =(Integer)rs3.getObject(1);
s2.close ();
}
catch(Exception e){
}

//inserimento nello script relativo alla relazione “actor2movie”

wom
’

out3.append("(""+attoreid+"",""+movieid+"',""+as+""),\n");

Pagina

18

nextStr = filebuf.readLine();// legge una riga del file
}

catch(Exception e){
e.printStackTrace();
break;

filebuf.close(); // chiude il file
out.close();

Pagina
19

Script SQL

Di seguito vengono mostrati gli script SQL generati dai parser di cui si € parlato nella
sezione precedente.

movies.sql

INSERT IGNORE INTO movies VALUES

('1,'#1 ',"2005", null,null,null,null,null,null,null,null,null),

('2','#1 Fan: A Darkomentary','2005', null,null,null,null,null,null,null,null,null),
('3','#28 ','2002" ,null,null,null,null,null,null,null,null,null),

('4','#2: Drops ','2004" ,null,null,null,null,null,null,null,null,null},

('S','#7 Train: An Immigrant Journcy, The

12000, null,null,null,null,null,null,null,null,null),

('6","#Bfl O {ggGX = STWWcfl x 254 ','1963",null,null,null,null,null,null,null,null,null),
('7','S ,'1971", null,null,null,null,null,null,null,null,null),

('8','$1,000 Reward','1913",null,null,null,null,null,null,null,null,null),
('9','$1,000 Reward','1915" null,null,null,null,null,null,null,null,null),
('10','$1,000 Reward ','1923", null,null,null,null,null,null,null,null,null),
('11','$1,000,000 Reward, The ','1920" null,null,null,null,null,null,null,null,null),
('12','$10,000 Under a Pillow ',"1921",null,null,null,null,null,null,null,null,null),
('13','S100 & a T-Shirt: A Documentary About Zines in the Northwest

12004 null,null,null,null,null,null,null,null,null),

('14','$100,000 ','1915',null,null,null,null,null,null,null,null,null),
('15','$100,000 Bill, The ',"1915", null,null,null,null,null,null,null,null,null),
('17','$100,000 Pyramid, The ','2001", null,null,null,null,null,null,null,nutl,null),

Pagina

20

actors.sql

INSERT IGNORE INTO actor VALUES('1",'null’,'La Muequc','F'),{'2','Maria Tereza','La
Tata Castro','F'},('3','Cristina’,'La Veneno','F'),('4",'Josine','t Hart','F'),('5','Hilda",'t
Seyen','F'),('6','Moni','va",'F'},("7','Martha',"103",'F'),('8','Sharon',"10X",'F'),('9",'Nicol
e,'11:11','F"),("10",'null’,"12 Elite Girls','F'),{'11",'Diec",'12 Elite
Girls','F'},('12",'Rachel’,"18",'F'),("13",'null’,'1988 MontclairSquad','F'),{'14','Die¢’,'20
Wiencrinnen','F'),{'15",'null’,'2004 Buffalo Jills Cheerleaders','F'},('16','Diamond’,'4
Ever,'F'),('17','null’,'4 Non
Blondes','F'),('18",'Colt','45",'F"),('19",'Cat’,'9",'F"),{'20",'Kat','9",'F'),('21",'Suilma’,'AAli
taleb','F'),('22",'Mrs.",'ACosta’,'F'),{'23','Michele','ACourt’,'F'),

actor2movie.sql

INSERT IGNORE INTO actor2movic VALUES
('91784','425331",'Edith"),('91784','443564"','Kamen'),('91784','478275",'Sister
Candida'),('91784','478583",'null"},('91785','33484",'Corinna
Gerber'),('91785','178468','null'),('91785','278096",'null'},('91785','314761",'Rosi
1,('91785','314810",'null'),{'91785','383550", 'null'},{'91785",'497686",'Erika
Hanson'),('91785','536953",'Selma Kremer'),

Pagina

21

Schema ER

name surhame fitle fitle

CINEMATOGRAPHER
d n|

name surname

name surname

na

i i -

name witer composer

WRITER T
.

wiord name sumarme

LANGUAGE

KEYWORD DEBIGMER
|

musiclan
o

SOUNDTRACK 1D authar
o

name sumame

name surname

EDITOR

’_

DIRECTOR
|

name surnarme

!

COMPOSER

akaname akasurname

18]

TRIVIA
m|

trivia

name sumame

r ¢

PRODDESIGNER

featured-in

spoofed wersion D

0

follows
R

LINK
i referenced

referencgd-in

followed features remake
I credit

FRODCOMPANY

i name

@ aurary - yoar \ (1)
: w2
4 = A1 r

JUALH

i
5
name 01
LY
N counTrY |
1

Pagina

22

Schema logico

key2movie(MOVIE,KEYWORD)

FK: key2movie[MOVIE] € MOVIES[ID]
FK:key2movie[KEYWORD] € KEYWORD[word]

plot2movie(MOVIE,PLOT)

FK: plot2movie[MOVIE] € MOVIES[ID]
FK:plot2movie[PLOT] € PLOTIID]

goof2movie(MOVIE,GOQOF)

FK: goof2movie[MOVIE] € MOVIES][ID]
FK:goof2movie[GOOF] € GOOFJ[ID]

altver2movie(MOVIE,ALTVERSION)

FK:altver2movie[MOVIE] € MOVIES[ID]
FK:altver2movie[ALTVERSION] € ALTVERSIONIID]

trivia2movie(MOVIE,TRIVIA)

FK: trivia2movie[MOVIE] € MOVIES[ID]
FK:trivia2movie[TRIVIA] € TRIVIA[ID]

tag2movie(MOVIE,TAG)

FK: tag2movie[MOVIE] € MOVIES[ID]
FK:tag2movie[TAG] € TAGIID]

crazy2movie(MOVIE,CRAZYCREDIT)

FK: crazy2movie[MOVIE] € MOVIES[ID]
FK:crazy2movie[CRAZYCREDIT] € CRAZYCREDIT[ID]

lang2movie(MOVIE,LANGUAGE)

FK: lang2movie[MOVIE] € MOVIES[ID]
FK:lang2movie[LANGUAGE] € LANGUAGE[name]

movielinks(MOVIE,LINK)

FK: movielinks[MOVIE] € MOVIESI[ID]
FK:movielinks[LINK] € LINK][ID]

KEYWORD(word)
PLOT(ID,plot,author)

FK: PLOTI[ID] € plot2movie[PLOT]

GOOF(ID,goof)

FK: GOOF[ID] € goof2movie[GOOF]

ALTVERSION(ID,version)

Pagina

23

FK: ALTVERSION[ID] € altversion2movie[ALTVERSION]

TRIVIA(ID, trivia)

FK: TRIVIA[ID] € trivia2movie[TRIVIA]

TAG(ID,tag)

FK: TAG[ID] € tag2movie[TAG]

CRAZYCREDIT(ID, credit)

FK: CRAZYCREDIT[ID] € crazycredit2movie[CRAZYCREDIT]

LANGUAGE(name)

inclusione: LANGUAGE[name] € lang2movie[LANGUAGE]

musicby(COMPOSERN,COMPOSERS,MOVIE)

FK: musicby[COMPOSERN,COMPOSERS] € COMPOSER[name,surname]
FK:musicby[MOVIE] € MOVIES[ID]

COMPOSER(name,surname)

inclusione: COMPOSER[name,surname] € musicby[COMPOSERN,COMPOSERS]

EDITOR(name,surname)

inclusione: EDITOR[name,surname] € editbyby[EDITORN,EDITORS]

writerby(WRITERN,WRITERS,MOVIE)

FK: writerby[WRITERN,WRITERS] € WRITER[name,surname]
FK:writerby[MOVIE] € MOVIES[ID]

WRITER(name,surname)

inclusione: WRITER[name,surname] € writerby[WRITERN,WRITERS]

tracklist(SOUNDTRACK,MOVIE)

FK:tracklistSOUNDTRACK] € SOUNDTRACK[name]
FK:tracklistf MOVIE] € MOVIES[ID]

LINK(ID,featuredin,referencedin,spin,spoofed,version,followed,features,remake,follows,referencs)

FK: LINK[ID] € movielinks[LINK]

Pagina

24

SOUNDTRACK(name,writer,composer,singer)

prodcompany2movie(PRODCOMPANY,MOVIE)

FK: prodcompany2movie[PRODCOMPANY] € PRODCOMPANY[name]
FK: prodcompany2movie[MOVIE] € MOVIES[ID]

actors2movie(ACTOR,MOVIE,role)

FK: actor2movie[ACTOR] € ACTOR([ID]
FK: actor2movie[MOVIE] € MOVIES[ID]

ACTOR(ID,name,surname,sex)

chiave: name,surname
inclusione: ACTOR[ID] € actor2movie[ACTOR]

AKANAME (akaname,akasurname)

FK: AKANAME[akaname,akasurname] € actorsaka[AKANAME,AKASURNAME]

PRODDESIGNER(name,surname)

inclusione: PRODDESIGNER[name,surname] € proddesignby[PRODDESIGNERN,PRODDESIGNERS]

DIRECTOR(name,surname)

inclusione: DIRECTOR[name,surname] € directedby[DIRECTORN,DIRECTORS]

prodby(PRODUCERN,PRODUCERS,MOVIE)

FK: prodby[PRODUCERN,PRODUCERS] & PRODUCER[name,surname]
FK: prodby[MOVIE] & MOVIES[ID]

PRODUCER(name,surname)

inclusione: PRODUCER[name,surname] € prodby[PRODUCERN,PRODUCERS]

prodcompany2country(PRODCOMPANY,COUNTRY)

FK: prodcompany2country[PRODCOMPANY] € PRODCOMPANY[name]
FK: prodcompany2country[COUNTRY] € COUNTRY[name]

AKATITLE(title)

FK: AKATITLE[title] € moviesaka[AKATITLE]

ITAKATITLE(title)

Pagina

25

FK:IT AKATITLE[title] © moviesitaka[ITAKATITLE]
CINEMATOGRAPHER(name,surname)
inclusione: CINEMATOGRAPHER[name,surname] € cinematographer-

by[CINEMATOGRAPHERN,CINEMATOGRAPHERS]

designer2movie(DESIGNERN,DESIGNERS,MOVIE)

