
Il Progetto ASTRO nella WS Composition:

Analisi e Confronto con il Roman Approach

Tesina per il corso di Seminari

di Ingegneria del Software

Anno 2006-07

Docenti: proff. G.DeGiacomo,

M.Mecella, R.Rosati

Autore: Alessandro Pagliaro

Overview della Relazione

• Introduzione al problema della WS Composition

• Analisi dell'Approccio ASTRO

• Richiami sul Roman Approach

• Analisi di Confronto tra le due metodologie

• Esame del Toolset sviluppato dal Progetto ASTRO

Il Problema della WS Composition

• Allettanti possibilità offerte dai Composite Services

• Necessità di alta astrazione, focus sulla business logic

Requisiti per affrontare il problema:

� un linguaggio per la rappresentazione comportamentale dei

Component e Target Services

� una metodologia di composizione, fondata su solide basi

teoriche

� un ambiente di sviluppo che permetta esecuzione automatica

di composizioni e deleghi al Mw le operazioni low-level

� un composition engine per testing, monitoring, verification

WS Behavioral Representation

• Focus sul comportamento degli e-services in gioco

• Popolare descrizione usata in entrambi gli approcci in esame

(sebbene con delle differenze): Transition System (FSM)

• Nodi come "stati stabili" dell'esecuzione;

• Archi come transizioni tra stati;

• Differenza tra external actions e internal actions (anche

chiamate t-transitions)

Component and Composite Services as TSs

search_by_title

listen

search_by_author

listen

search_by_title

listen

search_by_author

= initial state = final state

The General WS Composition Workflow

Component

Services'

behavioral

Descriptions

Requirements of

Clients for Target

Composite Service

Abstraction

Module

Synthesis

Engine

Transition System

Representation of

Components and

Requirements

Building

Module

Abstract repres.

of Composition

Schema as a TS

Concrete

Composite Service

Specification

L'Approccio ASTRO

Obiettivi dell'Effort ASTRO

• Fornire un framework per automatic service

composition

• Fornire dei tools per implementare il framework,

grande enfasi sulla traduzione nel concreto

• Fornire la possibilità di gestire l'intero lifecycle

• Automatizzare tasks noiosi ed error-prone

• Efficienza, ease-of-use, standards affermati

Macro-Aree del Project

• Modellazione di Business Requirements

• Automatic Service Synthesis

• Offline Service Verification

• Online Service Monitoring

• Semantics Support (still WIP)

Requirements in ASTRO

Essenzialmente due generi di requirements:

� Component e Target Services come Abstract BPEL Proc.

� Business Requirement Goals come EAGLE Formula

Presupposti dell'Approccio:

� Ambiente ASINCRONO

� Osservabilità PARZIALE dei servizi

� EXTENDED Business Goals

La rappresentazione comportamentale dei servizi è basata su

STSs che distinguono azioni di input, di output ed interne, ad

associano ad ogni stato un insieme di proprietà soddisfatte.

The Purchase and Ship Example Scenario

Purchase

&

Ship

W

User

W3

Producer

W1

Shipper

W2

request(item, loc)

offer(cost, delay)

unavailable

ack / nack

info_reqst(item)

info(size)

request(item)

offer(cost,delay)

unavailable

ack / nack

request(size,loc)

offer(cost,delay)

unavailable

ack / nack

Business Goals & EAGLE

• Distinzione tra "Main Goal" e "Recovery Goals";

• NON un problema di reachability esprimibile in CTL;

• Presenza di condizioni di "forza" differente (Try vs Do);

• Presenza di situazioni "preferibili" (non modellabili con un

semplice OR);

Esempio:

1. Try to sell items at home;

2. Upon failure, not a single commit must be done

Traduzione in EAGLE dell'esempio

TryReach
user.pc = success && producer.pc = success && shipper.pc = success

&&

user.offer_delay = add_delay(producer.offer_delay +

shipper.offer_delay)

&&

user.offer_cost = add_ cost (producer.offer_ cost + shipper.offer_

cost)

Fail DoReach
user.pc = failure && producer.pc = failure && shipper.pc = failure

The Astro Composition Workflow

Component Services as

abstract BPEL processes

W1 ... Wn

Composition

Requirement

R

BPEL2STS

S1 ... Sn
STSs

r EAGLE formula

STS2DOM

TRANSLATOR
S||

MBP

Planning

Domain

D

PLAN2STS

Plan p

STS2BPEL

STS SC

Concrete

BPEL Proc

W

Il Processo di Composizione

In sintesi: innanzitutto vogliamo costruire un Planning Domain

D a partire dal Parallel Product dei Component Services + il

Target Service: una sorta di combinazione di tutte le esecuzioni

concorrenti dei servizi in gioco.

