Il Progetto ASTRO nella WS Composition:
Analisi e Confronto con 11 Roman Approach

Tesina per 1l corso di Seminari
di Ingegneria del Software
Anno 2006-07
Docenti: proff. G.DeGiacomo,
M.Mecella, R.Rosati

Autore: Alessandro Pagliaro

Overview della Relazione

e Introduzione al problema della WS Composition
e Analisi dell'Approccio ASTRO

e Richiami sul Roman Approach

e Analisi di Confronto tra le due metodologie

e Esame del Toolset sviluppato dal Progetto ASTRO

Il Problema della WS Composition

* Allettanti possibilita offerte dai Composite Services
* Necessita di alta astrazione, focus sulla business logic

Requisiti per affrontare il problema:

» un linguaggio per la rappresentazione comportamentale dei
Component e Target Services

» una metodologia di composizione, fondata su solide basi
teoriche

» un ambiente di sviluppo che permetta esecuzione automatica
di composizioni e deleghi al Mw le operazioni low-level

» un composition engine per testing, monitoring, verification

WS Behavioral Representation

* Focus sul comportamento degli e-services in gioco

* Popolare descrizione usata in entrambi gli approcci in esame
(sebbene con delle differenze): Transition System (FSM)

* Nodi come "stati stabili" dell'esecuzione;

e Archi come transizioni tra stati;

e Differenza tra external actions e internal actions (anche
chiamate T-transitions)

Component and Composite Services as TSs

search_by_title

Ay -

-(@) @
—=_&F

listen

search_by_author

A& -

-(@) ®
—~=_&

listen

== @ = initial state

search_by_ title

& -
- ®
Q@O F

search_by_author

listen

@ = final state

The General WS Composition Workflow

Component > Abstraction
Services' Module Transition System
behavioral Representation of
Descriptions @ Components and
Requirements
Synthesis
Engine
Abstract repres.
of Composition @ Concrete
Requirements of Schema as a TS Compos.lt.e S.ervme
Clients for Target — Specification
Composite Service Building :>
Module %

L'Approccio ASTRO

Obiettivi dell'Effort ASTRO

e Fornire un framework per automatic service
composition

e Fornire dei tools per implementare il framework,
grande enfasi sulla traduzione nel concreto

e Fornire la possibilita di gestire 1'intero lifecycle
e Automatizzare tasks noiosi ed error-prone

e Efficienza, ease-of-use, standards affermati

Macro-Aree del Project

e Modellazione di Business Requirements
e Automatic Service Synthesis

e Offline Service Verification

e Online Service Monitoring

e Semantics Support (still WIP)

Requirements in ASTRO

Essenzialmente due generi di requirements:

» Component e Target Services come Abstract BPEL Proc.
» Business Requirement Goals come EAGLE Formula

Presupposti dell' Approccio:

** Ambiente ASINCRONO

** Osservabilita PARZIALE dei servizi
s EXTENDED Business Goals

La rappresentazione comportamentale dei servizi ¢ basata su
STSs che distinguono azioni di input, di output ed interne, ad
associano ad ogni stato un insieme di proprieta soddisfatte.

User

The Purchase and Ship Example Scenario

request(item, loc)

offer(cost, delay)

unavailable

ack / nack

Purchase
&

Ship

\\4

info_reqst(item)

info(size)
request(item)
offer(cost,delay Producer
. Wl
unavailable
ack / nack
request(size,loc
offer(cost,delay)
unavailable Shlpper
W2

ack / nack

Business Goals & EAGLE

e Distinzione tra "Main Goal" e "Recovery Goals";

e NON un problema di reachability esprimibile in CTL;

e Presenza di condizioni di "forza" differente (Try vs Do);

 Presenza di situazioni "preferibili” (non modellabili con un
semplice OR);

Esempio:
1. Try to sell items at home;
2. Upon failure, not a single commit must be done

Traduzione in EAGLE dell'esempio

TryReach
user.pc = success && producer.pc = success && shipper.pc = success
&&
user.offer_delay = add_delay(producer.offer_delay +
shipper.offer_delay)
&&
user.offer_cost = add_ cost (producer.offer_ cost + shipper.offer_
cost)

Fail DoReach
user.pc = failure && producer.pc = failure && shipper.pc = failure

The Astro Composition Workflow

Component Services as Composition
abstract BPEL processes Requirement
W, ... W, R
ﬁ lgiﬁ;?f p EAGLE formula
BPEL2STS D
T .
STSs 2. 2, MBP
\@/ Plan &t
| PLAN2STS
5 STS2DOM
I TRANSLATOR STS 2¢
STS2BPEL [~

Concrete
BPEL Proc
\%Y

Il Processo di Composizione

In sintesi: innanzitutto vogliamo costruire un Planning Domain
D a partire dal Parallel Product dei Component Services + il
Target Service: una sorta di combinazione di tutte le esecuzioni
concorrenti dei servizi in g10co.

