o’ —i% SAP] ENZA

LINIVERSITA DI ROMA

SEMINARIO INGEGNERIA DEL SOFTWARE
a.a. 2006/2007

INTERNET MOVIE DATABASE

Studente: Cristiano Sticca
Docente: Prof. Giuseppe De Giacomo

OBIETTIVI

e Creazione di un DB locale rappresentante
tutti i film prodotti dall’inizio della
cinematografia ad oggi

e Generazione schema ER dell’ “INTERNET
MOVIE DB”

» Realizzazione schema logico

* Realizzazione schema fisico

* Creazione ontologia in DL-Lite,

» Creazione mapping tra DB e ontologia
e Verifica su QuOnto

PROBLEMATICHE

* Realizzazione di parser java per la
creazione di script SQL

¢ ldentificazione struttura dei file importati
dal sito

e Tempo per popolare il DB!!!

File from IMDb...

Il sito permette il download di
determinati file che rappresentano il
contenuto del DB su internet al seguente
indirizzo

Come accennato precedentemente, il
problema sostanziale e che tali file (40 circa)
hanno una formattazione pressoche diversa
'uno dall’altro.

E questo quindi ha comportato la realizzazione
di altrettanti parser scritti in Java.

File from IMDDb... an example

Vediamo come possono essere strutturati
alcuni di questi file.

Consideriamo i seguenti: movies.LIST and
actors.LIST

Per una questione di leggibilita sono stati
rinominati in .txt

movies.LIST

CRC: 0x9A686F55 File: movies.list Date: Fri Sep 14 01:00:00 2007
Copyright 1991-2007 The Internet Movie Database Ltd.All rights reserved.

movies.list

2007-09-12

MOVIES LIST

#1 (2005) 2005
#| Fan: A Darkomentary (2005) (V) 2005

#28 (2002) 2002
#2: Drops (2004) 2004

#7 Train: An Immigrant Journey, The (2000) 2000

$ (1971) 1971

$1,000 Reward (1913) 1913
$1,000 Reward (1915) 1915
$1,000 Reward (1923) 1923
$1,000,000 Reward, The (1920) 1920

$10,000 Under a Pillow (1921) 1921

Crealo
Script SQL

Legge il file
sorgente

Inserisce

valori nello
script

Parser Java per movies.LIST

public class movies {
public static void main (String[] args) throws Exception{
String primo,secondo;
secondo = null;
int movieid=0;

String[]res;

FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\finalScripts\\movies.sql");
PrintWriter out=new PrintWriter(fi);

FileReader f = new FileReader("G:\\Documents and Settings\\cristiano\\Desktop\\tesina seminario\\tesina\\file IMDB\\movies.txt");
BufferedReader filebuf = new BufferedReader(f);

String nextStr;

nextStr = filebuf.readLine();

while (InextStr.equals("MOVIES LIST")){
nextStr = filebuf.readLine();
}
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
out.print("INSERT IGNORE INTO movies VALUES\n");

while (nextStr!=null){

if (nextStr.equals(" W
System.out.printIn("Movies inseriti nel db");
break;

nextStr=nextStr.replace("","");

res=nextStr.split("\t");

for (int x=1; x<res.length; x++){

if (res[x].equals("\t")){

secondo= res[x];

Utilizziamo i
“multiple inserts”

per velocizzare le [0 .
operazioni in fase ontains("(")){
fal] p0p0|amento int indice = primo.indexOf("(");

primo = primo.substring(0,indice);

}
out.append("(

+movieid+","+primo+","+secondo+",null,null,null,null,null,null,null,null,null),\n");

nextStr = filebuf.readLine();// legge una riga del file
movieid++;

}

filebuf.close(); // chiude il file

out.close();

actors.LIST (relativo alle attrici)

THE ACTRESSES LIST

Name Titles

'La Mueque' Tarantos, Los (1963) [Cantaor] <I7>
'La Tata' Castro, Maria Tereza "Granja tolima, La" (2004) [Herself]
'LaVeneno', Cristina Secreto de la veneno, El (1997) (V) <I>
Venganza de la veneno, La (1997) (V) <I>
"Aqui hay tomate" (2003) {(2006-10-11)} [Herself]