Dobbiamo passare al Belief-Level per ottenere Full

Observability.

Risolviamo un problema di planning via Symbolic Model

Checking, cercando un piano p che soddisfi il goal r nel

dominio D. Da tale piano sintetizziamo un deadlock-free

controller STS che è il nostro Composite Service.

Step I - Parallel Product

I Component Services e il Target Service vengono trasformati

in STSs. Quindi viene calcolato il loro Prodotto Parallelo S||:

Definizione: Parallel Product tra due STSs S1 e S2

Siano S1 = < S1, S1
0, I1, O1, R1, L1 > e S2 = < S2, S2

0, I2, O2, R2, L2 > due

STSs tali che (I1 U O1) ∩ (I2 U O2) = insieme vuoto.

Il Prodotto Parallelo S1 || S2 tra S1 e S2 è definito come:

S1 || S2 = < S1 x S2 , S1
0 x S2

0 , I1 U I2 , O1 U O2 , R1 || R2 , L1 || L2 >

dove:

< (s1, s2), a, (s1', s2) > appartiene a (R1 || R2) se < s1, a, s1' > appartiene a R1;

< (s1, s2), a, (s1, s2') > appartiene a (R1 || R2) se < s2, a, s2' > appartiene a R2;

e inoltre (L1 || L2) (s1, s2) = L1 (s1) U L2 (s2).

Step II - Controlled System

Il nostro scopo è trovare un STS SC orchestratore per il

Prodotto Parallelo, sotto certe condizioni. SC deve essere un

CONTROLLER per S||.
Definizione: Controlled System

Siano S = < S, S0, I, O, R, L > e SC = < SC, SC
0, O, I, RC, L0 > due STSs tali

che la funzione di labeling di SC sia nulla per ogni stato sC, cioè L0 (sC) =

insieme vuoto per ogni sC in SC.

Il nuovo STS SC |> S descrive il comportamento di S controllato da SC, ed è

definito come:

SC |> S = < SC x S , SC
0 x S0 , I , O , RC |> R , L >

dove:

< (sC, s), t, (sC', s') > appartiene a (RC |> R) se < sC, t, sC' > appartiene a RC;

< (sC, s), t, (sC , s') > appartiene a (RC |> R) se < s , t, s ' > appartiene a R;

< (sC, s), a, (sC', s') > appartiene a (RC |> R), con a diverso da t, se < sC, a,

sC' > appartiene a RC e inoltre < s , a, s ' > appartiene a R;

Step III - Deadlock-free Controller

Non tutti i controllers possibili soddisfano le nostre esigenze.

Vorremmo che il sistema controllato possa sempre essere in

grado di ricevere messaggi dal controller.
Definizione: Deadlock-Free Controller w.r.t the controlled STS

Siano S = < S, S0, I, O, R, L > e SC = < SC, SC
0, O, I, RC, L0 > due STSs tali

SC è un controller per S.

SC è detto "deadlock-free per S" se per ogni stato (sC, s) in SC x S

raggiungibile dagli stati iniziali del Controlled System SC |> S , sono

soddisfatte le seguenti proprietà:

1) se in R compare una transizione del tipo < s, a, s' > con 'a' azione di

output, allora esiste uno stato sC' appartenente alla t-closure(sC) tale che in

RC compaia la transizione < sC', a, sC'' > per qualche sC'' appartenente a SC;

2) se in RC compare una transizione del tipo < sC, a, sC' > con 'a' azione di

input, allora esiste uno stato s' appartenente alla t-closure(s) tale che in R

compaia la transizione < s', a, s'' > per qualche s'' appartenente ad S;

Step IV - Belief State

Per soddisfare il composition goal r, abbiamo bisogno di

esplorare tutte le possibili esecuzioni del Sistema Controllato e

le proprietà soddisfatte in tali esecuzioni.

Non possiamo fare ciò sotto ipotesi di Partial Observability (il

Controller non ha piena osservabilità sul Prodotto Parallelo

Controllato).