Dobbiamo passare al Belief-Level per ottenere Full
Observability.

Risolviamo un problema di planning via Symbolic Model
Checking, cercando un piano 7 che soddisfi 1l goal p nel
dominio D. Da tale piano sintetizziamo un deadlock-free
controller STS che ¢ i1l nostro Composite Service.

Step I - Parallel Product

I Component Services e 1l Target Service vengono trasformati
in STSs. Quindi viene calcolato il loro Prodotto Parallelo 2;:

Definizione: Parallel Product tra due STSs S1 e S2
Siano ¥, =<S,,S,%1,,0,R,,L,>e %, =<S,,5,% 1,,0,,R,, L, >due
STSs tali che (I1 U O1) N (I2 U O2) = insieme vuoto.
I1 Prodotto Parallelo 2, Il 2, tra X, e 2, ¢ definito come:

2 I1E,=<5,xS,,5°xS,°, ,UL,0,UO,,R,IIR,, L, IIL, >
dove:
<(8y,8,),a, (s, s, >appartiene a (R, Il R,) se <s,, a, s;,' > appartiene a R ;
<(8y,8,),a, (s, s,) >appartiene a (R, Il R,) se <s,, a, s,' > appartiene a R,;
e inoltre (L, IIL,) (s, s,) =L, (s;) UL, (s,).

Step 1I - Controlled System

Il nostro scopo ¢ trovare un STS 2 orchestratore per 1l

Prodotto Parallelo, sotto certe condizioni. 2~ deve essere un
CONTROLLER per ;.

Definizione: Controlled System
SianoX=<8S,S,,,O,R,L>e Z-.=<S. S, O, I, R¢, L, > due STSs tali
che la funzione di labeling di X sia nulla per ogni stato s, cioe L, (s¢) =
insieme vuoto per ogni S¢ 1n X
Il nuovo STS X I> X descrive il comportamento di X controllato da X, ed
definito come:

Y. >X=<S.xS,SxS°, 1,0,R-I>R,L>
dove:
< (8¢ 8), T, (8¢, 8') > appartiene a (R I> R) se <s, T, s.' > appartiene a Rg;
< (8¢ 8), T, (8¢, 8') > appartiene a (R I>R) se <s, T, s' > appartiene a R;
< (8¢ 8), A, (8¢, 8') > appartiene a (R I> R), con a diverso da T, se < s, a,
Sc > appartiene a R e noltre <s, a, s ' > appartiene a R;

Step 111 - Deadlock-free Controller

Non tutti 1 controllers possibili soddisfano le nostre esigenze.
Vorremmo che 1l sistema controllato possa sempre essere in

grado di ricevere messaggi dal controller.

Definizione: Deadlock-Free Controller w.r.t the controlled STS

Siano X =<S,S% O, R, L>e 2. =< S, S O, I, R, L, > due STSs tali
2 € un controller per 2.

2 € detto "deadlock-free per X" se per ogni stato (s¢, 8) In S X S
raggiungibile dagli stati iniziali del Controlled System X [> 2, sono
soddisfatte le seguenti proprieta:

1) se in R compare una transizione del tipo < s, a, s' > con 'a’ azione di
output, allora esiste uno stato s-' appartenente alla t-closure(s.) tale che in
R compaia la transizione < s, a, 8" > per qualche s." appartenente a S;
2) se in R~ compare una transizione del tipo < s, a, s > con 'a’ azione di
input, allora esiste uno stato s' appartenente alla T-closure(s) tale che in R
compaia la transizione < s', a, s" > per qualche s" appartenente ad S;

Step IV - Belief State

Per soddisfare 1l composition goal p, abbiamo bisogno di
esplorare tutte le possibili esecuzioni del Sistema Controllato e
le proprieta soddisfatte in tali esecuzioni.

Non possiamo fare c10 sotto ipotesi di Partial Observability (il
Controller non ha piena osservabilita sul Prodotto Parallelo
Controllato).

Ci portiamo quindi al Belief-Level, ovvero consideriamo sets di
stati ugualmente plausibili date le nostre conoscenze, che
evolvono tramite external transitions includendo nel nuovo
Belief State stati raggiungibili tramite 7-closure.

Belief Evolution

Definizione: Belief Evolution

Sia 2 un STS e B un Belief , con B sottoinsieme di S.