't Hart, Josine Barbiere di Siviglia, Il (1992) (TV) [Mime artists] <I|>
Nieuwe moeder, De (1996) [Vrouw in trein] <23>

't Seyen, Hilda Moedige bruidegom, De (1952) [Moeder van Tinneke]

Parser Java per actors.LIST

public class actresses {
public static void main (String[] args) throws Exception{
[*variabili*/
FileWriter fi = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina
seminario\\tesina\\finalScripts\\actresses.sql");
PrintWriter out=new PrintWriter(fi);
FileWriter fi3 = new FileWriter("G:\\Documents and Settings\\cristiano\\Desktop\\tesina
seminario\\tesina\\finalScripts\\actresses2movie.sql");
PrintWriter out3=new PrintWriter(fi3);

FileReader f = new FileReader("G:\\Documents and Se
seminario\\tesina\\file IMDB\\actresses.txt");

BufferedReader filebuf = new BufferedReader(f); Connessione
Connection conn2 = null; al DB
ResultSet rs3=null;
try
{

String userName = "root";

String password = "041524";

String url = "jdbc:mysq|://localhost/imdb";

Class.forName ("com.mysql.jdbc.Driver").newlnstance ();

conn?2 = DriverManager.getConnection (url, userName, password);
/ISystem.out.printin ("Database connection established");

}

catch (Exception e)

{

e.printStackTrace();
System.err.println ("Cannot connect to database server");

out.print("INSERT IGNORE INTO actor VALUES\n");
out3.print("INSERT IGNORE INTO actor2movie VALUES\n");
String nextStr;
nextStr = filebuf.readLine();
while (nextStr.equals("THE ACTRESSES LIST")) {
nextStr=filebuf.readLine();
}
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();
nextStr = filebuf.readLine();

}

while (nextStr!=null){
try{
if (nextStr.equals("SUBMITTING UPDATES")){

System.out.printin("Actresses inseriti nel db");

break;

nextStr = nextStr.replace("","")

if(nextStr.equals(")){
attoreid++;
nextStr=filebuf.readLine();

’

}
if (nextStr.startsWith("\t")){
secondo=nextStr;
secondo=secondo.replace("","")
secondo=secondo.replace("\t","");
if (secondo.contains("(")){
int aperta=secondo.indexOf("(");

int chiusa=secondo.indexOf(")");

year = secondo.substring(aperta+|,chiusa);
} ﬁ

’

else {year=null;}
if (secondo.contains("[")){
int aperta2=secondo.indexOf("[");
int chiusa2=secondo.indexOf("]");
as = secondo.substring(aperta2+I,chiusa2); }
else {as=null; }}

else {
primo=nextStr;
primo=primo.replace("","");
int tab=primo.indexOf("\t");
nomecognome = primo.substring(0,tab);
if (hnomecognome.contains(",")){
int virgola=nomecognome.indexOf(",");
cognome = nomecognome.substring(0,virgola);
nome= nomecognome.substring(virgola+2,tab); }
Utilizziamo i else {nome = null;
“multiple inserts” cognome = nomecognome; }
per velocizzare le out.append("("+attoreid+","+nome+","+cognome+",'F"),\n");
operazioni in fase secondo=primo.substring(tab);
di popolamento secondo=secondo.replace("","");

secondo=secondo.replace("\t","");
if (secondo.contains("(")){
int aperta=secondo.indexOf("(");
int chiusa=secondo.indexOf(")");
year = secondo.substring(aperta+|,chiusa); }
else {year=null;}
if (secondo.contains("[")){
int aperta2=secondo.indexOf("[");
int chiusa2=secondo.indexOf("]");
as = secondo.substring(aperta2+1,chiusa2);

else {
as=null;

}

if (secondo.contains("[")){
int quadra=secondo.indexOf("[");
secondo=secondo.substring(0,quadra);
}

if (secondo.contains("(")){
int tonda=secondo.indexOf("(");

secondo=secondo.substring(0,tonda);

}

try{
Statement s2 = conn2.createStatement();

rs3=s2.executeQuery("SELECT id FROM movies WHERE title=""+secondo+" and year="'+year+"");

rs3.last();
query al DB movieid =(Integer)rs3.getObject(l);
per trovare)

catch(Exception e){

I'ild del film

}
out3.append("("'+attoreid+","+movieid+","+as+""),\n");
nextStr = filebuf.readLine();// legge una riga del file
}
catch(Exception e){
e.printStackTrace();

break; "multiple
} insert” nella
} relazione
filebuf.close(); // chiude il file actor2movie
out.close();
}

