

Università di Roma "La Sapienza"

Tesina per il Corso di Seminari

di Ingegneria del Software

Proff. G.De Giacomo, M.Mecella,

R.Rosati

Anno 2006-2007

Il Progetto ASTRO nella

Web Service Composition:

analisi e confronto con

il Roman Approach

Autore:

Alessandro Pagliaro

 2

A mio Padre,

a cui devo tutto.

Trasformerò il dolore in forza

e conserverò per sempre il Suo ricordo.

 3

Sommario

__

Introduzione..5

Parte I: Il Problema della

 Web Service Composition.....................................6
 Sezione 1.1 - WS Composition Basics..6

 Sezione 1.2 - WS Respresentation...7

 Sezione 1.3 - Our Focus...8

Parte II: L'Approccio ASTRO..10
 Sezione 2.1 - ASTRO Project Overview.......................................10

 Sezione 2.2 - Notions on BPEL4WS and EAGLE Languages......11

 Sezione 2.3 - Component Services and Business Requirements

 in ASTRO...13

 Sezione 2.4 - The ASTRO Composition Problem..........................15

 Sezione 2.5 - Other Aspects of ASTRO Composition Efforts........22

Parte III: L'Approccio del Roman Group......................23
 Sezione 3.1 - Roman Model Basics: the Community.....................23

 Sezione 3.2 - PDL Reduction of the Composition Problem...........24

 Sezione 3.3 - Roman Model Synthesis Workflow..........................25

 Sezione 3.4 - The Current State of Advancement...........................26

Parte IV: Il Confronto tra i Due Approcci......................27
 Sezione 4.1 - Similarities and Differences in the various Stages

 of the Composition Workflow....................................27

 Sezione 4.2 - A Graphical Glance of the two Approaches in

 today's Landscape of Service Composition................29

Parte V: Il Toolset sviluppato nell'Ambito

 del Progetto ASTRO...31

 4

 Sezione 5.1 - Software Components forming the Astro Suite...........31

 Sezione 5.2 - Composition Execution and Mappings........................32

 Sezione 5.3 - Process Offline Verification..36

 Sezione 5.4 - Online Process Monitoring..39

 Sezione 5.5 - Process Execution Simulation......................................41

Conclusioni...43

Bibliografia..44

 5

Introduzione

Il corso di Seminari di Ingegneria del Software, collocato nel biennio specialistico di Ingegneria

Informatica, mira a fornire ai suoi studenti una panoramica sulle tecnologie "di frontiera",

relative a determinate problematiche attuali del settore ancora ben lontane dall'essere risolte, che

i ricercatori di tutto il mondo stanno esplorando, cooperando tra loro per il progresso della

comunità scientifica.

Gli argomenti affrontati nel corso hanno spaziato dalla teoria delle queries congiuntive

all'integrazione di dati, dalla composizione di servizi al territorio largamente inesplorato del

semantic web.

All'interno di questa gamma di aree di ricerca ho scelto di concentrarmi sulla Service

Composition, ovvero la disciplina che cerca di realizzare complessi e-Services (cioè programmi

interattivi che forniscono, solitamente tramite il web, un qualche servizio all'utente) a partire da

e-Services già esistenti; come si vedrà il problema non è affatto banale, e gli approcci seguiti dai

vari gruppi di ricerca nel mondo sono molto vari, e si concentrano su aspetti di natura molto

differente.

Questa relazione si occuperà in primo luogo di descrivere i risultati ottenuti dal gruppo di ricerca

composto dall'Università di Trento e l'ITC-IRST, il Centro di Ricerca Scientifica e Tecnologica

della Fondazione Bruno Kessler; più in particolare, alcuni dei nomi più importanti nel progetto

sono M. Pistore, P. Traverso e P. Bertoli.

L'approccio di Service Composition delineato dal suddetto gruppo è conosciuto come il Progetto

ASTRO; si parlerà sia della logica teorica dietro l'approccio, sia dei risultati concreti ottenuti dal

gruppo di ricerca.

La relazione si prefigge inoltre un secondo scopo: quello di descrivere brevemente l'approccio

alla WS-Composition del cosiddetto Roman Group, team di ricerca formato dai professori

universitari che hanno tenuto il corso di Seminari di Ing. del Software (G.De Giacomo,

M.Mecella, D.Berardi,. D. Calvanese), e di sottolineare analogie e differenze con l'ASTRO

approach in modo da presentare al lettore un efficace confronto comparativo riguardo questa

tanto interessante quanto ancora aperta area di ricerca.

 6

Parte I: Il Problema della Web Service Composition

Sezione 1.1 - WS Composition Basics

L'argomento centrale di questa relazione è illustrare possibili metodologie per affrontare e

risolvere il complesso problema della Service Composition.

Questa prima parte introduttiva delinea brevemente gli aspetti principali del problema in esame.

Un Composite Service è un Web Service che offre servizi da una sua interfaccia come qualsiasi

altro Web Service (nel seguito si utilizzerà anche il termine "e-Service" per riferirsi ai Web

Services), sebbene dal punto di vista implementativo i servizi offerti siano il risultato di

un'opportuna interazione con altri Web Services, indipendenti tra loro e non pensati a priori per

cooperare in un e-Service comune. Il problema della Service Composition è il termine generico

per indicare una metodologia che ha per fine l'implementazione di Composite Services.

Per realizzare un Composite Service è indispendabile disporre di strumenti adeguati, esaminando

il problema ad un alto livello di astrazione ed automatizzando il più possibile operazioni di basso

livello, in modo che il progettista possa concentrarsi sulla Business Logic dell'applicazione.

Nella Web Service Composition non vogliamo realizzare un'integrazione fisica di moduli

software, ma piuttosto, dati dei requisiti opportunamente espressi, trovare un piano d'esecuzione

in cui siano indicati quali e-Services invocare, in che ordine farlo e come gestire condizioni di

errore e imprevisti.

In linea di massima gli strumenti necessari per risolvere il problema sono:

� un linguaggio per la rappresentazione comportamentale di Web Services, in modo da

modellare efficacemente il loro flow d'esecuzione e le funzionalità che offrono; in questa

ottica i Web Services possono essere visti come programmi interattivi e web-based che

esportano il loro comportamento in termini di una descrizione astratta e formale, utile ai

nostri scopi; si noti che possiamo usare tali linguaggi comportamentali anche per

rappresentare il Composite Service (anche detto "Target Service").

� una logica di composizione, ovvero un procedimento generale che partendo dai requisiti

(Business Requirements) e dagli e-Services di partenza (Component Services) realizzi il

Composite Service finale in una qualche forma eseguibile; questo punto rappresenta il

cuore di un approccio per la WS Composition, una sorta di algoritmo di base.

� un ambiente di sviluppo, preferibilmente ricco di componenti GUI, che aiuti il progettista

a creare il servizio ad alto livello, automatizzando la metodologia definita dalla logica di

composizione e operazioni low-level come la creazione di files XML.

� un composition engine per eseguire e monitorare le istanze della composizione trovate.

Definiamo conversazione un'interazione con un e-Services consistente nell'esecuzione

sequenziale di più operazioni, in un particolare ordine.

 7

Una coreografia è un piano per la coordinazione di più conversazioni, volta ad un preciso scopo

d'insieme; i Service Component che partecipano alla coreografia non hanno bisogno di sapere

quale sarà l'effetto finale, devono solo assicurarsi di fare la loro parte.

Per sintesi di un Composite Service si intende la costruzione delle specifiche necessarie

all'esecuzione del servizio a partire da requirements ben definiti; tali specifiche sono conosciute

come Composition Schema.

L'orchestrazione è, infine, la gestione runtime dell'esecuzione del Composite Service (scheduling

di invocazioni, gestione di errori, monitoring).

Sezione 1.2 - Web Service Representation

Come già accennato in precedenza, la composizione di e-Services è interessata al

comportamento di questi ultimi, ovvero al set di azioni che esportano attraverso le loro

interfacce, più i possibili constraints aggiuntivi nelle conversazioni legali.

Un metodo efficace per rappresentare Web Service behaviors, e che sarà largamente utilizzato

nei capitoli successivi, consiste nell'usare Finite State Machines (o in breve FSMs). Nel seguito

viene fornita la definizione di Transition System, una FSM "tailored" per rappresentare e-

Services, e viene mostrato come si possa utilizzare per i nostri scopi.

Definizione: Transistion System

Un Transition System TS è una tupla < S, S
0
, A, d, F >, dove:

• S è l'insieme degli stati;

• S
0
, sottoinsieme di S, è l'insieme di stati iniziali

• A è l'insieme di azioni;

• d è la relazione di transizione da S x A in S;

• F, sottoinsieme di S, è l'insieme di stati finali.

L'idea è che gli stati del TS siano "stati stabili" nell'esecuzione, del Web Service, ed azioni che

arrivano dall'esterno, come la ricezione di un messaggio, o azioni che sono iniziate dal Web

Service, come invio di messaggi, o ancora passi di computazione interni al servizio, siano tutti

eventi scatenanti cambiamenti di transizione tra stati; si noti che nel caso di transizioni derivate

da computazioni interne si parla anche di t-transitions.

In genere si assume che all'avvio un e-Service si trovi in uno stato iniziale, e l'esecuzione possa

terminare legalmente in qualunque stato etichettato come finale.

Nel seguito si fornisce un semplice esempio di due Component Services e n Composite Service

che può essere costruito mediante una composizione dei due servizi base.

Come è ovvio, le azioni (in questo caso tutte avviate dall'esterno) search_by_author e

search_by_title servono a localizzare un file musicale, mentre l'azione listen serve ad ascoltare

tale brano.

 8

Component and Composite Services as TSs

search_by_title

listen

search_by_author

listen

search_by_title

listen

search_by_author

= initial state = final state

Sezione 1.3 - Our Focus

Lo scopo di questa relazione è duplice: innanziuttto si vuole porre le basi del problema della

Web Service Composition per illustrare la metodologia d'approccio sviluppata all'interno del

Progetto ASTRO, uno sforzo congiunto di ricerca e sviluppo dell'Università di Trento e l'ITC-

IRST; oltre a ciò si vogliono delineare i punti essenziali dell'approccio nato dal Roman Group

dell'Università La Sapienza di Roma in modo da giungere ad un confronto comparativo tra le due

metodologie.

