

The Semantic Web

Lecture 4

The ontology layer: Description Logics and OWL

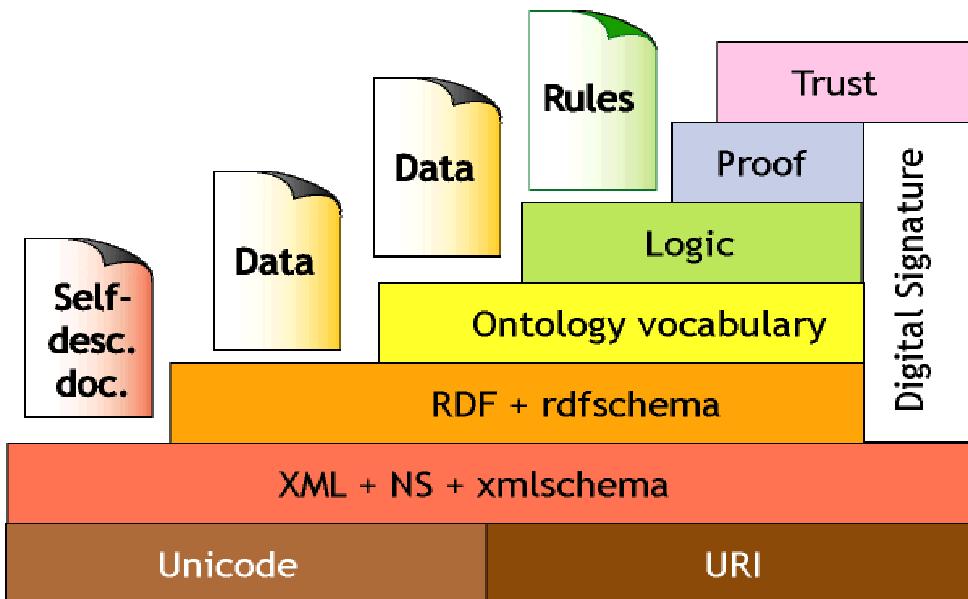
Riccardo Rosati

Dottorato in Ingegneria Informatica
Sapienza Università di Roma
a.a. 2006/07

REMARK

Most of the material of this lecture is taken from the ISWC 2003 “Tutorial on OWL” by Sean Bechhofer, Ian Horrocks, and Peter Patel-Schneider
(<http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/>)

The Semantic Web Tower



The Ontology layer 1

3

Ontology: origins and history

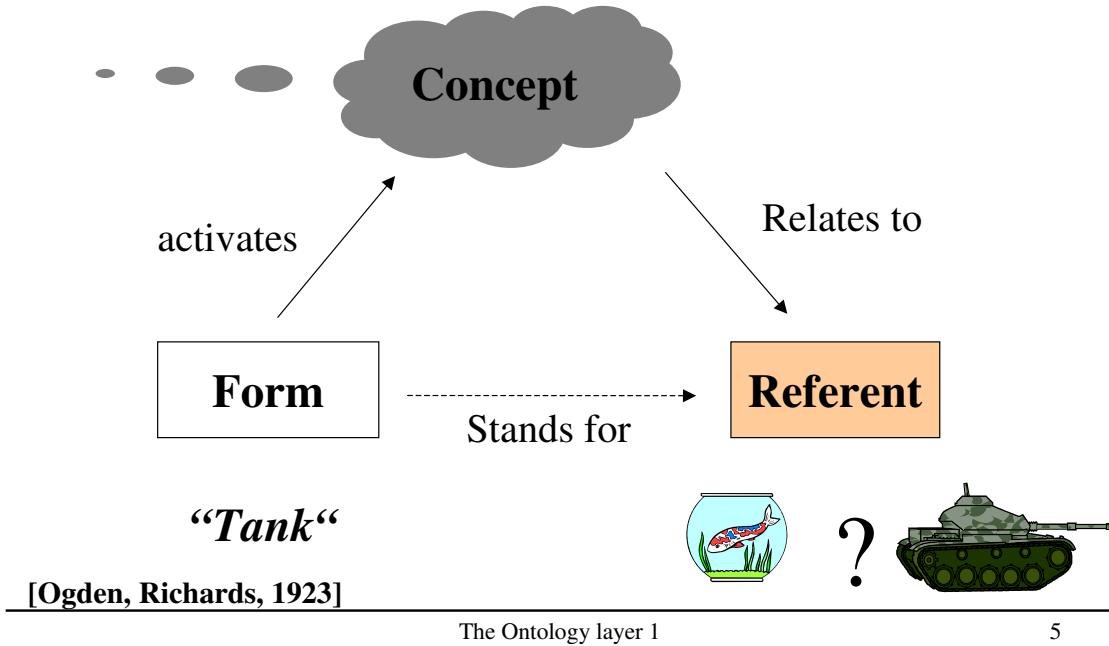
a philosophical discipline—a branch of philosophy that deals with the nature and the organisation of reality