Ci portiamo quindi al Belief-Level, ovvero consideriamo sets di

stati ugualmente plausibili date le nostre conoscenze, che

evolvono tramite external transitions includendo nel nuovo

Belief State stati raggiungibili tramite t-closure.

Belief Evolution

Definizione: Belief Evolution

Sia S un STS e B un Belief , con B sottoinsieme di S.

Definiamo la Belief Evolution di B a causa dell'azione 'a' come un nuovo

Belief B' = Evolve(B, a) etale che:

Evolve(B, a) = { s' | exists s appartenente alla t-closure(B) con

< s, a, s' > appartenente ad R }

Le assunzioni di ambiente asincrono e t-transitions complicano

il concetto di "proprietà soddisfatta da un Belief State".

Diciamo che un Belief soddisfa una proprietà p se tutti i suoi

stati la soddisfano oppure, se uno stato s non la soddisfa allora

esiste uno stato s' appartenente alla t-closure(s) che la

soddisfa.

Step V - Belief-Level System

Ci prepariamo al planning considerando un STS che

caratterizza il Controlled System e i cui stati sono Belief-States

Definizione: Belief-Level System

Sia S = < S, S0, I, O, R, L > un STS. Il corrispondente Belief-Level STS SB

= < SB, SB
0, I, O, RB, LB > è definito nel seguente modo:

1) SB è l'insieme di Beliefs di S raggiungibile dall'insieme di Beliefs iniziali

SB
0;

2) SB
0 = { S0 };

3) se Evolve(B, a) = B', con B' diverso dall'insieme vuoto, per qualche

azione a di input o ouput, allora < B, a, B' > appartiene a RB;

4) LB (B) = { p appartenenti a Prop | B |= S p }.

The Astro Composition Problem

Vantaggi dei Belief-Level System:

� Un unico initial state;

� FULLY Observable;

� Per ogni coppia <B,a> esiste al massimo un B' tale che <B,

a, B'> è in RB.

Definizione: Astro Composition Problem

Siano S1, ..., Sn un insieme di STSs, e r un composition requirement.

Il problema di composizione per S1, ..., Sn e r è il problema di trovare un

Controller SC che è deadlock-free e tale che SB |= r , dove SB è il Belief-

Level System dell'STS SC |> (S1 || ...|| Sn).

Planning Preparations: the Domain

Per applicare algoritmi di planning e risolvere il problema via

Symbolic Model Checking, costruiamo un Dominio D.

Tale dominio è un altro STS < S, S0, A, T, L > costruito a

partire dal Belief-Level System del Parallel Product dei servizi

coinvolti; uno stato del dominio D è formato da una coppia <

belief-state, last-transition-output >; un carattere speciale * è

usato per caratterizzare output-action transitions e casi in cui

non c'è stato output nell'ultima transizione.

Domains, Goals and Plans

Vogliamo trovare un piano p per il dominio D che soddisfi un

goal g.

p è una tupla < C, c0, a, e > , un insieme di contesti di

esecuzione e funzioni di evoluzione per azioni e contesti;

eseguire p su D significa considerare le possibili evoluzioni di

configurazioni, coppie <contesto, stato>.

Siamo interessati a piani eseguibili, da cui possiamo ricavare

un STS Sp deadlock-free in modo che il sistema controllato

Sp |> S|| soddisfi il goal g.

A Solution through Planning

Lemma: Controller/Plan Executability

Sia S un deadlock-free STS, SB il suo Belief-Level System e D il

corrispondente planning domain. Sia inoltre p un piano per D, e Sp l'STS

corrispondente a p.

Si ha che se p è eseguibile su D, allora Sp è eseguibile su S.

Lemma: Controller/Plan Equivalence

Sia S un deadlock-free STS, SB il suo Belief-Level System e D il

corrispondente planning domain. Sia inoltre p un piano per D, e Sp l'STS

corrispondente a p.

Si ha che se p è soluzione su D per il goal g, allora è vero che (Sp |> S) |=

g.

Inoltre, se esiste un STS SC tale che (SC |> S) |= g , allora esiste un piano p
che è soluzione per il goal g su D.

Richiami sul Roman Model

Roman Model basics

• Services' "exported behaviors";

• The Community as a "common understanding of a shared set

of actions";

• TSs as tuples < S, S, S0, d, F >

• Possibilità di "delegare" parte delle proprie azioni ad altri

membri;

• Full Observability dal parte dell'orchestrator tramite runtime

querying;

• Deterministic Target Service assembled via "building blocks";

• Problem Reduction to DPDL SAT, use of small model

property to solve the problem in EXPTIME.