Definiamo la Belief Evolution di B a causa dell'azione 'a' come un nuovo
Belief B' = Evolve(B, a) etale che:

Evolve(B, a) = { s'| exists s appartenente alla t-closure(B) con
<s, a, s' > appartenente ad R }

Le assunzioni di ambiente asincrono e t-transitions complicano
il concetto di "proprieta soddisfatta da un Belief State".
Diciamo che un Belief soddisfa una proprieta p se tutti i suoi
stati la soddisfano oppure, se uno stato s non la soddisfa allora
esiste uno stato s' appartenente alla T-closure(s) che la

soddisfa.

Step V - Beliet-Level System

Ci prepariamo al planning considerando un STS che
caratterizza 1l Controlled System e 1 cui stati sono Belief-States

Definizione: Belief-Level System

SiaX =<8, SY%1, O, R, L>un STS. Il corrispondente Belief-Level STS Z,
=< Sg, S I, O, Ry, Ly > ¢ definito nel seguente modo:

1) Si e I'insieme di Beliefs di S raggiungibile dall'insieme di Beliefs iniziali
Sg’;

2)85°= (8);

3) se Evolve(B, a) = B, con B' diverso dall'insieme vuoto, per qualche
azione a di input o ouput, allora < B, a, B' > appartiene a Ry;

4) Ly (B) = { p appartenenti a Prop | Bl=5p }.

The Astro Composition Problem

Vantaggi de1 Belief-Level System:
v Un unico initial state;

v FULLY Observable;
v" Per ogni coppia <B,a> esiste al massimo un B' tale che <B,

a, B’>e¢inRg.

Definizione: Astro Composition Problem

Siano X, ..., 2 un insieme di STSs, e p un composition requirement.

Il problema di composizione per %, ..., X € p € il problema di trovare un
Controller X% che e deadlock-free e tale che X5 I= p , dove X ¢ il Belief-
Level System dell' STS 2. > (X, Il ...I1 X).

Planning Preparations: the Domain

Per applicare algoritmi di planning e risolvere 1l problema via
Symbolic Model Checking, costruiamo un Dominio D.

Tale dominio € un altro STS < S, SY, A, T, L > costruito a
partire dal Belief-Level System del Parallel Product dei servizi
coinvolti; uno stato del dominio D ¢ formato da una coppia <
belief-state, last-transition-output >; un carattere speciale * ¢
usato per caratterizzare output-action transitions € casi in cul
non c'e stato output nell'ultima transizione.

Domains, Goals and Plans

Vogliamo trovare un piano 7 per 1l dominio D che soddisfi un
goal g.

m & una tupla < C, ¢, o, € >, un insieme di contesti di
esecuzione e funzioni di evoluzione per azioni € contesti;
eseguire T su D significa considerare le possibili evoluzioni di
configurazioni, coppie <contesto, stato>.

Siamo interessati a piani eseguibili, da cul possiamo ricavare
un STS 2. deadlock-free in modo che il sistema controllato
2. I> 2, soddist1 11 goal g.

A Solution through Planning

Lemma: Controller/Plan Executability

Sia X un deadlock-free STS, Xy il suo Belief-Level System e D il
corrispondente planning domain. Sia inoltre T un piano per D, e 2_I'STS
corrispondente a T.

S1 ha che se 1 ¢ eseguibile su D, allora X € eseguibile su 2.

Lemma: Controller/Plan Equivalence

Sia X un deadlock-free STS, X5 il suo Belief-Level System e D il
corrispondente planning domain. Sia inoltre T un piano per D, e 2_I'STS
corrispondente a T.

S1 ha che se w ¢ soluzione su D per il goal g, allora € vero che (2> X)) |=
g.

Inoltre, se esiste un STS X tale che (X I> X) |= g, allora esiste un piano 7
che ¢ soluzione per 1l goal g su D.

Richiami sul Roman Model

Roman Model basics

e Services' "exported behaviors";

e The Community as a "common understanding of a shared set
of actions";

* TSs as tuples< X, S, S, 9, F >

* Possibilita di "delegare" parte delle proprie azioni ad altri
membri;

 Full Observability dal parte dell'orchestrator tramite runtime
querying;

e Deterministic Target Service assembled via "building blocks";
* Problem Reduction to DPDL SAT, use of small model
property to solve the problem in EXPTIME.