- Science of Being (Aristotle, Metaphysics, IV, 1)
- Tries to answer the questions:

What characterizes being?

Eventually, what is being?

Ontology in linguistics



Ontology in computer science

- An ontology is an engineering artifact:
 - It is constituted by a specific vocabulary used to describe a certain reality, plus
 - a set of explicit assumptions regarding the intended meaning of the vocabulary.
- Thus, an ontology describes a formal specification of a certain domain:
 - Shared understanding of a domain of interest
 - Formal and machine manipulable model of a domain of interest

“An explicit specification of a conceptualisation”
[Gruber93]

Structure of an ontology

Ontologies typically have two distinct components:

- Names for important concepts in the domain
 - **Elephant** is a concept whose members are a kind of animal
 - **Herbivore** is a concept whose members are exactly those animals who eat only plants or parts of plants
 - **Adult_Elephant** is a concept whose members are exactly those elephants whose age is greater than 20 years
- Background knowledge/constraints on the domain
 - **Adult_Elephants** weigh at least 2,000 kg
 - All **Elephants** are either **African_Elephants** or **Indian_Elephants**
 - No individual can be both a **Herbivore** and a **Carnivore**

Ontology languages

- Wide variety of languages for “Explicit Specification”
 - Graphical notations
 - Logic based
 - Probabilistic/fuzzy
 - ...
- Degree of formality varies widely
 - Increased formality makes languages more amenable to machine processing (e.g., automated reasoning)

Ontology languages

- Graphical notations:
 - Semantic networks
 - Topic Maps (see <http://www.topicmaps.org/>)
 - UML
 - RDF

Ontology languages

- Logic based languages:
 - Description Logics (e.g., OIL, DAML+OIL, OWL)
 - Rules (e.g., RuleML, LP/Prolog)
 - First Order Logic (e.g., KIF)
 - Conceptual graphs
 - (Syntactically) higher order logics (e.g., LBase)
 - Non-classical logics (e.g., Flogic, Non-Mon, modalities)

Object-oriented languages

many languages use object-oriented models based on:

- **Objects/Instances/Individuals**
 - Elements of the domain of discourse
 - Equivalent to constants in FOL
- **Types/Classes/Concepts**
 - Sets of objects sharing certain characteristics
 - Equivalent to unary predicates in FOL
- **Relations/Properties/Roles**
 - Sets of pairs (tuples) of objects
 - Equivalent to binary predicates in FOL

Web schema languages

- Existing Web languages extended to facilitate content description
 - **XML** → XML Schema ([XMLS](#))
 - **RDF** → RDF Schema ([RDFS](#))
- XMLS *not* an ontology language
 - Changes format of DTDs (document schemas) to be XML
 - Adds an [extensible type hierarchy](#)
 - Integers, Strings, etc.
 - Can define sub-types, e.g., positive integers
- RDFS *is* recognizable as an ontology language
 - [Classes](#) and [properties](#)
 - [Sub/super-classes](#) (and properties)
 - [Range](#) and [domain](#) (of properties)

