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OWL language

• Three species of OWL

– OWL full is union of OWL syntax and RDF

– OWL DL restricted to FOL fragment

– OWL Lite is “easier to implement” subset of OWL DL 

• OWL DL based on SHIQ Description Logic

– In fact it is equivalent to SHOIN(Dn) DL

• OWL DL Benefits from many years of DL research

– Well defined semantics

– Formal properties well understood (complexity, decidability)

– Known reasoning algorithms

– Implemented systems (highly optimised)
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OWL class constructors

Arbitrarily complex nesting of constructors:

– E.g., Person � ∀hasChild.Doctor � ∃hasChild.Doctor



Reasoning in OWL 5

DL knowledge bases (ontologies)

• An OWL ontology maps to a DL Knowledge Base 
K = 〈T ,A〉

– T  (Tbox) is a set of axioms of the form:

• C � D (concept inclusion)

• C ≡ D (concept equivalence)

• R � S (role inclusion)

• R ≡ S (role equivalence)

• R+ � R (role transitivity)

– A  (Abox) is a set of axioms of the form 

• x ∈ D (concept instantiation)

• 〈x,y〉 ∈ R (role instantiation)

Reasoning in OWL 6

DL vs. First-Order Logic 

• in general, DLs correspond to decidable subclasses of first-

order logic (FOL)

• DL KB = first-order theory

• OWL Full is NOT a FOL fragment!

• reasoning in OWL Full is undecidable

• OWL-DL and OWL-Lite are decidable fragments of FOL
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DL vs. First-Order Logic 

let K = 〈T ,A〉 be an ontology about persons where:

• T contains the following inclusion assertions:

MALE ���� PERSON

FEMALE ���� PERSON

MALE ����¬¬¬¬ FEMALE

PERSON ����∃∃∃∃Father−−−−.MALE

• A contains the following instance assertions:

MALE(Bob) 

PERSON (Mary)

PERSON(Paul)
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DL vs. First-Order Logic 

• T corresponds to the following FOL sentences:

∀∀∀∀ x. MALE(x) →→→→ PERSON(x)

∀∀∀∀ x. FEMALE(x) →→→→ PERSON(x)

∀∀∀∀ x. MALE(x) →→→→ ¬¬¬¬FEMALE(x)

∀∀∀∀ x. PERSON(x) →→→→ ∃ ∃ ∃ ∃ y. Father(y,x) and MALE(y)

• A corresponds to the following FOL ground atoms:

MALE(Bob) 

PERSON (Mary)

PERSON(Paul)
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Inference tasks

• Knowledge is correct (captures intuitions)
– C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

• Knowledge is minimally redundant (no unintended 
synonyms)
– C is equivalent to D w.r.t. K iff for every model I of K, CI = DI

• Knowledge is meaningful (classes can have instances)
– C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

• Querying knowledge
– x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

– 〈x,y〉 is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) 
∈ RI

• Knowledge base consistency
– A KB K is consistent iff there exists some model I of K
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Inference tasks

• OWL-DL ontology = first-order logical theory

• verifying the formal properties of the ontology 

corresponds to reasoning over a first-order theory
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Consistency of the ontology

• Is the ontology K=(T,A) consistent (non-self-

contradictory)?

• i.e., is there at least a model for K?

• intensional + extensional reasoning task

• fundamental formal property:

• inconsistent ontology => there is a semantic problem 

in K!

• K must be repaired
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Consistency of the ontology

Example TBox:
MALE � PERSON

FEMALE � PERSON

MALE �¬ FEMALE

PERSON �∃hasFather.MALE

PERSON �∃hasMother.FEMALE

hasMother � hasParent

hasFather � hasParent

∃hasParent.BLACK-EYES � BLACK-EYES
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Consistency of the ontology

Example ABox:

MALE(Bob)

MALE(Paul)

FEMALE(Ann)

hasFather(Paul,Ann)

hasMother(Mary,Paul)

BLACK-EYES(Mary)

¬ BLACK-EYES(Ann)

⇒⇒⇒⇒ TBox + ABox inconsistent (Ann should have black eyes)
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Concept consistency

• is a concept definition C consistent in a TBox T?