}

NOTARE

script SQL (movies) D

INSERT IGNORE INTO movies VALUES

('1,'#1 ',"2005',null,null,null,null,null,null,null,null,null),

(‘2','"#1 Fan:A Darkomentary ',"”2005',null,null,null,null,null,null,null,;null,null),
('3','#28 ',"2002',null,null,null,null,null;null,null,null,null),

(‘4','#2: Drops ',2004",null,null,null,null,null,;null,null,null,null),

('5','#7 Train: An Immigrant Journey, The
','2000',null,null,null,null,null,null;null,null;null),

('6','#Bfl O {ggGX = STWWcfl x 254 ,'1963',null,null,null,null,null,null,;null,null,null),
(‘7%'$ 197 1" ,null,;null,null,null;null,null,null,null,null),

('8','$1,000 Reward ','| 913",null,null,null;null,null,null,;null,null,null),
('9','$1,000 Reward ','| 915',null,null,null;null,null,null,;null,null,null),
('10,'$1,000 Reward ','1923',null,null,null,null,null,null,null;null,null),
('1'1,'$1,000,000 Reward, The ','1920',null,null,null,null,null,null,null,null,null),
('12','$10,000 Under a Pillow ",'1921",null,null,null,null,null,null,null,null,null),
('13,'$100 & a T-Shirt: A Documentary About Zines in the Northwest
','2004',null,null,null,null,null,null;null,null;null),

('14','$100,000 "' 1 915" ;null,null,null,null,null,null,null,null;null),
('15','$100,000 Bill, The ','1915",null,null,null,null,null,null,null;null,null),
('17','$100,000 Pyramid, The ',”200|",null,null,null,null,null,null,null,null,null),

script SQL (actors)

INSERT IGNORE INTO actor VALUES('I','null','La Mueque','F"),('2','Maria
Tereza','La Tata Castro','F'),('3','Cristina’,'La Veneno','F'),('4','Josine’,'t
Hart','F"),('5','Hilda’,'t

Seyen','F),('6','Moni','ya",'F"),('7",'Martha’,' | 03",'F),('8",'Sharon’,' | 0X",'F"),('9",'Nicole',' |
:01S'FY), (10, 'null',' 12 Elite Girls','F'),('11','Die’,' | 2 Elite

Girls','F"),('12','Rachel','I 8','F),('1 3','null','| 988 Montclair Squad','F"),('14','Die',"20
Wienerinnen','F'),('15','null',"”2004 Buffalo Jills Cheerleaders','F"),('16','Diamond','4
Ever','F"),('17','null','4 Non
Blondes','F),('18','Colt','45",'F"),('19','Cat,'9",'F'),('20','Kat",'"9",'F"),('2I",'Suilma’,'AAlital
eb','F'),('22",'Mrs."ACosta’,'F'),('23",'Michele','ACourt','F'),

INSERT IGNORE INTO actor2movie VALUES
('91784','425331','Edith"),('91784','443564','Kamen"),('91784','478275",'Sister
Candida'),('91784','478583','null'),("91785','33484','Corinna
Gerber'),('91785",'178468','null"),('91785','278096','null'),("91785','31476 1','Rosi'),
('91785,'314810",'null’),('91785','383550",'null'),("91785','497686','Erika
Hanson'),('91785','536953','Selma Kremer'),

Schema ER

name sumarme name surmame title title
? T nare word name sumame
trackname LAMGUAGE ? ?
WRITER — DESIGNER CINEMATOGRAPHER ARATITLE IT-ARATITLE

name surmame

BOUNDTRACK 1D authar

name surname
name surmame

? A
EDITOR v
& & &

name surname

COMPOSER

name surame akaname akasumame

?

ACTOR 2 i AKAMAME

J} name surname

sex ?