Entrambi gli approcci mirano alla realizzazione pratica del workflow descritto dalla seguente

figura:

 9

The General WS Composition Workflow

Component

Services'

behavioral

Descriptions

Requirements of

Clients for Target

Composite Service

Abstraction

Module

Synthesis

Engine

Transition System

Representation of

Components and

Requirements

Building

Module

Abstract repres.

of Composition

Schema as a TS

Concrete

Composite Service

Specification

Nel prossimo capitolo verrà esaminato in dettaglio l'approccio del Progetto Astro alla WS-

Composition, fornendo una overview generale dei suoi componenti e aree di interesse, ed

approfondendo in dettaglio l'argomento per quanto riguarda la logica dietro il processo di

composizione; il capitolo 3 fornirà un breve riepilogo sulle caratteristiche principali del Roman

Approach, che è stato uno degli argomenti trattati durante le lezioni di Seminari di Ingegneria del

Software nel cui contesto si pone la presente relazione; il capitolo 4 cercherà di evidenziare i

parallelismi e le differenze tra i due approcci, Astro e Roman model, per un istruttivo confronto

comparativo; il capitolo conclusivo, il 5, si occuperà invece dell'esame del tool sviluppato e reso

disponibile dal team Astro, fornendo indicazioni per l'installazione, l'esecuzione e l'uso delle

varie componenti coinvolte per soddisfare i nostri scopi di Web Service Composition.

 10

Parte II: L'Approccio ASTRO

Sezione 2.1 - ASTRO Project Overview

Il Progetto Astro è un'iniziativa di ricerca congiunta riguardo l'integrazione di Web Services, sia

intra- che inter-organizzazione, promossa dall'Università di Trento e l'ITC-IRST, il Centro di

Ricerca Scientifica e Tecnologica della Fondazione Bruno Kessler.

Il suo scopo principale è il favorire l'adozione worldwide di Web Services compositi prestando

attenzione a metriche fondamentali quali efficacia, flessibilità, facilità d'uso, basso costo ed

efficienza temporale: ciò si traduce per forza di cose in una serie di obiettivi più concreti, che

sono elencati qui di seguito.

Astro vuole fornire:

� un framework generale per la composizione automatica di servizi, che sarà discusso

estensivamente in questo capitolo;

� dei tools concreti di realizzazione del framework, utilizzanti una larga serie di tecnologie

che si sono affermate come il futuro della Web Service composition;

� supporto software per l'intero ciclo di vita delle applicazioni, dalle prime fasi di design

fino al monitoraggio e verifica a runtime;

� evitare di delegare allo sviluppatore dei compiti noiosi, complessi ed error-prone, in

modo da permettergli di concentrarsi in modo trasparente e user-centered sulla logica

dell'applicazione ad un alto livello di astrazione.

Le aree toccate dalla ricerca del Progetto Astro si possono classificare in una tassonomia di 5

grandi macro-domini:

I. Business Requirements : questo settore mira allo sviluppo di un framework per

rappresentare efficacemente la definizione di strategie, obiettivi e business

requirements aziendali, con particolare riguardo anche alle interazioni tra differenti

business processes; quest'area sarà oggetto dei paragrafi 2.2 e 2.3 del presente

capitolo.

II. Service Synthesis : il settore della sintesi offre un modello per ottenere dei servizi

compositi in maniera generale ed efficiente, nonché supportata da una teoria di

fondo che garantisce la correttezza e l'affidabilità dei risultati; questo ramo ha una

controparte pratica incarnata dai tools eseguibili per la composizione di e-services;

della logica che costituisce il cuore dell'approccio Astro si parlerà in dettaglio nel

paragrafo 2.4, mentre il tools verrà esplorato nel capitolo 5.

III. Service Verification : il tool offre anche strumenti di supporto per controllare se i

requirments definiti sono violati dal servizio risultante ottenuto; la trattazione

dettagliata di questo argomento esula dal focus della relazione, e ne verranno forniti

alcuni cenni nel paragrafo 2.5.

IV. Service Monitoring : il corrispettivo a runtime della service verification, anche di

questo si parlerà nel paragrafo 2.5.

V. Semantics : parte degli sforzi di ricerca sono volti all'adozione di supporto per

integrare semantic web services, rendendo il tools interoperabile con OWL-S e

WSMO; anche per questa parte l'argomento esula dai nostri scopi, e se ne accennerà

nel paragrafo 2.5.

 11

Le seguenti sezioni affrontano in dettaglio la metodologia di approccio per la WS-Composition,

partendo dalla modellazione dei requirements per arrivare al web service finale, illustrando passo

passo la logica dietro la composizione senza però mai perdere il contatto con il riscontro pratico.

Sezione 2.2 - Notions on BPEL4WS and EAGLE languages

Prima di iniziare la trattazione dei business requirements in Astro, è necessario fornire qualche

nozione basilare su due importanti strumenti di ausilio alla definizione del problema, entrambi

standard molto validi per la definizione di business processes nell'ambito dei Web Services:

BPEL e EAGLE. Entrambi gli strumenti, soprattutto BPEL, sono estensivamente utilizzati

all'interno del framework Astro, e nel seguito ne viene fornita una panoramica necessaria alla

comprensione della relazione. Per maggiori dettagli si consulti [BPEL_Spec] e [DPT02].

BPEL
BPEL Overview

L'acronimo BPEL sta per Business Process Execution Language, ed è un linguaggio

appositamente creato per la definizione ed esecuzione di processi i cui passi di esecuzione

possono rappresentare invocazioni a Web Services. Il linguaggio è basato su XML (ovvero un

file BPEL è a tutti gli effetti un xml file con dei costrutti particolari e processabile da tools

appositi) ed è il fulcro centrale su cui orbita la realizzazione dell'intero Astro toolset: sia parte dei

composition requirements, sia l'output eseguibile finale sono BPEL files.

Abstract and Concrete Processes

Una distinzione chiave tra i files BPEL è quella tra Abstract e Concrete files. Entrambi

descrivono un (composite) e-service via xml, ma mentre un Abstract process definisce solo il

comportamento visibile "dall'esterno" dello scambio di messaggi tra web services (ricordiamo

che, nell'ambiente asincrono della WS Composition, ogni interazione tra due distinti e-services

avviene soltanto tramite message exchange), un Concrete process è un file a tutti gli effetti

eseguibile, dettaglia anche le internal evolutions dei servizi (le t-transitions) e può concretizzarsi

in un processo deployable su un BPEL engine e monitorabile.

Detto ciò, non sorprenderà il sapere che i processi abstract sono usati, nell'approccio Astro, per la

descrizione dei Component Services, mentre il fine ultimo è la costruzione del concrete BPEL

process eseguibile che incarna il target composite service.

A few Details on BPEL constructs

Concludiamo questa breve parentesi su BPEL, necessaria per comprendere appieno il

meccanismo di composizione, con dei sintetici cenni ai costrutti BPEL più importanti ed usati

dal tool Astro:

- un abstract process definisce un set di message exchanges tra web services, senza però definire

la internal business logic;

- un concrete process definisce la business logic di un servizio servendosi di activities

constituenti, partners coinvolti nel servizio, message exchange necessario e procedure di

exception handling.

Per quanto riguarda le BPEL activities, esse possono essere primitive o strutturate.

Le attività primitive degne di nota includono:

- invoke : per invocare un Web Service;

 12

- receive e reply : per ricevere messaggi da una sorgente esterna o inviarli verso l'esterno;

- wait ed empty : per rimanere inattivi, rispettivamente per un certo periodo di tempo e

indefinitamente;

- assign : per assegnare valori alle variabili interne che costituiscono lo stato dell'e-service;

- throw : per lanciare eccezioni.

Attività strutturate includono:

- sequence : per eseguire una catena di azioni sequenziali;

- switch : simile al noto costrutto informatico, effettua una singola decisione basandosi su una

variabile;

- pick : per "ascoltare" i cambiamenti su un dato set di eventi; non appena accade un certo evento,

viene scelta ed eseguita una certa azione (legato al non-determinismo);

- while : per il tradizionale ciclo di iterazioni;

- flow : per gestire esecuzioni parallele (Astro lo usa in modo limitato nella versione corrente 3.4).

EAGLE
Come si vedrà tra breve, il problema della WS-Composition affrontato dal team Astro è

essenzialmente un problema di planning, e per di più sotto ipotesi realistiche che rendono la

questione niente affatto banale: non-determinismo nell'evoluzione degli stati ed obiettivi

(requirements, business goals) che non si riducono a problemi di reachability ma coinvolgono

connotazioni come "cercare di fare tutto il possibile per".

Per tali ragioni, nella modellazione di requirements, il team Astro ha preferito non utilizzare

logiche temporali quali CTL che offrono quantificatori temporali potenti ma comunque

insufficienti a modellare concetti come "fare del proprio meglio per" o "in caso non ci si riesca,

allora è preferibile fare quest'altra cosa". Per una panoramica più dettagliata sulle motivazioni

che hanno portato a tali scelte e i risultati pratici ottenuti, si consulti [DPT02].

L'adozione di EAGLE come linguaggio per esprimere "Extended Goals" (di cui parlerà meglio

nel prossimo paragrafo) è la conseguenza a questa linea di pensiero; fornire una completa

trattazione del linguaggio è molto al di fuori dei nostri scopi, ed anche delle notre necessità, in

quanto anche solo pochi cenni possono essere sufficienti per comprendere le sezioni successive.

Formule EAGLE saranno utilizzate per esprimere business goals del target composite service;

esse consistono in blocchi contenenti formule proposizionali che intuitivamente definiscono dei

particolari stati che il sistema può raggiungere; ogni blocco è associato ad un particolare

operatore che definisce la funzione stessa di quel blocco all'interno del sistema.

Ad esempio, gli operatori comprendono TryReach e FailDoReach, due costrutti che specificano

rispettivamente il "tenta di raggiungere questo stato del sistema" e "in caso non fosse possibile

raggiungere tale stato, portati assolutamente in quest'altro stato". Altri operatori possono

esprimere sequenzialità (A then B), iterazioni (repeat A), tentativi o garanzia di mantenere vero

un certo stato (TryMaint A oppure DoMaint A). Ancora, per una trattazione approfondita si veda

[DPT02].

Nel nostro contesto è sufficiente capire l'uso dei costrutti EAGLE TryReach e DoReach, e il

motivo per cui sono importanti e più utili di CTL.

 13

Sezione 2.3 - Component Services and

 Business Requirements in ASTRO

Armati delle conoscenze acquisite nel precedente paragrafo, possiamo introdurre una prima,

generale versione del nostro problema: dato un set di Component Services W1,...,Wn , espressi

come Abstract BPEL Processes, e data una specifica di Composition Requirements come

EAGLE formula, vogliamo generare automaticamente un nuovo servizio W, il nostro target

composite service, che utilizza i component services esistenti e soddisfa i nostri composition

requirements.

