
The Semantic Web

Lecture 4

The ontology layer:

Description Logics and OWL

Riccardo Rosati

Dottorato in Ingegneria Informatica

Sapienza Università di Roma

a.a. 2006/07

REMARK

Most of the material of this lecture is taken from the ISWC 
2003 “Tutorial on OWL” by Sean Bechhofer, Ian Horrocks, 

and Peter Patel-Schneider

(http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/)



The Ontology layer 1 3

The Semantic Web Tower

The Ontology layer 1 4

Ontology: origins and history

a philosophical discipline—a branch of philosophy that 

deals with the nature and the organisation of reality

• Science of Being (Aristotle, Metaphysics, IV, 1)

• Tries to answer the questions:

What characterizes being?

Eventually, what is being?



The Ontology layer 1 5

Ontology in linguistics

ReferentForm
Stands for

Relates to
activates

Concept

[Ogden, Richards, 1923]
?“Tank“

The Ontology layer 1 6

Ontology in computer science

• An ontology is an engineering artifact: 

– It is constituted by a specific vocabulary used to describe a certain 

reality, plus 

– a set of explicit assumptions regarding the intended meaning of the 

vocabulary. 

• Thus, an ontology describes a formal specification of a certain domain:

– Shared understanding of a domain of interest

– Formal and machine manipulable model of a domain of interest

“An explicit specification of a conceptualisation” 

[Gruber93]



The Ontology layer 1 7

Structure of an ontology

Ontologies typically have two distinct components:

• Names for important concepts in the domain

– Elephant is a concept whose members are a kind of animal

– Herbivore is a concept whose members are exactly those animals who eat 

only plants or parts of plants 

– Adult_Elephant is a concept whose members are exactly those elephants 

whose age is greater than 20 years

• Background knowledge/constraints on the domain

– Adult_Elephants weigh at least 2,000 kg

– All Elephants are either African_Elephants or Indian_Elephants

– No individual can be both a Herbivore and a Carnivore

The Ontology layer 1 8

Ontology languages

• Wide variety of languages for “Explicit Specification” 

– Graphical notations

– Logic based

– Probabilistic/fuzzy

– ...

• Degree of formality varies widely

– Increased formality makes languages more amenable to machine 
processing (e.g., automated reasoning)



The Ontology layer 1 9

Ontology languages

• Graphical notations:

• Semantic networks

• Topic Maps (see http://www.topicmaps.org/)

• UML

• RDF

The Ontology layer 1 10

Ontology languages

• Logic based languages:

• Description Logics (e.g., OIL, DAML+OIL, OWL)

• Rules (e.g., RuleML, LP/Prolog)

• First Order Logic (e.g., KIF)

• Conceptual graphs

• (Syntactically) higher order logics (e.g., LBase)

• Non-classical logics (e.g., Flogic, Non-Mon, 
modalities)



The Ontology layer 1 11

Obect-oriented languages

many languages use object-oriented models based on:

• Objects/Instances/Individuals

– Elements of the domain of discourse

– Equivalent to constants in FOL

• Types/Classes/Concepts

– Sets of objects sharing certain characteristics

– Equivalent to unary predicates in FOL

• Relations/Properties/Roles

– Sets of pairs (tuples) of objects

– Equivalent to binary predicates in FOL

The Ontology layer 1 12

Web schema languages

• Existing Web languages extended to facilitate content description

– XML � XML Schema (XMLS)

– RDF � RDF Schema (RDFS)

• XMLS not an ontology language

– Changes format of DTDs (document schemas) to be XML

– Adds an extensible type hierarchy

• Integers, Strings, etc.

• Can define sub-types, e.g., positive integers

• RDFS is recognizable as an ontology language

– Classes and properties

– Sub/super-classes (and properties)

– Range and domain (of properties)



The Ontology layer 1 13

Limitations of RDFS

• RDFS too weak to describe resources in sufficient detail

– No localised range and domain constraints

• Can’t say that the range of hasChild is person when applied to persons 

and elephant when applied to elephants

– No existence/cardinality constraints

• Can’t say that all instances of person have a mother that is also a person, 

or that persons have exactly 2 parents

– No transitive, inverse or symmetrical properties

• Can’t say that isPartOf is a transitive property, that hasPart is the inverse 

of isPartOf or that touches is symmetrical

– …

• Difficult to provide reasoning support

– No “native” reasoners for non-standard semantics

– May be possible to reason via FO axiomatisation

The Ontology layer 1 14

Web ontology language requirements

Desirable features identified for Web Ontology Language:

• Extends existing Web standards 

– Such as XML, RDF, RDFS

• Easy to understand and use

– Should be based on familiar KR idioms

• Formally specified 

• Of “adequate” expressive power

• Possible to provide automated reasoning support



The Ontology layer 1 15

From RDF to OWL

• Two languages developed to satisfy above requirements

– OIL: developed by group of (largely) European researchers (several from EU 

OntoKnowledge project)

– DAML-ONT: developed by group of (largely) US researchers (in DARPA DAML

programme)

• Efforts merged to produce DAML+OIL

– Development was carried out by “Joint EU/US Committee on Agent Markup

Languages”

– Extends (“DL subset” of) RDF

• DAML+OIL submitted to W3C as basis for standardisation

– Web-Ontology (WebOnt) Working Group formed

– WebOnt group developed OWL language based on DAML+OIL

• OWL language now a W3C Recommendation

The Ontology layer 1 16

OWL language

• Three species of OWL

– OWL full is union of OWL syntax and RDF

– OWL DL restricted to FOL fragment (¼ DAML+OIL)

– OWL Lite is “easier to implement” subset of OWL DL 

• Semantic layering

– OWL DL ¼ OWL full within DL fragment

– DL semantics officially definitive

• OWL DL based on SHIQ Description Logic

– In fact it is equivalent to SHOIN(Dn) DL

• OWL DL Benefits from many years of DL research

– Well defined semantics

– Formal properties well understood (complexity, decidability)

– Known reasoning algorithms

– Implemented systems (highly optimised)



The Ontology layer 1 17

OWL class constructors

• XMLS datatypes as well as classes in ∀P.C and ∃P.C

– E.g., ∃hasAge.nonNegativeInteger

• Arbitrarily complex nesting of constructors
– E.g., Person � ∀hasChild.Doctor � ∃hasChild.Doctor

The Ontology layer 1 18

RDFS syntax

<owl:Class><owl:Class><owl:Class><owl:Class>
<owl:<owl:<owl:<owl:intersectionOf rdfintersectionOf rdfintersectionOf rdfintersectionOf rdf::::parseTypeparseTypeparseTypeparseType=" collection">=" collection">=" collection">=" collection">

<owl:Class <owl:Class <owl:Class <owl:Class rdfrdfrdfrdf:about="#Person"/>:about="#Person"/>:about="#Person"/>:about="#Person"/>
<owl:Restriction><owl:Restriction><owl:Restriction><owl:Restriction>

<owl:<owl:<owl:<owl:onProperty rdfonProperty rdfonProperty rdfonProperty rdf:resource="#:resource="#:resource="#:resource="#hasChildhasChildhasChildhasChild"/>"/>"/>"/>
<owl:<owl:<owl:<owl:toClasstoClasstoClasstoClass>>>>

<owl:<owl:<owl:<owl:unionOf rdfunionOf rdfunionOf rdfunionOf rdf::::parseTypeparseTypeparseTypeparseType=" collection">=" collection">=" collection">=" collection">
<owl:Class <owl:Class <owl:Class <owl:Class rdfrdfrdfrdf:about="#Doctor"/>:about="#Doctor"/>:about="#Doctor"/>:about="#Doctor"/>

<owl:Restriction><owl:Restriction><owl:Restriction><owl:Restriction>
<owl:<owl:<owl:<owl:onProperty rdfonProperty rdfonProperty rdfonProperty rdf:resource="#:resource="#:resource="#:resource="#hasChildhasChildhasChildhasChild"/>"/>"/>"/>

<owl:<owl:<owl:<owl:hasClass rdfhasClass rdfhasClass rdfhasClass rdf:resource="#Doctor"/>:resource="#Doctor"/>:resource="#Doctor"/>:resource="#Doctor"/>
</owl:Restriction></owl:Restriction></owl:Restriction></owl:Restriction>

</owl:</owl:</owl:</owl:unionOfunionOfunionOfunionOf>>>>
</owl:</owl:</owl:</owl:toClasstoClasstoClasstoClass>>>>

</owl:Restriction></owl:Restriction></owl:Restriction></owl:Restriction>
</owl:</owl:</owl:</owl:intersectionOfintersectionOfintersectionOfintersectionOf>>>>

</owl:Class></owl:Class></owl:Class></owl:Class>

E.g., Person � ∀hasChild.Doctor � ∃hasChild.Doctor:



The Ontology layer 1 19

OWL axioms

Axioms (mostly) reducible to inclusion (�)

C ≡ D iff  both C � D and D � C

The Ontology layer 1 20

XML Schema datatypes in OWL

•OWL supports XML Schema primitive datatypes

–E.g., integer, real, string, … 

•Strict separation between “object” classes and datatypes

–Disjoint interpretation domain ∆D for datatypes

•For a datavalue d, dI ⊆ ∆D

•And ∆D ∩ ∆I = ∅

–Disjoint “object” and datatype properties

•For a datatype propterty P, PI ⊆ ∆I × ∆D

•For object property S and datatype property P,  SI ∩ PI = ∅

•Equivalent to the “(Dn)” in SHOIN(Dn)



The Ontology layer 1 21

Why separate classes and datatypes?