Limitations of RDFS

- RDFS **too weak** to describe resources in sufficient detail
 - No **localised range and domain** constraints
 - Can't say that the range of hasChild is person when applied to persons and elephant when applied to elephants
 - No **existence/cardinality** constraints
 - Can't say that all *instances* of person have a mother that is also a person, or that persons have exactly 2 parents
 - No **transitive, inverse or symmetrical** properties
 - Can't say that isPartOf is a transitive property, that hasPart is the inverse of isPartOf or that touches is symmetrical
 - ...
- Difficult to provide **reasoning support**
 - No “native” reasoners for non-standard semantics
 - May be possible to reason via FO axiomatisation

Web ontology language requirements

Desirable features identified for Web Ontology Language:

- Extends existing Web standards
 - Such as XML, RDF, RDFS
- Easy to understand and use
 - Should be based on familiar KR idioms
- Formally specified
- Of “adequate” expressive power
- Possible to provide automated reasoning support

From RDF to OWL

- Two languages developed to satisfy above requirements
 - [OIL](#): developed by group of (largely) European researchers (several from EU OntoKnowledge project)
 - [DAML-ONT](#): developed by group of (largely) US researchers (in DARPA [DAML](#) programme)
- Efforts merged to produce [DAML+OIL](#)
 - Development was carried out by “Joint EU/US Committee on Agent Markup Languages”
 - Extends (“DL subset” of) RDF
- DAML+OIL submitted to W3C as basis for standardisation
 - Web-Ontology ([WebOnt](#)) Working Group formed
 - WebOnt group developed [OWL](#) language based on DAML+OIL
- OWL language now a W3C [Recommendation](#)

OWL language

- Three species of OWL
 - [OWL full](#) is union of OWL syntax and RDF
 - [OWL DL](#) restricted to FOL fragment ($\frac{1}{4}$ DAML+OIL)
 - [OWL Lite](#) is “easier to implement” subset of OWL DL
- Semantic layering
 - OWL DL $\frac{1}{4}$ OWL full within DL fragment
 - DL semantics [officially definitive](#)
- OWL DL based on [SHIQ](#) Description Logic
 - In fact it is equivalent to [SHOIN\(D_n\)](#) DL
- OWL DL Benefits from many years of DL research
 - Well defined [semantics](#)
 - [Formal properties](#) well understood (complexity, decidability)
 - Known [reasoning algorithms](#)
 - Implemented systems (highly optimised)

OWL class constructors

Constructor	DL Syntax	Example	Modal Syntax
intersectionOf	$C_1 \sqcap \dots \sqcap C_n$	Human \sqcap Male	$C_1 \wedge \dots \wedge C_n$
unionOf	$C_1 \sqcup \dots \sqcup C_n$	Doctor \sqcup Lawyer	$C_1 \vee \dots \vee C_n$
complementOf	$\neg C$	\neg Male	$\neg C$
oneOf	$\{x_1\} \sqcup \dots \sqcup \{x_n\}$	{john} \sqcup {mary}	$x_1 \vee \dots \vee x_n$
allValuesFrom	$\forall P.C$	\forall hasChild.Doctor	$[P]C$
someValuesFrom	$\exists P.C$	\exists hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leq n P$	≤ 1 hasChild	$[P]_{n+1}$
minCardinality	$\geq n P$	≥ 2 hasChild	$\langle P \rangle_n$

- XMLS **datatypes** as well as classes in $\forall P.C$ and $\exists P.C$
 - E.g., \exists hasAge.nonNegativeInteger
- Arbitrarily complex **nesting** of constructors
 - E.g., Person $\sqcap \forall$ hasChild.Doctor $\sqcup \exists$ hasChild.Doctor

RDFS syntax

E.g., Person $\sqcap \forall$ hasChild.Doctor $\sqcup \exists$ hasChild.Doctor:

```

<owl:Class>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:toClass>
        <owl:unionOf rdf:parseType=" collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:hasClass rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
        <owl:toClass>
        </owl:Restriction>
      </owl:intersectionOf>
    </owl:toClass>
  </owl:Restriction>
</owl:Class>

