Universita di Roma "'La Sapienza"

Tesina per il Corso di Seminari
di Ingegneria del Software

Proff. G.De Giacomo, M.Mecella,
R.Rosati

Anno 2006-2007

Il Progetio ASTRO nella
Web Service Composition:
analisi e confronto con
il Roman Approach

Autore:
Alessandro Pagliaro

A mio Padpre,

a cui devo tutto.

Trasformero il dolore in forza

e conservero per sempre il Suo ricordo.

Sommario

INTTOAUZIONE ..ot e e e e aee e eanns 5

Parte I: Il Problema della

Web Service CompositioN.......coeeeevvvieeeeiiiieeeeeeinnn. 6
Sezione 1.1 - WS Composition BasiCs........ccceeeeuviieeeinnciiiieeennnnns 6
Sezione 1.2 - WS Respresentation...........c..eeeeveeeeeniveeencieeenennenn. 7
Sezione 1.3 - Our FOCUS........c.coviiiiiiiiiiiiiicicceceeeceeceeee 8
Parte Il: LAPProcCio ASTRO.....coueeeiiiiieeiiiiieeeee, 10
Sezione 2.1 - ASTRO Project OVerview.........ccceeevueeeerneeeeenenennn. 10

Sezione 2.2 - Notions on BPEL4WS and EAGLE Languages......11
Sezione 2.3 - Component Services and Business Requirements

1IN ASTRO...cooiiiiiee e 13
Sezione 2.4 - The ASTRO Composition Problem.......................... 15
Sezione 2.5 - Other Aspects of ASTRO Composition Efforts........ 22

Parte lll: L'Approccio del Roman Group..............uue..... 23
Sezione 3.1 - Roman Model Basics: the Community..................... 23
Sezione 3.2 - PDL Reduction of the Composition Problem........... 24
Sezione 3.3 - Roman Model Synthesis Workflow............c............. 25
Sezione 3.4 - The Current State of Advancement................ccc........ 26

Parte IV: Il Confronto tra i Due APProCCi........ceeeeeeenee.. 27
Sezione 4.1 - Similarities and Differences in the various Stages

of the Composition Workflow..........cccceecvviiiiinnnnnen. 27
Sezione 4.2 - A Graphical Glance of the two Approaches in
today's Landscape of Service Composition................ 29

Parte V: Il Toolset sviluppato nelll Ambito
del Progetto ASTRO ... 31

Sezione 5.1 - Software Components forming the Astro Suite........... 31

Sezione 5.2 - Composition Execution and Mappings...........cccuueeeee... 32
Sezione 5.3 - Process Offline Verification.........cooeueeeeeeeeeeeieieeeennnnn. 36
Sezione 5.4 - Online Process MONItoring............cceeevveeeeniiieeenneeeen. 39
Sezione 5.5 - Process Execution Simulation...........ceeveveeeeeeeineeeeennnn.. 41
CONCIUSION .ttt 43

Bibliografia

Introduzione

Il corso di Seminari di Ingegneria del Software, collocato nel biennio specialistico di Ingegneria
Informatica, mira a fornire ai suoi studenti una panoramica sulle tecnologie "di frontiera",
relative a determinate problematiche attuali del settore ancora ben lontane dall'essere risolte, che
1 ricercatori di tutto il mondo stanno esplorando, cooperando tra loro per il progresso della
comunita scientifica.

Gli argomenti affrontati nel corso hanno spaziato dalla teoria delle queries congiuntive
all'integrazione di dati, dalla composizione di servizi al territorio largamente inesplorato del
semantic web.

All'interno di questa gamma di aree di ricerca ho scelto di concentrarmi sulla Service
Composition, ovvero la disciplina che cerca di realizzare complessi e-Services (cio¢ programmi
interattivi che forniscono, solitamente tramite il web, un qualche servizio all'utente) a partire da
e-Services gia esistenti; come si vedra il problema non ¢ affatto banale, e gli approcci seguiti dai
vari gruppi di ricerca nel mondo sono molto vari, e si concentrano su aspetti di natura molto
differente.

Questa relazione si occupera in primo luogo di descrivere i risultati ottenuti dal gruppo di ricerca
composto dall'Universita di Trento e I'ITC-IRST, il Centro di Ricerca Scientifica e Tecnologica
della Fondazione Bruno Kessler; pill in particolare, alcuni dei nomi piu importanti nel progetto
sono M. Pistore, P. Traverso e P. Bertoli.

L'approccio di Service Composition delineato dal suddetto gruppo ¢ conosciuto come il Progetto
ASTRO; si parlera sia della logica teorica dietro 1'approccio, sia dei risultati concreti ottenuti dal
gruppo di ricerca.

La relazione si prefigge inoltre un secondo scopo: quello di descrivere brevemente 1'approccio
alla WS-Composition del cosiddetto Roman Group, team di ricerca formato dai professori
universitari che hanno tenuto il corso di Seminari di Ing. del Software (G.De Giacomo,
M .Mecella, D.Berardi,. D. Calvanese), e di sottolineare analogie e differenze con I'ASTRO
approach in modo da presentare al lettore un efficace confronto comparativo riguardo questa
tanto interessante quanto ancora aperta area di ricerca.

Parte I: Il Problema della Web Service Composition

Sezione 1.1 - WS Composition Basics

L'argomento centrale di questa relazione ¢ illustrare possibili metodologie per affrontare e
risolvere il complesso problema della Service Composition.
Questa prima parte introduttiva delinea brevemente gli aspetti principali del problema in esame.

Un Composite Service & un Web Service che offre servizi da una sua interfaccia come qualsiasi
altro Web Service (nel seguito si utilizzera anche il termine "e-Service" per riferirsi ai Web
Services), sebbene dal punto di vista implementativo i servizi offerti siano il risultato di
un'opportuna interazione con altri Web Services, indipendenti tra loro e non pensati a priori per
cooperare in un e-Service comune. Il problema della Service Composition ¢ il termine generico
per indicare una metodologia che ha per fine I'implementazione di Composite Services.

Per realizzare un Composite Service ¢ indispendabile disporre di strumenti adeguati, esaminando
il problema ad un alto livello di astrazione ed automatizzando il pill possibile operazioni di basso
livello, in modo che il progettista possa concentrarsi sulla Business Logic dell'applicazione.
Nella Web Service Composition non vogliamo realizzare un'integrazione fisica di moduli
software, ma piuttosto, dati dei requisiti opportunamente espressi, trovare un piano d'esecuzione
in cui siano indicati quali e-Services invocare, in che ordine farlo e come gestire condizioni di
errore € imprevisti.

In linea di massima gli strumenti necessari per risolvere il problema sono:

% un linguaggio per la rappresentazione comportamentale di Web Services, in modo da
modellare efficacemente il loro flow d'esecuzione e le funzionalita che offrono; in questa
ottica i Web Services possono essere visti come programmi interattivi e web-based che
esportano il loro comportamento in termini di una descrizione astratta e formale, utile ai
nostri scopi; si noti che possiamo usare tali linguaggi comportamentali anche per
rappresentare il Composite Service (anche detto "Target Service").

« una logica di composizione, ovvero un procedimento generale che partendo dai requisiti
(Business Requirements) e dagli e-Services di partenza (Component Services) realizzi il
Composite Service finale in una qualche forma eseguibile; questo punto rappresenta il
cuore di un approccio per la WS Composition, una sorta di algoritmo di base.

¢ un ambiente di sviluppo, preferibilmente ricco di componenti GUI, che aiuti il progettista
a creare il servizio ad alto livello, automatizzando la metodologia definita dalla logica di
composizione e operazioni low-level come la creazione di files XML.

¢ un composition engine per eseguire € monitorare le istanze della composizione trovate.

Definiamo conversazione un'interazione con un e-Services consistente nell'esecuzione
sequenziale di pill operazioni, in un particolare ordine.

Una coreografia ¢ un piano per la coordinazione di pili conversazioni, volta ad un preciso scopo
d'insieme; 1 Service Component che partecipano alla coreografia non hanno bisogno di sapere
quale sara I'effetto finale, devono solo assicurarsi di fare la loro parte.

Per sintesi di un Composite Service si intende la costruzione delle specifiche necessarie
all'esecuzione del servizio a partire da requirements ben definiti; tali specifiche sono conosciute
come Composition Schema.

L'orchestrazione &, infine, la gestione runtime dell'esecuzione del Composite Service (scheduling
di invocazioni, gestione di errori, monitoring).

Sezione 1.2 - Web Service Representation

Come gia accennato in precedenza, la composizione di e-Services ¢ interessata al
comportamento di questi ultimi, ovvero al set di azioni che esportano attraverso le loro
interfacce, piu i possibili constraints aggiuntivi nelle conversazioni legali.

Un metodo efficace per rappresentare Web Service behaviors, e che sara largamente utilizzato
nei capitoli successivi, consiste nell'usare Finite State Machines (o in breve FSMs). Nel seguito
viene fornita la definizione di Transition System, una FSM "tailored" per rappresentare e-
Services, e viene mostrato come si possa utilizzare per i nostri scopi.

Definizione: Transistion System

Un Transition System TS ¢ una tupla < S, SO, A, 8, F>, dove:
e S ¢ l'insieme degli stati;

SO, sottoinsieme di S, € l'insieme di stati iniziali

A ¢ l'insieme di azioni;

0 ¢ la relazione di transizione da S x A in S;

F, sottoinsieme di S, € 'insieme di stati finali.

L'idea ¢ che gli stati del TS siano "stati stabili" nell'esecuzione, del Web Service, ed azioni che
arrivano dall'esterno, come la ricezione di un messaggio, o azioni che sono iniziate dal Web
Service, come invio di messaggi, 0 ancora passi di computazione interni al servizio, siano tutti
eventi scatenanti cambiamenti di transizione tra stati; si noti che nel caso di transizioni derivate
da computazioni interne si parla anche di t-transitions.

In genere si assume che all'avvio un e-Service si trovi in uno stato iniziale, e 1'esecuzione possa
terminare legalmente in qualunque stato etichettato come finale.

Nel seguito si fornisce un semplice esempio di due Component Services e n Composite Service
che pud essere costruito mediante una composizione dei due servizi base.

Come ¢ ovvio, le azioni (in questo caso tutte avviate dall'esterno) search_by_author e
search_by_title servono a localizzare un file musicale, mentre 1'azione listen serve ad ascoltare
tale brano.

Component and Composite Services as TSs

search_by_title

L7 =T search_by_title

-0 &
=&
listen — o

search_by_author

search_by_author

& -

-@®))
_&F

11 sten 11 Sten

=) @ = initial state @ = final state

Sezione 1.3 - Our Focus

Lo scopo di questa relazione ¢ duplice: innanziuttto si vuole porre le basi del problema della
Web Service Composition per illustrare la metodologia d'approccio sviluppata all'interno del
Progetto ASTRO, uno sforzo congiunto di ricerca e sviluppo dell'Universita di Trento e 1'1TC-
IRST; oltre a cio si vogliono delineare i punti essenziali dell'approccio nato dal Roman Group
dell'Universita La Sapienza di Roma in modo da giungere ad un confronto comparativo tra le due
metodologie.

Entrambi gli approcci mirano alla realizzazione pratica del workflow descritto dalla seguente
figura:

The General WS Composition Workflow

Component
Services'
behavioral
Descriptions

Requirements of
Clients for Target
Composite Service

Schema asa TS

Abstraction
Module Transition System
Representation of
@ Components and
Requirements
Synthesis
Engine
Abstract repres.
of Composition @ Concrete
Composite Service
Specification
Building
Module I:> %

Nel prossimo capitolo verra esaminato in dettaglio 1'approccio del Progetto Astro alla WS-
Composition, fornendo una overview generale dei suoi componenti e aree di interesse, ed
approfondendo in dettaglio 1'argomento per quanto riguarda la logica dietro il processo di
composizione; il capitolo 3 fornira un breve riepilogo sulle caratteristiche principali del Roman
Approach, che ¢ stato uno degli argomenti trattati durante le lezioni di Seminari di Ingegneria del
Software nel cui contesto si pone la presente relazione; il capitolo 4 cerchera di evidenziare i
parallelismi e le differenze tra i due approcci, Astro e Roman model, per un istruttivo confronto
comparativo; il capitolo conclusivo, il 5, si occupera invece dell'esame del tool sviluppato e reso
disponibile dal team Astro, fornendo indicazioni per l'installazione, 1'esecuzione e l'uso delle
varie componenti coinvolte per soddisfare i nostri scopi di Web Service Composition.