(1M

otes‘castcoverage o

I trivia

TRIVIA

PRODDESIGHNER

spoofed version 1D featured-in

t 7

] follows
o

LIMK

d-in referenced

referenc

followed features remake
D credit

PRODCOMPANY

SFHCOMPANY

CERTIFICATE

COUNTRY

Schema Logico

MOVIES(ID.title,year,runtime,sound,genre,colortype,castcoverage,crewcoverage,votes,rank,m
paa)

inclusione: MOVIES[ID] < releasein[MOVIE]

inclusione: MOVIES[ID] € musicby[MOVIE]

inclusione: MOVIES[ID] € lang2movie[MOVIE]
inclusione: MOVIES[ID] < writerby[MOVIE]
inclusione:MOVIES[ID] € prodcompany2movie[MOVIE]
inclusione: MOVIES[ID] € actor2movie[MOVIE]
inclusione:MOVIES[ID] € prodby[MOVIE]

inclusione: MOVIES[ID] € designer2movie[MOVIE]
inclusione: MOVIES[ID] < distributor[MOVIE]
inclusione: MOVIES[ID] € located[MOVIE]

inclusione: MOVIES[ID] < shotin[MOVIE]
FK:MOVIES[ID] € editby[MOVIE]
FK:MOVIES[ID] € proddesignby[MOVIE]
FK:MOVIES[ID] € directedby[MOVIE]
FK:MOVIES[ID] € cinematographyby[MOVIE]

Schema Fisico

create table movies (
id int(8) primary key,
title varchar(200),
year varchar(100),
runtimes varchar(100),
sound varchar(100),
genre varchar(100),
colortype varchar(100),
crewcoverage varchar(100),
castcoverage varchar(100),
votes int(8),
rank float,
mpaa longtext,
index(title),
index(title,year),
unique(title,year),
check (id in (select movie from musicby)),
check (id in (select movie from writerby)),
check (id in (select movie from actor2movie)),
check (id in (select movie from prodby)),
check (id in (select movie from designer2movie)),
check (id in (select movie from distributor)),
check (id in (select movie from located)),
check (id in (select movie from shotin))

check (id in (select movie from releasein))

)

Ontologia

 “Descrizione formale esplicita dei concetti di
un dominio”.

e Essa contiene:

> Un insieme di classi (concetti rilevanti)

> Un insieme di relazioni tra queste classi

> Un insieme di proprieta attribuite a ciascun
concetto

> Un insieme di restrizioni sulle proprieta

OWL (ontology web language)

OWL Ontology Web Language, € una raccomandazione del W3C.

. Linguaggio per esprimere le ontologie

. Tre tipi di OWL:

o OWL Lite, versione sintatticamente piu semplice che
permette di esprimere una gerarchia di classi e semplici
restrizioni

o OWL DL, versione intermedia basata sulle logiche descrittive,
offre un potere espressivo elevato mantenendo completezza
e decidibilita

o OWL FULL, offre la massima espressivita senza offrire alcuna
garanzia circa completezza e decidibilita

Description Logic

Le logiche descrittive (DL) sono frammenti decidibili della
FOL per esprimere la conoscenza in termini di:

o concetti atomici (predicati unari)

o ruoli atomici (predicati binari)

o individui (costanti)
Una base di conoscenza in DL comprende:

o TBox:insieme di assiomi terminologici, ovvero il
vocabolario del dominio applicativo (concetti e
ruoli)

> ABox: contiene asserzioni circa gli individui che

popolano il mondo in oggetto, assegnando loro un
nome e asserendo le loro proprieta

DL-Lite family

* Description Logics (DLs) underlie the standard ontology languages for the
Semantic Web (i.e., OWL, OWL-DL)

* DL-Lite is a family of DLs optimized according to the tradeoff between expressive
power and data complexity

* Two maximal languages that enjoy FOL-rewritability: DL-Lite, DL-Liteg
(we use simply DL-Lite to refer to both languages)

* With minimal additions to DL-Lite, data complexity jumps to NLOGSPACE or
above
—>We lose FOL-rewritability

Provides an answer to our basic question: For which ontology languages can we
answer queries over an ontology efficiently (in data complexity)?