Assumiamo inoltre di essere in un dominio asincrono, con dei component services che offrono

partial observability (ovvero non espongono le loro operazioni interne ma solamente le

interazioni con l'esterno) e in presenza di business requirements come extended goals, cioè

specifiche di stati "desiderabili", che non possono evitare di prendere in considerazione

esecuzioni impreviste e fallimenti (rifiuto di accettare un costo, o un delivery time, o

indisponibilità di merce, ad esempio) e quindi prendono in esame condizioni di intensità

differente (come try vs reach) e preferenze tra differenti possibili alternative.

Case Study: Purchase & Ship

Nel seguito faremo riferimento ad un esempio pratico per favorire la chiarezza nell'esposizione

dell'argomento: consideriamo un servizio composito di acquisto e consegna di merce

(Purchase&Ship, anche abbreviato come P&S), illustrato graficamente in figura:

The Purchase and Ship Scenario

Purchase

&

Ship

W

User

W3

Producer

W1

Shipper

W2

request(item, loc)

offer(cost, delay)

unavailable

ack / nack

info_reqst(item)

info(size)

request(item)

offer(cost,delay)

unavailable

ack / nack

request(size,loc)

offer(cost,delay)

unavailable

ack / nack

L'esempio è piuttosto autoesplicativo e non dovrebbe essere difficile da comprendere: abbiamo

uno scenario in cui vogliamo comporre due differenti e-services, il Producer e lo Shipper, in

modo da riuscire ad acquistare dei beni a distanza ed ottenere la consegna a domicilio; per questo

sarà neessario disporre di un terzo WS che interagisce con il Composite Service P&S W, che

pertanto dovrà trattare in tutto con tre component services, W1, W2 e W3. Possiamo notare come

le operazioni richieste da User non sono direttamente offerte da Producer e Shipper, ma mediate

 14

da P&S, che interagisce con i due servizi base interrogandoli su dimensioni, prezzi e ritardi di

produzione/consegna necessari, ordinando beni e comunicando esiti delle operazioni.

Evidenziamo inoltre come molte cose possano non andare a buon fine: un prodotto potrebbe

essere non disponibile, o non consegnabile, o ancora il cliente potrebbe rifiutare l'offerta finale;

tuttavia, non vogliamo nemmeno che il Composite Service permetta operazioni quali acquisti

presso il Producer mentre User ha rifiutato l'offerta, o Shipper ha risposto negativamente: siamo

in sostanza in presenza di extended goals, in cui vogliamo che l'operazione vada a buon fine,

salvo imprevisti, e che in caso di fallimento non vengano eseguite operazioni dannose.

Component Service Representation as STSs

Abbiamo già visto nel capitolo I come la rappresentazione via FSM sia un ottimo modo per

descrivere e-services dal punto di vista comportamentale.

Nell'approccio Astro i component services che costituiscono parte dell'input al composition

problem vengono forniti come Abstract BPEL Processes, cioè possiedono uno stato (le variabili

interne del processo), un insieme di partners, cioè di BPEL processes cooperanti, una

descrizione di interazioni con l'esterno e la possibilità di evolvere internamente, utilizzando tutti i

costrutti BPEL esaminati nel paragrafo 2.2.

La metodologia di sintesi prevede inizialmente la traduzione di tutti i Component Services

espressi come Abstract BPEL Processes in STS. Un modulo software apposito, BPEL2STS, si

occupa di tradurre i files .bpel in files .smv.

Gli STS definiti in Astro distinguono possibili stati, e cambiamenti tra stati avvengono attraverso

azioni, le quali possono essere classificate in azioni di input (ricezione di messaggi), azioni di

output (invio di messaggi) e t-transitions, ovvero azioni di evoluzione interna e non visibile alle

entità esterne.

Riportiamo di seguito una ridefinizione di STS in chiave Astro, molto simile a quella riportata

nel capitolo I ma tailored secondo i concetti e le definizioni proprie dell'approccio in esame.

Definizione: Astro State-Transition Sytem (STS)

Un Transition System S è una tupla < S, S
0
, I, O, R, L >, dove:

• S è l'insieme finito degli stati;

• S
0
, sottoinsieme di S, è l'insieme di stati iniziali

• I è l'insieme finito di input actions (cioè message receive);

• O è l'insieme finito di output actions (cioè message send);

• R è la relazione di transizione da S x (I U O U {t}) → S;

• L è funzione di labeling, e associa ad ugni stato un set di proprietà soddisfatte dallo stato.

Formalmente, detto Prop l'insieme delle proprietà, L: S → 2
Prop

Vengono affettuate alcune assunzioni sulla modellazione in STS di Component Services:

l'assenza di loops infiniti su t-actions e l'impossibilità che uno stato abbia origine sia da input

che da output transitions.

Accenniamo anche al fatto che il modulo di traduzione, BPEL2STS non supporta tutti i costrutti

BPEL, ad esempio nell'ultima versione 3.4 i costrutti "Scope" e "Fault" non sono supportati;

tuttavia il range di operatori attualmente disponibili permette un certo livello di complessità.

Ricordiamo infine come lo stato di un STS dipenda dalle sue variabili interne, così come le

transizioni definite da R dipendono da queste stesse variabili; perché il file .smv che incarna

l'STS dei Component Services sia trattabile, vengono definiti ranges finiti per le variabili in

gioco.

Composition Requirements as EAGLE Formulas for Extended Goals

 15

Alla luce di quanto detto finora riguardo l'espressione di business requirements e la necessità di

utilizzare formule EAGLE, questa parte dovrebbe essere di facile comprensione.

Nel presente esempio, in ogni esecuzione del servizio il nostro scopo è quello di raggiungere il

goal generale "try to sell items at home"; come già accennato, non è garantito che l'operazione

abbia successo, a causa di imprevisti "legali" che potrebbero accadere, come l'indisponibilità in

inventario dell'oggetto richiesto, una destinazione che lo Shipper non è disposto a trattare, o un

rifiuto del cliente su un' offerta finale troppo costosa. In sostanza vogliamo che il sistema

consideri il completamento dell'operazione come una circostanza altamente desiderabile, e faccia

tutto il possibile per soddisfarla.

Il secondo punto fondamentale è che non vogliamo completare operazioni "singole" senza che

l'intera transazione sia andata a buon fine (non vogliamo acquistare un item dal Producer quando

lo Shipper non è disposto a consegnarlo!), quindi in sostanza desideriamo una politica error-

handling di "upon failure, do never a single commit"; notiamo come la forza della direttiva di

requirements è questa volta "do", e non "try", vogliamo cioè garanzie sullo stato risultante.

Siamo quindi pronti a definire i nostri requirements, prima in linguaggio naturale, quindi ad un

più basso livello di astrazione, come EAGLE formula:

1. Try to "sell items at home";

2. Upon failure {

 do "never a single commit";

 }

Riportiamo quindi la formalizzazione in EAGLE, legata alla rappresentazione in .smv dei

Component Service STSs:

TryReach
 user.pc = success && producer.pc = success && shipper.pc = success

 &&

 user.offer_delay = add_delay(producer.offer_delay + shipper.offer_delay)

 &&

 user.offer_cost = add_ cost (producer.offer_ cost + shipper.offer_ cost)

Fail DoReach
 user.pc = failure && producer.pc = failure && shipper.pc = failure

Le variabili "pc" usate si riferiscono al "program counter" dell'STS, che ne individua lo stato e

gioca un'importante parte nelle transizioni; comunque, l'esame in dettaglio dell'encoding in .smv

è fuori dal nostro scope.

Sezione 2.4 - The ASTRO Composition Problem

Questo paragrafo è il cuore della sintesi per WS-Composition realizzata in ambito Astro, e

mostrerà come sia possibile giungere dai requisiti appena definiti al Concrete BPEL Process

eseguibile che implementa il Composite Service desiderato W.

Evidenziamo come il nostro focus ora giace nella logica di fondo dell'approccio, e non nel

mapping implementativo, che verrà discusso e raffrontato a questa parte nel capitolo V; pertanto,

se ad esmpio ci riferiremo ad un requirements goal r, per ora non accenneremo a come tale goal

sia definito nel tool.

Di seguito è riportata un'immagine che può essere considerata come la versione in Astro del

workflow-obiettivo mostrato nel paragrafo 1.3, e che sarà il nostro riferimento lungo questa

sezione.

 16

The Astro Composition Workflow

Component Services as

abstract BPEL processes

W1 ... Wn

Composition

Requirement

R

BPEL2STS

S1 ... Sn
STSs

r EAGLE formula

STS2DOM

TRANSLATOR
S||

MBP

Planning

Domain

D

PLAN2STS

Plan p

STS2BPEL

STS SC

Concrete

BPEL Proc

W

Procediamo quindi con l'analisi del workflow che costituisce la backbone dell'approccio Astro.

Composition Problem Inputs

La composizione parte da due input: uno è il set di Abstract BPEL Processes che descrivono il

comportamento "visibile dall'esterno" dei Component Services su cui dobbiamo costruire, e ci

riferiremo a tali processi come W1...Wn; il secondo input è definito dalla formulazione ad alto

livello dei requirements R della composizione, come definiti nel precedente paragrafo.

Initial Input Processing

Gli input considerati subiscono un trattamento iniziale: i processi BPEL sono trasformati in

rappresentazioni STS tramite un apposito modulo software BPEL2STS: otteniamo così gli STS

S1...Sn che descrivono il comportamento dei Component Services.

I composition requirements invece sono espressi tramite una EAGLE formula r, nel modo che

abbiamo visto precedentemente.

Further Processing: the Parallel Product

Il prossimo passo è manipolare le versioni STS S1...Sn per ottenere un nuovo STS, chiamato S||,

che è formalmente definito come il Prodotto Parallelo di S1...Sn. Intuitivamente possiamo

pensare al Prodotto Parallelo come ad un STS che combina tutte le possibili evoluzioni dei Web

Services componenti. Di seguito forniamo la definizione formale di Parallel Product tra due

STSs:

Definizione: Parallel Product tra due STSs S1 e S2

Siano S1 = < S1, S1
0
, I1, O1, R1, L1 > e S2 = < S2, S2

0
, I2, O2, R2, L2 > due STSs tali che (I1 U O1)

∩ (I2 U O2) = insieme vuoto.