10

Parte II: L'Approccio ASTRO

Sezione 2.1 - ASTRO Project Overview

Il Progetto Astro ¢ un'iniziativa di ricerca congiunta riguardo l'integrazione di Web Services, sia
intra- che inter-organizzazione, promossa dall'Universita di Trento e I'ITC-IRST, il Centro di
Ricerca Scientifica e Tecnologica della Fondazione Bruno Kessler.
I1 suo scopo principale ¢ il favorire I'adozione worldwide di Web Services compositi prestando
attenzione a metriche fondamentali quali efficacia, flessibilita, facilita d'uso, basso costo ed
efficienza temporale: cio si traduce per forza di cose in una serie di obiettivi piu concreti, che
sono elencati qui di seguito.
Astro vuole fornire:
» un framework generale per la composizione automatica di servizi, che sara discusso
estensivamente in questo capitolo;
» dei tools concreti di realizzazione del framework, utilizzanti una larga serie di tecnologie
che si sono affermate come il futuro della Web Service composition;
» supporto software per l'intero ciclo di vita delle applicazioni, dalle prime fasi di design
fino al monitoraggio e verifica a runtime;
» evitare di delegare allo sviluppatore dei compiti noiosi, complessi ed error-prone, in
modo da permettergli di concentrarsi in modo trasparente e user-centered sulla logica
dell'applicazione ad un alto livello di astrazione.

Le aree toccate dalla ricerca del Progetto Astro si possono classificare in una tassonomia di 5
grandi macro-domini:

L

II.

II1.

IV.

Business Requirements : questo settore mira allo sviluppo di un framework per
rappresentare efficacemente la definizione di strategie, obiettivi e business
requirements aziendali, con particolare riguardo anche alle interazioni tra differenti
business processes; quest'area sara oggetto dei paragrafi 2.2 e 2.3 del presente
capitolo.

Service Synthesis : il settore della sintesi offre un modello per ottenere dei servizi
compositi in maniera generale ed efficiente, nonché supportata da una teoria di
fondo che garantisce la correttezza e l'affidabilita dei risultati; questo ramo ha una
controparte pratica incarnata dai tools eseguibili per la composizione di e-services;
della logica che costituisce il cuore dell'approccio Astro si parlera in dettaglio nel
paragrafo 2.4, mentre il tools verra esplorato nel capitolo 5.

Service Verification : il tool offre anche strumenti di supporto per controllare se i
requirments definiti sono violati dal servizio risultante ottenuto; la trattazione
dettagliata di questo argomento esula dal focus della relazione, e ne verranno forniti
alcuni cenni nel paragrafo 2.5.

Service Monitoring : il corrispettivo a runtime della service verification, anche di
questo si parlera nel paragrafo 2.5.

Semantics : parte degli sforzi di ricerca sono volti all'adozione di supporto per
integrare semantic web services, rendendo il tools interoperabile con OWL-S e
WSMO; anche per questa parte 1'argomento esula dai nostri scopi, e se ne accennera
nel paragrafo 2.5.

11

Le seguenti sezioni affrontano in dettaglio la metodologia di approccio per la WS-Composition,
partendo dalla modellazione dei requirements per arrivare al web service finale, illustrando passo
passo la logica dietro la composizione senza perd mai perdere il contatto con il riscontro pratico.

Sezione 2.2 - Notions on BPEL4WS and EAGLE languages

Prima di iniziare la trattazione dei business requirements in Astro, ¢ necessario fornire qualche
nozione basilare su due importanti strumenti di ausilio alla definizione del problema, entrambi
standard molto validi per la definizione di business processes nell'ambito dei Web Services:
BPEL e EAGLE. Entrambi gli strumenti, soprattutto BPEL, sono estensivamente utilizzati
all'interno del framework Astro, e nel seguito ne viene fornita una panoramica necessaria alla
comprensione della relazione. Per maggiori dettagli si consulti [BPEL_Spec] e [DPT02].

BPEL

BPEL Overview

L'acronimo BPEL sta per Business Process Execution Language, ed ¢ un linguaggio
appositamente creato per la definizione ed esecuzione di processi i cui passi di esecuzione
possono rappresentare invocazioni a Web Services. Il linguaggio ¢ basato su XML (ovvero un
file BPEL ¢ a tutti gli effetti un xml file con dei costrutti particolari e processabile da tools
appositi) ed ¢ il fulcro centrale su cui orbita la realizzazione dell'intero Astro toolset: sia parte dei
composition requirements, sia l'output eseguibile finale sono BPEL files.

Abstract and Concrete Processes

Una distinzione chiave tra i files BPEL ¢ quella tra Abstract e Concrete files. Entrambi
descrivono un (composite) e-service via xml, ma mentre un Abstract process definisce solo il
comportamento visibile "dall'esterno" dello scambio di messaggi tra web services (ricordiamo
che, nell'ambiente asincrono della WS Composition, ogni interazione tra due distinti e-services
avviene soltanto tramite message exchange), un Concrete process € un file a tutti gli effetti
eseguibile, dettaglia anche le internal evolutions dei servizi (le T-transitions) e puo concretizzarsi
in un processo deployable su un BPEL engine e monitorabile.

Detto ci0, non sorprendera il sapere che 1 processi abstract sono usati, nell'approccio Astro, per la
descrizione dei Component Services, mentre il fine ultimo ¢ la costruzione del concrete BPEL
process eseguibile che incarna il target composite service.

A few Details on BPEL constructs

Concludiamo questa breve parentesi su BPEL, necessaria per comprendere appieno il
meccanismo di composizione, con dei sintetici cenni ai costrutti BPEL piu importanti ed usati
dal tool Astro:

- un abstract process definisce un set di message exchanges tra web services, senza pero definire
la internal business logic;

- un concrete process definisce la business logic di un servizio servendosi di activities
constituenti, partners coinvolti nel servizio, message exchange necessario e procedure di
exception handling.

Per quanto riguarda le BPEL activities, esse possono essere primitive o strutturate.

Le attivita primitive degne di nota includono:
- invoke : per invocare un Web Service;

12

- receive e reply : per ricevere messaggi da una sorgente esterna o inviarli verso 1'esterno;

- wait ed empty : per rimanere inattivi, rispettivamente per un certo periodo di tempo e
indefinitamente;

- assign : per assegnare valori alle variabili interne che costituiscono lo stato dell'e-service;

- throw : per lanciare eccezioni.

Attivita strutturate includono:

- sequence : per eseguire una catena di azioni sequenziali;

- switch : simile al noto costrutto informatico, effettua una singola decisione basandosi su una
variabile;

- pick : per "ascoltare" i cambiamenti su un dato set di eventi; non appena accade un certo evento,
viene scelta ed eseguita una certa azione (legato al non-determinismo);

- while : per il tradizionale ciclo di iterazioni;

- flow : per gestire esecuzioni parallele (Astro lo usa in modo limitato nella versione corrente 3.4).

EAGLE

Come si vedra tra breve, il problema della WS-Composition affrontato dal team Astro ¢
essenzialmente un problema di planning, e per di piu sotto ipotesi realistiche che rendono la
questione niente affatto banale: non-determinismo nell'evoluzione degli stati ed obiettivi
(requirements, business goals) che non si riducono a problemi di reachability ma coinvolgono
connotazioni come "cercare di fare tutto il possibile per".

Per tali ragioni, nella modellazione di requirements, il team Astro ha preferito non utilizzare
logiche temporali quali CTL che offrono quantificatori temporali potenti ma comunque
insufficienti a modellare concetti come "fare del proprio meglio per" o "in caso non ci si riesca,
allora ¢ preferibile fare quest'altra cosa". Per una panoramica piu dettagliata sulle motivazioni
che hanno portato a tali scelte e i risultati pratici ottenuti, si consulti [DPTO02].

L'adozione di EAGLE come linguaggio per esprimere "Extended Goals" (di cui parlera meglio
nel prossimo paragrafo) ¢ la conseguenza a questa linea di pensiero; fornire una completa
trattazione del linguaggio ¢ molto al di fuori dei nostri scopi, ed anche delle notre necessita, in
quanto anche solo pochi cenni possono essere sufficienti per comprendere le sezioni successive.

Formule EAGLE saranno utilizzate per esprimere business goals del target composite service;
esse consistono in blocchi contenenti formule proposizionali che intuitivamente definiscono dei
particolari stati che il sistema pud raggiungere; ogni blocco ¢ associato ad un particolare
operatore che definisce la funzione stessa di quel blocco all'interno del sistema.

Ad esempio, gli operatori comprendono TryReach e FailDoReach, due costrutti che specificano
rispettivamente il "tenta di raggiungere questo stato del sistema" e "in caso non fosse possibile
raggiungere tale stato, portati assolutamente in quest'altro stato". Altri operatori possono
esprimere sequenzialita (A then B), iterazioni (repeat A), tentativi o garanzia di mantenere vero
un certo stato (TryMaint A oppure DoMaint A). Ancora, per una trattazione approfondita si veda
[DPTO02].

Nel nostro contesto ¢ sufficiente capire l'uso dei costrutti EAGLE TryReach e DoReach, e il
motivo per cui sono importanti e pitu utili di CTL.

13

Sezione 2.3 - Component Services and
Business Requirements in ASTRO

Armati delle conoscenze acquisite nel precedente paragrafo, possiamo introdurre una prima,
generale versione del nostro problema: dato un set di Component Services Wi,...,W,, , espressi
come Abstract BPEL Processes, e data una specifica di Composition Requirements come
EAGLE formula, vogliamo generare automaticamente un nuovo servizio W, il nostro target
composite service, che utilizza i component services esistenti e soddisfa i nostri composition
requirements.

Assumiamo inoltre di essere in un dominio asincrono, con dei component services che offrono
partial observability (ovvero non espongono le loro operazioni interne ma solamente le
interazioni con l'esterno) e in presenza di business requirements come extended goals, cioe
specifiche di stati "desiderabili", che non possono evitare di prendere in considerazione
esecuzioni impreviste e fallimenti (rifiuto di accettare un costo, o un delivery time, o
indisponibilita di merce, ad esempio) e quindi prendono in esame condizioni di intensita
differente (come try vs reach) e preferenze tra differenti possibili alternative.

Case Study: Purchase & Ship

Nel seguito faremo riferimento ad un esempio pratico per favorire la chiarezza nell'esposizione
dell'argomento: consideriamo un servizio composito di acquisto e consegna di merce
(Purchase&Ship, anche abbreviato come P&S), illustrato graficamente in figura:

The Purchase and Ship Scenario

info_reqst(item)

info(size)

request(item)

offer(cost,delay) Producer

request(item, loc)

Purchase unavailable !

offer(cost, delay) &
User Shlp

W, unavailable

ack / nack

request(size,loc)

ack / nack \%Y offer(cost,delay)

Shipper
W,

unavailable

ack / nack

L'esempio ¢ piuttosto autoesplicativo e non dovrebbe essere difficile da comprendere: abbiamo
uno scenario in cui vogliamo comporre due differenti e-services, il Producer e lo Shipper, in
modo da riuscire ad acquistare dei beni a distanza ed ottenere la consegna a domicilio; per questo
sara neessario disporre di un terzo WS che interagisce con il Composite Service P&S W, che
pertanto dovra trattare in tutto con tre component services, Wi, W, e W3. Possiamo notare come
le operazioni richieste da User non sono direttamente offerte da Producer e Shipper, ma mediate

14

da P&S, che interagisce con i due servizi base interrogandoli su dimensioni, prezzi e ritardi di
produzione/consegna necessari, ordinando beni e comunicando esiti delle operazioni.
Evidenziamo inoltre come molte cose possano non andare a buon fine: un prodotto potrebbe
essere non disponibile, o non consegnabile, o ancora il cliente potrebbe rifiutare 'offerta finale;
tuttavia, non vogliamo nemmeno che il Composite Service permetta operazioni quali acquisti
presso il Producer mentre User ha rifiutato 1'offerta, o Shipper ha risposto negativamente: siamo
in sostanza in presenza di extended goals, in cui vogliamo che l'operazione vada a buon fine,
salvo imprevisti, e che in caso di fallimento non vengano eseguite operazioni dannose.

Component Service Representation as STSs

Abbiamo gia visto nel capitolo I come la rappresentazione via FSM sia un ottimo modo per
descrivere e-services dal punto di vista comportamentale.