DL-Lite;

DL-LiteF
Ontology language:

» Concept inclusion assertions: Cl E Cr, with:
Cl—-A|3R|CII NCl2
Cr—A|3R|—A| —3R

R—P|P-

* Functionality assertions: (funct R)
Database facts:A(c), P(c, d), with ¢, d constants

Observations:
* Captures all the basic constructs of ER and UML Class Diagrams
* Notable exception: covering constraints in generalizations

...continua DL-Lite

» Capturing basic ontology constructs in DL-
Lite

* ISA between classes =2 Al T A2

* disjointness between classes 2> Al = —A2

e domain and range of relations 2> IP T Al 3P
C A2

* mandatory participation 2 Al = 3P A2 C 3P

* functionality of relations (in DL-Lite) = (funct P)
(funct P)

* ISA between relations (in DL-Liteg) 2 Rl = R2

DL-Lite example

Manager E Employee
AreaManager = Manager
TopManager E Manager
AreaManager © —TopManager
IWorksFor E Employee
IAWorksFor— C Project
Project E IWorksFor—

(funct WorksFor)

(funct WorksFor—)

Note: in DL-Lite we cannot capture
completeness of the hierarchy

Employee

Salary:Integer

PaySlipNumber:Integer

Works-for

Manager

{ disjoint,complete }

1.3

Project

ProjectCode:String

AreaManager

TopManager

; W |

1.9

Manages

DL-Lite,

Ontology language:

* Concept inclusion assertions: Cl = Cr, with:
Cl—-A|3R|ClIINCl2

Cr—A|3R| —A| —3R|3IR.A
R—P|P-

* Role inclusion assertions: Rl £ R2
Database facts: A(c), P(c, d), with ¢, d constants

Properties:

* Drops functional restrictions in favor of ISA between roles

* Extends (the DL fragment of) RDFS

Query answering in DL-Lite

Given a CQ g, an ontology O, and a database D, we
compute cert(q,0,D) as follows:

|. Close ontology O wrt disjointness assertions and
check for satisfiability wrt D

2. Using O, reformulate CQ q as a union r, 5 of CQs
3. Evaluate r_ o directly over D using the RDBMS

Correctness of this algorithm shows FOL-rewritability
of query answering in DL-Lite

—> Query answering over DL-Lite ontologies can be done
using RDBMS technology

- Prototype system implemented: QuOnto

DL-Lite complexity results

* Consistency checking is

— polynomial in the size of the ontology and of the
database

* Query answering is
— exponential in the size of the query (NP-complete)

— polynomial in the size of the ontology and of the
database (in fact LOGSPACE in the database)

Can we further extend these results to more
expressive ontology languages!?

Essentially NO!

DL-Lite,

To speak about DL-Lite, we first have to introduce the DL DL-Liteg,, that combines the main features of two
DLs

presented previously, called DL-Lite; and DL-Liteg respectively, and forms the basics of
DL-Lite,. In providing the specification of our logics, we use the following notation:

— A denotes an atomic concept, B a basic concept, and C a general concept;

— D denotes an atomic value-domain, E a basic value-domain, and F a general
value-domain;

— P denotes an atomic role, Q a basic role, and R a general role;

— U denotes an atomic concept attribute, and V- a general concept attribute;

— Uy denotes an atomic role attribute, and Vy a general role attribute;

— T denotes the universal concept, T, denotes the universal value-domain.

Given a concept attribute U (resp. a role attribute Uyg), we call the domain of U,
(resp. Ug), denoted by &(U) (resp. 5(Ug)), the set of objects (resp. of pairs of objects)
that U, (resp. Ug) relates to values, and we call range of U, (resp. Ug), denoted

by p(Uc) (resp. p(Ug)), the set of values that U (resp. Ug) relates to objects (resp.

pairs of objects). Notice that the domain 6(U,) of a concept attribute U is a concept,
whereas the domain 6(Ug) of a role attribute Uy is a role. Furthermore, we denote
with & (U,) (resp. 8¢ (Ug)) the set of objects (resp. of pairs of objects) that U (resp.
Ug) relates to values in the value-domain F. In particular, DL-Litegz expressions are
defined as in the next slide.