FK: designer2movie[DESIGNERN,DESIGNERS] € DESIGNER[name,surname]
FK: designer2movie[MOVIE] € MOVIES[ID]

DESIGNER(name,surname)

Inclusione: DESIGNER[name,surname] € designer2movie[DESIGNERN,DESIGNERS]

distributed(DISTRIBUTOR,MOVIE)

FK: distributed[DISTRIBUTOR] < DISTRIBUTOR[name]
FK: distributed[MOVIE] & MOVIES]ID]

DISTRIBUTOR(name)

inclusione: DISTRIBUTOR[name] € distributed[DISTRIBUTOR]
FK: DISTRIBUTOR[name] € distributor2country[DISTRIBUTOR]

sfxby(SEXCOMPANY,MOVIE)

FK: sfxby[SFXCOMPANY] € SFXCOMPANY[name]
FK: sfxby[MOVIE] € MOVIES[ID]

SFXCOMPANY(name)

inclusione: SFXCOMPANY[name] € sfxby[SFXCOMPANY]
FK: SFXCOMPANY[name] € country2sfx[SFXCOMPANY]

actorsaka(ACTOR,AKANAME,AKASURNAME)

FK: actorsaka[ACTOR] € ACTOR[ID]
FK: actorsaka[AKANAME,AKASURNAME] € AKANAME[name,surname]

located(LOCATIONCITY,LOCATIONCOUNTRY,MOVIE)

FK: located[LOCATIONCITY] € LOCATION [city]
FK: located[LOCATIONCOUNTRY] € COUNTRY[name]
FK: located[MOVIE] € MOVIES[ID]

LOCATION(city, COUNTRY)

Pagina

26

FK: LOCATION[COUNTRY] € COUNTRY[name]

shotin(COUNTRY,MOVIE,year)

FK: shotin[COUNTRY] € COUNTRY[name]
FK: shotin[MOVIE] € MOVIES[ID]

COUNTRY(name)
inclusione: COUNTRY[name] C releasein[COUNTRY]

CERTIFICATE(type, COUNTRY,MOVIE)

FK: CERTIFICATE[COUNTRY] S COUNTRY[name]
FK: CERTIFICATE[MOVIE] & MOVIES[ID]

editby(MOVIE,EDITORN,EDITORS)

FK: editby[EDITORN,EDITORS] € EDITOR[name,surname]
FK: editby[MOVIE] € MOVIES[ID]

proddesignby(MOVIE,PRODDESIGNERN,PRODDESIGNERS)

FK: proddesignby[PRODDESIGNERN,PRODDESIGNERS] € PRODDESIGNER[name,surname]
FK: proddesignby[MOVIE] € MOVIES[ID]

directedby(MOVIE,DIRECTORN,DIRECTORS)

FK: directedby[DIRECTORN,DIRECTORS] € DIRECTOR[nhame,surname]
FK: directedby[MOVIE] € MOVIES[ID]

cinematographyby(MOVIE,CINEMATOGRAPHERN,CINEMATOGRAPHERS)

FK: cinematographyby[CINEMATOGRAPHERN, CINEMATOGRAPHERS] € CINEMATOGRAPHER[name,surname]
FK: cinematographyby[MOVIE] € MOVIES[ID]

releasein(MOVIE,COUNTRY,date)

FK: releasein[COUNTRY] € COUNTRY[name]
FK: releasein[MOVIE] € MOVIES[ID]

moviesaka(AKATITLE, MOVIE)

FK: moviesaka[AKATITLE] € AKATITLE[title]
FK: moviesaka[MOVIE] € MOVIES[ID]

Pagina

27

moviesitaka(ITAKATITLE, MOVIE)

FK: moviesitaka[ITAKATITLE] € ITAKATITLE[title]
FK: moviesitaka[MOVIE] € MOVIES[ID]

distributor2country(DISTRIBUTOR, COUNTRY)

FK: distributor2country[DISTRIBUTOR] < DISTRIBUTOR[name]
FK: distributor2country[COUNTRY] € COUNTRY[name]

country2sfx(SEXCOMPANY, COUNTRY)

FK: country2sfx[SFXCOMPANY] € SFXCOMPANY[name]
FK: country2sfx[COUNTRY] € COUNTRY[name]

MOVIES(ID, title,year,runtime,sound,genre,colortype,castcoverage,crewcoverage,votes,rank,mpaa)

inclusione: MOVIES]ID]
inclusione: MOVIES[ID]
inclusione: MOVIES[ID]
inclusione: MOVIES[ID]
inclusione: MOVIES]ID]
inclusione: MOVIES]ID]
inclusione: MOVIES[ID]
inclusione: MOVIES[ID]
inclusione: MOVIES]ID] distributor[MOVIE]
inclusione: MOVIES]ID] located[MOVIE]
inclusione: MOVIES[ID] S shotin[MOVIE]

FK: MOVIES[ID] € editby[MOVIE]

FK: MOVIES[ID] € proddesignby[MOVIE]

FK: MOVIES[ID] € directedby[MOVIE]

FK: MOVIES[ID] € cinematographyby[MOVIE]

releasein[MOVIE]
musicby[MOVIE]
lang2movie[MOVIE]
writerby[MOVIE]
prodcompany2movie[MOVIE]
actor2movie[MOVIE]
prodby[MOVIE]
designer2movie[MOVIE]

NININININININININININ

Pagina

28

Schema fisico

drop database if exists imdb;
create database imdb;

use imdb;

drop table if exists keyword;

create table keyword (
word varchar(200) primary key
);

drop table if exists key2movie;

create table key2movie (
movie int(8),
keyword varchar(200),
primary key (movie, keyword)

);
drop table if exists plot;

create table plot (
id int(8) primary key,
plot longtext,
author varchar(200)

);
drop table if exists plot2movie;
create table plot2movie (

plot int(8) primary key,
movie int(8)

drop table if exists goof;

create table goof (
id int(8) primary key,
goof longtext

);
drop table if exists goof2movie;
create table goof2movie (

goof int(8) primary key,
movie int(8)

drop table if exists altversion;

create table altversion (
id int(8) primary key,
version longtext

);

drop table if exists altversion2movie;

create table altversion2movie (

Pagina

29

altversion int(8) primary key,
movie int(8)

);
drop table if exists trivia;

create table trivia (
id int(8) primary key,
trivia longtext

);
drop table if exists trivia2movies;

create table trivia2movies (
trivia int(8) primary key,
movie int(8)

);
drop table if exists tag;

create table tag (
id int(8) primary key,
tag longtext

);

drop table if exists tag2movie;

create table tag2movie (
tag int(8) primary key,
movie int(8)

drop table if exists crazycredit;

create table crazycredit (
id int(8) primary key,
credit longtext

);
drop table if exists crazycredit2movie;

create table crazycredit2movie (
credit int(8) primary key,
movie int(8)

drop table if exists language;

create table language (
name varchar(200) primary key,
check (name in (select language from lang2movie))

);

drop table if exists lang2movie;

create table lang2movie (
movie int(8),

language varchar(200),
primary key(movie,language)

Pagina

30

drop table if exists composer;

create table composer (
name varchar(200),
surname varchar(200),
primary key (name,surname),
check (name,surname in (select composerN,composerS from musicby))

);
drop table if exists musicby;

create table musicby (
composerN varchar(200),
composersS varchar(200),
movie int(8),
primary key(composerN,composerS,movie)

drop table if exists editby;

create table editby (
movie int(8) primary key,
editorN varchar(200),
editorS varchar(200)

drop table if exists editor;

create table editor (
name varchar(200),
surname varchar(200),
primary key (name,surname),
check (name,surname in (select editorN,editorS from editby))

drop table if exists writer;

create table writer (
name varchar(200),
surname varchar(200),
primary key (name,surname),
check (name,surname in (select writerN,writerS from writerby))

);
drop table if exists writerby;

create table writerby (
writerN varchar(200),
writerS varchar(200),
movie int(8),
primary key (writerN,writerS,movie)

);
drop table if exists soundtrack;

create table soundtrack (
name varchar(200) primary key,
writer varchar(200),
composer varchar(200),
musician varchar(200)

Pagina

31

);
drop table if exists tracklist;

create table tracklist (
soundtrack varchar(200),
movie int(8),
primary key (soundtrack,movie)

);
drop table if exists prodcompany;

create table prodcompany (
name varchar(200) primary key,
check (name in (select prodcompany from prodcompany2movie))

);
drop table if exists prodcompany2movie;

create table prodcompany2movie (
prodcompany varchar(200),
movie int(8),
primary key (prodcompany,movie)

);
drop table if exists actor;

create table actor (
id int(8) primary key,
name varchar(200),
surname varchar(200),
sex enum('M",'F"),
unique(name,surname),
index(name,surname),
check (id in (select actor from actor2movie))

);
drop table if exists actor2movie;

create table actor2movie (
actor int(8),
movie int(8),
role varchar(200),
primary key(actor,movie)

);
drop table if exists akaname;

create table akaname (
akaname varchar(200),
akasurname varchar(200),
primary key (akaname,akasurname)

);
drop table if exists actorsAka;

create table actorsAka (
actor int(8),
akaname varchar(200),
akasurname varchar(200),
primary key (akaname,akasurname)

);

drop table if exists proddesigner;

Pagina

32

create table proddesigner (
name varchar(200),
surname varchar(200),
primary key(name,surname),
check (name,surname in (select proddesignerN,proddesignerS from proddesignby))

drop table if exists proddesignby;

create table proddesignby (
movie int(8) primary key,
proddesignerN varchar(200),
proddesignerS varchar(200)

drop table if exists director;

create table director (
name varchar(200),
surname varchar(200),
primary key (name,surname),
check (name,surname in (select directorN,directorS from directedby))

drop table if exists directedby;

create table directedby (
movie int(8) primary key,
directorN varchar(200),
directorS varchar(200)

drop table if exists producer;

create table producer (
name varchar(200),
surname varchar(200),
primary key (name,surname),
check (name,surname in (select producerN,producerS from prodby))