• i.e., is there a model of T in which C has a non-

empty extension?

• intensional (schema) reasoning task

• detects a fundamental modeling problem in T:

• if a concept is not consistent, then it can never be 

populated!
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Concept subsumption

• is a concept C subsumed by another concept D in 

T?

• i.e., is the extension of C contained in the extension 

of D in every model of T?

• intensional (schema) reasoning task

• allows to do classification  of concepts (i.e., to 

construct the concept ISA hierarchy)
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Instance checking

• is an individual a a member of concept C in K? 

• i.e., is the fact C(a) satisfied by every interpretation 

of K?

• intensional + extensional reasoning task

• basic “instance-level query” (tell me if object a is in 

class C)



Reasoning in OWL 17

Instance retrieval

• find all members of concept C in K 

• i.e., compute all individuals a such that C(a) is 

satisfied by every interpretation of K

• intensional + extensional reasoning task

• (slight) generalization of instance checking
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Conjunctive query answering

• compute the answers to a conjunctive query q in K

• i.e., compute all tuples of individuals t such that q(t) 

is entailed by K (= q(t) is satisfied by every 

interpretation of K)

• extensional + extensional reasoning task

• generalization of instance checking and instance 

retrieval

• i.e., database queries over ontologies 
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Inference tasks

• reasoning in OWL-DL is decidable (and the 

complexity is characterized)

• however: high computational complexity 

(EXPTIME)

• (optimized) reasoning algorithms developed

• OWL-DL reasoning tools implemented
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Current OWL technology

two kinds of tools:

• OWL editors (“environments”) 

• OWL reasoners
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OWL editors

• allow for visualizing/browsing/editing OWL 

ontologies

• able to connect to an external OWL reasoner

=> OWL “environments” 

• main current tools:

• Protege 

• SWOOP

• OWLed2
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OWL reasoning tools

two categories:

• OWL-DL reasoners

• Racer, RacerPro

• Pellet

• Fact++

• KAON2

• reasoners for “tractable fragments” of OWL-DL

• QuOnto

• OntoSearch2
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OWL-DL reasoning tools

• all tools support “standard” reasoning tasks, i.e.:

• consistency of the ontology

• concept consistency

• concept subsumption and classification

• instance checking and retrieval

• they do not fully support conjunctive queries

• problem: the “official” query language for OWL has 

not been defined yet
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Limits of current OWL-DL reasoners

• performance of OWL-DL reasoners:

• “practically good” for the intensional level

• the size of a TBox is not likely to scale up too 

much

• not good for the extensional level 

• unable to handle instances (ABoxes) of large size 

(or even medium size)...

• ...even for the basic extensional service (instance 

checking)
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Limits of current OWL-DL reasoners

• why are these tools so bad with (large) ABoxes?

• two main reasons:

• current algorithms are mainly derived by algorithms 

defined for purely intensional tasks

• no real optimization for ABox services

• these algorithms work in main memory => 

bottleneck for very large instances
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OWL-DL technology vs. large instances

• the current limits of OWL-DL reasoners make it 

impossible to use these tools for real data 

integration on the web 

• web sources are likely to be data intensive sources

• e.g., relational databases accessed through a web 

interface

• on the other hand, data integration is the prominent 

(future) application for Semantic Web technology! 

[Berners-Lee et al., IEEE Intelligent Systems, May 

2006] 
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A solution: tractable OWL fragments

• how to overcome these limitations if we want to 

build data-intensive Semantic Web applications?