An Example of Roman Model Community

search
' display
search S,
9 @
display<> %

return (5 11 ,Szo)

display, 1
The Community / earch, 1

The Target Service

(S l()’SZO)

search, 1
S search \
g»‘ @ display, 2
- display

(S l()’SZO)

The Composition

The Roman Model Composition Workflow

Synth Engine
(DPDL SAT +

FSM Minimizer)
FSMs
tgt service components N
wsdl +|behav wsdl + behav Composition FSM
i — Realization
' Module
Abstraction
Module l

BPEL Specification for the Orchestrator

Contronto tra 1 due Approcci

Comparisons I

Il Problema di Composizione

Entrambi gli approcci hanno un taglio riconducibile
all'approccio Client-Tailored, in quanto subordinano la
costruzione del Composite Service ad un target service
specificato dall'utente.

['atteggiamento "teoria vs pratica" delle due metodologie
sembra essere alquanto differente: le solide basi teoriche e gl
obiettivi ambiziosi del Roman Model da un lato, la dichiarata
massima attenzione all'obiettivo di fornire un tool concreto del
Progetto Astro dall'altro.

Comparisons 11

Componenti, Requisiti, Architettura di Fondo

Modellazione per entrambi dei servizi via TSs, seppur con
diversi "flavours". Senza dubbio la differenza piu evidente ¢ la
presenza della struttura Community nel Roman Model, con
tutti 1 benefici e le assunzioni che essa comporta, mentre in
Astro non si hanno ipotesi di architetture pre-esistenti.
Conseguenze: full vs partial observability, benefici indotti
dall'architettura da bilanciare con gli oneri che essa comporta,
alfabeti di composizione del tgt service leggermente differenti
tra loro ("building bricks" vs "composite interface"
approaches).

Comparisons 111

Astrazione e Sintesi

Astro Abstraction: internal/external transitions, state properties
Roman Abstaction: Community actions, possible final states
Synthesis: DPDL SAT vs Planning via Model Checking

Risultato Finale della Composizione

Ci sono delle differenze: Astro vuole fornire un processo
eseguibile che concilii I'esecuzione det Component Services,
un nuovo servizio, definito dall'utente ma "statico".

Il Roman approach porta all'estremo I'atteggiamento Client-
tailored avendo come scopo la costruzione di un internal
schema per 1'orchestrator, per usare differenti fragments di
servizi secondo 1l "whim" dell'utente a runtime.

Our Approaches in the "WS Composition 3D Space”

Statics in the System

[.'Astro Suite toolset v3.4

A cooperative collection of modules

 Java and Eclipse environment;

e Tomcat application server;
» ActiveBPEL Engine;

ASTRO wsToolset:

» wsTranslator

» synTools

» NuSMV

» wsMonitor

» wsRequirements Eclipse plugin

» wsChainManager Eclipse plugin

» wsAnimator Eclipse plugin, wsUseCases

Synthesis Procedure

Component Services e Target Service sono espressi come
Abstract BPEL Processes + WSDL files.

Un Wizard permette la creazione di un file XML "di
coreografia” (.chor extension) che racchiude l'intero problema
(component, target, requirements, properties to be monitored
and verified) ed ¢ i1spezionabile ed editable.

Una serie di chiamate a1 vari software modules componenti 1l
toolset permette la realizzazione pratica dell'approccio teorico
discusso in precedenza.

Il concrete BPEL Process ottenuto ¢ automaticamente deployed
su BPEL Engine, e pu0 essere monitorato e testato.

Verification and Monitoring

Per Verification s1 intende una procedura offline che a partire
dal file .chor controlla determinate proprieta (sulla scia dell'uso
di Metodi Formali nell'Ingegneria del Software) e fa rapporto
all'utente, anche fornendo controesempi stile UML Sequence
Diagram.

Il Monitoring € una procedura online in cui viene eseguito del
Java code generato automaticamente a partire dal file .chor per
monitorare 1l running process del composite service e fornire
reports su situazioni di interesse all'utente.

Composition Requirements

& Astro Suite wsAnimator - VTA_DN.chor - Eclipse SDK
File Edit Mavigate Search Project Run Window Help

i RS0 Q- B B | astro suitew... |
2| B% "~ 3
[#-T=F VOS_WO3 e
[+ '[gd MTA_demo Main goal:
1= ¥TA_Flight Process Expression
=T MTA_Hatel Hatel Hatel_pc = SUCC
: .project Flight Flight_pc = SUCC
|Z] Hotel_ABS.bpel WTA WTA_pc = SUCC
\=| Hotel_aABS.vbpel
|=| Hotel.bpel
=] Hotel,pdd
\=| Hotel.vbpel E
=] Hotel,wsdl E
\=| Hokel,wsdl-lacal
1= yTA_User Recovery goal:
E-T=F WTA_VTA Process Expression
(= sektings Hatel Haotel_pc = FAIL | Hotel_pc = FAIL_MACK | Hotel_pc = START
(= build Flight Flight_pc = FAIL | Flight_pc = FAIL_MACK | Flight_pc = START
B .project VTA WTA_pc = FAIL | ¥TA_pc = FAIL_MACK | ¥TA_pc = START
= HandwritkerTa, bpel
5] wra_sEs.bpel
=] MTA_ABS.vbpel — L
Te! wTa_DN.chor E
=] WTa_DN.datanet —>
=] MTA_DM.datanet_diagram S | 2
=] ¥TA.bpel ||| Process Definition Composition ConkralFlow C'Dmpnsitiun.DataFluw.Munitur ;-.-'eriFyIXML.