);
drop table if exists prodby;

create table prodby (
producerN varchar(200),
producerS varchar(200),
movie int(8),
primary key (producerN,producerS,movie)

);
drop table if exists akatitle;

create table akatitle (
title varchar(200) primary key
);

drop table if exists itakatitle;

create table itakatitle (
title varchar(200) primary key
);

Pagina

33

drop table if exists cinematographer;

create table cinematographer (
name varchar(200),
surname varchar(200),
primary key (name,surname),
check (name,surname in (select cinematographerN,cinematographerS from cinematographyby))

drop table if exists cinematographyby;

create table cinematographyby (
movie int(8) primary key,
cinematographerN varchar(200),
cinematographerS varchar(200)

drop table if exists designer;

create table designer (
name varchar(200),
surname varchar(200),
primary key (name,surname),
check (name,surname in (select designerN,designerS from designer2movie))

drop table if exists designer2movie;

create table designer2movie (
designerN varchar(200),
designersS varchar(200),
movie int(8),
primary key (designerN,designerS,movie)

);
drop table if exists distributor;

create table distributor (
name varchar(200) primary key,
check (name in (select distributor from distributed))

);
drop table if exists distributed;

create table distributed (
distributor varchar(200),
movie int(8),
primary key (distributor,movie)

);
drop table if exists sfxcompany;
create table sfxcompany (
name varchar(200) primary key,

check (name in (select sfxcompany from sfxby))

);

drop table if exists sfxby;

Pagina

34

create table sfxby (
sfxcompany varchar(200),
movie int(8),
primary key (sfxcompany,movie)

);
drop table if exists location;

create table location (
city varchar(200),
country varchar(200),
primary key(city,country)
);

drop table if exists located;

create table located (
locationcity varchar(200),
locationcountry varchar(200),
movie int(8),
primary key(locationcity,locationcountry,movie)

);
drop table if exists country;

create table country (
name varchar(200) primary key,
check (name in (select country from location))

);
drop table if exists shotin;

create table shotin (
country varchar(200),
movie int(8),
year varchar(100),
primary key (country,movie)

);
drop table if exists certificate;

create table certificate (
country varchar(200),
movie int(8),
type varchar(100),
primary key(country,movie,type)

);
drop table if exists movies;

create table movies (
id int(8) primary key,
title varchar(200),
year varchar(100),
runtimes varchar(100),
sound varchar(100),
genre varchar(100),
colortype varchar(100),
crewcoverage varchar(100),
castcoverage varchar(100),
votes int(8),
rank float,
mpaa longtext,
index(title),
index(title,year),

Pagina
35

unique(title,year),

check (id in (select movie from musicby)),
check (id in (select movie from lang2movie)),
check (id in (select movie from writerby)),

check (id in (select movie from prodcompany2movie)),

check (id in (select movie from actor2movie)),
check (id in (select movie from prodby)),

check (id in (select movie from designer2movie)),
check (id in (select movie from distributor)),

check (id in (select movie from located)),
check (id in (select movie from shotin)),
check (id in (select movie from releasein))

drop table if exists moviesAka;

create table moviesAka (
akatitle varchar(200) primary key,
movie int(8)

);
drop table if exists moviesltaka;

create table moviesltaka (
itakatitle varchar(200) primary key,
movie int(8)

);
drop table if exists distributor2country;

create table distributor2country (
distributor varchar(200) primary key,
country varchar(200)

);
drop table if exists country2sfx;

create table country2sfx (
sfxcompany varchar(200) primary key,
country varchar(200)

drop table if exists prodcompany2country;

create table prodcompany2country (
prodcompany varchar(200) primary key,
country varchar(200)

);
drop table if exists releasein;

create table releasein (
movie int(8),
country varchar(200),
primary key(movie,country),
date varchar(200)

);

drop table if exists link;

create table link (
id int(8) primary key,

Pagina
36

featured_in varchar(200),
referenced_in varchar(200),
spin varchar(200),
spoofed varchar(200),
version varchar(200),
followed varchar(200),
features varchar(200),
remake varchar(200),
follows varchar(200),
ref varchar(200)

);

drop table if exists movieLinks;
create table movieLinks (

link int(8) primary key,
movie int(8)

Pagina

37

Schema fisico con vincoli di chiave esterna

alter table key2movie
add foreign key (movie)

references movies(id);

alter table key2movie
add foreign key (keyword)

references keyword(word);

alter table plot2movie
add foreign key (movie)

references movies(id);

alter table plot2movie
add foreign key (plot)

references plot(id);

alter table movieLinks
add foreign key (link)

references link(id);

alter table goof2movie
add foreign key (movie)

references movies(id);
alter table goof2movie

add foreign key (goof)

references goof(id);

Pagina

38

alter table altversion2movie
add foreign key (movie)

references movies(id);

alter table altversion2movie
add foreign key (altversion)

references altversion(id);

alter table trivia2movies
add foreign key (movie)

references movies(id);

alter table trivia2movies
add foreign key (trivia)

references trivia(id);

alter table tag2movie
add foreign key (movie)

references movies(id);

alter table tag2movie
add foreign key (tag)

references tag(id);

alter table crazycredit2movie
add foreign key (movie)

references movies(id);

alter table crazycredit2movie
add foreign key (credit)
references crazycredit(id);

Pagina

39

alter table lang2movie
add foreign key (movie)

references movies(id);

alter table lang2movie
add foreign key (language)

references language(name);

alter table plot
add foreign key (id)

references plot2movie(plot);

alter table link
add foreign key (id)

references movieLinks (link);

alter table goof
add foreign key (id)

references goof2movie(goof);

alter table altversion
add foreign key (id)

references altversion2movie(altversion);

alter table trivia
add foreign key (id)

references trivia2movies(trivia);

alter table crazycredit
add foreign key (id)

references crazycredit2movie(credit);

Pagina
40

alter table musicby

add foreign key (composerN,composersS)

references composer(name,surname);

alter table musicby
add foreign key (movie)

references movies(id);

alter table writerby

add foreign key (writerN,writerS)

references writer(name,surname);

alter table writerby
add foreign key (movie)

references movies(id);

alter table tracklist
add foreign key (soundtrack)

references soundtrack(name);

alter table tracklist
add foreign key (movie)

references movies(id);

alter table prodcompany2movie
add foreign key (prodcompany)

references prodcompany(name);

alter table prodcompany2movie
add foreign key (movie)

references movies(id);

Pagina
41

alter table prodcompany
add foreign key (name)

references prodcompany2country(prodcompany);

alter table actor2movie
add foreign key (movie)

references movies(id);

alter table actor2movie
add foreign key (actor)

references actor(id);

alter table akaname
add foreign key (akaname,akasurname)

references actorsAka(akaname,akasurname);

alter table actorsAka
add foreign key (actor)

references actor(id);

alter table actorsAka
add foreign key (akaname,akasurname)

references akaname(akaname,akasurname);

alter table prodby
add foreign key (producerN,producersS)

references producer(name,surname);

alter table prodby
add foreign key (movie)

references movies(id);

Pagina
42

alter table prodcompany2country
add foreign key (prodcompany)

references prodcompany(name);

alter table prodcompany2country
add foreign key (country)

references country(name);

alter table akatitle
add foreign key (title)

references moviesaka(akatitle);

alter table itakatitle

add foreign key (title)

references moviesltaka(itakatitle);

alter table designer2movie

add foreign key (designerN,designerS)

references designer(name,surname);

alter table designer2movie
add foreign key (movie)

references movies(id);

alter table distributed
add foreign key (movie)

references movies(id);

alter table distributed
add foreign key (distributor)

references distributor(name);

Pagina
43

alter table distributor
add foreign key (name)

references distributor2country(distributor);

alter table sfxby
add foreign key (sfxcompany)

references sfxcompany(name);

alter table sfxby
add foreign key (movie)

references movies(id);

alter table sfxcompany
add foreign key (name)

references country2sfx(sfxcompany);

alter table located
add foreign key (locationcity)

references location(city);

alter table located
add foreign key (locationcountry)

references country(name);

alter table located
add foreign key (movie)

references movies(id);

Pagina
44

alter table location
add foreign key (country)

references country(name);

alter table shotin
add foreign key (country)

references country(name);

alter table shotin
add foreign key (movie)

references movies(id);

alter table certificate
add foreign key (movie)

references movies(id);

alter table certificate
add foreign key (country)

references country(name);

alter table editby
add foreign key (movie)

references movies(id);

alter table editby
add foreign key (editorN,editorS)

references editor(name,surname);

alter table proddesignby

add foreign key (movie)

references movies(id);

Pagina

45

alter table proddesignby
add foreign key (proddesignerN,proddesignersS)

references proddesigner(name,surname);

alter table directedby
add foreign key (movie)

references movies(id);

alter table directedby
add foreign key (directorN,directorS)

references director(name,surname);

alter table cinematographyby
add foreign key (movie)

references movies(id);

alter table cinematographyby
add foreign key (cinematographerN,cinematographerS)

references cinematographer(name,surname);

alter table releasein
add foreign key (movie)

references movies(id);

alter table releasein
add foreign key (country)

references country(name);

alter table movies
add foreign key (id)

references proddesignby(movie);

Pagina
46

alter table movies

add foreign key (id)

references directedby(movie);

alter table movies
add foreign key (id)

references editby(movie);

alter table movies

add foreign key (id)

references cinematographyby(movie);

alter table moviesAka
add foreign key (akatitle)

references akatitle(title);

alter table moviesAka
add foreign key (movie)

references movies(id);

alter table moviesltaka
add foreign key (itakatitle)

references itakatitle(title);

alter table moviesltaka
add foreign key (movie)

references movies(id);

Pagina
47

alter table distributor2country
add foreign key (distributor)

references distributor(name);

alter table distributor2country
add foreign key (country)

references country(name);

alter table country2sfx
add foreign key (sfxcompany)

references sfxcompany(name);

alter table country2sfx
add foreign key (country)

references country(name);

Pagina
48

Ontology

In both computer science and information scieno@ndology is a data model that
represents a set of concepts within a domain andefationships between those con-
cepts. It is used to reason about the objectsnitiat domain.