Il Prodotto Parallelo S1 || S2 tra S1 e S2 è definito come:

 17

 S1 || S2 = < S1 x S2 , S1
0
 x S2

0
, I1 U I2 , O1 U O2 , R1 || R2 , L1 || L2 >

dove:

• < (s1, s2), a, (s1', s2) > appartiene a (R1 || R2) se < s1, a, s1' > appartiene a R1;

• < (s1, s2), a, (s1, s2') > appartiene a (R1 || R2) se < s2, a, s2' > appartiene a R2;

• e inoltre (L1 || L2) (s1, s2) = L1 (s1) U L2 (s2).

Arriviamo quindi alla definizione di S||, che è nient'altro che il Parallel Product di S1...Sn , cioè S1

|| S2 || ... || Sn . L'ipotesi nella definizione di insiemi di Input e Ouput disgiunti è ragionevole in

quanto stiamo considerando Component Services in generale non correlati.

A Glimpse of our Goal

Possiamo ora accennare al nostro scopo finale utilizzando la terminologia adottata finora: la

realizzazione del Composite Service a partire dai nostri requirements si concretizza nel trovare

un STS SC, che soddisfa particolari proprietà: esso deve "muoversi" all'interno di S|| per

"controllare" i component services, allo stesso tempo rispettando il goal r ed evitando di porsi in

stati pericolosi, come ad esempio un deadlock.

Per procedere nella nostra metodologia definiamo innanzitutto la nozione di Sistema Controllato.

Controlled System STS, for SC controlling S

Nell'ambito di Sistema Controllato ci sono due attori, entrambi STS; chiameremo questi due

attori SC e S, facendo in modo che il primo controlli il secondo. Ciò dà origine ad un nuovo STS,

il Sistema Controllato, che descrive in che modo il Controller SC controlli l'esecuzione di S.

Definizione: Controlled System

Siano S = < S, S
0
, I, O, R, L > e SC = < SC, SC

0
, O, I, RC, L0 > due STSs tali che la funzione di

labeling di SC sia nulla per ogni stato sC, cioè L0 (sC) = insieme vuoto per ogni sC in SC.

Il nuovo STS SC |> S descrive il comportamento di S controllato da SC, ed è definito come:

 SC |> S = < SC x S , SC
0
 x S

0
, I , O , RC |> R , L >

dove:

• < (sC, s), t, (sC', s') > appartiene a (RC |> R) se < sC, t, sC' > appartiene a RC;

• < (sC, s), t, (sC , s') > appartiene a (RC |> R) se < s , t, s ' > appartiene a R;

• < (sC, s), a, (sC', s') > appartiene a (RC |> R), con a diverso da t, se < sC, a, sC' >

appartiene a RC e inoltre < s , a, s ' > appartiene a R;

Notiamo come l'insieme di azioni di input dell'uno coincida con l'insieme di azioni di output

dell'altro; possiamo esprimere illustrare sinteticamente la relazione di transizione del Controlled

System notando come: 1 - transizioni interne nel controller permettono transizioni interne di

entrambi gli STSs nel Controlled System; 2 - transizioni interne nel controlled STS non

permettono transizioni interne per il Controller; 3 - transizioni esterne sono possibili soltanto su

azioni che coincidono dei due STSs, per uno di input e per l'altro di output. Notiamo inoltre

come il controller SC non abbia funzione di labeling associata.

La nozione di controllo deriva principalmente dalla corrispondenza input-output delle azioni:

l'input del Controller è l'output dell'STS controllato, ovvero il controllato fornisce all'output le

informazioni generate, mentre l'output del Controller è l'input del controllato, ovvero il

Controller "istruisce" l'STS controllato sulle prossime azioni.

Adequate vs Inadequate Controllers: the Deadlock-Free Controllers

 18

Le assunzioni di sistema asincrono in cui ci poniamo pongono di fronte a noi una difficoltà: non

tutti gli STS controllers per un dato STS sono adatti ai nostri scopi: vorremmo evitare deadlocks,

più precisamente vorremmo che ogniqualvolta il Controller "invii" un messaggio in output

all'STS controllato, questo sia pronto a ricevere tale messaggio, eventually.

Dobbiamo pertanto definire un sottoinsieme dei Controllers possibili, tale che l'STS controllato

possa ricevere gli input forniti, eventualmente dopo una catena, arbitrariamente lunga ma finita,

di t-transitions.

Per i nostri scopi è utile anche definire la nozione di t-closure(s) di uno stato, che è

semplicemente il set di stati in un STS raggiungibili da s tramite transizioni interne. Possiamo

anche definire t-closure(S) l'unione delle chiusure per ogni stato s in S.

Definiamo dunque il concetto di deadlock-free controller, tagliando fuori dalla nostra sfera

d'interesse i Controllers non adeguati.

Definizione: Deadlock-Free Controller w.r.t the controlled STS

Siano S = < S, S
0
, I, O, R, L > e SC = < SC, SC

0
, O, I, RC, L0 > due STSs tali SC è un controller

per S.

SC è detto "deadlock-free per S" se per ogni stato (sC, s) in SC x S raggiungibile dagli stati iniziali

del Controlled System SC |> S , sono soddisfatte le seguenti proprietà:

• se in R compare una transizione del tipo < s, a, s' > con 'a' azione di output, allora esiste

uno stato sC' appartenente alla t-closure(sC) tale che in RC compaia la transizione < sC', a,

sC'' > per qualche sC'' appartenente a SC;

• se in RC compare una transizione del tipo < sC, a, sC' > con 'a' azione di input, allora esiste

uno stato s' appartenente alla t-closure(s) tale che in R compaia la transizione < s', a, s'' >

per qualche s'' appartenente ad S;

Esaminando con attenzione la definizione vediamo come la prima proprietà imponga che, se

l'STS effettua una qualunque transizione di output ("invia" un messaggio al Controller), allora

per il Controller esisterà una input transition raggiungibile dallo stato presente per accettare

quell'input lanciato; la seconda proprietà è esattamente la duale della prima.

Una volta definito come possiamo ottenere un controller per il prodotto parallelo di N STSs, e

avendo mostrato quali tipologie di Controllers ci interessano, passiamo alla questione del

soddisfacimento della formula r che esprime i composition requirements.

Towards meeting the Composition Requirements: the Belief Evolution

Per affrontare la successiva parte del problema, mettiamo per prima cosa in corrispondenza il

concetto di STS e la soddisfacibilità di un goal r.

Intuitivamente abbiamo un goal definito in EAGLE e un STS che è il nostro Controlled System,

SC |> S|| ; l'STS in questione ha una serie di possibili esecuzioni, e se vogliamo un goal di tipo

doMaint p, saremmo esclusivamente interessati a sistemi controllati tali che per ogni esecuzione,

la proprietà p è vera in tutti gli stati. Un requirement di tipo doReach imporrebbe che per ogni

esecuzione si raggiungesse, eventually, una configurazione in cui p vale.

Per affrontare tale problema è necessario definire tutte le possibili esecuzioni del sistema

controllato; tuttavia, essendo in un ambiente solo parzialmente osservabile, nel senso che il

Controller non ha osservabilità sulle transizioni interne dell'STS controllato, abbiamo bisogno di

qualcosa per aggirare il problema. Ricordiamo che siamo in un ambiente asincrono, e quindi non

sappiamo quando e se i messaggi che aspettiamo o abbiamo inviato arriveranno, e inoltre non

deterministico, in quanto stiamo interagendo con e-services non correlati, e quindi ad esempio

 19

non possiamo aspettarci che il WS Producer abbia accesso diretto alle variabili interne di Shipper,

e di conseguenza non può prevedere l'esito delle azioni possibili.

Cerchiamo di risolvere il problema considerando, per l'STS d'interesse afflitto da assunzioni di

asincronicità, non-determinismo e osservabilità parziale, un nuovo STS, che esprime tutti gli stati

ugualmente plausibili raggiungibili passo per passo dall'STS iniziale, secondo le informazioni in

nostro possesso.

Un Belief, o Belief State, è un set di stati che può essere raggiunto a partire da un noto set di sati

in nostro possesso; l'idea è che il Belief iniziale coincida con l'insieme di stati iniziali, poiché

siamo certi che inizialmente avremo la configurazione iniziale, ed il Belief è aggiornato ogni

volta che il sistema evolve tramite una external (e quindi osservabile) transition, input o output.

Definiamo allora il concetto di Belief Evolution introducendo la funzione Evolve(B,a):

Definizione: Belief Evolution

Sia S un STS e B un Belief , con B sottoinsieme di S.

Definiamo la Belief Evolution di B a causa dell'azione 'a' come un nuovo Belief B' = Evolve(B, a)

etale che:

 Evolve(B, a) = { s' | exists s appartenente alla t-closure(B) con

 < s, a, s' > appartenente ad R }

Ora vedremo come l'uso del Belief e la sua evoluzione possa permetterci di controllare la

soddisfacibilità di proprietà.

Satisfiability of Properties: the Belief-Level System

Abbiamo introdotto il concetto di Belief per far fronte alle nostre ipotesi generali e per descrivere

una "configurazione" del nostro Controlled System. Poiché siamo interessati alle proprietà che le

configurazioni possibili verificano, è necessario definire quando un Belief B soddisfa una

proprietà p.

Non c'è dubbio che se tutti gli stati che B contiene soddisfano p, allora B soddisfa p; tuttavia, nel

caso B contenesse uno stato che non soddisfa p, il nostro scenario è complicato ulteriormente

dalla presenza di transizioni interne, che potrebbero portarci in altri stati che soddisfano p senza

che il Belief evolva; pertanto, se in un Belief B non tutti i suoi stati soddisfano p, ma esiste una

catena di t-transitions tale che a partire da tali stati si raggiungono altri stati che soddisfano p,

allora B soddisfa p. Ne consegue che B non soddisfa p se non tutti i suoi stati la soddisfano e per

ogni sequenza di t-transitions possibile da tali stati, non si raggiungono stati che soddisfano p.

Forniamo di seguito la definizione formale:

Definizione: Belief satisfying a property

Sia S = < S, S
0
, I, O, R, L > un STS, p appartenente a Prop una proprietà per S, e B sottoinsieme

di S un Belief.

