
The Semantic Web

Lecture 5

The ontology layer 2:

Reasoning in OWL,

tractable fragments of OWL

Riccardo Rosati

Dottorato in Ingegneria Informatica

Sapienza Università di Roma

a.a. 2006/07

Reasoning in OWL 2

The Semantic Web Tower

Reasoning in OWL 3

OWL language

• Three species of OWL

– OWL full is union of OWL syntax and RDF

– OWL DL restricted to FOL fragment

– OWL Lite is “easier to implement” subset of OWL DL

• OWL DL based on SHIQ Description Logic

– In fact it is equivalent to SHOIN(Dn) DL

• OWL DL Benefits from many years of DL research

– Well defined semantics

– Formal properties well understood (complexity, decidability)

– Known reasoning algorithms

– Implemented systems (highly optimised)

Reasoning in OWL 4

OWL class constructors

Arbitrarily complex nesting of constructors:

– E.g., Person � ∀hasChild.Doctor � ∃hasChild.Doctor

Reasoning in OWL 5

DL knowledge bases (ontologies)

• An OWL ontology maps to a DL Knowledge Base
K = 〈T ,A〉

– T (Tbox) is a set of axioms of the form:

• C � D (concept inclusion)

• C ≡ D (concept equivalence)

• R � S (role inclusion)

• R ≡ S (role equivalence)

• R+ � R (role transitivity)

– A (Abox) is a set of axioms of the form

• x ∈ D (concept instantiation)

• 〈x,y〉 ∈ R (role instantiation)

Reasoning in OWL 6

DL vs. First-Order Logic

• in general, DLs correspond to decidable subclasses of first-

order logic (FOL)

• DL KB = first-order theory

• OWL Full is NOT a FOL fragment!

• reasoning in OWL Full is undecidable

• OWL-DL and OWL-Lite are decidable fragments of FOL

Reasoning in OWL 7

DL vs. First-Order Logic

let K = 〈T ,A〉 be an ontology about persons where:

• T contains the following inclusion assertions:

MALE ���� PERSON

FEMALE ���� PERSON

MALE ����¬¬¬¬ FEMALE

PERSON ����∃∃∃∃Father−−−−.MALE

• A contains the following instance assertions:

MALE(Bob)

PERSON (Mary)

PERSON(Paul)

Reasoning in OWL 8

DL vs. First-Order Logic

• T corresponds to the following FOL sentences:

∀∀∀∀ x. MALE(x) →→→→ PERSON(x)

∀∀∀∀ x. FEMALE(x) →→→→ PERSON(x)

∀∀∀∀ x. MALE(x) →→→→ ¬¬¬¬FEMALE(x)

∀∀∀∀ x. PERSON(x) →→→→ ∃ ∃ ∃ ∃ y. Father(y,x) and MALE(y)

• A corresponds to the following FOL ground atoms:

MALE(Bob)

PERSON (Mary)

PERSON(Paul)

Reasoning in OWL 9

Inference tasks

• Knowledge is correct (captures intuitions)
– C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

• Knowledge is minimally redundant (no unintended
synonyms)
– C is equivalent to D w.r.t. K iff for every model I of K, CI = DI

• Knowledge is meaningful (classes can have instances)
– C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

• Querying knowledge
– x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

– 〈x,y〉 is an instance of R w.r.t. K iff for, every model I of K, (xI,yI)
∈ RI

• Knowledge base consistency
– A KB K is consistent iff there exists some model I of K

Reasoning in OWL 10

Inference tasks

• OWL-DL ontology = first-order logical theory

• verifying the formal properties of the ontology

corresponds to reasoning over a first-order theory

Reasoning in OWL 11

Consistency of the ontology

• Is the ontology K=(T,A) consistent (non-self-

contradictory)?

• i.e., is there at least a model for K?

• intensional + extensional reasoning task

• fundamental formal property:

• inconsistent ontology => there is a semantic problem

in K!