Ontologies generally describe:

Individuals: the basic or "ground level" objects

Classes: sets, collections, or types of objects

Attributes: properties, features, characteristics, or parameters that objects
can have and share

Relations: ways that objects can be related to one another

Events: the changing of attributes or relations

Pagina

49

Languages for ontologies

An ontology language is a formal languaged to encode the ontology. There are a
number of such languages for ontologies, both ety and standards-based:

OWL is a language for making ontological statements, developed as a follow-
on from RDF and RDFS. OWL is intended to be used over the World Wide

Web, and all its elements (classes, properties and individuals) are defined as
RDF resources, and identified by URIs.

Three Variants of OWL

¢ OWL Full
— an extension of RDF

— allows for classes as instances, modification of RDF and OWL vo-
cabularies

e OWLDL
— the part of OWL Full that fits in the Description Logic framework
— known to have decidable reasoning

¢ OWL Lite
— a subset of OWL DL

— easier for frame-based tools to transition to
— easier reasoning

Pagina

50

How is OWL Used

1. build an ontology

create the ontology

e name classes and provide information about them
name properties and provide information about them
(would be slightly inaccurate to say “define” here)

2. state facts about a domain
e provide information about individuals

3. reason about ontologies and facts
e determine consequences of what was built and stated

Pagina

51

Classes

e What is a Class?
— €.¢., person, pet, old
— a collection of individuals (object, things, ...)
— away of describing part of the world
— an object in the world (OWL Full)

Example Classes

Class (pp:animal partial

restriction(pp:eats someValuesFrom(owl:Thing)))
Class (pp:person partial pp:animal)
Class (pp:man comnplete

intersectionOf (pp:person pp:male pp:adult))
Class (pp:animal+lover complete

intersectionOf (pp:person

restriction (pprhas_pet minCardinality(3))))

Example Classes

Class (pp:vegetarian complete
intersectionOf (pp:animal
restriction(pp:eats
allValuesFrom(complementOf (pp:animal)))
restriction(pp:eats
allvaluesFrom(
complementOf (restriction (pp:part_of
someValuesFrom (pp:animal)))))))

DisjointClasses (pp:young pp:adult)

Pagina

52

Properties

e What is a Property?
— e.9g., has_father, has_pet, service_number
— a collection of relationships between individuals (and data)
— away of describing a kind of relationship between individuals
— an object in the world (OWL Full)

Example Properties

ObjectProperty (ppieaten_by)
ObjectProperty (pp:eats inverseOf (pp:eaten_by)
domain (pp:animal))
ObjectProperty (pp:has_pet domain (pp:person)
range (pp:animal))
ObjectProperty (pr:is_pet_of inverseOf (pp:has_pet))
DataProperty (ppiservice_number range (xsd:integer))

SubPropertyOf (pp:has_pet pp:likes)

Pagina

53

Individuals

e objects in the world
e belong to classes

e are related to other objects and to data values via properties

Example Individuals

Individual (pp:Tom type (owl:Thing))

Individual (pp:Dewey type (pp:duck))

Individual (pp:Rex type (pp:dog) value(pp:is_pet_of pp:Mick))
Individual (pp:Mick type (pp:imale)

value (pp:reads pp:Daily+Mirror)
value (pp:drives pp:QlZ23+ABC))
Individual (pp:Thed2 type (pp:bus)

value (pp:service_number "42"""xsd:integer))

Pagina

54

Description Logics

Le logiche descrittive (DL) sono frammenti decidlidella FOL per esprimere la co-
noscenza in termini di:

o concetti atomici (predicati unari)
o ruoli atomici (predicati binari)
o individui (costanti)

Una base di conoscenza in DL comprende:

o TBox: insieme di assiomi terminologici, ovvero il vocadb del domi-
nio applicativo (concetti e ruoli)
o ABox: contiene asserzioni circa gli individui che

popolano il mondo in oggetto, assegnando loro unene asserendo le loro proprieta.

Pagina

55

DL-Lite family

e Description Logics (DLs) underlie the standard ontology languages for the
Semantic Web (i.e., OWL, OWL-DL)

e DL-Lite is a family of DLs optimized according to the tradeoff between expressive
power and data complexity

e Two maximal languages that enjoy FOL-rewritability: DL-Lites, DL-Liteg
(we use simply DL-Lite to refer to both languages)

e With minimal additions to DL-Lite, data complexity jumps to NLOGSPACE or
above

->We lose FOL-rewritability

Pagina

56

DL-Liter
Ontology language:

e Concept inclusion assertions: Cl = Cr, with:
Cl>A|3R|CI1INCI2

Cr->A|3aR| —A| —dR

R>P|P-

e Functionality assertions: (funct R)
Database facts: A(c), P(c, d), with c, d constants

Observations:
e Captures all the basic constructs of ER and UML Class Diagrams

e Notable exception: covering constraints in generalizations

Capturing basic ontology constructsin DL-Lite

* ISA between classes 2> A1 C A2

» disjointness between classes 2> A1 E —A2

e domain and range of relations > IPE A1 3IPE A2

* mandatory participation 2 A1 E 3P A2 E 3P’

» functionality of relations (in DL-Liteg) = (funct P) (funct P)

* |ISA between relations (in DL-Liteg) 2 R1 E R2

Pagina

57

Employee

Example

Works-for

PaySlipNumber:Integer
Salary:Integer

Manager

{ disjoint,complete }

1.%

Project

ProjectCode:String

AreaManager) | TopManager

Pagina

58

Manager E Employce
ArcaManager© Manager
TopManagerE Manager
ArcaManagert —TopManager
IWorksFor E Employcece
AWorksFor- C Project

Project © IWorksFor-

(funct WorksFor)

(funct WorksFor-)

Note:in DL-Lite we cannot capture
completenessof the hicrarchy

DL-Liter

Ontology language:

e Concept inclusion assertions: Cl = Cr, with:
Cl>A|3R]|CI1INCI2

Cr>A|3R|—A| —dR]|3R.A

R>P|P-

e Role inclusion assertions: R1 E R2

Database facts: A(c), P(c, d), with c, d constants
Properties:

e Drops functional restrictions in favor of ISA between roles
e Extends (the DL fragment of) RDFS

Pagina

59

Query answering in DL-Lite

Given a CQ g, an ontology O, and a database Dowwute cert(q,0,D) as follows:

1. Close ontology O wrt disjointness assertions and check for satisfiability wrt D

2. Using O, reformulate CQ q as a union rq o of CQs

3. Evaluate ry o directly over D using the RDBMS

Correctness of this algorithm shows FOL-rewritability of query answering in DL-Lite

- Query answering over DL-Lite ontologies can be done using RDBMS technology
- Prototype system implemented: QuOnto

DL-Lite complexity results
« Consistency checking is
— polynomial in the size of thentology and of thedatabase
» Query answering is
—exponential in the size of thguery (NP-complete)

— polynomial in the size of thentology and of thedatabase (in fact
LOGSPACE in the database)

Pagina

60

DL-Lites

To speak about DL-Lite, we first have to introduce the DL DL-Liteg, that combines
the main features of two DLs

presented previously, called DL-Liter and DL-Liteg respectively, and forms the basics
of DL-Litea. In providing the specification of our logics, we use the following notation:

— A denotes an atomic concept, B a basic concept, and C a general concept;

— D denotes an atomic value-domain, E a basic value-domain, and F a general
value-domain;

— P denotes an atomic role, Q a basic role, and R a general role;

— Ucdenotes an atomic concept attribute, and V. a general concept attribute;
— Ug denotes an atomic role attribute, and Vi a general role attribute;

— Tc denotes the universal concept, Ty denotes the universal value-domain.

Given a concept attribute Uc (resp. a role attribute Ug), we call the domain of U,
(resp. Ug), denoted by 6(U.) (resp. 6(Ug)), the set of objects (resp. of pairs of objects)
that U¢ (resp. Ug) relates to values, and we call range of U (resp. Ug), denoted

by p(Uc) (resp. p(Ug)), the set of values that U(resp. Ug) relates to objects (resp.
pairs of objects). Notice that the domain 6(U.) of a concept attribute U is a concept,
whereas the domain 8(Ug) of a role attribute Uy is a role. Furthermore, we denote
with &8¢ (U¢) (resp. & (Ug)) the set of objects (resp. of pairs of objects) that U (resp.
Ug) relates to values in the value-domain F. In particular, DL-Liter expressions are
defined as in the next.

Pagina

61

— Concept expressions:

B::=A|3Q|dUc)

C::=>C|B|-B|3Q.C|d(Uc)| T (Ur) | T ok (Ur)~

—Value-domain expressions (rdfDataType denotes predefined value-domains such
as integers, strings, etc.):

D | p(Uc) | p(Ur)

>D | E| -E | rdfDataType

E::

F::

— Attribute expressions:
VC ::= Uc | -U¢

VR::= Ug| - Ur

— Role expressions:
Q::=P[P|(Ur) | d(Ur)

R::=Q|-Q|dr(UR) | Jr (Ur)"

A DL-Literg knowledge base (KB) K =<T, A> is constituted by two components:
a TBox T, used to represent intensional knowledge, and an ABox A, used to
represent extensional knowledge.
DL-Literzy TBox assertions are of the form:

B € C concept inclusion assertion

Q € Rrole inclusion assertion

E C F value-domain inclusion assertion

Uc € V¢ concept attribute inclusion assertion

Ur € Vi role attribute inclusion assertion

(funct P) role functionality assertion

(funct P") inverse role functionality assertion

(funct Uc) concept attribute functionality assertion

(funct Ug) role attribute functionality assertion

Pagina

62

A DL-Lite o knowledge base is pair <T , A>, where A is a DL-Lite g
ABox, and T is a DL-Lite (g TBox satisfying the following conditions:

1. for every atomic or inverse of an atomic role Q appearing in a concept of the form
3 Q.C, the assertions (funct Q) and (funct Q') are notin T ;

2. for every role inclusion assertion Q € Rin T, where R is an atomic role or the
inverse of an atomic role, the assertions (funct R) and (funct R) arenotin T ;

3. for every concept attribute inclusion assertion Uc € V¢in T, where Vcis an
atomic concept attribute, the assertion (funct V¢) isnotinT;

4. for every role attribute inclusion assertion Ug € Vzin T, where Vg is an atomic
role attribute, the assertion (funct Vi) isnotinT.