An Example of Roman Model Community

S10 S11 S20

S1 S2
search

search

display

return

display

The Community

S00 S01

S0
search

display

The Target Service
SP0

P

SP1

SP2

search, 1

display, 1

search, 1

display, 2

The Composition

(S10,S20)

(S10,S20)

(S11,S20)

The Roman Model Composition Workflow

Community

Abstraction

Module

tgt service

wsdl + behav

components

wsdl + behav

Synth Engine
(DPDL SAT +

FSM Minimizer)
FSMs

Realization

Module

Composition FSM

BPEL Specification for the Orchestrator

Confronto tra i due Approcci

Comparisons I

Il Problema di Composizione

Entrambi gli approcci hanno un taglio riconducibile

all'approccio Client-Tailored, in quanto subordinano la

costruzione del Composite Service ad un target service

specificato dall'utente.

L'atteggiamento "teoria vs pratica" delle due metodologie

sembra essere alquanto differente: le solide basi teoriche e gli

obiettivi ambiziosi del Roman Model da un lato, la dichiarata

massima attenzione all'obiettivo di fornire un tool concreto del

Progetto Astro dall'altro.

Comparisons II

Componenti, Requisiti, Architettura di Fondo

Modellazione per entrambi dei servizi via TSs, seppur con

diversi "flavours". Senza dubbio la differenza più evidente è la

presenza della struttura Community nel Roman Model, con

tutti i benefici e le assunzioni che essa comporta, mentre in

Astro non si hanno ipotesi di architetture pre-esistenti.

Conseguenze: full vs partial observability, benefici indotti

dall'architettura da bilanciare con gli oneri che essa comporta,

alfabeti di composizione del tgt service leggermente differenti

tra loro ("building bricks" vs "composite interface"

approaches).

Comparisons III

Astrazione e Sintesi

Astro Abstraction: internal/external transitions, state properties

Roman Abstaction: Community actions, possible final states

Synthesis: DPDL SAT vs Planning via Model Checking

Risultato Finale della Composizione

Ci sono delle differenze: Astro vuole fornire un processo

eseguibile che concilii l'esecuzione dei Component Services,

un nuovo servizio, definito dall'utente ma "statico".

Il Roman approach porta all'estremo l'atteggiamento Client-

tailored avendo come scopo la costruzione di un internal

schema per l'orchestrator, per usare differenti fragments di

servizi secondo il "whim" dell'utente a runtime.

Our Approaches in the "WS Composition 3D Space"

S
ta

ti
cs

 i
n
 t

h
e

S
y
st

em

Dynamics in Component Services

Dynamics in
 Client T

arget R
equest

ASTRO

ROMAN MODEL

L'Astro Suite toolset v3.4

A cooperative collection of modules

• Java and Eclipse environment;

• Tomcat application server;

• ActiveBPEL Engine;

ASTRO wsToolset:

� wsTranslator

� synTools

� NuSMV

� wsMonitor

� wsRequirements Eclipse plugin

� wsChainManager Eclipse plugin

� wsAnimator Eclipse plugin, wsUseCases

Synthesis Procedure

Component Services e Target Service sono espressi come

Abstract BPEL Processes + WSDL files.

Un Wizard permette la creazione di un file XML "di

coreografia" (.chor extension) che racchiude l'intero problema

(component, target, requirements, properties to be monitored

and verified) ed è ispezionabile ed editable.

Una serie di chiamate ai vari software modules componenti il

toolset permette la realizzazione pratica dell'approccio teorico

discusso in precedenza.

Il concrete BPEL Process ottenuto è automaticamente deployed

su BPEL Engine, e può essere monitorato e testato.

Verification and Monitoring

Per Verification si intende una procedura offline che a partire

dal file .chor controlla determinate proprietà (sulla scia dell'uso

di Metodi Formali nell'Ingegneria del Software) e fa rapporto

all'utente, anche fornendo controesempi stile UML Sequence

Diagram.

Il Monitoring è una procedura online in cui viene eseguito del

Java code generato automaticamente a partire dal file .chor per

monitorare il running process del composite service e fornire

reports su situazioni di interesse all'utente.

Composition Requirements

ChainManager

Deployed Process

Offline Verification

Verification Instance Found

Grazie per l'attenzione