— Concept expressions:
B:=A|3Q|5Uy
C:=Tc|B|=B|3QC|8(UJ |38 (Up) |38, (Uy)-

— Value-domain expressions (rdfDatalype denotes predefined
value-domains such

as integers, strings, etc.):
E:=D|pUd | p(Up)
F:=T,|E|-E | rdfDatalype
— Attribute expressions:
VC:=U.| U,

VR:= U | 7 Ug

— Role expressions:

Q=P [P | 8(Uy) | §(Up)-
R==Q|=Q |8 (Up) | & (Up

A DlL-Liter, knowledge base (KB) K = <T ,A> is constituted by two
components:

a TBox T, used to represent intensional knowledge, and an ABox A,
used to represent extensional knowledge. DL-Liter; TBox
assertions are of the form:

B © C concept inclusion assertion

Q < R role inclusion assertion

E < F value-domain inclusion assertion

U. €V concept attribute inclusion assertion

Ur € V; role attribute inclusion assertion

(funct P) role functionality assertion

(funct P) inverse role functionality assertion
(funct U,) concept attribute functionality assertion
(funct Ug) role attribute functionality assertion

A DL-Lite , knowledge base is pair <T ,A>, where A is a DL-Lite
ABox, and T is a DL-Lite r TBox satisfying the following conditions:

|. for every atomic or inverse of an atomic role Q appearing in a concept of the form
3 Q.C, the assertions (funct Q) and (funct Q) are notinT ;

2. for every role inclusion assertion @ S R inT,where R is an atomic role or the
inverse of an atomic role, the assertions (funct R) and (funct R) are not inT ;

3. for every concept attribute inclusion assertion U. € V_inT , whereV_ is an
atomic concept attribute, the assertion (functV,) is not inT ;

4. for every role attribute inclusion assertion Uy S V,inT , where V, is an atomic
role attribute, the assertion (functVy) is notinT .

Roughly speaking, a DL-Lite, TBox imposes the condition that every functional role cannot be specialized by using it in the

right-hand side of role inclusion assertions; the same condition is also imposed on every functional (role or concept) attribute.

It can be shown that functionalities specified in a DL-Lite, TBox are not implicitly propagated in the TBox, and that this allows for
LOGSPACE query answering.

Mapping... what is this?

Data integration

Answer(Q) < = = = = Query

|
.

< — = — = (Global schema

/

s — = Sources

Global schema

Data integration

Query

e =
R] ¢ | D | T,
Q| 4 b
€ d,)

Mapping

Source schema

Source schema

An example

-

Paper

auiti;/f/

Researcher

-

] Selfcitation(x) ~+ 3z, y. cite(x,y) A author(z,x) A author(z,y)

[iigeﬁcnaﬂonii]

T

f_éeﬁ'fcfra tion: contains papers that cite
__(other) papers by the same authors

Mapping...how many!?

How is the mapping M between & and (specified?

e Are the sources defined in terms of the global schema?

Approach called source-centric, or local-as-view, or LAV

e |s the global schema defined in terms of the sources?

Approach called global-schema-centric, or global-as-view, or GAV

e A mixed approach?

Approach called GLAV

GAV vs LAV example

Global schema:

Source 1:

Source 2:

Query:

movie(T'itle, Year, Director)

european(Director)

review(T'itle, Critique)

r(Title, Year, Director) since 1960, European directors

ro(Title, Critique) since 1990

Title and critique of movies in 1998
1D, movie(7', 1998, D) A review(T', R), written
(T, R) | movie(1', 1998, D) A review(T', R) }

LAYV formalization

In LAV (with sound sources), the mapping M is constituted by a set of assertions:
S ™~ (g

one for each source element s in A, where ¢ is a query over G of the arity of s.

Given source database C, a database B for (satisfies M wrt C if foreach s € S:

C B
S (_),L:

I

In other words, the assertion means 7X (s(X) — ¢g(X)).

The mapping /M and the source database C do not provide direct information about
which data satisfy the global schema. Sources are views, and we have to answer

queries on the basis of the available data in the views.

LAV example

Global schema: movie([itle. Year. Director)
european(Director)
review(1'itle, Critique)

LAV: associated to source relations we have views over the global schema

n(T.Y,D) ~ {(T,Y,D)|movie(T,Y, D) Aeuropean(D) AY > 1960 }
n(T,R) ~ {(1,R)|movie(1.Y,D) Areview(T, R) ANY > 1990 }

The query { (7', R) | movie(1', 1998, D) A review(T,) } is processed by
means of an inference mechanism that aims at re-expressing the atoms of the global

schema in terms of atoms at the sources. In this case:

{(T,R) | (T, R) Ary(T,1998, D) }

Gav formalization

In GAV (with sound sources), the mapping /M is constituted by a set of assertions:

g ~ os

e

one for each element ¢ in Ag, where ¢ is a query over S of the arity of ¢.