Si dice che B soddisfa p (B |= S p) se è verificata la seguente condizione:

si consideri la sequenza di stati s0, s1, ... , sn, tali che s0 appartiene a B, le transizioni non

osservabili del tipo < si, t, si+1 > appartengono ad R, e per quanto riguarda sn, esso o non ha

transizioni in uscita o esiste una n+1-esima transizione sn+1 del tipo < sn, a, sn+1 > con a diverso da

t. Allora p deve appartenere ad L(si) per qualche indice i tra 0 ed n.

Una volta definito il concetto di soddisfacibilità di proprietà con l'ausilio delle Beliefs, possiamo

descrivere tutte le esecuzioni di un generico STS S (che nel nostro problema è il Controlled

System SC |> S||) tramite un STS che chiamiamo "Belief-Level System", i cui nodi sono i

possibili Beliefs di S, mentre gli archi rappresntano le possibili Belief Evolutions.

 20

Definizione: Belief-Level System

Sia S = < S, S
0
, I, O, R, L > un STS. Il corrispondente Belief-Level STS SB = < SB, SB

0
, I, O, RB,

LB > è definito nel seguente modo:

• SB è l'insieme di Beliefs di S raggiungibile dall'insieme di Beliefs iniziali SB
0
;

• SB
0
 = { S

0
 };

• se Evolve(B, a) = B', con B' diverso dall'insieme vuoto, per qualche azione a di input o

ouput, allora < B, a, B' > appartiene a RB;

• LB (B) = { p appartenenti a Prop | B |= S p }.

Il grande vantaggio ottenuto dal passaggio al Belief-Level System deriva dai pesanti constraints

che lo carattereizzano: infatti SB possiede un unico stato iniziale, non possiede alcuna t-
transition, e per tutti i Beliefs B e le azioni a esiste al massimo un unico Belief B' tale che < B, a,

B' > appartenga a RB.

In questo scenario possiamo riconsiderare la soddisfacibilità di un goal r, ma stavolta in un

dominio non-deterministico e completamente osservabile. Otteniamo un problema di planning

che può essere risolto con tecniche affermate come il Symbolic Model Checking.

Definition of the Astro Composition Problem

Di seguito riportiamo la definizione formale del problema della composizione in Astro:

Definizione: Astro Composition Problem

Siano S1, ..., Sn un insieme di STSs, e r un composition requirement.

Il problema di composizione per S1, ..., Sn e r è il problema di trovare un Controller SC che è

deadlock-free e tale che SB |= r , dove SB è il Belief-Level System di SC |> (S1 || ...|| Sn).

Una volta trovato il Controller, il modulo software STS2BPEL to traduce in un Concrete BPEL

Process eseguibile.

The Passage to the Planning problem in Fully Observable, Nondeterministic Domains

Questa sezione mostra come dalla definizione di Composition Problem possiamo portarci nelle

condizioni di applicare in modo efficace tecniche di planning al problema, in condizioni di piena

osservabilità grazie al Belief-Level, e risolvere il tutto tramite Symbolic Model Checking.

Innanzitutto viene effettuata la creazione di un Dominio D ottenuto a partire dal Belief-Level

System considerato SB per S, e si ottiene una tupla D = < S, S
0
, A, T, L >, in cui:

• gli stati dell'insieme S sono coppie < sB, o > che includono stati del Belief-level System

più output dell'ultima transizione effettuata; un carattere speciale '*' è usato in caso

l'ultima transazione non abbia avuto output;

• A è l'insieme di azioni, unicamente di input, ed include anche il carattere '*' per

modellare le transizioni di output di T;

• T è la funzione di transizione da una coppia <B, o> ad una coppia <B', o'>, scatenate da

azioni * se output transitions e da azioni a != * in caso di input transiztions, secondo le

transizioni definite in RB;

• L è funzione di labeling per una coppia <B, o>, e si riduce al labeling di B.

Disponendo di un goal e di un planning domain D possiamo ricercare un piano p; i dettagli del

problema di planning sono riportati in [PT01], nel seguito se ne forniscono alcuni cenni.

 21

Un piano per D e r è una tupla p = < C, c
0
, a, e >, cioè un insieme di contesti d'esecuzione C, dei

quali c
0
 è quello iniziale, e due funzioni di evoluzione, una per le azioni a: C x S → A, e una per

i contesti e: C x S → C.

L'esecuzione di un piano su un dominio è definito in termini di configurazioni, ovvero coppie

<contesto, stato>, in cui le azioni eseguite e i nuovo contesti raggiunti dipendono dalle apposite

funzioni definite all'interno del piano.

Siamo interessati a piani eseguibili, ovvero piani in cui partendo dagli stati iniziali, per ogni

azione compiuta sia definito il dominio successivo corrispondente; la struttura d'esecuzione di

un piano è costituita da tutte le configurazioni raggiungibili, ognuna con delle proprietà

soddisfatte in accordo alla funzione di labeling.

A partire dalla struttura d'esecuzione possiamo costruire un STS Sp che descrive le esecuzioni

del piano p relativamente al dominio D e alle proprietà soddisfatte, reintegrando nell'STS le

informazioni sulle output transitions.

L'STS così ottenuto dal piano non è in genere deadlock-free, ma sotto determinate ipotesi

sull'STS originario S si può garantire che il Sp ottenuto sia deadlock-free, e inoltre si può

garantire che S soddisfi r se Sp soddisfa r nel dominio D corrispondente a S.. Le pre-condizioni

necessarie per questa importante proprietà sono:

• non esistono Belief-states in cui sono possibili sia input che outputs contemporaneamente;

• quando è il turno del Controller, è garantito che il dominio sarà in grado di processare

qualunque messaggio inviato dal Controller.

Sotto tali ipotesi il sistema S si dice controllabile.

Tali ipotesi restrittive sono comunque ragionevoli: la condizione di non avere in/out Beliefs

corrisponde all'assunzione di sapere sempre se un WS con cui stiamo interagendo sta aspettando

una nostra invocazione o sta per inviare un messaggio in risposta; la seconda condizione richiede

che in ogni momento sappiamo quali sono le invocazioni valide accettate da un WS, e ciò è

effettivamente verificato.

Nel seguito ci accingiamo a concludere l'analisi della logica teorica dietro il Composition

Problem in Astro, mostrando la corrispondenza tra il problema della sintesi e quello della

pianificazione SMC.

Lemma: Controller/Plan Executability

Sia S un deadlock-free STS, SB il suo Belief-Level System e D il corrispondente planning

domain. Sia inoltre p un piano per D, e Sp l'STS corrispondente a p.

Si ha che se p è eseguibile su D, allora Sp è eseguibile su S.

Lemma: Controller/Plan Equivalence

Sia S un deadlock-free STS, SB il suo Belief-Level System e D il corrispondente planning

domain. Sia inoltre p un piano per D, e Sp l'STS corrispondente a p.

Si ha che se p è soluzione su D per il goal g, allora è vero che (Sp |> S) |= g.

Inoltre, se esiste un STS SC tale che (SC |> S) |= g , allora esiste un piano p che è soluzione

per il goal g su D.

Con l'ultimo lemma abbiamo dichiarato di poter utilizzare affermati algoritmi di planning per

fully observable, nondeterministic domain con extended goals per risolvere in modo efficiente il

problema della composizione automatica.

 22

Sezione 2.5 - Other Aspects of ASTRO Composition Efforts

Oltre alle aree di Business Requirements e Composition Synthesis, il Progetto Astro ha

sviluppato tools e metodologie per trattare anche Monitoring, Verification e Semantics.

Sebbene il focus della tesina sia rivolto principalmente all'aspetto di sintesi automatica, forniamo

comunque alcuni cenni al riguardo.

Monitoring in Astro

Per Monitoring si intende il controllo, effettuato a runtime, che permette di verificare, per una

data proprietà, se questa è rispettata o violata, o di riscontrare la presenza di anomalie, o ancora

di controllare se una certa sequenza specifica di eventi si è verificata.

Il tool wsMonitor (wMon) permette, data una proprietà o situazione d'interesse, la generazione

automatica di Java code da eseguire a runtime per monitorare i processi.

Verification in Astro

Mentre il monitoring si occupa di error detection a runtime, gli efforts del team Astro in

Verification vogliono fornire allo sviluppatore di Composite Web Services strumenti per

controllare che goals e constraints siano soddisfatti a design time.

Il tool wsVerify accetta in input il materiale per la composizione (Abstract BPELs dei

component services, Concrete BPEL del target service, composition requirements) e in caso

scopra errori mostra uno scenario di esecuzione ("error flow") in cui le specifiche sono violate

cosicché lo sviluppatore possa correggere il suo lavoro.

Semantics in Astro

In linea con lo sforzo per un ambiente di programmazione semantico, in cui gli strumenti

utiilzzati non si limitino ad eseguire ciecamente ordini, ma "comprendano" i nostri desideri e

scopi, nel Progetto Astro sono in corso iniziative per estendere ai linguaggi OWL-S e WSMO i

processi di Monitoring, Verification e Synthesis. Lo scopo è passare da specifiche semantiche

dei Web Services a processi eseguibili.

 23

Parte III: L'Approccio del Roman Group

Nella parte del corso di Seminari di Ingegneria del Software dedicata alla Service Composition è

stato introdotto il cosiddetto Roman Approach, ovvero il lavoro dei professori dell'Università di

Roma "La Sapienza" (Berardi, De Giacomo, Mecella, Calvanese) volto a definire una

metodologia per la Automatic Service Composition.

Nel seguito viene sinteticamente riepilogato il Roman Approach, vengono evidenziati i punti

principali per preparare il terreno alla parte di confronto comparativo di cui tratterà il capitolo IV.

Sezione 3.1 - Roman Model Basics: the Community

Al centro del Roman Approach c'è l'enfasi sull'importanza delle singole azioni che un e-service

può eseguire (o, utilizzando la terminologia degli autori, "i comportamenti e le azioni che il web

service esporta verso l'esterno"); è ovvio che parlando di azioni che un servizio può compiere, se

vogliamo mantenere un adeguato livello di astrazione (il che è una necessità, nel complesso

problema della composizione) dobbiamo centrare la nostra attenzione su una descrizione

comportamentale dei component services, nonché del target service, utilizzando formalismi utili

come quello descritto nel capitolo introduttivo.

Il vero fulcro dell'approccio è il concetto di Service Community, ovvero una sorta di

"Federazione di Component Web Services" che esportano verso la community e all'esterno il

proprio insieme di azioni, che vengono comprese e condivise da tutti i membri della Community.

Il join di un nuovo membro alla Community si traduce nell'esportazione delle proprie azioni in

termini del Commmon Action Alphabet della comunità.

