
SEMINARIO INGEGNERIA DEL SOFTWARE SEMINARIO INGEGNERIA DEL SOFTWARE SEMINARIO INGEGNERIA DEL SOFTWARE SEMINARIO INGEGNERIA DEL SOFTWARE
a.a.a.a. 2006/20072006/2007

INTERNET MOVIE DATABASE

Studente: Cristiano Sticca

Docente: Prof. Giuseppe De Giacomo

OBIETTIVIOBIETTIVI

� Creazione di un DB locale rappresentante
tutti i film prodotti dall’inizio della
cinematografia ad oggi

� Generazione schema ER dell’ “INTERNET
MOVIE DB”MOVIE DB”

� Realizzazione schema logico

� Realizzazione schema fisico

� Creazione ontologia in DL-LiteA

� Creazione mapping tra DB e ontologia

� Verifica su QuOnto

PROBLEMATICHE PROBLEMATICHE

� Realizzazione di parser java per la
creazione di script SQL

� Identificazione struttura dei file importati � Identificazione struttura dei file importati
dal sito http://imdb.com/interfaces#win32

� Tempo per popolare il DB!!!

File File fromfrom IMDb…IMDb…

Il sito www.imdb.com permette il download di
determinati file che rappresentano il
contenuto del DB su internet al seguente
indirizzo http://imdb.com/interfaces

Come accennato precedentemente, il Come accennato precedentemente, il
problema sostanziale è che tali file (40 circa)
hanno una formattazione pressochè diversa
l’uno dall’altro.

E questo quindi ha comportato la realizzazione
di altrettanti parser scritti in Java.

File File fromfrom IMDb…IMDb… anan exampleexample

Vediamo come possono essere strutturati
alcuni di questi file.

Consideriamo i seguenti: movies.LIST and Consideriamo i seguenti: movies.LIST and
actors.LIST

Per una questione di leggibilità sono stati
rinominati in .txt

movies.LISTmovies.LIST

CRC: 0x9A686F55 File: movies.list Date: Fri Sep 14 01:00:00 2007
Copyright 1991-2007 The Internet Movie Database Ltd. All rights reserved.
http://www.imdb.com
movies.list
2007-09-12
--
MOVIES LIST
======================
#1 (2005) 2005
#1 Fan: A Darkomentary (2005) (V) 2005
#28 (2002) 2002
#2: Drops (2004) 2004
#7 Train: An Immigrant Journey, The (2000) 2000
$ (1971) 1971
$1,000 Reward (1913) 1913
$1,000 Reward (1915) 1915
$1,000 Reward (1923) 1923
$1,000,000 Reward, The (1920) 1920
$10,000 Under a Pillow (1921) 1921

ParserParser Java per Java per movies.LISTmovies.LIST
public class movies {

public static void main (String[] args) throws Exception{

String primo,secondo;

secondo = null;

int movieid=0;

String[]res;

FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\movies.sql");

PrintWriter out=new PrintWriter(fi);

FileReader f = new FileReader("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\file IMDB\\movies.txt");

BufferedReader filebuf = new BufferedReader(f);

Crea lo
Script SQL

Legge il file
sorgente

String nextStr;

nextStr = filebuf.readLine();

while (!nextStr.equals("MOVIES LIST")){

nextStr = filebuf.readLine();

}

nextStr = filebuf.readLine();

nextStr = filebuf.readLine();

out.print("INSERT IGNORE INTO movies VALUES\n");

while (nextStr!=null){

if (nextStr.equals("---")){

System.out.println("Movies inseriti nel db");

break;

}

Inserisce
valori nello

script

……

nextStr=nextStr.replace("'","");

res=nextStr.split("\t");

for (int x=1; x<res.length; x++){

if (!res[x].equals("\t")){

secondo= res[x];

}

}

primo=res[0];

Utilizziamo i
“multiple inserts”
per velocizzare le primo=res[0];

if (primo.contains("(")){

int indice = primo.indexOf("(");

primo = primo.substring(0,indice);