• Philosophical reasons:

– Datatypes structured by built-in predicates

– Not appropriate to form new datatypes using ontology language

• Practical reasons:

– Ontology language remains simple and compact

– Semantic integrity of ontology language not compromised

– Implementability not compromised — can use hybrid reasoner

The Ontology layer 1 22

OWL DL semantics

• Mapping OWL to equivalent DL (SHOIN(Dn)):

– Facilitates provision of reasoning services (using DL systems)

– Provides well defined semantics

• DL semantics defined by interpretations: I = (∆I, ·I), where

– ∆I is the domain (a non-empty set) 

– ·I is an interpretation function that maps:

• Concept (class) name A → subset AI of ∆I

• Role (property) name R→ binary relation RI over ∆I

• Individual name i→ iI element of ∆I



The Ontology layer 1 23

DL semantics

• Interpretation function ·I extends to concept expressions in 

an obvious(ish) way, i.e.:

The Ontology layer 1 24

DL knowledge bases (ontologies)

• An OWL ontology maps to a DL Knowledge Base 
K = 〈T ,A〉

– T  (Tbox) is a set of axioms of the form:

• C � D (concept inclusion)

• C ≡ D (concept equivalence)

• R � S (role inclusion)

• R ≡ S (role equivalence)

• R+ � R (role transitivity)

– A  (Abox) is a set of axioms of the form 

• x ∈ D (concept instantiation)

• 〈x,y〉 ∈ R (role instantiation)



The Ontology layer 1 25

DL knowledge bases (ontologies)

• Two sorts of Tbox axioms often distinguished:

– “Definitions”
• C � D or C ≡ D where C is a concept name

– General Concept Inclusion axioms (GCIs)
• C � D where C in an arbitrary concept

The Ontology layer 1 26

Knowledge base semantics

• An interpretation I satisfies (models) an axiom A (I Ï A):

– I Ï C � D iff CI ⊆ DI

– I Ï C ≡ D iff CI = DI

– I Ï R � S iff RI ⊆ SI

– I Ï R ≡ S iff RI = SI

– I Ï R+ � R iff (RI)+ ⊆ RI

– I Ï x ∈ D iff xI ∈ DI

– I Ï 〈x,y〉 ∈ R iff (xI,yI) ∈ RI

• I satisfies a Tbox T (I Ï T ) iff I satisfies every axiom A in T

• I satisfies an Abox A (I Ï A) iff I satisfies every axiom A in A

• I satisfies a KB K (I Ï K) iff I satisfies both T  and A



The Ontology layer 1 27

DL vs. First-Order Logic 

• in general, DLs correspond to decidable subclasses of first-

order logic (FOL)

• DL KB = first-order theory

• OWL Full is NOT a FOL fragment!

• reasoning in OWL Full is undecidable

• OWL-DL and OWL-Lite are decidable fragments of FOL

The Ontology layer 1 28

DL vs. First-Order Logic 

let K = 〈T ,A〉 be an ontology about persons where:

• T contains the following inclusion assertions:

MALE ���� PERSON

FEMALE ���� PERSON

MALE ����¬¬¬¬ FEMALE

PERSON ����∃∃∃∃Father−−−−.MALE

• A contains the following instance assertions:

MALE(Bob) 

PERSON (Mary)

PERSON(Paul)



The Ontology layer 1 29

DL vs. First-Order Logic 

• T corresponds to the following FOL sentences:

∀∀∀∀ x. MALE(x) →→→→ PERSON(x)

∀∀∀∀ x. FEMALE(x) →→→→ PERSON(x)

∀∀∀∀ x. MALE(x) →→→→ ¬¬¬¬FEMALE(x)

∀∀∀∀ x. PERSON(x) →→→→ ∃ ∃ ∃ ∃ y. Father(y,x) and MALE(y)

• A corresponds to the following FOL ground atoms:

MALE(Bob) 

PERSON (Mary)

PERSON(Paul)

The Ontology layer 1 30

Inference tasks

• Knowledge is correct (captures intuitions)
– C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

• Knowledge is minimally redundant (no unintended synonyms)
– C is equivalent to D w.r.t. K iff for every model I of K, CI = DI

• Knowledge is meaningful (classes can have instances)
– C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

• Querying knowledge
– x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

– 〈x,y〉 is an instance of R w.r.t. K iff for every model I of K, (xI,yI) ∈ RI

• Knowledge base consistency
– A KB K is consistent iff there exists some model I of K