Nell'approccio Astro i component services che costituiscono parte dell'input al composition
problem vengono forniti come Abstract BPEL Processes, cio¢ possiedono uno stato (le variabili
interne del processo), un insieme di partners, cioe¢ di BPEL processes cooperanti, una
descrizione di interazioni con l'esterno e la possibilita di evolvere internamente, utilizzando tutti i
costrutti BPEL esaminati nel paragrafo 2.2.

La metodologia di sintesi prevede inizialmente la traduzione di tutti i Component Services
espressi come Abstract BPEL Processes in STS. Un modulo software apposito, BPEL2STS, si
occupa di tradurre i files .bpel in files .smv.

Gli STS definiti in Astro distinguono possibili stati, € cambiamenti tra stati avvengono attraverso
azioni, le quali possono essere classificate in azioni di input (ricezione di messaggi), azioni di
output (invio di messaggi) e T-transitions, ovvero azioni di evoluzione interna e non visibile alle
entita esterne.

Riportiamo di seguito una ridefinizione di STS in chiave Astro, molto simile a quella riportata
nel capitolo I ma tailored secondo i concetti e le definizioni proprie dell'approccio in esame.

Definizione: Astro State-Transition Sytem (STS)
Un Transition System X ¢ una tupla < S, SO, I, O,R, L >, dove:
e S ¢ l'insieme finito degli stati;
SO, sottoinsieme di S, & l'insieme di stati iniziali
I ¢ I'insieme finito di input actions (cioe message receive);
O ¢ l'insieme finito di output actions (cio¢ message send);
R ¢ la relazione di transizioneda S x IU O U {t}) — S;
L ¢ funzione di labeling, e associa ad ugni stato un set di proprieta soddisfatte dallo stato.
Formalmente, detto Prop l'insieme delle proprieta, L: S — 2777

Vengono affettuate alcune assunzioni sulla modellazione in STS di Component Services:
I'assenza di loops infiniti su T-actions e lI'impossibilita che uno stato abbia origine sia da input
che da output transitions.

Accenniamo anche al fatto che il modulo di traduzione, BPEL2STS non supporta tutti i costrutti
BPEL, ad esempio nell'ultima versione 3.4 i costrutti "Scope" e "Fault" non sono supportati;
tuttavia il range di operatori attualmente disponibili permette un certo livello di complessita.
Ricordiamo infine come lo stato di un STS dipenda dalle sue variabili interne, cosi come le
transizioni definite da R dipendono da queste stesse variabili; perché il file .smv che incarna
I'STS dei Component Services sia trattabile, vengono definiti ranges finiti per le variabili in
gioco.

Composition Requirements as EAGLE Formulas for Extended Goals

15

Alla luce di quanto detto finora riguardo 1'espressione di business requirements e la necessita di
utilizzare formule EAGLE, questa parte dovrebbe essere di facile comprensione.
Nel presente esempio, in ogni esecuzione del servizio il nostro scopo ¢ quello di raggiungere il
goal generale "try to sell items at home"; come gia accennato, non ¢ garantito che l'operazione
abbia successo, a causa di imprevisti "legali" che potrebbero accadere, come l'indisponibilita in
inventario dell'oggetto richiesto, una destinazione che lo Shipper non ¢ disposto a trattare, o un
rifiuto del cliente su un' offerta finale troppo costosa. In sostanza vogliamo che il sistema
consideri il completamento dell'operazione come una circostanza altamente desiderabile, e faccia
tutto il possibile per soddisfarla.
Il secondo punto fondamentale ¢ che non vogliamo completare operazioni "singole" senza che
l'intera transazione sia andata a buon fine (non vogliamo acquistare un item dal Producer quando
lo Shipper non ¢ disposto a consegnarlo!), quindi in sostanza desideriamo una politica error-
handling di "upon failure, do never a single commit"; notiamo come la forza della direttiva di
requirements ¢ questa volta "do", e non "try", vogliamo cio¢ garanzie sullo stato risultante.
Siamo quindi pronti a definire i nostri requirements, prima in linguaggio naturale, quindi ad un
piu basso livello di astrazione, come EAGLE formula:
1. Tryto "sell items at home";
2. Upon failure {
do "never a single commit";
}
Riportiamo quindi la formalizzazione in EAGLE, legata alla rappresentazione in .smv dei
Component Service STSs:

TryReach
user.pc = success && producer.pc = success && shipper.pc = success
&&
user.offer_delay = add_delay(producer.offer_delay + shipper.offer_delay)
&&
user.offer_cost = add_ cost (producer.offer_ cost + shipper.offer_ cost)
Fail DoReach
user.pc = failure && producer.pc = failure && shipper.pc = failure

Le variabili "pc" usate si riferiscono al "program counter" dell'STS, che ne individua lo stato e
gioca un'importante parte nelle transizioni; comunque, I'esame in dettaglio dell'encoding in .smv
¢ fuori dal nostro scope.

Sezione 2.4 - The ASTRO Composition Problem

N

Questo paragrafo ¢ il cuore della sintesi per WS-Composition realizzata in ambito Astro, e
mostrera come sia possibile giungere dai requisiti appena definiti al Concrete BPEL Process
eseguibile che implementa il Composite Service desiderato W.

Evidenziamo come il nostro focus ora giace nella logica di fondo dell'approccio, e non nel
mapping implementativo, che verra discusso e raffrontato a questa parte nel capitolo V; pertanto,
se ad esmpio ci riferiremo ad un requirements goal p, per ora non accenneremo a come tale goal
sia definito nel tool.

Di seguito ¢ riportata un'immagine che puo essere considerata come la versione in Astro del
workflow-obiettivo mostrato nel paragrafo 1.3, e che sara il nostro riferimento lungo questa
sezione.

16

The Astro Composition Workflow

Component Services as Composition
abstract BPEL processes Requirement
W, ... W, R

@ Planning l

p EAGLE formula

Domain
BPEL2STS D
b A\
STSs .. %, MEBP
&/ Plan
J PLAN2STS
5 STS2DOM
I TRANSLATOR STS X
Concrete
STS2BPEL [~| BPEL Proc
\%%

Procediamo quindi con I'analisi del workflow che costituisce la backbone dell'approccio Astro.

Composition Problem Inputs

La composizione parte da due input: uno ¢ il set di Abstract BPEL Processes che descrivono il
comportamento "visibile dall'esterno” dei Component Services su cui dobbiamo costruire, € ci
riferiremo a tali processi come W;...W,; il secondo input ¢ definito dalla formulazione ad alto
livello dei requirements R della composizione, come definiti nel precedente paragrafo.

Initial Input Processing

Gli input considerati subiscono un trattamento iniziale: i processi BPEL sono trasformati in
rappresentazioni STS tramite un apposito modulo software BPEL2STS: otteniamo cosi gli STS
2;...2, che descrivono il comportamento dei Component Services.

I composition requirements invece sono espressi tramite una EAGLE formula p, nel modo che
abbiamo visto precedentemente.

Further Processing: the Parallel Product

Il prossimo passo ¢ manipolare le versioni STS X;...X, per ottenere un nuovo STS, chiamato X,
che ¢ formalmente definito come il Prodotto Parallelo di X,...X,. Intuitivamente possiamo
pensare al Prodotto Parallelo come ad un STS che combina tutte le possibili evoluzioni dei Web

Services componenti. Di seguito forniamo la definizione formale di Parallel Product tra due
STSs:

Definizione: Parallel Product tra due STSs X; e X,

Siano £y =< S, $1% 11, 01, R, Ly > e £ =< S3, S2°, I, 02, Ry, Ly > due STSs tali che (I; U O))
N (I, U O,) = insieme vuoto.

Il Prodotto Parallelo X; Il 25 tra ¢ € 2, € definito come:

17

SlZ=<S1xS2,5°xS . [UL,O;UO,,R{ IRy, L; I Lp>

dove:
® < (s1,82),a,(s1', sp) > appartiene a (R; Il Ry) se < sy, a, s;' > appartiene a R;;
® < (s1,52),a, (s1,s2") > appartiene a (R; Il Ry) se < sy, a, sp' > appartiene a Ry;
e cinoltre (L Il Ly) (s1, s2) = L (s1) U L, (s7).

Arriviamo quindi alla definizione di X, che ¢ nient'altro che il Parallel Product di %;...%, , cio¢ X;
I 25 II... I ¥, . L'ipotesi nella definizione di insiemi di Input e Ouput disgiunti ¢ ragionevole in
quanto stiamo considerando Component Services in generale non correlati.

A Glimpse of our Goal

Possiamo ora accennare al nostro scopo finale utilizzando la terminologia adottata finora: la
realizzazione del Composite Service a partire dai nostri requirements si concretizza nel trovare
un STS X¢, che soddisfa particolari proprieta: esso deve "muoversi" allinterno di X per
"controllare" i component services, allo stesso tempo rispettando il goal p ed evitando di porsi in
stati pericolosi, come ad esempio un deadlock.

Per procedere nella nostra metodologia definiamo innanzitutto la nozione di Sistema Controllato.

Controlled System STS, for X¢ controlling X

Nell'ambito di Sistema Controllato ci sono due attori, entrambi STS; chiameremo questi due
attori Xc e X, facendo in modo che il primo controlli il secondo. Cio da origine ad un nuovo STS,
il Sistema Controllato, che descrive in che modo il Controller 2 controlli I'esecuzione di X.

Definizione: Controlled System

Siano Z=<8S,8° 1, 0,R,L>e Xc=<Sc Sc’, O, I, Re, Ly > due STSs tali che la funzione di
labeling di X sia nulla per ogni stato sc, cioe Ly (sc¢) = insieme vuoto per ogni Sc in Sc.

Il nuovo STS Z¢ | > X descrive il comportamento di X controllato da X¢, ed & definito come:

Yc|>Z=<ScxS,SxS%, I,0,Rc|>R,L>

dove:
o < (sc,8), T, (sc!, s") > appartiene a (Rc | > R) se < sc, T, sc' > appartiene a Rc;
® <(sc,8), T, (sc,s')>appartiene a (Rc |> R) se<s, T, s' > appartiene a R;
® < (sc, 8), a, (s¢!, s") > appartiene a (Rc |> R), con a diverso da T, se < sc, a, s¢' >
appartiene a Rc e inoltre < s, a, s' > appartiene a R;

Notiamo come l'insieme di azioni di input dell'uno coincida con l'insieme di azioni di output
dell'altro; possiamo esprimere illustrare sinteticamente la relazione di transizione del Controlled
System notando come: 1 - transizioni interne nel controller permettono transizioni interne di
entrambi gli STSs nel Controlled System; 2 - transizioni interne nel controlled STS non
permettono transizioni interne per il Controller; 3 - transizioni esterne sono possibili soltanto su
azioni che coincidono dei due STSs, per uno di input e per l'altro di output. Notiamo inoltre
come il controller £¢ non abbia funzione di labeling associata.

La nozione di controllo deriva principalmente dalla corrispondenza input-output delle azioni:
I'input del Controller ¢ I'output dell'STS controllato, ovvero il controllato fornisce all'output le
informazioni generate, mentre l'output del Controller ¢ l'input del controllato, ovvero il
Controller "istruisce" I'STS controllato sulle prossime azioni.

Adequate vs Inadequate Controllers: the Deadlock-Free Controllers

18

Le assunzioni di sistema asincrono in cui ci poniamo pongono di fronte a noi una difficolta: non
tutti gli STS controllers per un dato STS sono adatti ai nostri scopi: vorremmo evitare deadlocks,
pit precisamente vorremmo che ogniqualvolta il Controller "invii" un messaggio in output
all'STS controllato, questo sia pronto a ricevere tale messaggio, eventually.

Dobbiamo pertanto definire un sottoinsieme dei Controllers possibili, tale che 1'STS controllato
possa ricevere gli input forniti, eventualmente dopo una catena, arbitrariamente lunga ma finita,
di T-transitions.

Per i nostri scopi ¢ utile anche definire la nozione di T-closure(s) di uno stato, che ¢
semplicemente il set di stati in un STS raggiungibili da s tramite transizioni interne. Possiamo
anche definire T-closure(S) I'unione delle chiusure per ogni stato s in S.

Definiamo dunque il concetto di deadlock-free controller, tagliando fuori dalla nostra sfera
d'interesse i Controllers non adeguati.

Definizione: Deadlock-Free Controller w.r.t the controlled STS

Siano £=<S, 8% IO, R, L>e X¢c =< Sc, Sc’, O, I, Re, Ly > due STSs tali Zc & un controller
per 2.