}

out.append("('"+movieid+"','"+primo+"','"+secondo+"',null,null,null,null,null,null,null,null,null),\n");

nextStr = filebuf.readLine();// legge una riga del file

movieid++;

}

filebuf.close(); // chiude il file

out.close();

}

}

per velocizzare le
operazioni in fase
di popolamento

actors.LISTactors.LIST (relativo alle attrici)(relativo alle attrici)

THE ACTRESSES LIST
==================
Name Titles
---- ------
'La Mueque' Tarantos, Los (1963) [Cantaor] <17>

'La Tata' Castro, Maria Tereza "Granja tolima, La" (2004) [Herself]

'La Veneno', Cristina Secreto de la veneno, El (1997) (V) <1>
Venganza de la veneno, La (1997) (V) <1>
"Aquí hay tomate" (2003) {(2006-10-11)} [Herself]

't Hart, Josine Barbiere di Siviglia, Il (1992) (TV) [Mime artists] <11>
Nieuwe moeder, De (1996) [Vrouw in trein] <23>

't Seyen, Hilda Moedige bruidegom, De (1952) [Moeder vanTinneke]

ParserParser Java per Java per actors.LISTactors.LIST
public class actresses {

public static void main (String[] args) throws Exception{
/*variabili*/

FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina
seminario\\tesina\\finalScripts\\actresses.sql");
PrintWriter out=new PrintWriter(fi);
FileWriter fi3 = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina
seminario\\tesina\\finalScripts\\actresses2movie.sql");
PrintWriter out3=new PrintWriter(fi3);

FileReader f = new FileReader("G:\\Documents and Settings\\cristiano\\Desktop\\tesina
seminario\\tesina\\file IMDB\\actresses.txt");

Connessione
seminario\\tesina\\file IMDB\\actresses.txt");
BufferedReader filebuf = new BufferedReader(f);
Connection conn2 = null;

ResultSet rs3=null;
try

{
String userName = "root";
String password = "041524";
String url = "jdbc:mysql://localhost/imdb";
Class.forName ("com.mysql.jdbc.Driver").newInstance ();
conn2 = DriverManager.getConnection (url, userName, password);
//System.out.println ("Database connection established");

}
catch (Exception e)
{
e.printStackTrace();

System.err.println ("Cannot connect to database server");
}

Connessione
al DB

out.print("INSERT IGNORE INTO actorVALUES\n");
out3.print("INSERT IGNORE INTO actor2movie VALUES\n");

String nextStr;
nextStr = filebuf.readLine();

while (!nextStr.equals("THE ACTRESSES LIST")) {
nextStr=filebuf.readLine();

}
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();

nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();

}
while (nextStr!=null){

try{
if (nextStr.equals("SUBMITTING UPDATES")){

System.out.println("Actresses inseriti nel db");
break;break;

}
nextStr = nextStr.replace("'","");
if(nextStr.equals("")){

attoreid++;
nextStr=filebuf.readLine();

}
if (nextStr.startsWith("\t")){

secondo=nextStr;
secondo=secondo.replace("'","");
secondo=secondo.replace("\t","");
if (secondo.contains("(")){

int aperta=secondo.indexOf("(");
int chiusa=secondo.indexOf(")");
year = secondo.substring(aperta+1,chiusa);

}

else {year=null; }
if (secondo.contains("[")){

int aperta2=secondo.indexOf("[");
int chiusa2=secondo.indexOf("]");
as = secondo.substring(aperta2+1,chiusa2); }

else {as=null; }}
else {

primo=nextStr;
primo=primo.replace("'","");
int tab=primo.indexOf("\t");
nomecognome = primo.substring(0,tab);
if (nomecognome.contains(",")){

int virgola=nomecognome.indexOf(",");
cognome = nomecognome.substring(0,virgola);
nome= nomecognome.substring(virgola+2,tab); }