• K must be repaired

Reasoning in OWL 12

Consistency of the ontology

Example TBox:
MALE � PERSON

FEMALE � PERSON

MALE �¬ FEMALE

PERSON �∃hasFather.MALE

PERSON �∃hasMother.FEMALE

hasMother � hasParent

hasFather � hasParent

∃hasParent.BLACK-EYES � BLACK-EYES

Reasoning in OWL 13

Consistency of the ontology

Example ABox:

MALE(Bob)

MALE(Paul)

FEMALE(Ann)

hasFather(Paul,Ann)

hasMother(Mary,Paul)

BLACK-EYES(Mary)

¬ BLACK-EYES(Ann)

⇒⇒⇒⇒ TBox + ABox inconsistent (Ann should have black eyes)

Reasoning in OWL 14

Concept consistency

• is a concept definition C consistent in a TBox T?

• i.e., is there a model of T in which C has a non-

empty extension?

• intensional (schema) reasoning task

• detects a fundamental modeling problem in T:

• if a concept is not consistent, then it can never be

populated!

Reasoning in OWL 15

Concept subsumption

• is a concept C subsumed by another concept D in

T?

• i.e., is the extension of C contained in the extension

of D in every model of T?

• intensional (schema) reasoning task

• allows to do classification of concepts (i.e., to

construct the concept ISA hierarchy)

Reasoning in OWL 16

Instance checking

• is an individual a a member of concept C in K?

• i.e., is the fact C(a) satisfied by every interpretation

of K?

• intensional + extensional reasoning task

• basic “instance-level query” (tell me if object a is in

class C)

Reasoning in OWL 17

Instance retrieval

• find all members of concept C in K

• i.e., compute all individuals a such that C(a) is

satisfied by every interpretation of K

• intensional + extensional reasoning task

• (slight) generalization of instance checking

Reasoning in OWL 18

Conjunctive query answering

• compute the answers to a conjunctive query q in K

• i.e., compute all tuples of individuals t such that q(t)

is entailed by K (= q(t) is satisfied by every

interpretation of K)

• extensional + extensional reasoning task

• generalization of instance checking and instance

retrieval

• i.e., database queries over ontologies

Reasoning in OWL 19

Inference tasks

• reasoning in OWL-DL is decidable (and the

complexity is characterized)

• however: high computational complexity

(EXPTIME)

• (optimized) reasoning algorithms developed

• OWL-DL reasoning tools implemented

Reasoning in OWL 20

Current OWL technology

two kinds of tools:

• OWL editors (“environments”)

• OWL reasoners

Reasoning in OWL 21

OWL editors

• allow for visualizing/browsing/editing OWL

ontologies

• able to connect to an external OWL reasoner

=> OWL “environments”

• main current tools:

• Protege

• SWOOP

• OWLed2

Reasoning in OWL 22

OWL reasoning tools

two categories:

• OWL-DL reasoners

• Racer, RacerPro

• Pellet

• Fact++

• KAON2

• reasoners for “tractable fragments” of OWL-DL

• QuOnto

• OntoSearch2

Reasoning in OWL 23

OWL-DL reasoning tools

• all tools support “standard” reasoning tasks, i.e.:

• consistency of the ontology

• concept consistency

• concept subsumption and classification

• instance checking and retrieval

• they do not fully support conjunctive queries

• problem: the “official” query language for OWL has

not been defined yet

Reasoning in OWL 24

Limits of current OWL-DL reasoners

• performance of OWL-DL reasoners:

• “practically good” for the intensional level

• the size of a TBox is not likely to scale up too

much

• not good for the extensional level

• unable to handle instances (ABoxes) of large size

(or even medium size)...

• ...even for the basic extensional service (instance

checking)

Reasoning in OWL 25

Limits of current OWL-DL reasoners

• why are these tools so bad with (large) ABoxes?

• two main reasons:

• current algorithms are mainly derived by algorithms

defined for purely intensional tasks

• no real optimization for ABox services

• these algorithms work in main memory =>

bottleneck for very large instances

Reasoning in OWL 26

OWL-DL technology vs. large instances

• the current limits of OWL-DL reasoners make it

impossible to use these tools for real data

integration on the web

• web sources are likely to be data intensive sources

• e.g., relational databases accessed through a web

interface

• on the other hand, data integration is the prominent

(future) application for Semantic Web technology!

[Berners-Lee et al., IEEE Intelligent Systems, May

2006]

Reasoning in OWL 27

A solution: tractable OWL fragments

• how to overcome these limitations if we want to

build data-intensive Semantic Web applications?