X ¢ ¢ detto "deadlock-free per X" se per ogni stato (Sc, s) in Sc¢ x S raggiungibile dagli stati iniziali
del Controlled System Z¢ | > X, sono soddisfatte le seguenti proprieta:

® se in R compare una transizione del tipo < s, a, s' > con 'a' azione di output, allora esiste
uno stato s¢' appartenente alla t-closure(sc) tale che in R¢ compaia la transizione < s¢', a,
sc" > per qualche s¢" appartenente a Sc;

¢ sein R¢ compare una transizione del tipo < sc, a, s¢' > con 'a’ azione di input, allora esiste
uno stato s' appartenente alla T-closure(s) tale che in R compaia la transizione < s', a, s" >
per qualche s" appartenente ad S;

Esaminando con attenzione la definizione vediamo come la prima proprieta imponga che, se
I'STS effettua una qualunque transizione di output ("invia" un messaggio al Controller), allora
per il Controller esistera una input transition raggiungibile dallo stato presente per accettare
quell'input lanciato; la seconda proprieta ¢ esattamente la duale della prima.

Una volta definito come possiamo ottenere un controller per il prodotto parallelo di N STSs, e
avendo mostrato quali tipologie di Controllers ci interessano, passiamo alla questione del
soddisfacimento della formula p che esprime i composition requirements.

Towards meeting the Composition Requirements: the Belief Evolution

Per affrontare la successiva parte del problema, mettiamo per prima cosa in corrispondenza il
concetto di STS e la soddisfacibilita di un goal p.

Intuitivamente abbiamo un goal definito in EAGLE e un STS che ¢ il nostro Controlled System,
Yc | > Xy ; I'STS in questione ha una serie di possibili esecuzioni, e se vogliamo un goal di tipo
doMaint p, saremmo esclusivamente interessati a sistemi controllati tali che per ogni esecuzione,
la proprieta p ¢ vera in tutti gli stati. Un requirement di tipo doReach imporrebbe che per ogni
esecuzione si raggiungesse, eventually, una configurazione in cui p vale.

Per affrontare tale problema & necessario definire tutte le possibili esecuzioni del sistema
controllato; tuttavia, essendo in un ambiente solo parzialmente osservabile, nel senso che il
Controller non ha osservabilita sulle transizioni interne dell'STS controllato, abbiamo bisogno di
qualcosa per aggirare il problema. Ricordiamo che siamo in un ambiente asincrono, e quindi non
sappiamo quando e se i messaggi che aspettiamo o abbiamo inviato arriveranno, e inoltre non
deterministico, in quanto stiamo interagendo con e-services non correlati, e quindi ad esempio

19

non possiamo aspettarci che il WS Producer abbia accesso diretto alle variabili interne di Shipper,
e di conseguenza non puo prevedere 1'esito delle azioni possibili.

Cerchiamo di risolvere il problema considerando, per I'STS d'interesse afflitto da assunzioni di
asincronicita, non-determinismo e osservabilita parziale, un nuovo STS, che esprime tutti gli stati
ugualmente plausibili raggiungibili passo per passo dall'STS iniziale, secondo le informazioni in
Nostro possesso.

Un Belief, o Belief State, ¢ un set di stati che puo essere raggiunto a partire da un noto set di sati
in nostro possesso; l'idea ¢ che il Belief iniziale coincida con l'insieme di stati iniziali, poiché
siamo certi che inizialmente avremo la configurazione iniziale, ed il Belief ¢ aggiornato ogni
volta che il sistema evolve tramite una external (e quindi osservabile) transition, input o output.
Definiamo allora il concetto di Belief Evolution introducendo la funzione Evolve(B,a):

Definizione: Belief Evolution

Sia 2 un STS e B un Belief , con B sottoinsieme di S.

Definiamo la Belief Evolution di B a causa dell'azione 'a' come un nuovo Belief B' = Evolve(B, a)
etale che:

Evolve(B, a) = { s'| exists s appartenente alla T-closure(B) con
<s, a, s' > appartenente ad R }

Ora vedremo come l'uso del Belief e la sua evoluzione possa permetterci di controllare la
soddisfacibilita di proprieta.

Satisfiability of Properties: the Belief-Level System

Abbiamo introdotto il concetto di Belief per far fronte alle nostre ipotesi generali e per descrivere
una "configurazione" del nostro Controlled System. Poiché siamo interessati alle proprieta che le
configurazioni possibili verificano, ¢ necessario definire quando un Belief B soddisfa una
proprieta p.

Non c'¢ dubbio che se tutti gli stati che B contiene soddisfano p, allora B soddisfa p; tuttavia, nel
caso B contenesse uno stato che non soddisfa p, il nostro scenario ¢ complicato ulteriormente
dalla presenza di transizioni interne, che potrebbero portarci in altri stati che soddisfano p senza
che il Belief evolva; pertanto, se in un Belief B non tutti i suoi stati soddisfano p, ma esiste una
catena di T-transitions tale che a partire da tali stati si raggiungono altri stati che soddisfano p,
allora B soddisfa p. Ne consegue che B non soddisfa p se non tutti i suoi stati la soddisfano e per
ogni sequenza di T-transitions possibile da tali stati, non si raggiungono stati che soddisfano p.
Forniamo di seguito la definizione formale:

Definizione: Belief satisfying a property

SiaX =<8, SO, I, O, R, L >un STS, p appartenente a Prop una proprieta per X, e B sottoinsieme
di S un Belief.

Si dice che B soddisfap (B | = 5 p) se & verificata la seguente condizione:

si consideri la sequenza di stati sg, Sj, ... , Sp, tali che so appartiene a B, le transizioni non
osservabili del tipo < sj, T, si+; > appartengono ad R, e per quanto riguarda s,, esso o non ha
transizioni in uscita o esiste una n+1-esima transizione s, del tipo < sy, a, sy > con a diverso da
T. Allora p deve appartenere ad L(s;) per qualche indice i tra O ed n.

Una volta definito il concetto di soddisfacibilita di proprieta con l'ausilio delle Beliefs, possiamo
descrivere tutte le esecuzioni di un generico STS X (che nel nostro problema ¢ il Controlled
System X¢ |> X)) tramite un STS che chiamiamo "Belief-Level System", i cui nodi sono i
possibili Beliefs di S, mentre gli archi rappresntano le possibili Belief Evolutions.

20

Definizione: Belief-Level System
SiaX =<8, SO, I, O, R, L >un STS. 1l corrispondente Belief-Level STS Xp = < Sp, SBO, I, O, R,
Lg > ¢ definito nel seguente modo:

e Sg ¢ l'insieme di Beliefs di 2 raggiungibile dall'insieme di Beliefs iniziali S’

o Sp’={S"};

e se Evolve(B, a) = B', con B' diverso dall'insieme vuoto, per qualche azione a di input o
ouput, allora < B, a, B' > appartiene a Rg;

e Ly (B)={pappartenentia Prop| B |=sp }.

Il grande vantaggio ottenuto dal passaggio al Belief-Level System deriva dai pesanti constraints
che lo carattereizzano: infatti Xp possiede un unico stato iniziale, non possiede alcuna T-
transition, e per tutti i Beliefs B e le azioni a esiste al massimo un unico Belief B' tale che < B, a,
B' > appartenga a Rp.

In questo scenario possiamo riconsiderare la soddisfacibilita di un goal r, ma stavolta in un
dominio non-deterministico e completamente osservabile. Otteniamo un problema di planning
che puo essere risolto con tecniche affermate come il Symbolic Model Checking.

Definition of the Astro Composition Problem
Di seguito riportiamo la definizione formale del problema della composizione in Astro:

Definizione: Astro Composition Problem

Siano 4, ..., 2, un insieme di STSs, € p un composition requirement.

Il problema di composizione per Xy, ..., X, € p ¢ il problema di trovare un Controller 2¢ che &
deadlock-free e tale che X | = p , dove Xp & il Belief-Level System di Z¢ | > (Zy I .11 Zy).

Una volta trovato il Controller, il modulo software STS2BPEL to traduce in un Concrete BPEL
Process eseguibile.

The Passage to the Planning problem in Fully Observable, Nondeterministic Domains

Questa sezione mostra come dalla definizione di Composition Problem possiamo portarci nelle
condizioni di applicare in modo efficace tecniche di planning al problema, in condizioni di piena
osservabilita grazie al Belief-Level, e risolvere il tutto tramite Symbolic Model Checking.

Innanzitutto viene effettuata la creazione di un Dominio D ottenuto a partire dal Belief-Level
System considerato Xp per X, e si ottiene una tuplaD =< S, SO, A, T, L >, in cui:

e gli stati dell'insieme S sono coppie < sg, 0 > che includono stati del Belief-level System
pit output dell'ultima transizione effettuata; un carattere speciale '*' ¢ usato in caso
I'ultima transazione non abbia avuto output;

e A ¢ l'insieme di azioni, unicamente di input, ed include anche il carattere '*' per
modellare le transizioni di output di T;

e T ¢ la funzione di transizione da una coppia <B, 0> ad una coppia <B', 0">, scatenate da
azioni * se output transitions e da azioni a != * in caso di input transiztions, secondo le
transizioni definite in Rg;

e L ¢ funzione di labeling per una coppia <B, 0>, e si riduce al labeling di B.

Disponendo di un goal e di un planning domain D possiamo ricercare un piano T; 1 dettagli del
problema di planning sono riportati in [PT01], nel seguito se ne forniscono alcuni cenni.

21

Un pianoper De p ¢ una tuplaw=<C, CO, o, € >, cioe un insieme di contesti d'esecuzione C, dei
quali ¢’ & quello iniziale, e due funzioni di evoluzione, una per le azioni a:: C x S — A, e una per
icontestie: Cx S — C.
L'esecuzione di un piano su un dominio ¢ definito in termini di configurazioni, ovvero coppie
<contesto, stato>, in cui le azioni eseguite e i nuovo contesti raggiunti dipendono dalle apposite
funzioni definite all'interno del piano.
Siamo interessati a piani eseguibili, ovvero piani in cui partendo dagli stati iniziali, per ogni
azione compiuta sia definito il dominio successivo corrispondente; la struttura d'esecuzione di
un piano ¢ costituita da tutte le configurazioni raggiungibili, ognuna con delle proprieta
soddisfatte in accordo alla funzione di labeling.
A partire dalla struttura d'esecuzione possiamo costruire un STS X, che descrive le esecuzioni
del piano w relativamente al dominio D e alle proprieta soddisfatte, reintegrando nell'STS le
informazioni sulle output transitions.
L'STS cosi ottenuto dal piano non ¢ in genere deadlock-free, ma sotto determinate ipotesi
sull'STS originario X si puo garantire che il X; ottenuto sia deadlock-free, e inoltre si pud
garantire che X soddisfi p se X soddisfa p nel dominio D corrispondente a X.. Le pre-condizioni
necessarie per questa importante proprieta sono:
® non esistono Belief-states in cui sono possibili sia input che outputs contemporaneamente;
e quando ¢ il turno del Controller, ¢ garantito che il dominio sara in grado di processare
qualunque messaggio inviato dal Controller.
Sotto tali ipotesi il sistema X si dice controllabile.

Tali ipotesi restrittive sono comunque ragionevoli: la condizione di non avere in/out Beliefs
corrisponde all'assunzione di sapere sempre se un WS con cui stiamo interagendo sta aspettando
una nostra invocazione o sta per inviare un messaggio in risposta; la seconda condizione richiede
che in ogni momento sappiamo quali sono le invocazioni valide accettate da un WS, e cio ¢
effettivamente verificato.

Nel seguito ci accingiamo a concludere l'analisi della logica teorica dietro il Composition
Problem in Astro, mostrando la corrispondenza tra il problema della sintesi e quello della
pianificazione SMC.

Lemma: Controller/Plan Executability

Sia ¥ un deadlock-free STS, Xy il suo Belief-Level System e D il corrispondente planning
domain. Sia inoltre 7t un piano per D, e 2 I'STS corrispondente a 7.

Si ha che se & ¢ eseguibile su D, allora X ¢ eseguibile su X.

Lemma: Controller/Plan Equivalence

Sia X un deadlock-free STS, 2 il suo Belief-Level System e D il corrispondente planning
domain. Sia inoltre 7t un piano per D, e Z; I'STS corrispondente a 7.

Si ha che se 7 & soluzione su D per il goal g, allora & vero che (X; |> X) |= g.

Inoltre, se esiste un STS X¢ tale che (¢ |> X) |= g, allora esiste un piano 7 che & soluzione
per il goal g su D.