else {nome = null;
cognome = nomecognome; }

Utilizziamo i
“multiple inserts” cognome = nomecognome; }

out.append("('"+attoreid+"','"+nome+"','"+cognome+"','F'),\n");
secondo=primo.substring(tab);
secondo=secondo.replace("'","");
secondo=secondo.replace("\t","");
if (secondo.contains("(")){

int aperta=secondo.indexOf("(");
int chiusa=secondo.indexOf(")");
year = secondo.substring(aperta+1,chiusa); }

else {year=null;}
if (secondo.contains("[")){

int aperta2=secondo.indexOf("[");
int chiusa2=secondo.indexOf("]");
as = secondo.substring(aperta2+1,chiusa2);

}
else {

as=null;
}

“multiple inserts”
per velocizzare le
operazioni in fase
di popolamento

}
if (secondo.contains("[")){

int quadra=secondo.indexOf("[");
secondo=secondo.substring(0,quadra);
}

if (secondo.contains("(")){
int tonda=secondo.indexOf("(");

secondo=secondo.substring(0,tonda);

}
try{

Statement s2 = conn2.createStatement();

rs3=s2.executeQuery("SELECT id FROM moviesWHERE title='"+secondo+"' and year='"+year+"'");

rs3.last();
movieid =(Integer)rs3.getObject(1);

}
query al DB
per trovare }

catch(Exception e){

}
out3.append("('"+attoreid+"','"+movieid+"','"+as+"'),\n");

nextStr = filebuf.readLine();// legge una riga del file
}
catch(Exception e){

e.printStackTrace();
break;

}
}
filebuf.close(); // chiude il file
out.close();
}

}

per trovare
l'id del film

"multiple
insert" nella
relazione

actor2movie

script SQL (script SQL (moviesmovies))
INSERT IGNORE INTO moviesVALUES
('1','#1 ','2005',null,null,null,null,null,null,null,null,null),
('2','#1 Fan: A Darkomentary ','2005',null,null,null,null,null,null,null,null,null),
('3','#28 ','2002',null,null,null,null,null,null,null,null,null),
('4','#2: Drops ','2004',null,null,null,null,null,null,null,null,null),
('5','#7 Train: An Immigrant Journey, The
','2000',null,null,null,null,null,null,null,null,null),
('6','#Bfl O {ggGX = STwWcfl x 2s4 ','1963',null,null,null,null,null,null,null,null,null),

NOTARE
L'INSERIMENTO

MULTIPLO

('6','#Bfl O {ggGX = STwWcfl x 2s4 ','1963',null,null,null,null,null,null,null,null,null),
('7','$ ','1971',null,null,null,null,null,null,null,null,null),
('8','$1,000 Reward ','1913',null,null,null,null,null,null,null,null,null),
('9','$1,000 Reward ','1915',null,null,null,null,null,null,null,null,null),
('10','$1,000 Reward ','1923',null,null,null,null,null,null,null,null,null),
('11','$1,000,000 Reward, The ','1920',null,null,null,null,null,null,null,null,null),
('12','$10,000 Under a Pillow ','1921',null,null,null,null,null,null,null,null,null),
('13','$100 & a T-Shirt: A DocumentaryAbout Zines in the Northwest
','2004',null,null,null,null,null,null,null,null,null),
('14','$100,000 ','1915',null,null,null,null,null,null,null,null,null),
('15','$100,000 Bill, The ','1915',null,null,null,null,null,null,null,null,null),
('17','$100,000 Pyramid, The ','2001',null,null,null,null,null,null,null,null,null),