La scelta per la modellazione dei servizi nel Roman Model è caduta sulle FSMs non

deterministiche (anche chiamate "Transition Systems"), delle tuple < S, S, S0, d, F >, dove:

• S è l'insieme di stati;

• S0 è l'insieme di stati iniziali, F quello di possibili stati finali;

• d è la relazione di transizione;

• S è l'insieme di azioni condivise dai membri della community, un alfabeto comune.

Qual è allora l'added value della Community? Condividendo azioni con altri membri, ogni

servizio, durante una composizione, può delegare l'esecuzione di parte delle proprie azioni ad

altri servizi che "possono sostituirlo". Per effettuare ciò è necessario che l'entità che si occupa

della coordinazione (l'Orchestrator) abbia full observability sugli stati dei component services, e

abbia la possibilità di interrogarli in proposito a runtime. L'assuzione di osservabilità è

ragionevole in questo contesto in quanto il set di azioni condivise dalla community permette tale

scenario.

Il target service definito dall'utilizzatore del composite service è un STS deterministico (in

quanto si assume che l'utente sappia ciò che vuole fare nei vari passi di esecuzione), nel senso

che ad ogni azione dell'utente corrisponde un unica transizione di stato, ed è costruito a partire

dalle azioni esportate dai membri; l'utente può effettuare operazioni a suo piacimento, ed

interagisce con il servizio composito a runtime, dove potrebbe decidere di interrompere le

 24

operazioni in uno stato finale arbitrario o continuare, cioè il servizio composito non è un'entità

statica e pre-programmata, ma user-centered e gestita a runtime dal programma di orchestrazione.

Dal punto di vista del client del Composite Service il comportamento definito è dato

dall'External Schema, un unfolded execution tree che caratterizza le histories di invocazione

delle azioni atomiche che compongono il servizio; per l'Orchestratore ciò che ha importanza è

l'Internal Schema, del tutto simile all'external ma con archi etichettati con la coppia <azione,

performer> invece della sola azione scelta: il programma di orchestrazione deve poter garantire

la sequenza di operazioni richieste assegnando a runtime l'azione da eseguire ad un opportuno

servizio.

Nel seguito si riporta un esempio di Community su piccola scala e un servizio composito

utilizzatore, nonché l'STS che gestisce l'orchestratore.

An Example of Roman Model Community

S10 S11 S20

S1 S2
search

search

display

return

display

The Community

S00 S01

S0
search

display

The Target Service
SP0

P

SP1

SP2

search, 1

display, 1

search, 1

display, 2

The Composition

(S10,S20)

(S10,S20)

(S11,S20)

Sezione 3.2 - PDL Reduction of the Composition Problem

Definiti i concetti alla base del Roman Approach, accenniamo alla logica di fondo che permette

di individuare l'esistenza o meno di una composizione in modo sound and complete, esaminando

anche gli aspetti computazionali che emergono.

Il problema della composizione viene ridotto alla soddisfacibilità di una formula DPDL

(Deterministic Propositional Dynamic Logic), un linguaggio per eseguire reasoning su

programmmi.

Per una introduzione dettagliata a DPDL si consulti [IJCIS05]; in questa sede ci concentriamo

su come DPDL venga utilizzato per rispondere a tre domande fondamentali:

1. Possiamo sempre controllare che una composizione effettivamente esista?

2. Se esiste, il suo Transition System è finito?

3. Se si, come si può computare la composizione?

 25

L'encoding in DPDL del problema di composizione risulta polinomiale rispetto alle dimensioni

dei component Transition Systems; la fomaula DPDL finita che caratterizza il problema ha la

forma:

F = Init && [u] (F0 && (F1 && F2 && ... && Fn) && Faux)

"Init" descrive lo stato iniziale dei servizi in gioco; F0 è l'encoding del target service TS,

realizzato esprimendo i vari vincoli che formano la FSM con l'aiuto degli operatori modali

DPDL; ognuno dei Fi descrive l'evoluzione di un Component Service, con particolare attenzione

al suo stato e alle relazioni con gli altri servizi componenti: esso include dei predicati "movedi"

condizionali per esprimere l'inattività del servizio in caso un altro servizio abbia svolto quella

particolare azione; la formula finale ausiliaria si occupa di constraints relativi agli stati iniziali e

finali, e alla "liveness" della procedura.

Possiamo rispondere alle tre domande poste precedentemente grazie ad un teorema che afferma

che "la composizione esiste se e soltanto se la formula F è soddisfacibile", il che è decidibile in

EXPTIME. Prima di rispondere alle domande accenniamo alla "small model property" di DPDL:

ogni formula DPDL soddisfacibile ammette un modello finito di dimensione al massimo

esponenziale rispetto alla dimensione della formula.

Pertanto:

1. La composizione è controllabile poiché l'encoding del problema è decidibile in

EXPTIME;

2. Un finito TS di composizione esiste grazie alla "small model property" di DPDL;

3. La composizione può essere computata da uno small model della DPDL formula.

Sezione 3.3 - Roman Model Synthesis Workflow

Mostrato come sia possibile, nel Roman approach, trattare il problema della WS Composition in

modo sound and complete, riportiamo il workflow generale del capitolo I in chiave Roman

Model.

 26

The Roman Model Composition Workflow

Community

Abstraction

Module

tgt service

wsdl + behav

components

wsdl + behav

Synth Engine
(DPDL SAT +

FSM Minimizer)
FSMs

Realization

Module

Composition FSM

BPEL Specification for the Orchestrator

Il workflow consiste nel codificare innanzitutto il problema in DPDL in tempo polinomiale,

quindi controllare in tempo esponenziale la soddisfacibilità, ed in caso positivo ricavare uno

small model, da cui estraiamo una Mealy FSM che rappresenta l'Internal Schema da fornire

all'orchestratore; la FSM viene minimizzata prima di essere usata per costruire l'orchestration

program.

Sezione 3.4 - The Current State of Advancement

Al momento della stesura del presente lavoro, il Roman Group dispone di un solido terreno di

partenza su cui costruire, e tuttavia non è ancora avvenuto il passaggio ad una forma finale per le

fasi implementative dell'approccio.

In [IJCIS05] viene descritto lo stato di avanzamento di un prototype module, chiamato ESC, che

implementa parte del workflow descritto nel paragrafo precedente.

Correntemente la struttura dell'Abstraction Module dipende dal linguaggio scelto per

rappresentare le descrizioni di input dei Component Services, mentre gli sforzi realizzativi si

sono concentrati principalmente sul module di Synthesis Engine, che ha prodotto buoni risultati

anche senza un lavoro di fine tuning e ottimizzazione. Il modulo per la traduzione del Composite

Service in un linguaggio per l'orchestratore, come ad esempio Concrete BPEL, non è ancora

ultimata.

 27

Parte IV: Il Confronto tra i Due Approcci

Delineati nei precedenti capitoli gli aspetti principali dei due approcci, cerchiamo di mettere in

risalto le differenze e le analogie tra i due modi di vedere e risolvere il difficile problema della

Service Composition.

Sezione 4.1 - Similarities and Differences in the various

 Stages of the Composition Workflow

The Composition Problem

Come argomentato in [AISC06], sia l'approccio Astro sia il Roman approach condividono una

visione del problema della Service Composition di tipo Client-Tailored, cioè incentrata sulle

esigenze dell'utente. A differenza di molti approcci nel mondo della ricerca orientati alla

composizione Service-Tailored, in cui le funzionalità composte offerte sono subordinate alle

procedure offerte dai servizi esistenti, nell'approccio Client-Tailored l'utente specifica il suo

target service, ed entità di sintesi ed orchestrazione si occupano di utilizzare frammenti

dell'esecuzione dei Component Services per soddisfare le aspettative dell'utente.

Questo è certamente il caso di Astro e del Roman Group: in Astro il target service è specificato

come un e-service (modellato tramite Abstratc BPEL Process) e la sintesi consiste nel creare un

processo concreto per permettere l'interazione con i componenti rispettando dei vincoli di

business requirements, mentre nel Roman model l'utente può addirittura assemblare a piacimento

le azioni offerte dalla Community come un bambino assembla blocchi per le costruzioni,

portando all'estremo l'atteggiamento client-tailored, ancora più dell'approccio Astro.

Una differenza tra le due metodologie per considerare il problema nel suo insieme è anche data

dall'attenzione all'aspetto pratico ed implementativo: mentre il Roman group ha inizialmente

costruito solide basi teoriche per definire e risolvere il problema, senza legarsi a nessuna

tecnologia pratica e perseguendo un goal molto ambizioso ed affascinante la cui incarnazione

non è ancora interamente definita, gli sforzi del progetto Astro sono dichiaratamente volti in

primo luogo a fornire un tool efficiente, scalabile e pratico per aiutare il

progettista/implementatore a risolvere il problema in questione: le funzionalità sono iniziate con

un core primitivo, da subito legato a specifici linguaggi e standard (come BPEL), che è stato via

via raffinato sia in performances che in ampiezza, ed è ad oggi funzionante, sebbene in continuo

cambiamento.

Component Services, Requirements and the Background Architecture

Riguardo la modellazione dell'input, le due metodologie presentano una similarità nell'utilizzare

entrambe delle FSM per modellare i comportamenti dei Component Services e del target service,

ma nel corso della relazione abbiamo delineato anche importanti differenze.

Senza dubbio l'aspetto più evidente che differenzia i due approcci è la presenza o meno di una

struttura di fondo su cui fare assunzioni: il Roman Model presuppone l'esistenza della

Community e di tutto ciò che la Community comporta, mentre Astro non accenna a nessuna

architettura pre-esistente, a parte i servizi offerti dai Component Services isolati.

 28

Tale importante differenza lascia le sue tracce anche sulle assunzioni che vengono fatte per le

caratteristiche dei servizi coinvolti: Astro presuppone un ambiente asincrono e partially

observable, in cui solo le interazioni esterne sono note (e ciò causa la necessità del passaggio al

Belief level in planning) mentre la Community permette full observability al programma

orchestratore, il quale non potrebbe schedulare azioni efficacemente a runtime senza poter

ispezionare in dettaglio lo stato dei vari membri.

Esistono anche altre differenze nei requirements derivate dalla presenza o meno di un'architettura

di fondo: l'alfabeto di creazione del target service, ad esempio, differisce nei due approcci. Nel

Roman Model esso coincide con il set di azioni reso disponibile dalla Community, azioni

componibili a piacimento, mentre in Astro il target service è costruito sfruttando un joint effort

tra le funzionalità offerte dai component services (le azioni esposte dai vari "frammenti", viste

simili ad interfacce remote) e l'espressione dei business requirements in un linguaggio di alto

livello per extended goals, per costruire un sistema sì specificato dall'utente e quindi client-

tailored, ma più "statico" rispetto al Roman Model.