Con l'ultimo lemma abbiamo dichiarato di poter utilizzare affermati algoritmi di planning per
fully observable, nondeterministic domain con extended goals per risolvere in modo efficiente il
problema della composizione automatica.

22

Sezione 2.5 - Other Aspects of ASTRO Composition Efforts

Oltre alle aree di Business Requirements e Composition Synthesis, il Progetto Astro ha
sviluppato tools e metodologie per trattare anche Monitoring, Verification e Semantics.

Sebbene il focus della tesina sia rivolto principalmente all'aspetto di sintesi automatica, forniamo
comunque alcuni cenni al riguardo.

Monitoring in Astro

Per Monitoring si intende il controllo, effettuato a runtime, che permette di verificare, per una
data proprieta, se questa ¢ rispettata o violata, o di riscontrare la presenza di anomalie, o ancora
di controllare se una certa sequenza specifica di eventi si ¢ verificata.

Il tool wsMonitor (wWMon) permette, data una proprieta o situazione d'interesse, la generazione
automatica di Java code da eseguire a runtime per monitorare i processi.

Verification in Astro

Mentre il monitoring si occupa di error detection a runtime, gli efforts del team Astro in
Verification vogliono fornire allo sviluppatore di Composite Web Services strumenti per
controllare che goals e constraints siano soddisfatti a design time.

Il tool wsVerify accetta in input il materiale per la composizione (Abstract BPELs dei
component services, Concrete BPEL del target service, composition requirements) € in caso
scopra errori mostra uno scenario di esecuzione ("error flow") in cui le specifiche sono violate
cosicché lo sviluppatore possa correggere il suo lavoro.

Semantics in Astro

In linea con lo sforzo per un ambiente di programmazione semantico, in cui gli strumenti
utiilzzati non si limitino ad eseguire ciecamente ordini, ma "comprendano" i nostri desideri e
scopi, nel Progetto Astro sono in corso iniziative per estendere ai linguaggi OWL-S e WSMO i
processi di Monitoring, Verification e Synthesis. Lo scopo ¢ passare da specifiche semantiche
dei Web Services a processi eseguibili.

23

Parte II1: L'Approccio del Roman Group

Nella parte del corso di Seminari di Ingegneria del Software dedicata alla Service Composition ¢
stato introdotto il cosiddetto Roman Approach, ovvero il lavoro dei professori dell'Universita di
Roma "La Sapienza" (Berardi, De Giacomo, Mecella, Calvanese) volto a definire una
metodologia per la Automatic Service Composition.

Nel seguito viene sinteticamente riepilogato il Roman Approach, vengono evidenziati i punti
principali per preparare il terreno alla parte di confronto comparativo di cui trattera il capitolo IV.

Sezione 3.1 - Roman Model Basics: the Community

Al centro del Roman Approach c'¢ I'enfasi sull'importanza delle singole azioni che un e-service
puo eseguire (o, utilizzando la terminologia degli autori, "i comportamenti e le azioni che il web
service esporta verso l'esterno”); € ovvio che parlando di azioni che un servizio pud compiere, se
vogliamo mantenere un adeguato livello di astrazione (il che & una necessita, nel complesso
problema della composizione) dobbiamo centrare la nostra attenzione su una descrizione
comportamentale dei component services, nonché del target service, utilizzando formalismi utili
come quello descritto nel capitolo introduttivo.

Il vero fulcro dell'approccio ¢ il concetto di Service Community, ovvero una sorta di
"Federazione di Component Web Services" che esportano verso la community e all'esterno il
proprio insieme di azioni, che vengono comprese e condivise da tutti 1 membri della Community.
I1 join di un nuovo membro alla Community si traduce nell'esportazione delle proprie azioni in
termini del Commmon Action Alphabet della comunita.

La scelta per la modellazione dei servizi nel Roman Model ¢ caduta sulle FSMs non
deterministiche (anche chiamate "Transition Systems"), delle tuple < Z, S, Sy, 9, F >, dove:

e S ¢ l'insieme di stati;

e Sy ¢ l'insieme di stati iniziali, F quello di possibili stati finali;

e ¢ larelazione di transizione;

e 2 ¢ l'insieme di azioni condivise dai membri della community, un alfabeto comune.

Qual ¢ allora l'added value della Community? Condividendo azioni con altri membri, ogni
servizio, durante una composizione, puo delegare l'esecuzione di parte delle proprie azioni ad
altri servizi che "possono sostituirlo". Per effettuare cid ¢ necessario che l'entita che si occupa
della coordinazione (I'Orchestrator) abbia full observability sugli stati dei component services,
abbia la possibilita di interrogarli in proposito a runtime. L'assuzione di osservabilita ¢
ragionevole in questo contesto in quanto il set di azioni condivise dalla community permette tale
scenario.

Il target service definito dall'utilizzatore del composite service ¢ un STS deterministico (in
quanto si assume che l'utente sappia cio che vuole fare nei vari passi di esecuzione), nel senso
che ad ogni azione dell'utente corrisponde un unica transizione di stato, ed ¢ costruito a partire
dalle azioni esportate dai membri; l'utente puo effettuare operazioni a suo piacimento, ed
interagisce con il servizio composito a runtime, dove potrebbe decidere di interrompere le

24

operazioni in uno stato finale arbitrario o continuare, cio¢ il servizio composito non & un'entita
statica e pre-programmata, ma user-centered e gestita a runtime dal programma di orchestrazione.
Dal punto di vista del client del Composite Service il comportamento definito ¢ dato
dall'External Schema, un unfolded execution tree che caratterizza le histories di invocazione
delle azioni atomiche che compongono il servizio; per 1'Orchestratore cid che ha importanza &
I'Internal Schema, del tutto simile all'external ma con archi etichettati con la coppia <azione,
performer> invece della sola azione scelta: il programma di orchestrazione deve poter garantire
la sequenza di operazioni richieste assegnando a runtime 1'azione da eseguire ad un opportuno
servizio.

Nel seguito si riporta un esempio di Community su piccola scala e un servizio composito
utilizzatore, nonché I'STS che gestisce 1'orchestratore.

An Example of Roman Model Community

search

display
search Sz

O ® @
display.
A return (Smszo)
dlspl/l

The Community

. / earch, 1
The Target Service

Sy S’O) \dl ch, 1

S search \

L Z :) display, 2
display

The Composition

(gl()’SZO)

Sezione 3.2 - PDL Reduction of the Composition Problem

Definiti i concetti alla base del Roman Approach, accenniamo alla logica di fondo che permette
di individuare I'esistenza o meno di una composizione in modo sound and complete, esaminando
anche gli aspetti computazionali che emergono.

Il problema della composizione viene ridotto alla soddisfacibilita di una formula DPDL
(Deterministic Propositional Dynamic Logic), un linguaggio per eseguire reasoning su
programmmi.
Per una introduzione dettagliata a DPDL si consulti [IJCIS05]; in questa sede ci concentriamo
su come DPDL venga utilizzato per rispondere a tre domande fondamentali:

1. Possiamo sempre controllare che una composizione effettivamente esista?

2. Se esiste, il suo Transition System ¢ finito?

3. Se si, come si pud computare la composizione?

25

L'encoding in DPDL del problema di composizione risulta polinomiale rispetto alle dimensioni
dei component Transition Systems; la fomaula DPDL finita che caratterizza il problema ha la
forma:

@ =Init && [u] (Py && (D && P && ... && P) && Dy)

"Init" descrive lo stato iniziale dei servizi in gioco; FO ¢ l'encoding del target service TS,
realizzato esprimendo i vari vincoli che formano la FSM con l'aiuto degli operatori modali
DPDL; ognuno dei ®; descrive 1'evoluzione di un Component Service, con particolare attenzione
al suo stato e alle relazioni con gli altri servizi componenti: esso include dei predicati "moved;"
condizionali per esprimere l'inattivita del servizio in caso un altro servizio abbia svolto quella
particolare azione; la formula finale ausiliaria si occupa di constraints relativi agli stati iniziali e
finali, e alla "liveness" della procedura.

Possiamo rispondere alle tre domande poste precedentemente grazie ad un teorema che afferma
che "la composizione esiste se e soltanto se la formula @ ¢ soddisfacibile”, il che & decidibile in
EXPTIME. Prima di rispondere alle domande accenniamo alla "small model property" di DPDL.:
ogni formula DPDL soddisfacibile ammette un modello finito di dimensione al massimo
esponenziale rispetto alla dimensione della formula.

Pertanto:
1. La composizione ¢ controllabile poiché I'encoding del problema ¢ decidibile in
EXPTIME;

2. Un finito TS di composizione esiste grazie alla "small model property" di DPDL;
3. La composizione puo essere computata da uno small model della DPDL formula.

Sezione 3.3 - Roman Model Synthesis Workflow

Mostrato come sia possibile, nel Roman approach, trattare il problema della WS Composition in
modo sound and complete, riportiamo il workflow generale del capitolo I in chiave Roman
Model.

26

The Roman Model Composition Workflow

Community Synth Engine
(DPDL SAT +
FSM Minimizer)
tgt service components .o
wsdl +|behav wsdl + behav Composition| FSM
Realization
. Module
Abstraction
Module l

BPEL Specification for the Orchestrator

Il workflow consiste nel codificare innanzitutto il problema in DPDL in tempo polinomiale,
quindi controllare in tempo esponenziale la soddisfacibilita, ed in caso positivo ricavare uno
small model, da cui estraiamo una Mealy FSM che rappresenta 1'Internal Schema da fornire
all'orchestratore; la FSM viene minimizzata prima di essere usata per costruire 1'orchestration
program.

Sezione 3.4 - The Current State of Advancement

Al momento della stesura del presente lavoro, il Roman Group dispone di un solido terreno di
partenza su cui costruire, e tuttavia non ¢ ancora avvenuto il passaggio ad una forma finale per le
fasi implementative dell'approccio.

In [IJCISO05] viene descritto lo stato di avanzamento di un prototype module, chiamato ESC, che
implementa parte del workflow descritto nel paragrafo precedente.

Correntemente la struttura dell'Abstraction Module dipende dal linguaggio scelto per
rappresentare le descrizioni di input dei Component Services, mentre gli sforzi realizzativi si
sono concentrati principalmente sul module di Synthesis Engine, che ha prodotto buoni risultati
anche senza un lavoro di fine tuning e ottimizzazione. Il modulo per la traduzione del Composite
Service in un linguaggio per l'orchestratore, come ad esempio Concrete BPEL, non ¢ ancora
ultimata.

27

Parte IV: Il Confronto tra i Due Approcci

Delineati nei precedenti capitoli gli aspetti principali dei due approcci, cerchiamo di mettere in
risalto le differenze e le analogie tra 1 due modi di vedere e risolvere il difficile problema della
Service Composition.

Sezione 4.1 - Similarities and Differences in the various
Stages of the Composition Workflow

The Composition Problem

Come argomentato in [AISCO06], sia 1'approccio Astro sia il Roman approach condividono una
visione del problema della Service Composition di tipo Client-Tailored, cioe incentrata sulle
esigenze dell'utente. A differenza di molti approcci nel mondo della ricerca orientati alla
composizione Service-Tailored, in cui le funzionalita composte offerte sono subordinate alle
procedure offerte dai servizi esistenti, nell'approccio Client-Tailored I'utente specifica il suo
target service, ed entita di sintesi ed orchestrazione si occupano di utilizzare frammenti
dell'esecuzione dei Component Services per soddisfare le aspettative dell'utente.

Questo ¢ certamente il caso di Astro e del Roman Group: in Astro il target service ¢ specificato
come un e-service (modellato tramite Abstratc BPEL Process) e la sintesi consiste nel creare un
processo concreto per permettere l'interazione con i componenti rispettando dei vincoli di
business requirements, mentre nel Roman model I'utente puo addirittura assemblare a piacimento
le azioni offerte dalla Community come un bambino assembla blocchi per le costruzioni,
portando all'estremo I'atteggiamento client-tailored, ancora piu dell'approccio Astro.

Una differenza tra le due metodologie per considerare il problema nel suo insieme ¢ anche data
dall'attenzione all'aspetto pratico ed implementativo: mentre il Roman group ha inizialmente
costruito solide basi teoriche per definire e risolvere il problema, senza legarsi a nessuna
tecnologia pratica e perseguendo un goal molto ambizioso ed affascinante la cui incarnazione
non ¢ ancora interamente definita, gli sforzi del progetto Astro sono dichiaratamente volti in
primo luogo a fornire un tool efficiente, scalabile e pratico per aiutare il
progettista/implementatore a risolvere il problema in questione: le funzionalita sono iniziate con
un core primitivo, da subito legato a specifici linguaggi e standard (come BPEL), che ¢ stato via
via raffinato sia in performances che in ampiezza, ed ¢ ad oggi funzionante, sebbene in continuo
cambiamento.