script SQL (script SQL (actorsactors))
INSERT IGNORE INTO actorVALUES('1','null','La Mueque','F'),('2','Maria
Tereza','La Tata Castro','F'),('3','Cristina','La Veneno','F'),('4','Josine','t
Hart','F'),('5','Hilda','t
Seyen','F'),('6','Moni','ya','F'),('7','Martha','103','F'),('8','Sharon','10X','F'),('9','Nicole','1
1:11','F'),('10','null','12 Elite Girls','F'),('11','Die','12 Elite
Girls','F'),('12','Rachel','18','F'),('13','null','1988 Montclair Squad','F'),('14','Die','20
Wienerinnen','F'),('15','null','2004 Buffalo Jills Cheerleaders','F'),('16','Diamond','4
Ever','F'),('17','null','4 Non
Blondes','F'),('18','Colt','45','F'),('19','Cat','9','F'),('20','Kat','9','F'),('21','Suilma','AAlitalBlondes','F'),('18','Colt','45','F'),('19','Cat','9','F'),('20','Kat','9','F'),('21','Suilma','AAlital
eb','F'),('22','Mrs.','ACosta','F'),('23','Michele','ACourt','F'),

INSERT IGNORE INTO actor2movie VALUES
('91784','425331','Edith'),('91784','443564','Kamen'),('91784','478275','Sister
Candida'),('91784','478583','null'),('91785','33484','Corinna
Gerber'),('91785','178468','null'),('91785','278096','null'),('91785','314761','Rosi'),
('91785','314810','null'),('91785','383550','null'),('91785','497686','Erika
Hanson'),('91785','536953','Selma Kremer'),

Schema ER Schema ER

Schema LogicoSchema Logico
MOVIES(ID,title,year,runtime,sound,genre,colortype,castcoverage,crewcoverage,votes,rank,m

paa)

inclusione: MOVIES[ID] ⊆ releasein[MOVIE]

inclusione: MOVIES[ID] ⊆ musicby[MOVIE]

inclusione: MOVIES[ID] ⊆ lang2movie[MOVIE]

inclusione: MOVIES[ID] ⊆ writerby[MOVIE]

inclusione: MOVIES[ID] ⊆ prodcompany2movie[MOVIE]

inclusione: MOVIES[ID] ⊆ actor2movie[MOVIE]

⊆

⊆

⊆

⊆

inclusione: MOVIES[ID] ⊆ prodby[MOVIE]

inclusione: MOVIES[ID] ⊆ designer2movie[MOVIE]

inclusione: MOVIES[ID] ⊆ distributor[MOVIE]

inclusione: MOVIES[ID] ⊆ located[MOVIE]

inclusione: MOVIES[ID] ⊆ shotin[MOVIE]

FK: MOVIES[ID] ⊆ editby[MOVIE]

FK: MOVIES[ID] ⊆ proddesignby[MOVIE]

FK: MOVIES[ID] ⊆ directedby[MOVIE]

FK: MOVIES[ID] ⊆ cinematographyby[MOVIE]

……

Schema FisicoSchema Fisico
create table movies (

id int(8) primary key,

title varchar(200),

year varchar(100),

runtimes varchar(100),

sound varchar(100),

genre varchar(100),

colortype varchar(100),

crewcoverage varchar(100),

castcoverage varchar(100),

votes int(8),votes int(8),

rank float,

mpaa longtext,

index(title),

index(title,year),

unique(title,year),

check (id in (select movie from musicby)),

check (id in (select movie from writerby)),

check (id in (select movie from actor2movie)),

check (id in (select movie from prodby)),

check (id in (select movie from designer2movie)),

check (id in (select movie from distributor)),

check (id in (select movie from located)),

check (id in (select movie from shotin))

check (id in (select movie from releasein))

);

OntologiaOntologia

� “Descrizione formale esplicita dei concetti di
un dominio”.

� Essa contiene:

◦ Un insieme di classi (concetti rilevanti)◦ Un insieme di classi (concetti rilevanti)

◦ Un insieme di relazioni tra queste classi

◦ Un insieme di proprietà attribuite a ciascun
concetto

◦ Un insieme di restrizioni sulle proprietà

OWL (OWL (ontologyontology web web languagelanguage))
OWL OntologyWeb Language, è una raccomandazione del W3C.