Given source database C, a database B for G satisfies M wrt C if for each ¢ € G:

° 2 st

In other words, the assertion means VX (¢5(X) — ¢(X)).

Given a source database, M provides direct information about which data satisfy the
elements of the global schema. Relations in G are views, and queries are expressed
over the views. Thus, it seems that we can simply evaluate the query over the data

satisfying the global relations (as if we had a single database at hand).

Gav example

Global schema: movie(1itle, Year, Director)

european(Director)

review(T'itle, Critique)

GAV: associated to relations in the global schema we have views over the sources

movie(1,Y, D) ~ {(T,Y,D)|r(T,Y,D) }
european(D) ~ { (D) |n(T,Y,D)}
{ (

review(1', R) > T R) | ro(T,R) }

Example of query processing

The query { (7,) | movie(T", 1998, D) A review('l", R) } is processed by
means of unfolding, i.e., by expanding each atom according to its associated

definition in MM, so as to come up with source relations. In this case:

movie(7,1998 D) a review(T.R)

unfolding

Y ¥

r(1.1998.D) A 1,(T.R)

Gav & Lav: comparison

LAV: (Information Manifold, DWQ)

e Quality depends on how well we have characterized the sources
e High modularity and extensibility (if the global schema is well designed, when a

source changes, only its definition is affected)
e Query processing needs reasoning (query answering complex)

GAV: (Carnot, SIMS, Tsimmis, IBIS, Momis, DisAtDis, ...)
e Quality depends on how well we have compiled the sources into the global

schema through the mapping
e Whenever a source changes or a new one is added, the global schema needs to

be reconsidered
e Query processing can be based on some sort of unfolding (query answering

looks easier — without constraints)

IMDb: mapping

A DL-Lite, ontology with mappings is characterized by a triple
O,, =<T,M,DB> such that:

e TisaDL-Lite, TBox

* DB is a relational database

* Mis a set of mapping assertion, partitioned into two sets, M, and M,

Where:

M, is a set of so-called typing mapping assertions, each one of the form

¢>T,
where @ is a query of arity | over DB denoting the projection of one relation over one of its columns, and
T, is one of the DL-Lite, data types;

M, is a set of data-to-object mapping assertions (or simply mapping assertions), each one of the form
gl

where @ is an arbitrary SQL query of arity n>0 over DB, @ is a conjunctive query over T of arity n’>0
without non distinguished variables, that possibly involves variable terms. A variable term is a term of
the same form as the object terms introduced above, with the difference that variables appear as
argument of the function. In other words, a variable terms has the form f(z), where fis a function
symbol in A\ of arity m, and z denotes an m-tuple of variables.

Typing mapping assertion example

M, :SELECT id FROMACTOR ~ xsd:int

M,, :SELECT name FROMACTOR ~ xsd:string

M;: SELECT surname FROMACTOR ~ xsd:string

M, ,: SELECT sex FROM ACTOR ~ xsd:string

M: SELECT actor FROM actor2movie ~ xsd:int

Data-to-object mapping assertions
example

A(OBJECT VARIABLE TERMS)={actor(x)}

M_ :SELECT ID,name,surname,sex

FROM ACTOR l

ACTOR(actor(ID)),
ID(actor(ID),ID),name(actor(ID),name),surn
ame(actor(ID),surname),sex(actor(ID),sex)

Riferimenti

» Dispense tratte dal corso di “seminario di ingegneria del software”

e Diego Calvanese,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. Linking Data to Ontologies:
The Description Logic DL-Lite, . In Proc. of the 2006 International Workshop
on OWL: Experiences and directions (OWLED 2006).

e Diego Calvanese,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. MASTRO-I: Efficient
integration of relational data through DL ontologies. In Proc. of the 2007
Description Logic Workshop (DL 2007).

e Diego Calvanese,Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Riccardo Rosati. Linking Data to Ontologies.