=4

ChainManager

wsChainManager v.2.4.0 composition

Skep

B create oukput directory:
kranslate the process in s
compose the processes maonitor
compose the BPEL process
deploy the BPEL process

Bickive

JEIE K E

Executed

mon Ok Oal

*******DN SUTOMA: 16 Bl b i o

Translation time: 2922 msec

Launch cormmand:

Execute

"wsynth -model_tvpe dn -mono C:ProgrammifEclipse fdorkspace N TA_NTAbUld\WTA_WTA, s "

% This is wsynth from swntools 0,131

Deployed Process

A ActiveBPEL(TM) Administration - Microsoft Internet Explorer

Filz Modifica Wisualizza Preferiti Strumenti 7 .1.
. — il > T e | &,
@ Indietra ~ () |1L| iE' _l\J pi ! Cerca ‘::"\?’ Preferiti ﬁ‘t G~ ¢ = |~ BRI Kyl E
Indirizzo L@J http: fflocalhost: S0000/BpelddminExtdeploved_process_detail, jsprpdid=0 w | Yai @ H
-~
@ ACTIVEBPEI Deployed Process Detail
engine Name: WTA
TP Namespace: http:rastroprojectorgiBusinessProcessesiTA
Engine Deployment Descriptor
Configuration =N =5 . : :]
<process xmlnz="http://schemas.active-endpoints. com/ pdd/Z2004/09/ pdd. x5
Storage <partherLinks:>
Version Detail <partnerLink name="Flight PLT":»
<partnerRBole endpointReference="static:>
Deployment Status <wzaiEndpointReference xmlns:s="http://astroproject.org/Bu

<wza: Addressrhttp:// localhost : 50005/ axis/ services/Fligh

Deployment Log § : ; ;
<wsa:ServiceName PortMName="Flight3erwvicePort®>=s:Flight3

Deployed Processes </wsa:EndpointReferences

Partner Definitions </partnerRolex L

WSDL Catalog <myRole allowedRoles="" binding="RPC" service="VTL FlightZerv

£ | .

Process Status

Active Processes BPEL

Active Class Monitars <process xmlns="http://schemas.xmwlscap.org/ ws/2003/03/business-process

Alarm Clueue <partnerLinkss

Darmiven Ciimiin <parthnerlLink mvRole="Hotel Customer™ nsmwe="Hotel PLT" vartnerLin ¥
£ | »

@ Cperazione completata ‘-J Inkramet locale

Offline Verification

‘A C:\ProgrammilEclipse\Workspace\VTA_VTA\build\verification. html - Microsoft Internet Explorer

File Modifica Visualizza Preferiti - Strumenti 7 .-g,.
:\-) Indietro _ﬂ;j Ia @ i;j pCerca %Preferiti @ Bv H} - LJ @% ,ﬂ
Inditizza |@ C:AProgrammilEclipsetorkspacei\vTa_4WTA buildverification. html V| Vai @ &

|

Verification result

Deadlock - Verfication of deadlock:)
states

Zervices reach their
Stmultanecus3uccess |assertion |successfisll states ol
strrultane ously

. o mervices can reach ther |
AlE ded il c example example
ERRLER Rroasfetib: successfull states 2 [B] [P]

ANOfer assertion ibz&%fﬁ;ﬁifﬁla?f;i MO [counter-example] [counter-example] '
it both Flight and Hotel male ‘
CfferTo Avail assertion |an offer, then User wont ol

receive anot avail

possibility for the user to
InconsistentFinalStates [possibility finish succesfilly, while it1s O |
not a case for some partners

[

@ Operazione completata ﬂ Risorse del computer

Verification Instance Found

% T & i 1) 3 "_? - 0 A
ﬂ E] | &~ VS ‘52 T i @] '4'% -
Verification result
Llser WA Flight Hotel
request()
e
fRequest()
>
foifter()
<
hReguest()
=
hOffer()
<
offer)
<
ack()
-
ki)

gj Operazione completata _é Risorse del computer

Grazie per l'attenzione