```

OWL axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human \sqsubseteq Animal \sqcap Biped
equivalentClass	$C_1 \equiv C_2$	Man \equiv Human \sqcap Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male $\sqsubseteq \neg$ Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	{President_Bush} \equiv {G_W_Bush}
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	{john} $\sqsubseteq \neg$ {peter}
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter \sqsubseteq hasChild
equivalentProperty	$P_1 \equiv P_2$	cost \equiv price
inverseOf	$P_1 \equiv P_2^-$	hasChild \equiv hasParent $^-$
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $^+$ \sqsubseteq ancestor
functionalProperty	$T \sqsubseteq \leqslant 1 P$	T $\sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$T \sqsubseteq \leqslant 1 P^-$	T $\sqsubseteq \leqslant 1$ hasSSN $^-$

Axioms (mostly) reducible to inclusion (\sqsubseteq)

$C \equiv D$ iff both $C \sqsubseteq D$ and $D \sqsubseteq C$

XML Schema datatypes in OWL

- OWL supports **XML Schema** primitive datatypes
 - E.g., integer, real, string, ...
- Strict **separation** between “object” classes and datatypes
 - Disjoint interpretation domain Δ_D for datatypes
 - For a datavalue d , $d^{\mathcal{I}} \subseteq \Delta_D$
 - And $\Delta_D \cap \Delta^{\mathcal{I}} = \emptyset$
 - Disjoint “object” and datatype properties
 - For a datatype property P , $P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_D$
 - For object property S and datatype property P , $S^{\mathcal{I}} \cap P^{\mathcal{I}} = \emptyset$
- Equivalent to the “ (D_n) ” in $\mathcal{SHOIN}(D_n)$

Why separate classes and datatypes?

- Philosophical reasons:
 - Datatypes structured by **built-in predicates**
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains **simple and compact**
 - **Semantic integrity** of ontology language not compromised
 - **Implementability** not compromised — can use hybrid reasoner

OWL DL semantics

- Mapping OWL to equivalent DL ($\mathcal{SHOIN}(D_n)$):
 - Facilitates provision of reasoning services (using DL systems)
 - Provides **well defined semantics**
- DL semantics defined by **interpretations**: $\mathcal{I}_=(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where
 - $\Delta^{\mathcal{I}}$ is the **domain** (a non-empty set)
 - $\cdot^{\mathcal{I}}$ is an **interpretation function** that maps:
 - **Concept** (class) name $A \rightarrow$ subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$
 - **Role** (property) name $R \rightarrow$ binary relation $R^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$
 - **Individual** name $i \rightarrow i^{\mathcal{I}}$ element of $\Delta^{\mathcal{I}}$

DL semantics

- Interpretation function $\cdot^{\mathcal{I}}$ extends to **concept expressions** in an obvious(ish) way, i.e.:

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$

$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

$$\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$$

$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \wedge y \in C^{\mathcal{I}}\}$$

$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$

$$(\leq n R)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leq n\}$$

$$(\geq n R)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geq n\}$$

DL knowledge bases (ontologies)

- An OWL ontology maps to a DL Knowledge Base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - \mathcal{T} (Tbox) is a set of axioms of the form:
 - $C \sqsubseteq D$ (**concept inclusion**)
 - $C \equiv D$ (**concept equivalence**)
 - $R \sqsubseteq S$ (**role inclusion**)
 - $R \equiv S$ (**role equivalence**)
 - $R^+ \sqsubseteq R$ (**role transitivity**)
 - \mathcal{A} (Abox) is a set of axioms of the form
 - $x \in D$ (**concept instantiation**)
 - $\langle x, y \rangle \in R$ (**role instantiation**)

DL knowledge bases (ontologies)

- Two sorts of Tbox axioms often distinguished:
 - “**Definitions**”
 - $C \sqsubseteq D$ or $C \equiv D$ where C is a concept name
 - General Concept Inclusion axioms (**GCIs**)
 - $C \sqsubseteq D$ where C is an arbitrary concept