Roughly speaking, a DL-Lite, TBox imposes the condition that every functional role
cannot be specialized by using it in the right-hand side of role inclusion assertions;
the same condition is also imposed on every functional (role or concept) attribute.

It can be shown that functionalities specified in a DL-Lite, TBox are not implicitly
propagated in the TBox, and that this allows for LOGSPACE query answering.

Pagina

63

Ontologia del IMDb

Relativamente allo schema ER presentato precedentemente, viene riportata di se-
guito I'ontologia completa.

CONCEPTS

ACTOR &€ 3 actor2movie
ACTOR < &(id)

ACTOR < é&(name)

ACTOR

N

&(surname)

ACTOR < é&(sex)

AKANAME C 3 actorsaka~
AKANAME < &(akaname)
AKANAME < &(akasurname)
PRODDESIGNER € 3 proddesignby~
PRODDESIGNER € é&(name)
PRODDESIGNER < é&(surname)
DIRECTOR € 3 directedby™
DIRECTOR € &(name)
DIRECTOR < d&(surname)
PRODUCER < 3 prodby~
PRODUCER < &(name)
PRODUCER < &(surname)
AKATITLE € 3 moviesaka~

AKATITLE < &(title)

ITAKATITLE € 3 moviesitaka™

Pagina

64

ITAKATITLE < &(title)

CINEMATOGRAPHER € 3 cinematographyby~
CINEMATOGRAPHER < &(name)

CINEMATOGRAPHER < &(surname)

DESIGNER < 3 designerZmovie~
DESIGNER <€ &(name)

DESIGNER € &(surname)

DISTRIBUTOR < 3 distributed™
DISTRIBUTOR € é&(name)
KEYWORD < &(word)

PLOT < 3 plot2movie

PLOT < &(id)

PLOT < &(plot)

PLOT < &(author)

GOOF < 3 goof2Zmovie

GOOF c &(id)

GOOF < &(goof)
ALTVERSION C 3 altversionZmovie
ALTVERSION < &(id)
ALTVERSION < &(version)
TRIVIA € 3 triviaZmovies
TRIVIA <€ &(id)

TRIVIA < é&(trivia)

TAG € 3 tagZmovie

TAG < &(id)

TAG € &(tag)

Pagina
65

CRAZYCREDIT < 3 crazycredit2movie

CRAZYCREDIT < &(id)
CRAZYCREDIT < &(credit)
LANGUAGE <€ 3 langZmovie

LANGUAGE < é&(name)

LINK € 3 movielinks™
LINK < &(id)

LINK <€ &(featured_in)
LINK € é&(referenced_in)
LINK € &(spin)

LINK <€ d(spoofed)
LINK <€ é&(version)
LINK <€ &(followed)
LINK < &(features)
LINK € &(remake)
LINK <€ &(ref)
COUNTRY € Jin

COUNTRY <€ é&(name)

LOCATION € 3 in™

LOCATION € &(city)

SFXCOMPANY <€ 3 country2sfx~

SFXCOMPANY c 3 sfxby~
SFXCOMPANY < &(name)
COMPOSER € 3 musicby~

COMPOSER < é&(name)

COMPOSER < &(surname)

Pagina
66

EDITOR < 3 editby~
EDITOR S &(name)

EDITOR < d&(surname)

WRITER < 3 writerby~
WRITER € &(name)

WRITER € &(surname)
SOUNDTRACK < &(name)
SOUNDTRACK < &(writer)
SOUNDTRACK < &(composer)

SOUNDTRACK < &(musician)

PRODCOMPANY € 3 prodcompanyZmovie

PRODCOMPANY € 3 prodcompanyZcountry

PRODCOMPANY < é&(name)
MOVIES € 3 langZmovie~

MOVIES < 3 designer2movie™
MOVIES € 3 distributed
MOVIES C 3 releasein
MOVIES < 3 shotin

MOVIES < 3 located

MOVIES € 9 musicby
MOVIES < 3 editby

MOVIES < 3 writerby
MOVIES € 3 prodcompany2movie~
MOVIES € 3 actorZmovie~

MOVIES < 3 proddesignby

MOVIES € 3 directedby

Pagina
67

MOVIES C 3 cinematographyby
MOVIES < &(id)

MOVIES < é&(title)

MOVIES <€ é&(year)

MOVIES € &(runtimes)
MOVIES <€ é&(sound)

MOVIES <€ é&(genre)

MOVIES <€ é&(colortype)
MOVIES <€ &(crewcoverage)

MOVIES

N

&(castcoverage)

MOVIES

N

d(votes)

MOVIES <€ &(rank)

MOVIES € &(mpaa)
CERTIFICATE € 3 released
CERTIFICATE <€ 3 certZmovie

CERTIFICATE < &(type)

ROLES

3 key2movie~ € MOVIES

3 key2movie € KEYWORD

3 plot2movie~ € MOVIES

3 plot2movie < PLOT

3 goof2movie~ € MOVIES

3 goof2movie € GOOF

3 altversion2movie~ € MOVIES

Pagina
68

3 alversionZmovie € ALTVERSION
3 triviaZmovie~ € MOVIES

3 triviaZmovie € TRIVIA

3 tagZmovie~ € MOVIES

3 tagZmovie € TAG

3 crazycredit2movie~ € MOVIES

3 crazycreditZmovie € CRAZYCREDIT
d lang2movie~ € MOVIES

3 lang2movie € LANGUAGE

3 movielinks™ € LINK

3 movielinks € MOVIES

Jd moviesaka™ € AKATITLE

3 moviesaka € MOVIES

3 moviesitaka™ € ITAKATITLE

3 moviesitaka € MOVIES

3 cinematographyby~ € CINEMATOGRAPHER
3 cinematographyby < MOVIES

3 designer2movie~ € DESIGNER

3 designer2movie € MOVIES

3 distributed~ < DISTRIBUTOR

3 distributed € MOVIES

J releasein~ € COUNTRY

J releasein € MOVIES

d located™ € COUNTRY

3 located € MOVIES

Pagina
69

3 sfxby~ < SFXCOMPANY

3 sfxby € MOVIES

3 musicby- € COMPOSER

3 musicby € MOVIES

3 editby~ < EDITOR

3 editby € MOVIES

3 writerby- € WRITER

3 writerby € MOVIES

3 tracklist~ € SOUNDTRACK

3 tracklist € MOVIES

3 prodcompanyZ2movie~ € PRODCOMPANY

3 prodcompany2movie € MOVIES

3 actor2movie~ € MOVIES

3 actor2movie € ACTOR

3 actorsaka” € AKANAME

3 actorsaka € ACTOR

3 proddesignby~ € PRODDESIGNER

3 proddesignby € MOVIES

3 directedby~ < DIRECTOR

3 directedby € MOVIES

3 prodby~ € PRODUCER

3 prodby € MOVIES

3 prodcompany2country- € COUNTRY

3 prodcompany2country € PRODCOMPANY

3 country2sfx~ € SFXCOMPANY

Pagina

70

3 country2sfx € COUNTRY

din~ € LOCATION

Jin € COUNTRY

3 distributor2country” € COUNTRY

3 distributor2country € DISTRIBUTOR

I released™ € COUNTRY

3 released € CERTIFICATE

3 cert2Zmovie~ € MOVIE

3 cert2movie € CERTIFICATE

CONCEPTS ATTRIBUTES

p(id) € xsd:int

p(name) C xsd:string
p(surname) < xsd:string
p(sex) € xsd:string
p(akaname) € xsd:string
p(akasurname) C xsd:string
p(title) € xsd:string
p(version) C xsd:string
p(type) € xsd:string
p(credit) € xsd:string
p(goof) € xsd:string
p(word) € xsd:string
p(featured_in) € xsd:string

p(referenced_in) € xsd:string

Pagina
71

p(spin) € xsd:string
p(spoofed) € xsd:string
p(followed) € xsd:string
p(features) € xsd:string
p(remake) C xsd:string
p(follows) < xsd:string
p(ref) € xsd:string
p(city) € xsd:string
p(year) € xsd:string
p(runtimes) € xsd:string
p(sound) € xsd:string
p(genre) € xsd:string
p(crewcoverage) € xsd:string
p(castcoverage) € xsd:string
p(colortype) € xsd:string
p(votes) € xsd:int
p(rank) € xsd:float
p(mpaa) € xsd:string
p(akatitle) € xsd:string
p(plot) € xsd:string
p(author) € xsd:string
p(writer) € xsd:string
p(composer) € xsd:string
p(musician) € xsd:string
p(tag) € xsd:string
p(trivia) € xsd:string

p(type) € xsd:string

Pagina
72

ROLES ATTRIBUTES

p(year) € xsd:string
p(date) < xsd:string

p(role) € xsd:string

VALUES DOMAIN

ACTOR < é(id)

ACTOR <€ &(name)

ACTOR < é&(surname)
ACTOR < d&(sex)

AKANAME < &(akaname)
AKANAME < é&(akasurname)
AKATITLE < d(title)
ALTVERSION < &(id)
ALTVERSION < &(version)
CERTIFICATE < é&(type)
CINEMATOGRAPHER < &(name)
CINEMATOGRAPHER < &(surname)
COMPOSER < é&(name)
COMPOSER < &(surname)
COUNTRY < é&(name)
CRAZYCREDIT < d(id)
CRAZYCREDIT < &(credit)
DESIGNER <€ &(name)
DESIGNER < &(surname)
DIRECTOR € #(name)
DIRECTOR < d&(surname)

DISTRIBUTOR € &(name)

Pagina

73

EDITOR <€ &(name)

EDITOR < d&(surname)

GOOF < &(id)

GOOF < &(goof)

ITAKATITLE < é&(title)
CINEMATOGRAPHER < &(name)
CINEMATOGRAPHER < &(surname)
KEYWORD < &(word)
LANGUAGE < &(name)

LINK < &(id)

LINK <€ é&(featured_in)

LINK € &(referenced_in)

LINK <€ &(spin)

LINK <€ é&(spoofed)

LINK <€ é&(version)

LINK < &(followed)