In sostanza la presenza di un'architettura di fondo dona vari benefici, quali assunzioni

semplificative, regolarità, maggiore semplicità nella definizione del target service, ma per contro

richiede uno sforzo aggiuntivo di gestione e consistenza (ad esempio il join di nuovi membri alla

community).

Abstraction & Synthesis

La figura del modulo software dedito all'astrazione degli input in qualche forma di FSM è

comune a entrambe le metodologie, sebbene vi siano delle lievi differenze nella struttura delle

tuple, derivate dalle diversità delineate nei punti precedenti: mentre in Astro si ragiona in termini

di "proprietà soddisfatte in un certo stato" per conciliare gli STS con il controllo dei

requirements, e si distingue tra input, output actions e t actions per differenziare transizioni

osservabili dalle non osservabili, nel Roman model compare il set S di azioni condivise dalla

Community, e l'esplicita presenza di "stati finali", ovvero stati in cui il client può scegliere se

terminare o meno.

Gli approcci alla sintesi sono molto differenti: DPDL satisfiability in EXPTIME e ricerca di una

soluzione al problema come Mealy FSM minimizzato nel Roman model, contro creazione di un

dominio di planning e di un piano per il dominio che soddisfa un goal, il tutto risolto via

Symbolic Model Checking affrontando il problema al Belief-level.

I test pratici eseguiti dal team Astro su varie dimensioni del problema (numero e complessità dei

component services, ad esempio) riportano risultati buoni nei casi di media complessità, che

corrispondono alla maggioranza dei WS di oggi, e riportano un sostanziale miglioramento

rispetto a test precedenti eseguiti su versioni più primitive e limitate del tool (dell'ordine di 1/50

del tempo impegato). Questo deriva dalle efficienti tecniche di planning esistenti per risolvere le

tipologie di problemi a cui Astro ha ricondotto il proprio.

Anche il Roman Group riporta in [IJCIS05] un cenno ai test condotti su Communities di al

massimo 10 membri, ognuno con una complessità dell'ordine di 10-20 stati, per i moduli di

Astrazione e Sintesi, con buoni risultati anche senza una forma finale ed ottimizzata del tool.

Final Result of the Composition

In questo settore l'approccio del Roman Group è ancora Work-In-Progress, e mira a voler fornire

un programma per l'uso dell'orchestratore, per funzioni di "online Service fragment

coordination", in linea con lo schema totalmente client-tailored perseguito; gli scopi del team

Astro sono piuttosto diversi, poiché mirano a produrre automaticamente un processo BPEL

eseguibile che rappresenta una sorta di nuovo servizio più statico: una volta effettuata la

 29

composizione e definiti gli obiettivi l'utente non ha alcun controllo sull'esecuzione, bensì dispone

di un nuovo servizio composito. Il problema è in un certo senso affrontato in modo ortogonale,

da punti di vista differenti ma ugualmente interessanti e senza dubbio challenging.

Sezione 4.2 - A Graphical Glance of the two Approaches

 in today's Landscape of Service Composition

In vari articoli del settore è riportato un interessante grafico, si consulti ad esempio [AISC06].

Esso consiste in una sorta di piano tridimensionale, i cui tre assi individuano tre diversi aspetti

dell'approccio alla Web Service Composition, e quindi la posizione di un punto in questo "spazio

della composizion research" individua la politica perseguita da un gruppo di ricerca in questo

ambito.

I tre assi indicano:

� Statics in the System : questa dimensione indica il livello di modellazione di proprietà

statiche, l'alfabeto di azioni usato, la modellazione di input/output; in genere gruppi di

ricerca concentrati su sforzi di modellazione degli input con Semantics approaches

saranno alti su questa dimensione;

� Dynamics in Component Services : questa dimensione indica il livello di complessità per

la modellazione dei Component Services; chi li modella con articolate descrizioni

comportamentali via FSMs sarà più in alto di chi considera i servizi come azioni

atomiche e monolitiche ("frammentazione" dei componenti);

� Dynamics in Client Service Request : la dimensione tratta in un certo senso la "client-

tailorability" dell'approccio, in quanto esprime la sofisticatezza nella definizione del

target service; più l'utente ha influenza sulla personalizzazione e la gestione del

Composite Service, più l'approccio sarà alto nella scala.

Riportiamo nel grafico la posizione dei due approcci in esame:

 30

Our Approaches in the WS Composition 3D Space

S
ta

ti
cs

 i
n
 t

h
e

S
y
st

em

Dynamics in Component Services

Dynamics in
 Client T

arget R
equest

ASTRO

ROMAN MODEL

Come possiamo vedere, e questo è una conferma di tutto ciò che è stato detto finora, le due

metodologie condividono essenzialmente sia la modellazione di propretà statiche del sistema sia

la rappresentazione dei Component Services come TSs comportamentali; la grossa differenza

nello spazio è data dalla target request e dalla libertà del client nella composizione finale:

l'architettura Community-based del Roman Model colloca tale approccio molto in alto, in

posizione maggiore rispetto al Progetto Astro, per il quale il target service è un aggiuntivo

servizio statico, sebbene composito.

 31

Parte V: Il Toolset Sviluppato nell'ambito
del Progetto ASTRO

Questo capitolo delineerà in quale modo le tecniche e le metodologie discusse finora

relativamente all'approccio Astro hanno preso vita sotto forma di un toolset per il lifecycle

management di composite Web Services. La versione dell'Astro toolset esaminata è la 3.4.

Sezione 5.1 - Software Components forming the Astro Suite

L'Astro toolset (anche chiamato Astro Suite) 3.4 è formato da numerosi componenti software,

alcuni sviluppati interamente dal team Astro, altri sono programmi di terze parti con le quali il

toolset interagisce.

Segue un elenco dei vari componenti, accompagnato da brevi spiegazioni sul loro ruolo:

� Java 1.5.x - La JVM è un componente essenziale del toolset, poiché molte parti di esso

sono scritte in Java e producono/usano files Java;

� Eclipse IDE 3.2.2 - L'ambiente di sviluppo Eclipse è stato scelto dal team Astro come la

colonna portante di tutta la sezione grafica del toolset; molte componenti della Suite

sono state sviluppate come Eclipse plugins, e la creazione dei files necessari alla

composizione è stata portata avanti grazie alle funzionalità offerte dalle estensioni di

Eclipse dedicate alla creazione e al lifetime di BPEL processes, estensioni come

ActiveWebFlow o ActiveBPEL Designer;

� Tomcat Server 5.5.x - Il server Tomcat è utilizzato per il deployment e running dei BPEL

processes che incarnano i Web Services offerti; esso è utilizzato in tandem con un BPEL

engine;

� ActiveBPEL Engine 2.0 - L'ActiveBPEL engine è un prodotto freeware che permette di

eseguire deployment e running di processi BPEL su un application server; la sua

installazione è particolarmente semplice, poiché consiste nell'aggiungere dei componenti

alla root directory di un application server (Tomcat nel nostro esempio); la sua

attivazione è contestuale a quella del server su cui vive; il deployment di un BPEL

process avviene eseguendo un packaging del file .bpel, wsdl relativi e files di

deployment .xml e .pdd in un file .bpr, che viene copiato nella directory /bpr del server e

rilevato automaticamente e deployed quando il server è running; il deployed process può

essere monitorato via Web browser ed invocato da programmi client appositi per

l'invocazione di Web Services.

� Graphical Editing Framework & Graphical Modeling Framework Eclipse plugins -

questi due insiemi di plugins per Eclipse sono necessari per far funzionare l'aspetto

visuale delle applicazioni Astro;

� Astro wsToolset 1.8.0 - wsTranslator 0.14.0 - il package wsToolset è composto da

quattro programmi necessari a vari stadi della composizione, attivabili da command line;

il programma wsTranslator èl'importantissimol modulo adibito alle traduzioni dei files di

coreografia (.chor) in vari formati di STS, ad esempio files .smv o Spin, per poi

realizzare il prodotto parallelo dei Component Services e preparare il terreno per il

planning via Model Checking, generando quindi il dominio D.

 32

� Astro wsToolset 1.8.0 - synTools 0.13.1 - il package synTools contiene due programmi,

wmon e wsynth; il primo è adibito al monitoring dei processi BPEL, e quindi alla

generazione del codice Java che controlla a runtime il verificarsi di eventi d'interesse e fa

rapporto all'utente nelle schermate di monitoring dei processi (accessibili via browser);

la seconda applicazione, wsynth, è la responsabile del vero e proprio processo di sintesi

che ricava il piano p che soddisfa il goal r su dominio D e restituisce il file concrete

BPEL eseguibile e con un certo livello di ottimizzazione per realizzare il composite

service obiettivo;

� Astro wsToolset 1.8.0 NuSMV 2.2.5 - prodotto da terze parti, NuSMV è essenziale per

eseguire operazioni di model checking su STSs, il che è al cuore dell'approccio Astro;

� Astro wsMonitor 1.6.0 - si è gia accennato a come l'installazione del BPEL Engine

permetta di utilizzare una schermata accessibile via browser per monitorare i deployed

BPEL processes; questa applicazione Astro è un'estensione a Tomcat che aggiunge

funzionalità ulteriori di monitoring online all'interfaccia dell'Engine; del codice Java

viene pre-generato ed eseguito a runtime dal wsMonitor per cercare situazioni insolite o

di errore e fare rapporto all'utente via browser; è quindi sostanzialmente un'estensione

dell'interfaccia offerta dal BPEL engine per il monitoraggio dei processi;

� Astro wsRequirement 0.2.0 Eclipse plugin - questa plugin permette di integrare i files di

input necessari alla composizione (Abstract BPEL processes for component and target

services, EAGLE requirements) creando in output un unico file xml con estensione .chor

(file "di coreografia" che caratterizza completamente il problema) da dare in pasto a

wsTranslator e wSynth per il processo di composizione; oltre alla creazione del file .chor,

la plugin di Eclipse permette anche di analizzare le sue proprietà (come i component

services, i "main" e "recovery" goals, gli interessi nel monitoring ecc) tramite un'efficace

GUI;

� Astro wsChainManager 2.4.0 Eclipse plugin - la plugin permette di eseguire, a partire da

un file .chor omnicomprensivo, vari servizi di composizione automatica, verification

offline e preparazione per l'online monitoring, attivabili tramite la pressione di un

singolo tasto; il nome deriva dallo stile di esecuzione: le varie funzionalità sono delle

catene di chiamate ai vari componenti dell'Astro Suite, per realizzare il workflow

discusso nel capitolo II;

� Astro wsAnimator 0.0.7 Eclipse plugin - la plugin è dedicata alla simulazione dei

composite services impiegando lo stile grafico di ActiveWebFlow/ActiveBPEL Designer

per mandare in esecuzione diverse tipologie di scenari di simulazione; usa files grafici

con estensioni .adf;

� Astro wsUseCases 1.0.0 Eclipse plugin - questa plugin è semplicemente un insieme di

folders che rappresentano due esempi di demo di composizione, chiamati VOS e VTA,

rispettivamente dedicati a scenari "classici" come l'acquisto User-Store-Bank e la

prenotazione User-Hotel-Flight; i folders contengono tutto l'occorrente per testare tutte le

funzionalità offerte; la documentazione che accompagna le demo, tuttavia (e in generale

anche il resto dei tools), è pressoché inesistente.