� Linguaggio per esprimere le ontologie

� Tre tipi di OWL:

◦ OWL Lite, versione sintatticamente più semplice che ◦ OWL Lite, versione sintatticamente più semplice che
permette di esprimere una gerarchia di classi e semplici
restrizioni

◦ OWL DL, versione intermedia basata sulle logiche descrittive,
offre un potere espressivo elevato mantenendo completezza
e decidibilità

◦ OWL FULL, offre la massima espressività senza offrire alcuna
garanzia circa completezza e decidibilità

DescriptionDescription LogicLogic

Le logiche descrittive (DL) sono frammenti decidibili della
FOL per esprimere la conoscenza in termini di:
◦ concetti atomici (predicati unari)
◦ ruoli atomici (predicati binari)
◦ individui (costanti)

Una base di conoscenza in DL comprende:Una base di conoscenza in DL comprende:
◦ TBox: insieme di assiomi terminologici, ovvero il

vocabolario del dominio applicativo (concetti e
ruoli)

◦ ABox: contiene asserzioni circa gli individui che
popolano il mondo in oggetto, assegnando loro un
nome e asserendo le loro proprietà

DLDL--Lite familyLite family

• Description Logics (DLs) underlie the standard ontology languages for the

Semantic Web (i.e., OWL, OWL-DL)

• DL-Lite is a family of DLs optimized according to the tradeoff between expressive

power and data complexity

• Two maximal languages that enjoy FOL-rewritability: DL-LiteF, DL-LiteR
(we use simply DL-Lite to refer to both languages)

• With minimal additions to DL-Lite, data complexity jumps to NLOGSPACE or

above

�We lose FOL-rewritability

Provides an answer to our basic question: For which ontology languages can we

answer queries over an ontology efficiently (in data complexity)?

DLDL--LiteLiteFF

DL-LiteF

Ontology language:

• Concept inclusion assertions: Cl ⊑ Cr, with:

Cl →A | ∃R | Cl 1 ⊓ Cl 2

Cr →A | ∃R | ￢A | ￢∃R

R → P | P−

∃ ⊓

∃ ∃

R → P | P−

• Functionality assertions: (funct R)

Database facts: A(c), P(c, d), with c, d constants

Observations:

• Captures all the basic constructs of ER and UML Class Diagrams

• Notable exception: covering constraints in generalizations

…continua…continua DLDL--LiteLite

� Capturing basic ontology constructs in DL-
Lite

� ISA between classes �A1 ⊑A2

� disjointness between classes �A1 ⊑￢A2

� domain and range of relations � ∃P ⊑A1 ∃P-

⊑

⊑ ∃ ⊑ ∃

⊑

⊑

� domain and range of relations � ∃P ⊑A1 ∃P-

⊑A2

� mandatory participation �A1 ⊑ ∃P A2 ⊑ ∃P-

� functionality of relations (in DL-LiteF)� (funct P)
(funct P)

� ISA between relations (in DL-LiteR)� R1 ⊑ R2

DLDL--Lite Lite exampleexample

Manager ⊑ Employee
AreaManager ⊑ Manager
TopManager ⊑ Manager
AreaManager ⊑￢TopManager
∃WorksFor ⊑ Employee
∃ ⊑

⊑ ∃

⊑

∃WorksFor ⊑ Employee
∃WorksFor− ⊑ Project
Project ⊑ ∃WorksFor−
(functWorksFor)
(functWorksFor−)
...
Note: in DL-Lite we cannot capture
completeness of the hierarchy

DLDL--LiteLiteRR

Ontology language:

• Concept inclusion assertions: Cl ⊑ Cr, with:

Cl →A | ∃R | Cl 1 ⊓ Cl 2

Cr →A | ∃R | ￢A | ￢∃R | ∃R.A

R → P | P−

⊑• Role inclusion assertions: R1 ⊑ R2

Database facts: A(c), P(c, d), with c, d constants

Properties:

• Drops functional restrictions in favor of ISA between roles

• Extends (the DL fragment of) RDFS

QueryQuery answeringanswering in DLin DL--LiteLite

Given a CQ q, an ontology O, and a database D, we
compute cert(q,O,D) as follows:

1. Close ontology O wrt disjointness assertions and
check for satisfiability wrt D

2. Using O, reformulate CQ q as a union rq,O of CQs
3. Evaluate rq,O directly over D using the RDBMS3. Evaluate rq,O directly over D using the RDBMS

Correctness of this algorithm shows FOL-rewritability
of query answering in DL-Lite

�Query answering over DL-Lite ontologies can be done
using RDBMS technology

�Prototype system implemented: QuOnto

DLDL--Lite Lite complexitycomplexity resultsresults

• Consistency checking is
– polynomial in the size of the ontology and of the
database

• Query answering is
– exponential in the size of the query (NP-complete)– exponential in the size of the query (NP-complete)
– polynomial in the size of the ontology and of the
database (in fact LOGSPACE in the database)

Can we further extend these results to more
expressive ontology languages?

Essentially NO!

DLDL--LiteLiteAA
To speak about DL-LiteA we first have to introduce the DL DL-LiteFR, that combines the main features of two

DLs

presented previously, called DL-LiteF and DL-LiteR respectively, and forms the basics of

DL-LiteA. In providing the specification of our logics, we use the following notation:

– A denotes an atomic concept, B a basic concept, and C a general concept;

– D denotes an atomic value-domain, E a basic value-domain, and F a general

value-domain;

– P denotes an atomic role, Q a basic role, and R a general role;

– UC denotes an atomic concept attribute, and VC a general concept attribute;– UC denotes an atomic concept attribute, and VC a general concept attribute;

– UR denotes an atomic role attribute, and VR a general role attribute;

– TC denotes the universal concept, TD denotes the universal value-domain.

Given a concept attribute UC (resp. a role attribute UR), we call the domain of UC

(resp. UR), denoted by δ(UC) (resp. δ(UR)), the set of objects (resp. of pairs of objects)

that UC (resp. UR) relates to values, and we call range of UC (resp. UR), denoted

by ρ(UC) (resp. ρ(UR)), the set of values that UC(resp. UR) relates to objects (resp.

pairs of objects). Notice that the domain δ(UC) of a concept attribute UC is a concept,

whereas the domain δ(UR) of a role attribute UR is a role. Furthermore, we denote

with δF (UC) (resp. δF (UR)) the set of objects (resp. of pairs of objects) that UC (resp.

UR) relates to values in the value-domain F. In particular, DL-LiteFR expressions are

defined as in the next slide.

……
– Concept expressions:

B ::= A | ∃Q | δ(UC)

C ::= T C | B | ¬B | ∃Q.C | δF (UC) | ∃ δ F (UR) | ∃ δ F (UR)
-

– Value-domain expressions (rdfDataType denotes predefined
value-domains such

as integers, strings, etc.):

E ::= D | ρ(U) | ρ(U)E ::= D | ρ(UC) | ρ(UR)

F ::= T D | E | ¬E | rdfDataType

– Attribute expressions:

VC ::= UC | ¬UC

VR ::= UR | ¬ UR

– Role expressions:

Q ::= P | P- | δ(UR) | δ(UR)
-

R ::= Q | ¬Q | δ F (UR) | δ F (UR)
-

……
A DL-LiteFR knowledge base (KB) K = <T , A> is constituted by two

components:

a TBox T , used to represent intensional knowledge, and an ABox A,
used to represent extensional knowledge. DL-LiteFR TBox
assertions are of the form:

B ⊆ C concept inclusion assertion

Q ⊆ R role inclusion assertion

⊆

⊆

⊆

Q ⊆ R role inclusion assertion

E ⊆ F value-domain inclusion assertion

UC ⊆VC concept attribute inclusion assertion

UR ⊆VR role attribute inclusion assertion

(funct P) role functionality assertion

(funct P-) inverse role functionality assertion

(funct UC) concept attribute functionality assertion

(funct UR) role attribute functionality assertion

……
A DL-Lite A knowledge base is pair <T , A>, where A is a DL-Lite FR

ABox, and T is a DL-Lite FRTBox satisfying the following conditions:

1. for every atomic or inverse of an atomic role Q appearing in a concept of the form

∃ Q.C, the assertions (funct Q) and (funct Q-) are not in T ;

2. for every role inclusion assertion Q ⊆ R in T , where R is an atomic role or the

inverse of an atomic role, the assertions (funct R) and (funct R-) are not in T ;

⊆3. for every concept attribute inclusion assertion UC ⊆ VC in T , where VC is an

atomic concept attribute, the assertion (functVC) is not in T ;

4. for every role attribute inclusion assertion UR ⊆ VR in T , where VR is an atomic

role attribute, the assertion (functVR) is not in T .

Roughly speaking, a DL-LiteA TBox imposes the condition that every functional role cannot be specialized by using it in the

right-hand side of role inclusion assertions; the same condition is also imposed on every functional (role or concept) attribute.

It can be shown that functionalities specified in a DL-LiteA TBox are not implicitly propagated in the TBox, and that this allows for

LOGSPACE query answering.

Mapping…Mapping… whatwhat isis thisthis??

……

An An exampleexample

Mapping…howMapping…how manymany??

GAV vs LAV GAV vs LAV exampleexample

LAV LAV formalizationformalization

LAV LAV exampleexample

GavGav formalizationformalization

GavGav exampleexample

ExampleExample ofof queryquery processingprocessing

GavGav & & LavLav: : comparisoncomparison

IMDbIMDb: : mappingmapping

A DL-LiteA ontology with mappings is characterized by a triple

Om =<T,M,DB> such that:

� T is a DL-LiteATBox

� DB is a relational database

� M is a set of mapping assertion, partitioned into two sets, Mt and Ma

Where:

Mt is a set of so-called typing mapping assertions, each one of the form

φ�Ti

where φ is a query of arity 1 over DB denoting the projection of one relation over one of its columns, and

Ti is one of the DL-LiteA data types;

Ma is a set of data-to-object mapping assertions (or simply mapping assertions), each one of the form

φ�ψ

where φ is an arbitrary SQL query of arity n>0 over DB, ψ is a conjunctive query over T of arity n’>0
without non distinguished variables, that possibly involves variable terms. A variable term is a term of
the same form as the object terms introduced above, with the difference that variables appear as
argument of the function. In other words, a variable terms has the form f(z), where f is a function
symbol in Λ of arity m, and z denotes an m-tuple of variables.

TypingTyping mappingmapping assertionassertion exampleexample

� Mt1 : SELECT id FROM ACTOR ⤳ xsd:int

� Mt2 : SELECT name FROM ACTOR ⤳ xsd:string

⤳

⤳

� Mt3: SELECT surname FROM ACTOR ⤳ xsd:string

� Mt4: SELECT sex FROM ACTOR ⤳ xsd:string

� Mt5: SELECT actor FROM actor2movie ⤳ xsd:int

DataData--toto--objectobject mappingmapping assertionsassertions
exampleexample

Λ(OBJECT VARIABLE TERMS)={actor(x)}

Mm1: SELECT ID,name,surname,sex

FROM ACTOR

ACTOR(actor(ID)),
ID(actor(ID),ID),name(actor(ID),name),surn
ame(actor(ID),surname),sex(actor(ID),sex)

RiferimentiRiferimenti

� www.imdb.com

� Dispense tratte dal corso di “seminario di ingegneria del software”

� Diego Calvanese,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. Linking Data to Ontologies:
The Description Logic DL-LiteA . In Proc. of the 2006 International Workshop
on OWL: Experiences and directions (OWLED 2006).on OWL: Experiences and directions (OWLED 2006).

� Diego Calvanese,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. MASTRO-I: Efficient
integration of relational data through DL ontologies. In Proc. of the 2007
Description Logic Workshop (DL 2007).

� Diego Calvanese,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. Linking Data to Ontologies.