LINK < é&(features)

LINK <€ &(remake)

LINK < &(follows)

LINK <€ &(ref)

LOCATION € &(city)

n

MOVIES € &(id)
MOVIES < &(title)
MOVIES < &(year)
MOVIES € &(runtimes)
MOVIES <€ &(sound)

MOVIES <€ &(genre)

Pagina

74

MOVIES < é&(colortype)
MOVIES < &(castcoverage)
MOVIES <€ &(crewcoverage)
MOVIES <€ é&(votes)

MOVIES <€ é&(rank)

MOVIES € &(mpaa)

PLOT <€ &(id)

PLOT < é&(plot)

PLOT < &(author)
PRODCOMPANY <€ &(name)
PRODDESIGNER < &(name)
PRODDESIGNER <€ &(surname)
PRODUCER < &(name)
PRODUCER < &(surname)
SFXCOMPANY < é&(name)
SOUNDTRACK < &(name)
SOUNDTRACK < &(writer)
SOUNDTRACK < &(composer)
SOUNDTRACK <€ &(musician)
TAG € &(id)

TAG € &(tag)

TRIVIA € &(id)

TRIVIA C &(trivia)

WRITER € &(name)

WRITER € &(surname)

shotin € &(year)

Pagina

75

releasein € d&(date)

actor2movie S d&(role)

ATTRIBUTE FUNCTIONALITY

(funct id)

(funct name)
(funct surname)
(funct sex)

(funct akaname)
(funct akasurname)
(funct title)
(funct version)
(funct type)
(funct credit)
(funct goof)
(funct word)
(funct featured_in)
(funct referenced_in)
(funct spin)
(funct spoofed)
(funct followed)
(funct features)
(funct remake)
(funct follows)
(funct ref)

(funct city)

(funct year)

Pagina
76

(funct runtimes)
(funct sound)
(funct genre)
(funct crewcoverage)
(funct castcoverage)
(funct colortype)
(funct votes)

(funct rank)

(funct mpaa)
(funct akatitle)
(funct plot)

(funct author)
(funct writer)
(funct composer)
(funct musician)
(funct tag)

(funct trivia)

(funct year)

(funct date)

(funct role)

ROLE FUNCTIONALITY

(funct altversion2movie)
(funct cinematographyby)
(funct crazycredit2movie)

(funct directedby)

Pagina
77

(funct
(funct
(funct
(funct
(funct
(funct
(funct

(funct
(funct
(funct
(funct
(funct

(funct
(funct

(funct

distributor2country)
editby)

goof2movie)
plot2movie)
prodcompany2country)
proddesignby)
tag2movie)
trivia2movie)
actorsaka)
moviesaka™)
moviesitaka™)
movielinks™)

in7)

released)

cert2movie)

Pagina
78

Mapping

Data integration

Answer(Q) € = = = = Query

\

« = = = = Global schema

= = Sources

Data integration

Query
Global schema
v X
f /// - - \\ T
7 _. . ' \
- Mapping \ ‘
R, < D, T

Source schema

Source schema

Do
o B
o

Pagina

79

An example

4)

author Paper —\
1 |)
Researcher \ /

— Clles

- /

Selfcitation(x) ~+ 3 z, y. cite(x,y) A author(z,x) A author(z,y)

—
—
| —
—
-—

rﬂ_é&‘ciraﬁon: contains papers that cite -
L __ (other) papers by the same authors B
Selfcitation — -

How is the mapping M between S and specified?

e Are the sources defined in terms of the global schema?

Approach called source-centric, or local-as-view, or LAV

e |s the global schema defined in terms of the sources?

Approach called global-schema-centric, or global-as-view, or GAV

e A mixed approach?

Approach called GLAV

Pagina

80

GAV vs LAV : an example to understand

Global schema:

Source 1:

Source 2:

Query:

movie(1itle, Year, Director)
european(Director)

review(T'itle, Critique)

ri(Tutle, Year, Director) since 1960, European directors

ro(Title, Critique) since 1990
Title and critique of movies in 1998

4D. movie(1', 1998, D) A review(T', R), written
{ (T, R) | movie(T, 1998, D) A review(T, R) }

Pagina

81

LAV formalization

In LAV (with sound sources), the mapping /M is constituted by a set of assertions:
s ~ Qg

one for each source element s in Ag, where ¢ is a query over G of the arity of s.

Given source database C, a database B for (satisfies M wrt C if for each s € S:

C . B
5 (_){__;'

I

In other words, the assertion means 7X (s(X) — og(X)).

The mapping M and the source database C do not provide direct information about
which data satisfy the global schema. Sources are views, and we have to answer

queries on the basis of the available data in the views.

LAV example

Global schema: movie(1'itle, Year., Director)
european(Director)
review(1itle, Critique)

LAV: associated to source relations we have views over the global schema
n(1T,Y,D) ~ {(1,Y,D)]|movie(T,Y, D) N european(D) NY = 1960 }
ro(1, R) ~ (T, R) | movie(T.,Y, D) Nreview(T, R) NY = 1990 }
The query { (7.) | movie(7, 1998, D) A review('l". I?) } is processed by

means of an inference mechanism that aims at re-expressing the atoms of the global

schema in terms of atoms at the sources. In this case:

{(T.R) | t2(T, R) Ary(T.1998, D) }

Pagina

82

GAV formalization

In GAV (with sound sources), the mapping M is constituted by a set of assertions:
g ~ s
one for each element ¢ in Ag, where ¢ s is a query over S of the arity of ¢.
Given source database C, a database B for satisfies M wrt C if for each ¢ € G:
® D s

In other words, the assertion means 7X (¢s(X) — ¢(X)).

Given a source database, M provides direct information about which data satisfy the
elements of the global schema. Relations in § are views, and queries are expressed
over the views. Thus, it seems that we can simply evaluate the query over the data

satisfying the global relations (as if we had a single database at hand).

GAV example

Global schema: movie(Title, Year, Director)
european(Director)

review(1itle, Critique)

GAV: associated to relations in the global schema we have views over the sources
movie(1,Y. D) ~ {(T.Y,D)|r(T,Y,D) }
european(D) ~ {(D)|r(T,Y,D)}
review(1', R) ~ {(T.R)|rn(T,R) }

Pagina

83

Example of query processing

The query { (7, R) | movie(T', 1998, D) A review(T', R) } is processed by
means of unfolding, i.e., by expanding each atom according to its associated

definition in /M, so as to come up with source relations. In this case:

movie(7,1998.D) A review(T,R)

unfolding

v v

1,(T.1998.D) A 1,(T.R)

Pagina

84

GAV & LAV: comparison

LAV: (Information Manifold, DWQ)

¢ Quality depends on how well we have characterized the sources
¢ High modularity and extensibility (if the global schema is well designed, when a

source changes, only its definition is affected)
e Query processing needs reasoning (query answering complex)

GAV: (Carnot, SIMS, Tsimmis, IBIS, Momis, DisAtDis, .. .)
e Quality depends on how well we have compiled the sources into the global

schema through the mapping
e Whenever a source changes or a new one is added, the global schema needs to

be reconsidered
e Query processing can be based on some sort of unfolding (query answering

looks easier — without constraints)

Pagina

85

IMDb Mapping

Di seguito vengono presentati i mapping tra I'ontologia costruita in DL-Lite e il
database relazionale.

Ma chiariamo meglio il concetto di mapping.

A DL-Lite, ontology with mappings is characterized by a triple
O, =<T,M,DB> such that:

® TisaDL-Litep TBox

® DB is arelational database

® M is a set of ma maggiori s pping assertion, partitioned into two sets, M, and
M,

Where:
* M, is a set of so-called typing mapping assertions, each one of the form
¢2>T

where ¢ is a query of arity 1 over DB denoting the projection of one relation over
one of its columns, and T; is one of the DL-Lite, data types;

* M, is a set of data-to-object mapping assertions (or simply mapping asser-
tions), each one of the form

o>y

where ¢ is an arbitrary SQL query of arity n>0 over DB, ¢ is a conjunctive query
over T of arity n’>0 without non distinguished variables, that possibly involves varia-
ble terms. A variable term is a term of the same form as the object terms introduced
above, with the difference that variables appear as argument of the function. In
other words, a variable terms has the form f(z), where f is a function symbol in A of
arity m, and z denotes an m-tuple of variables.

Pagina

86

IMDb: typing mapping assertion
My : SELECT id FROM ACTOR ™~ xsd:int
Miz : SELECT name FROM ACTOR ~> xsd:string
Mi3: SELECT surname FROM ACTOR 7> xsd:string
M4: SELECT sex FROM ACTOR 7~ xsd:string
Mis: SELECT actor FROM actorZmovie 7~ xsd:int
Mis : SELECT movie FROM actorZmovie 7> xsd:int
M7 : SELECT role FROM actorZmovie ~» xsd:string
Mg : SELECT actor FROM actorsaka ~> xsd:int
Mio: SELECT akasurname FROM actorsaka 7~ xsd:string
Muo: SELECT akasurname FROM actorsaka 7> xsd:string
Mi11: SELECT akaname FROM AKANAME 7> xsd:string
Muz : SELECT akasurname FROM AKANAME 7> xsd:string
Miu3: SELECT title FROM AKATITLE 7> xsd:string
Mu4: SELECT id FROM ALTVERSION 7> xsd:int
Mus: SELECT version FROM ALTVERSION 7~ xsd:string
Muse: SELECT altversion FROM altversion2movie ~> xsd:int
Mu7: SELECT movie FROM altversionZmovie 7> xsd:int
Mi1g: SELECT country FROM CERTIFICATE ~> xsd:string
Muo: SELECT movie FROM CERTIFICATE ~> xsd:int

Miz0: SELECT type FROM CERTIFICATE ~> xsd:string

Miz21: SELECT name FROM CINEMATOGRAPHER ~ xsd:string

Miz2: SELECT surname FROM CINEMATOGRAPHER ~ xsd:string

Pagina

87

Mizs:
Me4:
Mizs:
Mes:
Me7:
Mes:
Mezo:
Mizo:
Mz
Miz2:
Mizs:
Miz4:
Mizs:
Mizs:
Mg7:
Mgs:
Mgo:
Muo:
Mu1:
Mu2:
Mu3:
Miaa:
Mus:
Mus:
M7
Mus:

Muo:

SELECT movie FROM cinematographyby ~ xsd:int
SELECT cinematographerN FROM cinematographyby ~ xsd:string
SELECT cinematographerS FROM cinematographyby ~ xsd:string
SELECT name FROM COMPOSER ~ xsd:string

SELECT surname FROM COMPOSER ~ xsd:string

SELECT name FROM COUNTRY ~ xsd:string

SELECT sfxcompany FROM country2sfx ~ xsd:string
SELECT country FROM country2sfx ~ xsd:string

SELECT id FROM CRAZYCREDIT ~ xsd:int

SELECT credit FROM CRAZYCREDIT ~ xsd:string

SELECT credit FROM crazycredit2movie ~ xsd:int

SELECT movie FROM crazycredit2Zmovie ~ xsd:int
SELECT name FROM DESIGNER ~ xsd:string

SELECT surname FROM DESIGNER ~ xsd:string

SELECT movie FROM designer2movie ~ xsd:int

SELECT designerN FROM designer2movie ~ xsd:string
SELECT designerS FROM designer2movie ~ xsd:string
SELECT name FROM DIRECTOR ~ xsd:string

SELECT surname FROM DIRECTOR ~ xsd:string

SELECT movie FROM directedby ~ xsd:int

SELECT directorN FROM directedby ~ xsd:string

SELECT directorS FROM directedby ~ xsd:string

SELECT distributor FROM distributed ~ xsd:string

SELECT movie FROM distributed ~ xsd:int

SELECT name FROM DISTRIBUTOR ~ xsd:string

SELECT distributor FROM distributor2country ~ xsd:string

SELECT country FROM distributor2country ~ xsd:string

Pagina

88

Miso: SELECT name FROM EDITOR ~ xsd:string

Mis1: SELECT surname FROM EDITOR ~ xsd:string
Mis2: SELECT movie FROM editby ~ xsd:int

Mis3: SELECT editorN FROM editby ~ xsd:string
Mis4: SELECT editorS FROM editby ~ xsd:string
Miss: SELECT id FROM GOOF ~ xsd:int

Mise: SELECT goof FROM GOOF ~ xsd:string

Mis7: SELECT goof FROM goof2movie ~ xsd:int

Misg: SELECT movie FROM goof2movie ~ xsd:int
Miso: SELECT title FROM ITAKATITLE ~ xsd:string
Miso: SELECT word FROM KEYWORD ~ xsd:string
Mis1: SELECT keyword FROM keyZmovie ~ xsd:string
Mis2: SELECT movie FROM key2movie ~ xsd:int
Mis3: SELECT name FROM LANGUAGE ~ xsd:string
Miea: SELECT language FROM lang2movie ~ xsd:string
Mies: SELECT movie FROM lang2movie ~ xsd:int
Miss: SELECT id FROM LINK ~ xsd:int

Mie7: SELECT featured_in FROM LINK ~ xsd:string
Mies: SELECT referenced_in FROM LINK ~ xsd:string
Mieo: SELECT spin FROM LINK ~ xsd:string

Mizo: SELECT spoofed FROM LINK ~ xsd:string

Mi71: SELECT version FROM LINK ~ xsd:string

Mi72: SELECT followed FROM LINK ~ xsd:string
Mi73: SELECT features FROM LINK ~ xsd:string

Mi74: SELECT remake FROM LINK ~ xsd:string

Mizs: SELECT follows FROM LINK ~ xsd:string

Me: SELECT ref FROM LINK ~ xsd:string

Pagina

89

Mi77:
Mu7s:
Mu79:
Misgo:
Mis1:
Migz:
Migs:
Miga:
Migs:
Migs:
Mig7:
Migs:
Migo:
Mioo:
Mio1:
Mioz:
Mios:
Mioa:
Mios:
Muoe:
Mio7:
Mios:

Muoo:

SELECT locationcity FROM located ~ xsd:string
SELECT locationcountry FROM located ~ xsd:string
SELECT movie FROM located ~ xsd:int

SELECT city FROM LOCATION ~ xsd:string
SELECT country FROM LOCATION ~ xsd:string
SELECT link FROM movielinks ~ xsd:int

SELECT movie FROM movielinks ~ xsd:int
SELECT id FROM MOVIES ~ xsd:int

SELECT title FROM MOVIES ~ xsd:string

SELECT year FROM MOVIES ~ xsd:string

SELECT runtimes FROM MOVIES ~ xsd:string
SELECT sound FROM MOVIES ~ xsd:string
SELECT genre FROM MOVIES ~ xsd:string
SELECT colortype FROM MOVIES ~ xsd:string
SELECT crewcoverage FROM MOVIES ~ xsd:string
SELECT castcoverage FROM MOVIES ~ xsd:string
SELECT votes FROM MOVIES ~ xsd:int

SELECT rank FROM MOVIES ~ xsd:float

SELECT mpaa FROM MOVIES ~ xsd:string
SELECT akatitle FROM moviesaka ~ xsd:string
SELECT movie FROM moviesaka ~ xsd:int
SELECT itakatitle FROM moviesitaka ~ xsd:string

SELECT movie FROM moviesitaka ~ xsd:int

Mt10o: SELECT movie FROM musicby ~ xsd:int

Mt101: SELECT composerN FROM musicby ~ xsd:string

Mt102: SELECT composerS FROM musicby ~ xsd:string

Mt1o3: SELECT id FROM PLOT ~ xsd:int

Pagina

90

Mt104: SELECT plot FROM PLOT ~ xsd:string

Mt1os: SELECT author FROM PLOT ~ xsd:string

Mt1o6: SELECT plot FROM plotZmovie ~ xsd:int

Mt107: SELECT movie FROM plot2Zmovie ~ xsd:int

Mi10s: SELECT movie FROM prodby ~ xsd:int

Mt109: SELECT producerN FROM prodby ~ xsd:string

Mt110: SELECT producerS FROM prodby ~ xsd:string

Mt111: SELECT name FROM PRODCOMPANY ~ xsd:string

Mt112: SELECT prodcompany FROM prodcompany2country ~ xsd:string
Mt113: SELECT country FROM prodcompany2country ~ xsd:string
Mt114: SELECT prodcompany FROM prodcompany2movie ~ xsd:string
Mt115: SELECT movie FROM prodcompany2movie ~ xsd:string
Mt116: SELECT name FROM PRODDESIGNER ~ xsd:string

Mt117: SELECT surname FROM PRODDESIGNER ~ xsd:string
Mi118: SELECT movie FROM proddesignby ~ xsd:int

Mi119: SELECT proddesignerN FROM proddesignby ~ xsd:string
Mt120: SELECT proddesignerS FROM proddesignby ~ xsd:string
Mi121: SELECT name FROM PRODUCER ~ xsd:string

Mi122: SELECT surname FROM PRODUCER ~ xsd:string

Mi123: SELECT movie FROM releasein ~ xsd:int

Mt124: SELECT country FROM releasein ~ xsd:string

Mui2s: SELECT date FROM releasein ~ xsd:string

Mtiz6: SELECT movie FROM sfxby ~ xsd:int

Mt127: SELECT sfxcompany FROM sfxby ~ xsd:string

Mti28: SELECT name FROM SFXCOMPANY ~ xsd:string

Mt129: SELECT movie FROM shotin ~ xsd:int

Mu30: SELECT country FROM shotin ~ xsd:string

Pagina

91

Mu31: SELECT year FROM shotin ~ xsd:string

Mi132: SELECT name FROM SOUNDTRACK ~ xsd:string
Mi133: SELECT writer FROM SOUNDTRACK ~ xsd:string
Mi134: SELECT composer FROM SOUNDTRACK ~ xsd:string
Mi13s: SELECT musician FROM SOUNDTRACK ~ xsd:string
Miuse: SELECT id FROM TAG ~ xsd:int

Mi137: SELECT tag FROM TAG ~ xsd:string

Mus3s: SELECT tag FROM tagZmovie ~ xsd:int

Mt39: SELECT movie FROM tagZmovie ~ xsd:int

Mt40: SELECT soundtrack FROM SOUNDTRACK ~ xsd:string
Mt41: SELECT movie FROM SOUNDTRACK ~ xsd:int

Mtu42: SELECT id FROM TRIVIA ~ xsd:int

Mu43: SELECT trivia FROM TRIVIA ~ xsd:string

Mt144: SELECT trivia FROM triviaZmovies ~ xsd:int

Mu4s: SELECT movie FROM triviaZmovies ~ xsd:int

Miuse: SELECT name FROM WRITER ~ xsd:int

Mi147: SELECT surname FROM WRITER ~ xsd:string

Mt14g: SELECT movie FROM writerby ~ xsd:int

Mi149: SELECT writerN FROM writerby ~ xsd:string

Miiso: SELECT writerS FROM writerby ~ xsd:string

Pagina

92

IMDb: data-to-object mapping assertions

A(OBJECT VARIABLE
TERM S) = {actor(x),akaname(x,y),akatitle(x),altversion(x),certificate (x),cinemato
graph-

er(x,y),composer(x,y),country(x),crazycredit(x),designer(x,y),director(x,y),distri
bu-

tor(x),editor(x,y),goof(x),itakatitle(x), keyword(x),language(x),link(x),location(x)
;movie(x),plot(x),prodcompany(x),proddesigner(x,y),producer(x,y),sfxcompany(
x),soundtrack(x),tag(x),trivia(x),writer(x,y) }

Mmli SELECT ID,name,surname,sex

FROM ACTOR ﬁ

ACTOR(actor(/D)), ID(actor(/D), ID), name(actor(/D),name), sur-
name(actor(/D),surname),sex(actor(/D),sex)

Mmz: SELECT actor,movie,role
FROM actor2movie ﬁ

actor2movie(actor (actor), movie (movie)), role(actor (actor), movie (movie), role)

Mmg: SELECT actor,akaname,akasurname
FROM actorsaka

actorsaka(actor (actor),akaname (akaname,akasurname))