Component Services, Requirements and the Background Architecture

Riguardo la modellazione dell'input, le due metodologie presentano una similarita nell'utilizzare
entrambe delle FSM per modellare i comportamenti dei Component Services e del target service,
ma nel corso della relazione abbiamo delineato anche importanti differenze.

Senza dubbio l'aspetto piu evidente che differenzia i1 due approcci ¢ la presenza o meno di una
struttura di fondo su cui fare assunzioni: il Roman Model presuppone l'esistenza della
Community e di tutto cido che la Community comporta, mentre Astro non accenna a nessuna
architettura pre-esistente, a parte i servizi offerti dai Component Services isolati.

28

Tale importante differenza lascia le sue tracce anche sulle assunzioni che vengono fatte per le
caratteristiche dei servizi coinvolti: Astro presuppone un ambiente asincrono e partially
observable, in cui solo le interazioni esterne sono note (e cio causa la necessita del passaggio al
Belief level in planning) mentre la Community permette full observability al programma
orchestratore, il quale non potrebbe schedulare azioni efficacemente a runtime senza poter
ispezionare in dettaglio lo stato dei vari membri.

Esistono anche altre differenze nei requirements derivate dalla presenza o meno di un'architettura
di fondo: l'alfabeto di creazione del target service, ad esempio, differisce nei due approcci. Nel
Roman Model esso coincide con il set di azioni reso disponibile dalla Community, azioni
componibili a piacimento, mentre in Astro il target service & costruito sfruttando un joint effort
tra le funzionalita offerte dai component services (le azioni esposte dai vari "frammenti", viste
simili ad interfacce remote) e l'espressione dei business requirements in un linguaggio di alto
livello per extended goals, per costruire un sistema si specificato dall'utente e quindi client-
tailored, ma piu "statico" rispetto al Roman Model.

In sostanza la presenza di un'architettura di fondo dona vari benefici, quali assunzioni
semplificative, regolarita, maggiore semplicita nella definizione del target service, ma per contro
richiede uno sforzo aggiuntivo di gestione e consistenza (ad esempio il join di nuovi membri alla
community).

Abstraction & Synthesis

La figura del modulo software dedito all'astrazione degli input in qualche forma di FSM ¢
comune a entrambe le metodologie, sebbene vi siano delle lievi differenze nella struttura delle
tuple, derivate dalle diversita delineate nei punti precedenti: mentre in Astro si ragiona in termini
di "proprieta soddisfatte in un certo stato" per conciliare gli STS con il controllo dei
requirements, e si distingue tra input, output actions e T actions per differenziare transizioni
osservabili dalle non osservabili, nel Roman model compare il set £ di azioni condivise dalla
Community, e l'esplicita presenza di "stati finali", ovvero stati in cui il client puo scegliere se
terminare 0 meno.

Gli approcci alla sintesi sono molto differenti: DPDL satisfiability in EXPTIME e ricerca di una
soluzione al problema come Mealy FSM minimizzato nel Roman model, contro creazione di un
dominio di planning e di un piano per il dominio che soddisfa un goal, il tutto risolto via
Symbolic Model Checking affrontando il problema al Belief-level.

I test pratici eseguiti dal team Astro su varie dimensioni del problema (numero e complessita dei
component services, ad esempio) riportano risultati buoni nei casi di media complessita, che
corrispondono alla maggioranza dei WS di oggi, e riportano un sostanziale miglioramento
rispetto a test precedenti eseguiti su versioni pill primitive e limitate del tool (dell'ordine di 1/50
del tempo impegato). Questo deriva dalle efficienti tecniche di planning esistenti per risolvere le
tipologie di problemi a cui Astro ha ricondotto il proprio.

Anche il Roman Group riporta in [IJCIS0S] un cenno ai test condotti su Communities di al
massimo 10 membri, ognuno con una complessita dell'ordine di 10-20 stati, per i moduli di
Astrazione e Sintesi, con buoni risultati anche senza una forma finale ed ottimizzata del tool.

Final Result of the Composition

In questo settore 1'approccio del Roman Group ¢ ancora Work-In-Progress, e mira a voler fornire
un programma per l'uso dell'orchestratore, per funzioni di "online Service fragment
coordination”, in linea con lo schema totalmente client-tailored perseguito; gli scopi del team
Astro sono piuttosto diversi, poiché mirano a produrre automaticamente un processo BPEL
eseguibile che rappresenta una sorta di nuovo servizio pil statico: una volta effettuata la

29

composizione e definiti gli obiettivi I'utente non ha alcun controllo sull'esecuzione, bensi dispone
di un nuovo servizio composito. Il problema ¢ in un certo senso affrontato in modo ortogonale,
da punti di vista differenti ma ugualmente interessanti e senza dubbio challenging.

Sezione 4.2 - A Graphical Glance of the two Approaches
in foday's Landscape of Service Composition

In vari articoli del settore ¢ riportato un interessante grafico, si consulti ad esempio [AISC06].
Esso consiste in una sorta di piano tridimensionale, i cui tre assi individuano tre diversi aspetti
dell'approccio alla Web Service Composition, e quindi la posizione di un punto in questo "spazio
della composizion research" individua la politica perseguita da un gruppo di ricerca in questo
ambito.

I tre assi indicano:

» Statics in the System : questa dimensione indica il livello di modellazione di proprieta
statiche, 1'alfabeto di azioni usato, la modellazione di input/output; in genere gruppi di
ricerca concentrati su sforzi di modellazione degli input con Semantics approaches
saranno alti su questa dimensione;

» Dynamics in Component Services : questa dimensione indica il livello di complessita per
la modellazione dei Component Services; chi li modella con articolate descrizioni
comportamentali via FSMs sara piu in alto di chi considera i servizi come azioni
atomiche e monolitiche ("frammentazione" dei componenti);

» Dynamics in Client Service Request : la dimensione tratta in un certo senso la "client-
tailorability" dell'approccio, in quanto esprime la sofisticatezza nella definizione del
target service; piu l'utente ha influenza sulla personalizzazione e la gestione del
Composite Service, piu l'approccio sara alto nella scala.

Riportiamo nel grafico la posizione dei due approcci in esame:

30

Our Approaches in the WS Composition 3D Space

ROMAN MODEL

Statics in the System

Come possiamo vedere, e questo ¢ una conferma di tutto cio che & stato detto finora, le due
metodologie condividono essenzialmente sia la modellazione di propreta statiche del sistema sia
la rappresentazione dei Component Services come TSs comportamentali; la grossa differenza
nello spazio ¢ data dalla target request e dalla liberta del client nella composizione finale:
'architettura Community-based del Roman Model colloca tale approccio molto in alto, in

posizione maggiore rispetto al Progetto Astro, per il quale il target service € un aggiuntivo
servizio statico, sebbene composito.

31

Parte V: Il Toolset Sviluppato nell'ambito
del Progetto ASTRO

Questo capitolo delineera in quale modo le tecniche e le metodologie discusse finora
relativamente all'approccio Astro hanno preso vita sotto forma di un toolset per il lifecycle
management di composite Web Services. La versione dell'Astro toolset esaminata ¢ la 3.4.

Sezione 5.1 - Software Components forming the Astro Suite

L'Astro toolset (anche chiamato Astro Suite) 3.4 ¢ formato da numerosi componenti software,
alcuni sviluppati interamente dal team Astro, altri sono programmi di terze parti con le quali il
toolset interagisce.

Segue un elenco dei vari componenti, accompagnato da brevi spiegazioni sul loro ruolo:

K/
£ %4

K/
£ %4

Java 1.5.x - La JVM ¢ un componente essenziale del toolset, poiché molte parti di esso
sono scritte in Java e producono/usano files Java;

Eclipse IDE 3.2.2 - L'ambiente di sviluppo Eclipse ¢ stato scelto dal team Astro come la
colonna portante di tutta la sezione grafica del toolset; molte componenti della Suite
sono state sviluppate come Eclipse plugins, e la creazione dei files necessari alla
composizione ¢ stata portata avanti grazie alle funzionalita offerte dalle estensioni di
Eclipse dedicate alla creazione e al lifetime di BPEL processes, estensioni come
ActiveWebFlow o ActiveBPEL Designer;

Tomcat Server 5.5.x - 1l server Tomcat ¢ utilizzato per il deployment e running dei BPEL
processes che incarnano 1 Web Services offerti; esso ¢ utilizzato in tandem con un BPEL
engine;

% ActiveBPEL Engine 2.0 - L'ActiveBPEL engine ¢ un prodotto freeware che permette di

eseguire deployment e running di processi BPEL su un application server; la sua
installazione ¢ particolarmente semplice, poiché consiste nell'aggiungere dei componenti
alla root directory di un application server (Tomcat nel nostro esempio); la sua
attivazione ¢ contestuale a quella del server su cui vive; il deployment di un BPEL
process avviene eseguendo un packaging del file .bpel, wsdl relativi e files di
deployment .xml e .pdd in un file .bpr, che viene copiato nella directory /bpr del server e
rilevato automaticamente e deployed quando il server & running; il deployed process pud
essere monitorato via Web browser ed invocato da programmi client appositi per
l'invocazione di Web Services.

Graphical Editing Framework & Graphical Modeling Framework Eclipse plugins -
questi due insiemi di plugins per Eclipse sono necessari per far funzionare l'aspetto
visuale delle applicazioni Astro;

Astro wsToolset 1.8.0 - wsTranslator 0.14.0 - il package wsToolset ¢ composto da
quattro programmi necessari a vari stadi della composizione, attivabili da command line;
il programma wsTranslator ¢l'importantissimol modulo adibito alle traduzioni dei files di
coreografia (.chor) in vari formati di STS, ad esempio files .smv o Spin, per poi
realizzare il prodotto parallelo dei Component Services e preparare il terreno per il
planning via Model Checking, generando quindi il dominio D.

32

s Astro wsToolset 1.8.0 - synTools 0.13.1 - il package synTools contiene due programmi,
wmon e wsynth; 1l primo ¢ adibito al monitoring dei processi BPEL, e quindi alla
generazione del codice Java che controlla a runtime il verificarsi di eventi d'interesse e fa
rapporto all'utente nelle schermate di monitoring dei processi (accessibili via browser);
la seconda applicazione, wsynth, ¢ la responsabile del vero e proprio processo di sintesi
che ricava il piano © che soddisfa il goal p su dominio D e restituisce il file concrete
BPEL eseguibile e con un certo livello di ottimizzazione per realizzare il composite
service obiettivo;

s Astro wsToolset 1.8.0 NuSMV 2.2.5 - prodotto da terze parti, NuSMV ¢ essenziale per
eseguire operazioni di model checking su STSs, il che ¢ al cuore dell'approccio Astro;

& Astro wsMonitor 1.6.0 - si ¢ gia accennato a come l'installazione del BPEL Engine
permetta di utilizzare una schermata accessibile via browser per monitorare i deployed
BPEL processes; questa applicazione Astro ¢ un'estensione a Tomcat che aggiunge
funzionalita ulteriori di monitoring online all'interfaccia dell'Engine; del codice Java
viene pre-generato ed eseguito a runtime dal wsMonitor per cercare situazioni insolite o
di errore e fare rapporto all'utente via browser; ¢ quindi sostanzialmente un'estensione
dell'interfaccia offerta dal BPEL engine per il monitoraggio dei processi;

s Astro wsRequirement 0.2.0 Eclipse plugin - questa plugin permette di integrare i files di
input necessari alla composizione (Abstract BPEL processes for component and target
services, EAGLE requirements) creando in output un unico file xml con estensione .chor
(file "di coreografia" che caratterizza completamente il problema) da dare in pasto a
wsTranslator e wSynth per il processo di composizione; oltre alla creazione del file .chor,
la plugin di Eclipse permette anche di analizzare le sue proprieta (come i component
services, 1 "main" e "recovery" goals, gli interessi nel monitoring ecc) tramite un'efficace
GUI,

s Astro wsChainManager 2.4.0 Eclipse plugin - 1a plugin permette di eseguire, a partire da
un file .chor omnicomprensivo, vari servizi di composizione automatica, verification
offline e preparazione per l'online monitoring, attivabili tramite la pressione di un
singolo tasto; il nome deriva dallo stile di esecuzione: le varie funzionalita sono delle
catene di chiamate ai vari componenti dell'Astro Suite, per realizzare il workflow
discusso nel capitolo II;

s Astro wsAnimator 0.0.7 Eclipse plugin - la plugin ¢ dedicata alla simulazione dei
composite services impiegando lo stile grafico di ActiveWebFlow/ActiveBPEL Designer
per mandare in esecuzione diverse tipologie di scenari di simulazione; usa files grafici
con estensioni .adf;

s Astro wsUseCases 1.0.0 Eclipse plugin - questa plugin & semplicemente un insieme di
folders che rappresentano due esempi di demo di composizione, chiamati VOS e VTA,
rispettivamente dedicati a scenari "classici" come l'acquisto User-Store-Bank e la
prenotazione User-Hotel-Flight; i1 folders contengono tutto I'occorrente per testare tutte le
funzionalita offerte; la documentazione che accompagna le demo, tuttavia (e in generale
anche il resto dei tools), ¢ pressoché inesistente.