Knowledge base semantics

- An **interpretation** \mathcal{I} satisfies (models) an axiom A ($\mathcal{I} \models A$):
 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\mathcal{I} \models C \equiv D$ iff $C^{\mathcal{I}} = D^{\mathcal{I}}$
 - $\mathcal{I} \models R \sqsubseteq S$ iff $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
 - $\mathcal{I} \models R \equiv S$ iff $R^{\mathcal{I}} = S^{\mathcal{I}}$
 - $\mathcal{I} \models R^+ \sqsubseteq R$ iff $(R^{\mathcal{I}})^+ \subseteq R^{\mathcal{I}}$
 - $\mathcal{I} \models x \in D$ iff $x^{\mathcal{I}} \in D^{\mathcal{I}}$
 - $\mathcal{I} \models \langle x, y \rangle \in R$ iff $(x^{\mathcal{I}}, y^{\mathcal{I}}) \in R^{\mathcal{I}}$
- \mathcal{I} **satisfies a Tbox** \mathcal{T} ($\mathcal{I} \models \mathcal{T}$) iff \mathcal{I} satisfies every axiom A in \mathcal{T}
- \mathcal{I} **satisfies an Abox** \mathcal{A} ($\mathcal{I} \models \mathcal{A}$) iff \mathcal{I} satisfies every axiom A in \mathcal{A}
- \mathcal{I} **satisfies a KB** \mathcal{K} ($\mathcal{I} \models \mathcal{K}$) iff \mathcal{I} satisfies both \mathcal{T} and \mathcal{A}

DL vs. First-Order Logic

- in general, DLs correspond to decidable subclasses of first-order logic (FOL)
- DL KB = first-order theory
- OWL Full is NOT a FOL fragment!
 - reasoning in OWL Full is undecidable
- OWL-DL and OWL-Lite are decidable fragments of FOL

DL vs. First-Order Logic

let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be an ontology about persons where:

- \mathcal{T} contains the following inclusion assertions:

MALE \sqsubseteq PERSON

FEMALE \sqsubseteq PERSON

MALE $\sqsubseteq \neg$ FEMALE

PERSON $\sqsubseteq \exists \text{Father}^{-} . \text{MALE}$

- \mathcal{A} contains the following instance assertions:

MALE(Bob)

PERSON (Mary)

PERSON(Paul)

DL vs. First-Order Logic

- \mathcal{T} corresponds to the following FOL sentences:
 $\forall x. \text{MALE}(x) \rightarrow \text{PERSON}(x)$
 $\forall x. \text{FEMALE}(x) \rightarrow \text{PERSON}(x)$
 $\forall x. \text{MALE}(x) \rightarrow \neg \text{FEMALE}(x)$
 $\forall x. \text{PERSON}(x) \rightarrow \exists y. \text{Father}(y, x) \text{ and } \text{MALE}(y)$
- \mathcal{A} corresponds to the following FOL ground atoms:

MALE(Bob)
PERSON (Mary)
PERSON(Paul)

Inference tasks

- Knowledge is **correct** (captures intuitions)
 - C **subsumes** D w.r.t. \mathcal{K} iff for **every** model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- Knowledge is **minimally redundant** (no unintended synonyms)
 - C is **equivalent** to D w.r.t. \mathcal{K} iff for **every** model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} = D^{\mathcal{I}}$
- Knowledge is **meaningful** (classes can have instances)
 - C is **satisfiable** w.r.t. \mathcal{K} iff there exists **some** model \mathcal{I} of \mathcal{K} s.t. $C^{\mathcal{I}} \neq \emptyset$
- **Querying** knowledge
 - x is an **instance** of C w.r.t. \mathcal{K} iff for **every** model \mathcal{I} of \mathcal{K} , $x^{\mathcal{I}} \in C^{\mathcal{I}}$
 - $\langle x, y \rangle$ is an **instance** of R w.r.t. \mathcal{K} iff for **every** model \mathcal{I} of \mathcal{K} , $(x^{\mathcal{I}}, y^{\mathcal{I}}) \in R^{\mathcal{I}}$
- Knowledge base **consistency**
 - A KB \mathcal{K} is **consistent** iff there exists **some** model \mathcal{I} of \mathcal{K}