• solution 1: limit the expressive power of the

ontology language

=> tractable fragments of OWL

• solution 2: wait for more efficient OWL-DL

reasoners

• to arrive at solution 2, we may benefit from the new

technology developed for OWL tractable fragments

Reasoning in OWL 28

Tractable OWL fragments

• idea: sacrifice part of the expressiveness of the

ontology language...

• ...to have more efficient ontology tools

• OWL Lite is a standardized fragment of OWL-DL

• is OWL Lite OK?

• NO! it is still too expressive for ABox reasoning

• OWL Lite is not really “lite”!

Reasoning in OWL 29

Tractable OWL fragments

• other fragments of OWL-DL have been proposed

• open problem (no standard yet)

• main current proposals:

• DL-Lite

• EL

• Horn-SHIQ

• DLP

Reasoning in OWL 30

DL-Lite

• DL-Lite is a tractable OWL-DL fragment

• defined by the DIS-Sapienza DASI research group

• main objectives:

• allow for very efficient treatment of large

ABoxes...

• ...even for very expressive queries (conjunctive

queries)

Reasoning in OWL 31

DL-Lite syntax

• concept expressions:

- atomic concept

- role domain

- role range

• DL-Lite TBox = set of

- concept inclusions

- functional assertions (stating that a role is functional

• DL-Lite ABox = set of ground atoms, i.e., assertions

A(a), R(a,b) A = concept name, R = role name

Reasoning in OWL 32

DL-Lite abilities

tractability of TBox reasoning:

• all TBox reasoning tasks in DL-Lite are tractable, i.e.,

solvable in polynomial time

tractability of ABox+TBox reasoning:

• instance checking and instance retrieval in DL-Lite are

solvable in polynomial time

• conjunctive queries over DL-Lite ontologies can be

answered in polynomial time (actually in LogSpace)

with respect to data complexity (i.e., the size of the

ABox)

Reasoning in OWL 33

Query answering in DL-Lite

a glimpse on the query answering algorithm:

• query answering in DL-Lite can be reduced to
evaluation of an SQL query over a relational database

• query answering by query rewriting + relational
database evaluation:

1. the ABox is stored in a relational database (set of
unary and binary tables)

2. the conjunctive query Q is rewritten with respect
to the TBox, obtaining an SQL query Q’

3. query Q’ is passed to the DBMS which returns the
answers

Reasoning in OWL 34

Query answering in DL-Lite

query Q’

(SQL)Query
expander

DBMS

ABox

query Q

(UCQ)

TBox

answers to Q’

Reasoning in OWL 35

Example

TBox:

MALE � PERSON FEMALE � PERSON

MALE �¬FEMALE PERSON � ∃hasFather

∃hasFather¯ �MALE PERSON � ∃hasMother

∃hasMother¯ � FEMALE

input query:

q(x) ← PERSON(x)
rewritten query:

q’(x) ← PERSON(x) ∨
FEMALE(x) ∨
MALE(x) ∨
hasFather(y,x) ∨

hasMother(y,x)

Reasoning in OWL 36

Example

ABox:

MALE(Bob)
MALE(Paul)
FEMALE(Ann)
hasFather(Paul,Ann)
hasMother(Mary,Paul)

rewritten query:

q’(x) ← PERSON(x) ∨
FEMALE(x) ∨
MALE(x) ∨
hasFather(y,x) ∨

hasMother(y,x)

answers to query:

{ Bob, Paul, Ann, Mary }

Reasoning in OWL 37

QuOnto

• QuOnto is a reasoner for DL-Lite

• developed by DASI lab at DIS-Sapienza

• implements the above answering technique for
conjunctive queries

• able to deal with very large instances (comparable to
standard relational databases!)

• currently used in MASTRO, a system for ontology-
based data integration

Reasoning in OWL 38

MASTRO (single database)

Query

expander
TBox

DBMS

Query

unfolder
mapping

query Q’ (UCQ)

query Q’’ (SQL)

query Q (UCQ)

(virtual ABox)

Reasoning in OWL 39

MASTRO-I (data integration)

Query

expander
TBox

Query

unfolder
mapping

query Q’ (UCQ)

query Q’’ (SQL)

query Q (UCQ)

.....DBMS DBMS DBMS

Data federation