Sezione 5.2 - Composition Execution and Mappings
In questo paragrafo parleremo di come sia possibile eseguire una composizione automatica e di
come i vari componenti dell'approccio Astro, trattato nella sua teoria di fondo nel capitolo II,

trovino un'implementazione pratica nel wsToolset.

Problem Inputs

33

Una volta installati tutti i componenti descritti nel precedente paragrafo, e supponendo che i files
di input alla composizione siano pronti, ci si posiziona in Eclipse, si caricano nel workspace i
progetti di interesse (in figura sono uno per ogni Component Service, ed uno per il Composite),
visibili nella Navigator Perspective, e si rendono disponibili sulla toolbar i pulsanti per le varie
funzionalita dell'Astro toolset.

& Astro Suite wsAnimator - Eclipse SDK

File Edit Mavigate Search Project Run Window Help

i - SR E B D R A SRR R R TR R T | Al Astro Sute w... | 7
m = [G
=R

[#-T=F WD5_Bank
[+ '[E‘J YOS5 _demo
[+ l=F WO5_Stare
[#-T=F W05 _User
[#=F VD5 _WOS

£} '[UJ YTA_dema
1= ¥TA_Flight
-1 YTA_Hatel
[#-T=F WTA_User
T UTA NTA

Notiamo sulla toolbar in alto una serie di 5 buttons, rispettivamente per: avviare Tomcat, iniziare
la catena di Process Composition, avviare la Process Verification (offline), preparare le
procedure di Process Monitoring, effettuare lo shutdown di Tomcat.

Gli input al problema sono dati dalle descrizioni astratte dei processi componenti e del target
service, piu il business goal della forma "try to reach main goal - upon failure, reach this other
goal" (in generale: prova a portare a termine 1'operazione, e in caso fallisca assicurati di non
eseguire nessuna azione "pericolosa", come ad esempio un ordine di acquisto o un pagamento).
Le descrizioni dei processi sono fornite come Abstract BPEL Processes (files xxx_ABS.bpel) e
corrispondenti wsdl files (xxx.wsdl), e tutti gli input sono riuniti insieme tramite un Wizard
sviluppato da Astro per la creazione di files di coreografia (.chor files) grazie alla plugin
wsRequirements; la plugin, oltre alla creazione degli onnicomprensivi files .chor (che includono
le descizioni dei processi, il main goal, i recovery goals, le proprieta d'interesse da monitorare,
quelle da verificare, ed altro) offre anche una UI per ispezionare a fondo il file coreografico,
come mostrato in figura.

& Astro Suite wsAnimator - VTA_DN.chor - Eclipse SDK
File Edit Mavigate Search Project Run Window Help

i - SR E B D R A SRR R R TR R T | Al Astro Sute w... | 7
LT Mavigakor £3 = O || e Rar R =
1= W05 _W0S ” |
[+ '[E‘J YTA_demo Main goal:

[*-1=F WTA_Flight Process Expression
=l VTA_Hotel Hotel Hatel_pc = sUCC
E .project Flight Flight_pr = SUICC
= Hotel_aBS.bpel WTA WThA_pc = SUCC
|=| Hatel_aABS.vbpel
|=| Hotel.bpel
|=| Hatel.pdd
|=| Hotel.vbpel [:

= Haotel,wsd| [:

| Hotel.wsdl-local

1= YTA_User Recavery goal:
E1=F VTA_NTA Process Expression
(= settings Hatel Haokel_pc = FAIL | Hotel_pc = FAIL_MACK | Hotel_pc = START
(= build Flight Flight_pc = FAIL | Flight_pc = FAIL_MACK | Flight_pc = START
B .project WTA WTA_pr = FAIL | YTA_pc = FAIL_NACK | ¥TA_pc = START
=] HandwrittenyTaA. bpel
|51 wTA_nBS.bpel
|=| wTA_ABS . wbpel il
2] wTa_DM.char [: -
|=| wTA_DN.datanet |
= 7 | & > |

|=| WTaA_DM.datanet_diagram == . !
=] YTA.bpel + | | Process Definition | Composition ConkrolFlow | Composition DataFlow | Monitor | Yerify | XML

Nella Navigator view a sinistra possiamo vedere le composizioni dei folders (in questo caso
contengono molto pitt del necessario, ad esempio il file HandWrittenVTA.bpel ¢ un file
eseguibile per il composite service scritto a mano da un programmer esperto del team Astro, e la
sua funzione ¢ essere comparato al file generato dalla composizione automatica); notiamo che il
file VTA_DN.chor, che incarna i requirements della demo VTA (Flight-Hotel Reservation
Service - Virtual Travel Agency) ¢ stato selezionato ed aperto grazie a wsRequirements.

La schermata a destra ¢ uno scorcio della Ul offerta da wsRequirements per ispezionare i1
files .chor, piu precisamente sono mostrati i goals (main e recovery) della composizione,
all'interno della view "Composition Workflow" (notare i pannelli di switch per le views in basso
a destra); l'interfaccia permette anche di modificare il file .chor on the fly (si ricorda che &
anch'esso un XML file).

Composition Synthesis

Per avviare la composizione tramite wsChainManager si deve semplicemente avviare il Tomcat
Server tramite toolbar, ed una volta che l'inizializzazione di Tomcat e del BPEL Engine ¢
completata, si seleziona il file .chor (e tale azione rende attivi 1 tasti per composizione,
monitoring e verification) e si invoca la funzionalita di Service Composition, che conduce ad una
checklist di steps da affrontare; la message box in basso riporta dati sull'esecuzione, eventuali
problemi e tempo impiegato, dimensioni delle strutture dati in gioco ecc. Cio che il
chainManager fa ¢ costruire il dominio D dal prodotto parallelo e risolvere il problema di
planning via Model Checking, utilizzando i programmi NuSMV, wsTranslator, wSynth descritti
precedentemente.

35

"

X

wsChainManager v.2.4.0 composition

Step Active Executed
B rcreate oukput direckory v v
B translate the process in sme v v
¥ compose the processes monikor v [
® compose the BPEL process [v
® deploy the BPEL process v vl

&pN kL Gl

Execute l [Exit

Translation kime: 2922 msec

Launch command:
"wasynth -model_tvpe dn -rono C:fProgrammifEclipseWorkspace W Ta_YTAbUld\WTA_YTA. smw "
% This is wsynkh From synkools 0.13.1 b

Nella finestra del ChainManager possiamo distinguere la checklist delle operazioni in alto, e la
message box in basso. L'output finale della composizione ¢ il file Concrete BPEL eseguibile su
ActiveBPEL Engine, che viene posto nel folder del progetto con nome xxx.bpel; inoltre il
chainManager effettua automaticamente il packaging del file, con gli annessi necessari, nel
formato .bpr deployable, ed esegue il deployment su Engine (il che onsiste semplicemente in una
copia del file .bpr nel folder /bpr di Tomcat, che poi rileva automaticamente il processo); nella
figura seguente ¢ mostrata l'interfaccia offerta dal BPEL Engine (ed estesa da wsMonitor) che
mostra l'avvenuto deployment del processo composito VTA. La pagina ¢ accessibile via browser
tramite una URL del tipo "http://<computer-host-name>:50000/Bpel AdminExt/"; nel nostro caso:
"http://localhost:50000/Bpel AdminExt/".

36

3 ActiveBPEL(TM) Administration - Microsoft Internet Explorer

File Modffica Wisualizza Preferiti - Strumenti 7 ;';'
@Indietro . =D | Iﬂ lELI "J pi ! Cerca ‘:\'/ Preferiti @'{ - L__d S - | @] ‘:Ei
Indirizzo @:E http: iflocalhost: 50000/BpeladminExt /deployved _process_detail.jsprpdid=0 V . Wai @ ¥
.Y
@ ACTIVEBPEI Deployed Process Detail
engine Name: WTA
e Namespace: hitpefrastroproject argfBusinessProcessesiNTA
Engine Deployment Descriptor

Configuration = . ; ;
Configuration <process xwlns="http://schemas.active-endpoints. com/ pdd/ 2004/ 09/ pdd. X2

Storage <partnerLinkss>
Version Detail <partnerlink neme="Flight PLT">
<partnerRole endpointReference="static™":>
Deployment Status <wsa:EndpointReference xmlns:s="http://astroproject.org/Bu

<wza: Addressrhttp:// localhost: 50005/ axis/services/Fligh

Deployment Log [: [;
<wza:Servicelame PortMName="FlightServicePort">s:Flight?

Denloved Processes </wsa:EndpointReferences

Partner Definitions </partnerPolex

WEDL Catalog <wyRole allowedRoles="" binding="RPC" service="VTL Flight3erwv
< >

Process Status
Active Processes BPEL

Active Class Monitars <process xmlns="http://schemas.xmlscap.org/ws/2003/03 /husiness-process

Alarm Glueue <partnerLinks>

Dimrmivn Ciimina <partnerlLink mvRole="Hotel Customer™ name="Hotel PLT" nartnerLin ™
£ |
@1 Operazione completata & Intranet locale

Sezione 5.3 - Process Offline Verification

L'Astro Suite offre funzionalita per verificare proprieta del modello costruito (ovver il file .chor)
semplicemente a partire dal file di coreografia.

Tali proprieta da verificare seguono la linea dell'uso di metodi formali nelle fasi di design del
software, e possono includere esempi di success scenarios, ricerche di deadlocks, assertions da
confutare riguardo a cosa pud e non puo succedere sotto specifiche ipotesi e molto altro.

In figura & riportato uno scorcio dalla schermata di ispezione del file .chor, sezione "Verify" di
wsRequirements, per illustrare le proprieta che erano di interesse nella verifica.