Sezione 5.2 - Composition Execution and Mappings

In questo paragrafo parleremo di come sia possibile eseguire una composizione automatica e di

come i vari componenti dell'approccio Astro, trattato nella sua teoria di fondo nel capitolo II,

trovino un'implementazione pratica nel wsToolset.

Problem Inputs

 33

Una volta installati tutti i componenti descritti nel precedente paragrafo, e supponendo che i files

di input alla composizione siano pronti, ci si posiziona in Eclipse, si caricano nel workspace i

progetti di interesse (in figura sono uno per ogni Component Service, ed uno per il Composite),

visibili nella Navigator Perspective, e si rendono disponibili sulla toolbar i pulsanti per le varie

funzionalità dell'Astro toolset.

Notiamo sulla toolbar in alto una serie di 5 buttons, rispettivamente per: avviare Tomcat, iniziare

la catena di Process Composition, avviare la Process Verification (offline), preparare le

procedure di Process Monitoring, effettuare lo shutdown di Tomcat.

Gli input al problema sono dati dalle descrizioni astratte dei processi componenti e del target

service, più il business goal della forma "try to reach main goal - upon failure, reach this other

goal" (in generale: prova a portare a termine l'operazione, e in caso fallisca assicurati di non

eseguire nessuna azione "pericolosa", come ad esempio un ordine di acquisto o un pagamento).

Le descrizioni dei processi sono fornite come Abstract BPEL Processes (files xxx_ABS.bpel) e

corrispondenti wsdl files (xxx.wsdl), e tutti gli input sono riuniti insieme tramite un Wizard

sviluppato da Astro per la creazione di files di coreografia (.chor files) grazie alla plugin

wsRequirements; la plugin, oltre alla creazione degli onnicomprensivi files .chor (che includono

le descizioni dei processi, il main goal, i recovery goals, le proprietà d'interesse da monitorare,

quelle da verificare, ed altro) offre anche una UI per ispezionare a fondo il file coreografico,

come mostrato in figura.

 34

Nella Navigator view a sinistra possiamo vedere le composizioni dei folders (in questo caso

contengono molto più del necessario, ad esempio il file HandWrittenVTA.bpel è un file

eseguibile per il composite service scritto a mano da un programmer esperto del team Astro, e la

sua funzione è essere comparato al file generato dalla composizione automatica); notiamo che il

file VTA_DN.chor, che incarna i requirements della demo VTA (Flight-Hotel Reservation

Service - Virtual Travel Agency) è stato selezionato ed aperto grazie a wsRequirements.

La schermata a destra è uno scorcio della UI offerta da wsRequirements per ispezionare i

files .chor, più precisamente sono mostrati i goals (main e recovery) della composizione,

all'interno della view "Composition Workflow" (notare i pannelli di switch per le views in basso

a destra); l'interfaccia permette anche di modificare il file .chor on the fly (si ricorda che è

anch'esso un XML file).

Composition Synthesis

Per avviare la composizione tramite wsChainManager si deve semplicemente avviare il Tomcat

Server tramite toolbar, ed una volta che l'inizializzazione di Tomcat e del BPEL Engine è

completata, si seleziona il file .chor (e tale azione rende attivi i tasti per composizione,

monitoring e verification) e si invoca la funzionalità di Service Composition, che conduce ad una

checklist di steps da affrontare; la message box in basso riporta dati sull'esecuzione, eventuali

problemi e tempo impiegato, dimensioni delle strutture dati in gioco ecc. Ciò che il

chainManager fa è costruire il dominio D dal prodotto parallelo e risolvere il problema di

planning via Model Checking, utilizzando i programmi NuSMV, wsTranslator, wSynth descritti

precedentemente.

 35

Nella finestra del ChainManager possiamo distinguere la checklist delle operazioni in alto, e la

message box in basso. L'output finale della composizione è il file Concrete BPEL eseguibile su

ActiveBPEL Engine, che viene posto nel folder del progetto con nome xxx.bpel; inoltre il

chainManager effettua automaticamente il packaging del file, con gli annessi necessari, nel

formato .bpr deployable, ed esegue il deployment su Engine (il che onsiste semplicemente in una

copia del file .bpr nel folder /bpr di Tomcat, che poi rileva automaticamente il processo); nella

figura seguente è mostrata l'interfaccia offerta dal BPEL Engine (ed estesa da wsMonitor) che

mostra l'avvenuto deployment del processo composito VTA. La pagina è accessibile via browser

tramite una URL del tipo "http://<computer-host-name>:50000/BpelAdminExt/"; nel nostro caso:

"http://localhost:50000/BpelAdminExt/".

 36

Sezione 5.3 - Process Offline Verification

L'Astro Suite offre funzionalità per verificare proprietà del modello costruito (ovver il file .chor)

semplicemente a partire dal file di coreografia.

Tali proprietà da verificare seguono la linea dell'uso di metodi formali nelle fasi di design del

software, e possono includere esempi di success scenarios, ricerche di deadlocks, assertions da

confutare riguardo a cosa può e non può succedere sotto specifiche ipotesi e molto altro.

In figura è riportato uno scorcio dalla schermata di ispezione del file .chor, sezione "Verify" di

wsRequirements, per illustrare le proprietà che erano di interesse nella verifica.

 37

Trattandosi di una procedura offline, possiamo avviare l'analisi tramite ChainManager e ricevere

risposta immediatamente, tramite una schermata Web apposita:

 38

Selezionando esempi e controesempi forniti, ci viene mostrato uno scenario ad alto livello stile

UML Sequence Diagram:

 39

Sezione 5.4 - Online Process Monitoring

La funzionalità di Monitoring è il corrispettivo online della Verification, e vuole fornire rapporti

all'utente su stati anormali dell'esecuzioni di processi BPEL while running.

Tramite la consueta schermata wsChainManager vengono creati automaticamente dei files Java

(i cui obiettivi sono definiti ancora una volta nel file .chor) i quali vengono messi in ascolto su

esecuzioni del processo d'interesse per monitorarlo e fornire informazioni all'utente; dal

momento che utilizzano l'interfaccia BPEL per fornire tali rapporti, e poiché l'ActiveBPEL

Engine è estraneo alla creazione ed esecuzione di questi monitors, si è resa necessaria una

espansione all'interfaccia dell'Engine per includere supporto ai programmi monitors (questo è lo

scopo dell'applicazione wsMonitor).

Nel seguito sono riportate immagini del wsChainManager per il Monitoring, di uno dei Java

monitor files generati, e dei monitor in esecuzione.

 40

 41

Sezione 5.5 - Process Execution Simulation

Mediante la plugin wsAnimator, ed utilizzando un formato file partcolare .adf, è possibile

mandare in esecuzione diversi scenari pre-programmati, simile a scenari di simulazione in

ActiveBPEL Designer ma customizzati da team Astro per Composite Services. In figura è

riportato un esempio di esecuzione andata a buon fine, in cui tutti i processi hanno terminato su

"Success".

 42

 43

Conclusioni

In questa relazione abbiamo esplorato a fondo il lavoro svolto nell'ambito del Progetto Astro per

una ricerca di un approccio per Automated Web Service composition, mettendo in risalto tanto la

logica teorica su cui si fonda l'approccio, tanto gli ambiziosi e importanti risultati pratici

conseguiti dal team Astro.

Abbiamo inoltre ricordato i punti salienti dell'approccio del Roman Group, legato al medesimo

problema, i cui autori sono i docenti universitari responsabili del Corso di Seminari di Ingegneria

del Software in seno a cui nasce il presente lavoro, e abbiamo comparato i due approcci studiati,

mettendo in risalto analogie e differenze, esaminando le metodologie ed i loro differenti punti di

vista anche nel panorama della ricerca internazionale odierna.

 44

Bibliografia

• Alonso, Casati, Kuno, Machiraju; 2004; "Web Services - Concepts, Architectures and

Applications"

• G.De Giacomo, M.Mecella; Slides dal corso di Seminari di Ingegneria del Software

2006-07

• [ICAPS05] Pistore, Traverso, Bertoli; 2005; "Automated Composition of Web Services

by Planning in Asynchronous Domains"

• [ICAPS05demo] Trainotti, Pistore et al.; 2005; "ASTRO: Supporting Composition and

Execution of Web Services"

• [IJCIS05] Berardi, Calvanese, De Giacomo, Lenzerini, Mecella; 2005; "Automatic

Service Composition based on Behavioral Descriptions"

• [AISC06] Berardi, De Giacomo, Mecella, Calvanese; 2006; "Automatic Web Service

Composition: Service-Tailored vs Client-Tailored Approaches"

• [ICSOC05] Berardi, Calvanese, De Giacomo, Mecella; 2005; "Composition of Services

with Nondeterministic Observable Behavior"

• [PT01] Pistore, Traverso; 2001; "Planning as Model-Checking for Extended Goals in

Non-Deterministic Domains"

• [DPT02] Dal Lago, Pistore, Traverso; 2002; "Planning with a Language for Extended

Goals"

• [P_BER] Berardi et al.; "Automatic Composition of e-Service that export their

Behavior"

• The ASTRO Project Website; http://www.astroproject.org

• [BPEL_Spec] The BPEL4WS Specification, v1.1;

 http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp

• The ActiveBPEL Engine, http://www.activebpel.org

• The ActiveBPEL Designer v4 User's Guide (http://www.active-endpoints.com)