Pagina

93

Mm4: SELECT akaname,akasurname
FROM AKANAME ﬁ

AKANAME(akaname (akaname,akasurname)), akaname(akaname (aka-
name,akasurname), akaname), akasurname(akaname (akaname,akasurname), akasurname)

M .5: SELECT title
FROM AKATITLE @

AKATITLE(akatitle (title)), title(akatitle (title), title)

M 6: SELECT id,version
FROM ALTVERSION ﬁ

ALTVERSION(altversion (id)), id(altversion (id), id), version(altversion (id), version)

M,,7: SELECT version,movie
m7
FROM altversion2movie ﬁ

altversion2movie(altversion (version),movie (movie))

Mmgz SELECT country,movie, type
FROM CERTIFICATE @

CERTIFICATE(country (country),movie (movie)), type(certificate (type), type)

Mmg: SELECT name,surname
FROM CINEMATOGRAPHER ﬁ

CINEMATOGRAPHER(cinematographer (name, surname)), name(cinematographer
(name, surname), name), surname(cinematographer (name, surname), surname)

Pagina

94

Mmloi SELECT movie,cinematographerN,cinematographerS
FROM cinematographyby ﬂ

cinematographyby(movie (movie),cinematographer (cinematographerN, cinemato-
graphers))

Mm11: SELECT name,surname
FROM COMPOSER ﬁ

COMPOSER(COMPOSEr (name, surname)), name(COMPOSEr (name, surname), name), sur-
name(COMPOSET (name, surname), surname)

M 112: SELECT name
FROM COUNTRY ﬁ

COUNTRY(country (name)), name(country (name), name)

Mm13: SELECT sfxcompany,country
FROM country2sfx ﬁ

country25fx(SfXC0mpany (sfxcompany), country (country))

M 1114: SELECT id,credit
FROM CRAZYCREDIT ﬂ

CRAZYCREDIT(crazycredit (id)), id(crazycredit (id), id), credit(crazycredit (id), credit)

Mm15: SELECT credit,movie
FROM crazycredit2movie ﬁ

crazycredit2movie(Crazycredit(credit), movie (movie))

Pagina

95

Mm15: SELECT name,surname
FROM DESIGNER ﬁ

DESIGNER(deSigner (name, surname)), name(designer (name, surname), name), sur-
name(designer (name, surname), surname)

Mm17: SELECT designerN,designerS,movie
FROM designer2movie ﬁ

designeerovie(deSigner (designerN,designerS), movie (movie))

Mm181 SELECT movie,directorN,directorS
FROM directedby ﬁ

directedby(movie (movie), director (directorN,directors))

Mm191 SELECT name,surname
FROM DIRECTOR ﬁ

DIRECTOR(director (name, surname)), name(director (name, surname), name), sur-
name(director (name, surname), surname)

Mmzo: SELECT name
FROM DISTRIBUTOR ﬁ

DISTRIBUTOR(distributor (name)), name(distributor (name), name)

Pagina

96

Mm21: SELECT distributor,movie
FROM distributed ﬁ

distributed(distributor (distributor), movie (movie))

Mmzz: SELECT distributor,country
FROM distributor2country ﬁ

distributor2country (distributor (distributor), country (country))

Mng: SELECT movie,editorN,editorS

FROM editby ﬁ

editby(movie (movie), editor (editorN,editors))

Mm24: SELECT name,surname

FROM EDITOR ﬁ

ebiTOR(editor (name, surname)), name(editor (name, surname), name), surname(editor
(name, surname), surname)

M ,25: SELECT id,goof

FROM GOOF ﬁ

GOOF (goof (id)), id(goof (id), id, goof(goof (id), goof)

Pagina

97

Mm261 SELECT goof,movie
FROM goof2movie ﬁ

goof2movie(g0oof(goof), movie (movie))

M,,27: SELECT title
FROM ITAKATITLE @

ITAKATITLE(itakatitle (title)), title(itakatitle (title), title)

M .28: SELECT word
FROM KEYWORD ﬁ

Keyworb(keyword (word)), word(keyword (word), word)

M 1129: SELECT keyword, movie
FROM key2movie ﬁ

key2movie(movie (movie),keyword(keyword))

Mm301 SELECT name
FROM LANGUAGE ﬁ

LANGUAGE(language(name)), name(language(name), name)

Mm31: SELECT movie,language
FROM lang2movie ﬁ

lang2movie(movie (movie),language(language))

Pagina

98

M35 SELECT

id,featured_in,referenced_in,spin,spoofed,verd lp,followed, features,remake,follows,ref
FROM link

LINk(link (id)), id(link (id), id), featured_in(link (id), featured_in), referenced_in(link (id),
referenced_in), spin(link (id), spin), spoofed(link (id), spoofed), version(link (id), version), fol-
lowed(link (id), followed), features(link (id), features), remake(link (id), remake), follows(link
(id), follows), ref(link (id), ref)

Mm33: SELECT locationcity,locationcountry, mavie
FROM located ﬁ

located(country(locationcity),location(/ocationcountry), movie(movie))

Mm34: SELECT link,movie

FROM movielinks ﬁ

movielinks(link (/ink), movie(movie))

M35 SELECT

id, title,year,runtimes,sound,genre,colortype, c@coverage,castcoverage, votes,rank,mpaa
FROM MOVIES

MOVIES(movie(id)), id(movie(id), id), title(movie (id),title), year(movie (id), year), run-
times(movie (id), runtimes), sound(movie (id), sound), genre(movie (id), genre), color-
type(movie (id),colortype), crewcoverage(movVie (id), crewcoverage), castcoverage(movie (id),
castcoverage), votes(movie (id),votes), rank(movie (id), rank), mpaa(movie (id), mpaa)

Pagina

99

Mm35: SELECT akatitle,movie

FROM moviesaka ﬁ

moviesaka(akatitle (akatitle),movie(movie))

M ,37: SELECT itakatitle,movie
FROM moviesitaka ﬁ

moviesitaka(itakatitle(itakatitle),movie(movie))

Mm381 SELECT composerN,composerS,movie
FROM musicby

musicby(COmposer (composerN,composerS), movie (movie))

M 1139: SELECT id, plot,author

FROM PLOT ﬁ

PLOT plot (id)), id(plot (id),id), plot(plot (id), plot), author(plot (id), author)

Mm401 SELECT plot,movie
FROM plot2movie ﬁ

plot2movie(plot(plot), movie (movie))

M ma1: SELECT producerN,producerS,movie

FROM prodby ﬁ

prodby(producer (producerN,producerS), movie (movie))

Pagina

100

M a2: SELECT name
FROM PRODCOMPANY ﬂ

PRODCOMPANY (prodcompany(name)), name(prodcompany(name), name)

Mm43: SELECT prodcompany,country
FROM prodcompany2country ﬁ

prodcompany2country (prodcompany (prodcompany), country (country))

Mm44: SELECT prodcompany, movie
FROM prodcompany2movie ﬁ

prodcompany2movie (prodcompany (prodcompany), movie (movie))

Mm45: SELECT movie,proddesignerN,proddesianerS
FROM proddesignby ﬁ

proddesignby(movie (movie), proddesigner (proddesignerN,proddesigners))

Mm45: SELECT name,surname
FROM PRODDESIGNER ﬁ

PRODDESIGNER(proddesigner (name, surname)), name(proddesigner (name, sur-
name), name), surname(proddesigner (name, surname), surname)

Mm47: SELECT name,surname
FROM PRODUCER ﬁ

PRODUCER(producer (name, surname)), name(producer (name, surname), name), sur-
name(producer (name, surname), surname)

Pagina

101

Mm481 SELECT movie,country,date

FROM releasein ﬁ

releasein(movie (movie), country (country)), date(movie (movie),country (coun-
try),date)

Mm4g: SELECT sfxcompany,movie

FROM sfxby ﬁ

sfxby(sfxcompany(sfxcompany), movie (movie))

Mm501 SELECT country, movie,year

FROM shotin ﬁ

shotin(country (country), movie (movie), year(movie (movie),country (country),year))

M : SELECT name, writer,composer,musici
m51
FROM SOUNDTRACK ﬂ

SOUNDTRACK(soundtrack (name)), name(soundtrack (name), name), writ-
er(soundtrack (name), writer), composer(soundtrack (name), composer), musi-
cian(soundtrack (name), musician)

M .52: SELECT id, tag

FROM TAG ﬁ

TAG(tag(id)), id(tag(id), id), tag(tag (id), tag)

Pagina

102

Mm53: SELECT tag,movie
FROM tag2movie ﬁ

tag2movie(tag (tag),movie (movie))

Mm54: SELECT soundtrack,movie

FROM tracklist ﬁ

tracklist(soundtrack (soundtrack),movie (movie))

M \55: SELECT id, trivia

FROM TRIVIA ﬁ

TRIVIA(trivia(id)), id(trivia(id), id), trivia(trivia (id),trivia)

M \56: SELECT trivia,movie
FROM trivia2Zmovie ﬁ

trivia2movie(trivia (trivia), movie (movie))

Mm57: SELECT name,surname

FROM WRITER ﬁ

WRITER(WTiter (name, surname)), name(Writer (name, surname), name), sur-
name(wWriter(name, surname), surname)

M \58: SELECT writerN, writerS, movie,

FROM writerby ﬁ

writerby(writer(writerN, writerS), movie (movie))

Pagina

103

Mm591 SELECT city,country
FROM LOCATION ﬁ

LocATION(location (city)), city(location (city),city), country(country)

Mmﬁo: SELECT name
FROM SFXCOMPANY ﬁ

SFXCOMPANY(Sfxcompany (name)), name(sfxcompany (name),name)

Pagina

104

Riferimenti

www.imdb.com
Dispense tratte dal corso di “seminario diingegneria del software”

Dicgo Calvancese,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antoncella Poggi, Riccardo Rosati. Linking Datato Ontologics:
The Description Logic DL-Lite,. In Proc. of the 2006 International
Workshop on OWL: Experiences and directions (OWLED 2006).

Diego Calvancse,Giuscppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. MASTRO-I: Efficient
integration of relational data through DL ontologics. In Proc. of the 2007
Description Logic Workshop (DL 2007).

Diego Calvancse,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. Linking Data to Ontologics.

Pagina

105