37

& Astro Suite wsAnimator - VTA_DN.chor - Eclipse SDK

File Edit Mavigate Search Project

B

Run Window Help

EEX

i -t - R N R i T i i B | A sstro suke w.., | 7
sl | =] <.="="=> = Direction P
1= W05_Bark ~ Ez:z
[+ '[E‘J YOS5 _demo e
T=F W05 _Shore hone
[#-T=F W05 _User SED uses
T=F W05 _W0S
'[bd YTA_dema
- T=% ¥TA_Flight
T=F WT& _Hotel
[#-T=F WTA_User
-T2 WTA_NTA Mame Type Specification Drescription
(= .sebtings Simultqnenusﬁucc... asselrt?l?n (F _(instate(User,SUCC)){—? (F (instat.., SBrv?cn_e_s reach their
= buid Inconﬂstent_FmaI... possﬂ:!hty (F !nstate(User,SUCC)&G !|nst:ate(Hc-t... !JDSSIbIht;.-' fFor the us
COfferTodwail assertion (F instate{User, FAILY) - = ((G linstate(,.. if both Flight and Ho
-project AlCFFer aszerkion (F instate{User, FAIL_MACK)&F instate... if bokh Flight and Hao
|=| HandwrittenyTh.bpel allsucceeded possibility (F (instate(User, SUOCCNEF (instateHo... Services can reach t
| wra_aes.bpel Deadlock deadlock. vetification of deadl:
|=] WTa_ABS wbpel
‘fﬁj ¥TA_DM.chor
=] ¥TA_DM,datanet
|=| WTA_DM.datanet_diagram L
|=| wTA.bpel
|=| ¥TA.pdd
=) wTA.pdd-lacal Add ¥
=] WTA. wbpel ¥ 4 | &
=l ¥Tawsdl ha -Process.DeFinition”CDmposition.(.ZontfolFlow C-Dmpnsition.DatéFlow-Monitor Verify wmL |

Trattandosi di una procedura offline, possiamo avviare I'analisi tramite ChainManager e ricevere
risposta immediatamente, tramite una schermata Web apposita:

wsChainManager v.2.4.0 verification

Launch command:

Launch command:

"MuSMY -int -load CADOCUME~ 13 Alex\ IMPOSTA~ 13 TempfMushkY . crnd
i fProgrammifEclipse/Workspace /M TA_YTA\build\YTA_InconsistentFinalStates. smy "
FILE - 33 CADOCUME~ 1) Ales\ IMPOST~ 14 TempfMuSMY. cmd

Step Ackive Executed
B rreate oukput directory v
® translate the process in smy vl vl
& call the model checker b v
@on Okl Oal
Execute] [Exik

"rundll32 url.dll,FileProtocolHandler i fPrograrmmif/Eclipseworkspace/NTA_YTA build)verification. hkml

[

2 C:\Programmi\Eclipse\WorkspaceWWTA_VTA\build\verification. html - Microsoft Internet Explorer

File Modifica Wisualizza Preferiti Strumenti 7 .-#
.;) Indietro I'_._a;’ B @ /b p Cerca “* Preferiti @ &2 o :ﬁ\: b |_J @ :ﬂ
Indirizzo |@ C\ProgrammitEclipsel\Workspaceiv Ta_vTAbuildyverification. hitml A | Wai @ ¥

Ll

Verification result

Deadlock - Wertfication of deadleck L
states

Services reach their

StnultanecusSuccess |assettion | successhill states ol

sumultaneously
AllSucceeded ossibility AT LA Cllich ol [example] [example]

P successfull states =

AlOfer assertion if both Flight and HO_tEl make I[®] [counter-example] [counter-exarmple]

an offer, then user will accept

if hoth Flight and Haotel make
OfferToAval assertion |an offer, then User wont ol

recewe anot aval

posstbility for the user to
InconsistentFinalStates [posstbility finish succesfully, while itiz (IO
not a case for some partners

&

@ Operazione completata 4 Risorse del computer

Selezionando esempi e controesempi forniti, ci viene mostrato uno scenario ad alto livello stile
UML Sequence Diagram:

39

\ A e \ @, W - 9 X
D HNRAG L¥O2 % 8- -Ukis "
Verification result &
User WA, Flight Hotel
request()
=
fRequest()
=
fOffer()
<<
hRequest()
=
hOffer()
<<
offer()
<
ack()
=
fAck() 2
.’l}:[Operazione completata _é Risorse del computer

Sezione 5.4 - Online Process Monitoring

La funzionalita di Monitoring ¢ il corrispettivo online della Verification, e vuole fornire rapporti
all'utente su stati anormali dell'esecuzioni di processi BPEL while running.

Tramite la consueta schermata wsChainManager vengono creati automaticamente dei files Java
(i cui obiettivi sono definiti ancora una volta nel file .chor) i quali vengono messi in ascolto su
esecuzioni del processo d'interesse per monitorarlo e fornire informazioni all'utente; dal
momento che utilizzano l'interfaccia BPEL per fornire tali rapporti, € poiché 1'ActiveBPEL
Engine ¢ estraneo alla creazione ed esecuzione di questi monitors, si ¢ resa necessaria una
espansione all'interfaccia dell'Engine per includere supporto ai programmi monitors (questo ¢ lo
scopo dell'applicazione wsMonitor).

Nel seguito sono riportate immagini del wsChainManager per il Monitoring, di uno dei Java
monitor files generati, e dei monitor in esecuzione.

40

wsChainManager v.2.4.0 monitoring

Step Active Executed

B rcreate oukput direckory v

B translate the process in sme v v

¥ compose the process monikors v v

& yndeploy monitor v b

® rompile and deploy monitor v v
®on Oke Oal

[Execute l [Exit
“javac -classpath C:4Tomcathapache-tomcat-5.5, 20 sharediliblmonitorFuntime. jar -d C:4Tomcatlapache-tomcat-5.5.20 s
\sharediclasses Ci\ProgrammilEclipselWorkspacel\WTa_NTa\build\yTa_OfferTodAwvail java " M
Launch cormand:
“javac -classpath 4 Tomcathapache-tomcat-5.5, 20\ sharedifiblmonitorFuntime. jar -d C:Tomcatlapache-tomcat-5.5.20
\sharediclasses Ci\ProgrammilEclipselWorkspacel W Ta_NTa\build\yTa_Protocal, java ™
The ¥TA monitors have been deploved successfully)
w

& Astro Suite wsAnimator, - VTA_Protocol. java - Eclipse SDK

File Edit Source Refackor Mavigabe Search Project Run window Help
iz & 4@ @ it - Q- Q- & by T | $|.Ef-| Eﬂ A Aistro Suite w... | »
2 - SEl -y To| Astro Suite w...
B Navigakar 57 = =
= -
1= ¥OS_Bank e import org.astroproject.monitor.core. ;]
& Iz_'—‘,Jv‘v'OS_demo == public class VTA Protocol implements IProcessInstanceMonitor,
&3 vos_store public int status() { return rstatus; } B
12 vOS_User private long last ts:
= vos_vos private long cur ts;
-Iz_',—‘Jr\p'TP._demn private int rstatus = IMonitor.3TATUI RUNMING:
(= wTé_Flight VTAMonitor VTA = new VTAhMonitor():
1= ¥TA_Hatel HotelMonitor Hotel = new HotelMonitor():
[TA_User FlightMonitor Flight = new FlightMonitori):
1 yTA_YTA “class VTAMonitor {
& settings private int state:
B-E= buid boolean just horn = true;
m YTA_AlOfFer java hoolean is final = false;
] wTa_AIOFFer.smv hoolean is walid = true:
m YTA_CfferTotwal.java “public String getErrorNode ()
= MTA_CfferTodwal.smye {
m YT#,_Pratocal.java if (just_horn| | is_walid) return "VTL no error';
2 vwTa_pratacal.smy if [state==0) return "VTA protocol wiolation™;
project if('is final) return "VTA protocol wiolation (premature Lermit
2| HandwrittervTA.bpel return "VTL unhandled error'™;
] vTA_ABS.bpel)
2| ¥TA_ABS.vbpel “public void initi) ha
Yol wTa nn.rhor b 8 2
ks Writable Smart Inserk 13

! Adobe Reader - [ICAPS05demo Astro running es. pdf] . 5
-,.E File Modifica Mista Documento Strumenti Finestra 7 - 8 x
e £ om | =ilEd® T k4 o I

E’EwﬁH‘HD A L O | @

o : >
» Process Detail ~|
'Q 8 0 2
L Name: VTA

1 Namespace: hitp/NTA
Started: 03N 712008 17:51:24
Ended: 03 T/2005 17:51:42
State: Complated
Manitar Description Statu
VTAAIOHsr it both Flight and Hotel make an offer, then user will accept Ermor:
_ o a— if both Fllghl:nnd Hotel make an ofier, then User wont receive n Valid
H not_avail
VTAP ool Commurication protocol compliance Walid
= Me st age Dve ftake This mondlor cakch the message overtaked svent Valied
L
I
Log
? 1 [2][2005-03-17 17:51:27.000] : Executing [/process] -
E|H [2)[2005-03=17 17:51:27.000] : Executing [/process/sequence] |
2 [2)[2005-03-1F 17:51:27 000] : Executing [/process/sequence/receive] |
=il {2][2008-03-17 17:51:27.006] : Completed normally [/process/sequence/r: |
o [2]12005-03-17 17:51:27.016] : Executing [/process/sequence/assign[@na’ b |
el [{2)[2005-03-17 17:51:27.016] : Completed normally [/process/sequence/a’
[2][2005-03-17 17:51:27.016] E':n;ccuting [J’prncrssisl:qtmcl:p’iﬂwkt‘[a‘nn':_ |
(210 2005-03-17 17:51:27.0471 : Comnleted normallv [/orocess/secuence/it b

L[| 210x297mm € i | ¥

[=] |4 4 545 [p Pl © © | U(E]H#H oo

Sezione 5.5 - Process Execution Simulation

Mediante la plugin wsAnimator, ed utilizzando un formato file partcolare .adf, ¢ possibile
mandare in esecuzione diversi scenari pre-programmati, simile a scenari di simulazione in
ActiveBPEL Designer ma customizzati da team Astro per Composite Services. In figura ¢
riportato un esempio di esecuzione andata a buon fine, in cui tutti i processi hanno terminato su
"Success".

! Adobe Reader - [ICAPS05demo Astro running es. pdf]

EFile Modifica Vista Documento Strumenti Finestra 7

2A=R®N

B

@- 1 f @] ®

.E e L Lz er i Actlyeiviellow DEsIan e
F| b beague sewch prgect men wiodow by
o] | Bl || 0| & || 2 [% sr-]| 2 &] 2
S - xmx' -_-E}mgh:dlx v || ol x|
bom | x| | 1
RS €5 reques_vma (%, recomereauen €7, receive_reauent
ke ewn T : T i]
1] project '@wms..ﬂm =5, s nvalianle? = Is-avaiiable?
[& Flight.acf roadali 2 r o g e is T b
P Hoted sl : #] i .ﬁrﬁ! | - I"“ ﬂl _Jl\"xes -]
nn: | E] Al [Evaluate_offer @,‘Fiun_ml Q) ovailable ﬁ_,ruﬂ_nl'n Q)
Miotel [' v v ;
fw“ . iﬂl"' :5."" Whait_ack [] FAd :E)t}Wan_xk []I Al
ﬁ{m m& s | Wy
4 [Jss | (3 | | |78 |£20 | | [s | [0 |
4 — i L . : {L ¢ ;
=
d
=
[E)
E 1]
£ o
5
= | |
:- B s z :l
|| A 210 % 297 mm £ 1l | >
g 5 (14 4[535 [p bl | © © | TENTEE

43

Conclusioni

In questa relazione abbiamo esplorato a fondo il lavoro svolto nell'ambito del Progetto Astro per
una ricerca di un approccio per Automated Web Service composition, mettendo in risalto tanto la
logica teorica su cui si fonda l'approccio, tanto gli ambiziosi e importanti risultati pratici
conseguiti dal team Astro.

Abbiamo inoltre ricordato i punti salienti dell'approccio del Roman Group, legato al medesimo
problema, i cui autori sono i docenti universitari responsabili del Corso di Seminari di Ingegneria
del Software in seno a cui nasce il presente lavoro, e abbiamo comparato i due approcci studiati,
mettendo in risalto analogie e differenze, esaminando le metodologie ed i loro differenti punti di
vista anche nel panorama della ricerca internazionale odierna.

44

Bibliografia

Alonso, Casati, Kuno, Machiraju; 2004; "Web Services - Concepts, Architectures and

Applications”

G.De Giacomo, M.Mecella; Slides dal corso di Seminari di Ingegneria del Software

2006-07

[ICAPSO05] Pistore, Traverso, Bertoli; 2005; "Automated Composition of Web Services

by Planning in Asynchronous Domains"

[ICAPS05demo] Trainotti, Pistore et al.; 2005; "ASTRO: Supporting Composition and

Execution of Web Services"

[IJCISO05] Berardi, Calvanese, De Giacomo, Lenzerini, Mecella; 2005; "Automatic

Service Composition based on Behavioral Descriptions"

[AISCO06] Berardi, De Giacomo, Mecella, Calvanese; 2006; "Automatic Web Service

Composition: Service-Tailored vs Client-Tailored Approaches"

[ICSOCO05] Berardi, Calvanese, De Giacomo, Mecella; 2005; "Composition of Services

with Nondeterministic Observable Behavior"

[PTO01] Pistore, Traverso; 2001; "Planning as Model-Checking for Extended Goals in

Non-Deterministic Domains"

[DPTO02] Dal Lago, Pistore, Traverso; 2002; "Planning with a Language for Extended

Goals"

[P_BER] Berardi et al.; "Automatic Composition of e-Service that export their

Behavior"

The ASTRO Project Website; http://www.astroproject.org

[BPEL_Spec] The BPEL4AWS Specification, v1.1;
http://dev2dev.bea.com/technologies/webservices/BPEL4AWS.jsp

The ActiveBPEL Engine, http://www.activebpel.org

The ActiveBPEL Designer v4 User's Guide (http://www.active-endpoints.com)