• solution 1: limit the expressive power of the 

ontology language

=> tractable fragments of OWL

• solution 2: wait for more efficient OWL-DL 

reasoners 

• to arrive at solution 2, we may benefit from the new 

technology developed for OWL tractable fragments
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Tractable OWL fragments

• idea: sacrifice part of the expressiveness of the 

ontology language...

• ...to have more efficient ontology tools

• OWL Lite is a standardized fragment of OWL-DL

• is OWL Lite OK? 

• NO! it is still too expressive for ABox reasoning

• OWL Lite is not really “lite”!
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Tractable OWL fragments

• other fragments of OWL-DL have been proposed

• open problem (no standard yet) 

• main current proposals:

• DL-Lite

• EL

• Horn-SHIQ

• DLP
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DL-Lite

• DL-Lite is a tractable OWL-DL fragment

• defined by the DIS-Sapienza DASI research group

• main objectives:

• allow for very efficient treatment of large 

ABoxes...

• ...even for very expressive queries (conjunctive 

queries)
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DL-Lite syntax

• concept expressions:

- atomic concept

- role domain 

- role range

• DL-Lite TBox = set of 

- concept inclusions

- functional assertions (stating that a role is functional

• DL-Lite ABox = set of ground atoms, i.e., assertions 

A(a), R(a,b) A = concept name, R = role name
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DL-Lite abilities

tractability of TBox reasoning:

• all TBox reasoning tasks in DL-Lite are tractable, i.e., 

solvable in polynomial time

tractability of ABox+TBox reasoning:

• instance checking and instance retrieval in DL-Lite are 

solvable in polynomial time 

• conjunctive queries over DL-Lite ontologies can be 

answered in polynomial time (actually in LogSpace) 

with respect to data complexity (i.e., the size of the 

ABox)
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Query answering in DL-Lite

a glimpse on the query answering algorithm:

• query answering in DL-Lite can be reduced to 
evaluation of an SQL query over a relational database

• query answering by query rewriting + relational 
database evaluation:

1. the ABox is stored in a relational database (set of 
unary and binary tables)

2. the conjunctive query Q is rewritten with respect 
to the TBox, obtaining an SQL query Q’

3. query Q’ is passed to the DBMS which returns the 
answers
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Query answering in DL-Lite

query Q’

(SQL)Query 
expander

DBMS

ABox

query Q

(UCQ)

TBox

answers to Q’
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Example

TBox:

MALE � PERSON FEMALE � PERSON

MALE �¬FEMALE              PERSON � ∃hasFather

∃hasFather¯ �MALE            PERSON � ∃hasMother

∃hasMother¯ � FEMALE

input query:  

q(x) ← PERSON(x)
rewritten query:

q’(x) ← PERSON(x) ∨
FEMALE(x) ∨
MALE(x) ∨
hasFather(y,x) ∨

hasMother(y,x)  
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Example

ABox:

MALE(Bob)
MALE(Paul)
FEMALE(Ann)
hasFather(Paul,Ann)
hasMother(Mary,Paul)

rewritten query:

q’(x) ← PERSON(x) ∨
FEMALE(x) ∨
MALE(x) ∨
hasFather(y,x) ∨

hasMother(y,x)  

answers to query:

{ Bob, Paul, Ann, Mary }
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QuOnto

• QuOnto is a reasoner for DL-Lite 

• developed by DASI lab at DIS-Sapienza 

• implements the above answering technique for 
conjunctive queries

• able to deal with very large instances (comparable to 
standard relational databases!)

• currently used in MASTRO, a system for ontology-
based data integration
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MASTRO (single database)

Query 

expander
TBox

DBMS

Query 

unfolder
mapping

query Q’ (UCQ)

query Q’’ (SQL)

query Q (UCQ)

(virtual ABox)
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MASTRO-I (data integration)

Query 

expander
TBox

Query 

unfolder
mapping

query Q’ (UCQ)

query Q’’ (SQL)

query Q (UCQ)

.....DBMS DBMS DBMS

Data federation


