

The Semantic Web

Lecture 10

Reasoning techniques for ontologies

Riccardo Rosati

Dottorato in Ingegneria Informatica
Sapienza Università di Roma
a.a. 2006/07

Inference tasks

- OWL-DL ontology = first-order logical theory
- verifying the formal properties of the ontology corresponds to **reasoning** over a first-order theory

Consistency of the ontology

- Is the ontology $K=(T,A)$ consistent (non-self-contradictory)?
- i.e., is there at least a model for K ?
- intensional + extensional reasoning task
- fundamental formal property:
- inconsistent ontology \Rightarrow there is a semantic problem in K !
- K must be repaired

Consistency of the ontology

Example TBox:

$\text{MALE} \sqsubseteq \text{PERSON}$

$\text{FEMALE} \sqsubseteq \text{PERSON}$

$\text{MALE} \sqsubseteq \neg \text{FEMALE}$

$\text{PERSON} \sqsubseteq \exists \text{hasFather}.\text{MALE}$

$\text{PERSON} \sqsubseteq \exists \text{hasMother}.\text{FEMALE}$

$\text{hasMother} \sqsubseteq \text{hasParent}$

$\text{hasFather} \sqsubseteq \text{hasParent}$

$\exists \text{hasParent}.\text{BLACK-EYES} \sqsubseteq \text{BLACK-EYES}$

Consistency of the ontology

Example ABox:

MALE(Bob)
MALE(Paul)
FEMALE(Ann)
hasFather(Paul,Ann)
hasMother(Mary,Paul)
BLACK-EYES(Mary)
 \neg BLACK-EYES(Ann)

\Rightarrow TBox + ABox **inconsistent** (Ann should have black eyes)

Concept consistency

- is a concept definition C consistent in a TBox T?
- i.e., is there a model of T in which C has a non-empty extension?
- intensional (schema) reasoning task
- detects a fundamental modeling problem in T:
 - if a concept is not consistent, then it can never be populated!

Concept subsumption

- is a concept C subsumed by another concept D in T?
- i.e., is the extension of C contained in the extension of D in every model of T?
- intensional (schema) reasoning task
- allows to do classification of concepts (i.e., to construct the concept ISA hierarchy)

Instance checking

- is an individual a a member of concept C in K?
- i.e., is the fact $C(a)$ satisfied by every interpretation of K?
- intensional + extensional reasoning task
- basic “instance-level query” (tell me if object a is in class C)

Instance retrieval

- find all members of concept C in K
- i.e., compute all individuals a such that $C(a)$ is satisfied by every interpretation of K
- intensional + extensional reasoning task
- (slight) generalization of instance checking

Conjunctive query answering

- compute the answers to a conjunctive query q in K
- i.e., compute all tuples of individuals t such that $q(t)$ is entailed by K ($= q(t)$ is satisfied by every interpretation of K)
- extensional + extensional reasoning task
- generalization of instance checking and instance retrieval
- i.e., database queries over ontologies

Reduction of reasoning tasks

- can reasoning task T1 be reduced to task T2?
- e.g., concept consistency can be reduced to KB consistency:
 - C consistent with respect to TBox T iff the KB $(T, \{C(a)\})$ is consistent
 - e.g., concept subsumption $C \sqsubseteq D$ w.r.t. T can be reduced to instance checking $(T, \{C(a)\}) \models D(a)$ (where a does not occur in T)

Classes of reasoning tasks

The reasoning tasks can be divided in:

- purely intensional tasks (concept consistency, concept subsumption)
- basic extensional tasks (KB consistency, instance checking)
- advanced extensional tasks (conjunctive query answering)

Reasoning techniques for ontologies

- **Tableaux**: this is the most mature technique, used in systems such FACT/Racer/Pellet
- **Automata on infinite tree**: the most powerful technique, but not implemented
- **Structural analysis**: simple, but works only for the weakest languages
- **Other**: e.g., specialized chase-based techniques for conjunctive queries, used for example in QuOnto

DL-Lite

- DL-Lite is a tractable OWL-DL fragment
- defined by the DIS-Sapienza DASI research group
- main objectives:
 - allow for very efficient treatment of large ABoxes...
 - ...even for very expressive queries (conjunctive queries)

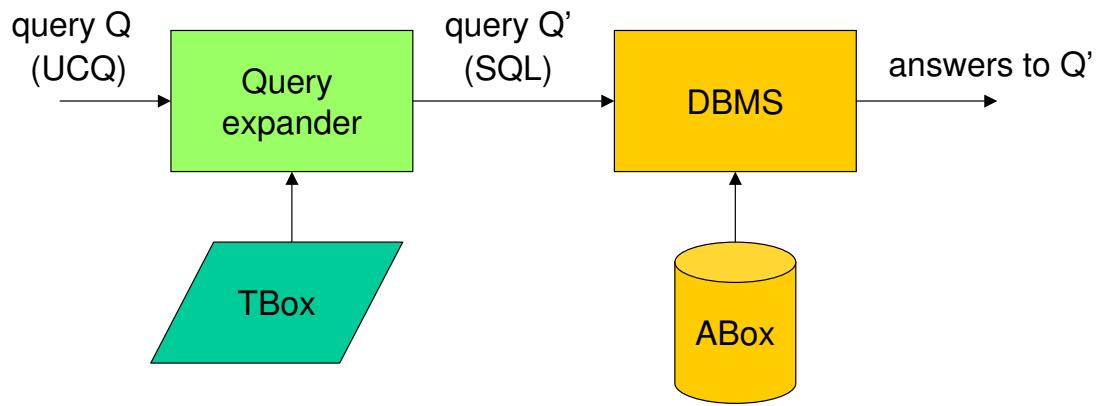
DL-Lite syntax

- concept expressions:
 - atomic concept
 - role domain
 - role range
 - DL-Lite TBox = set of
 - concept inclusions
 - functional assertions (stating that a role is functional)
 - DL-Lite ABox = set of ground atoms, i.e., assertions $A(a)$, $R(a,b)$ A = concept name, R = role name
-

DL-Lite abilities

tractability of TBox reasoning:

- all TBox reasoning tasks in DL-Lite are tractable, i.e., solvable in polynomial time


tractability of ABox+TBox reasoning:

- instance checking and instance retrieval in DL-Lite are solvable in polynomial time
- conjunctive queries over DL-Lite ontologies can be answered in polynomial time (actually in LogSpace) with respect to *data complexity* (i.e., the size of the ABox)

Query answering in DL-Lite

- query answering in DL-Lite can be reduced to evaluation of an SQL query over a relational database
- query answering by:
query rewriting + **relational database query evaluation**:
 1. the ABox is stored in a relational database (set of unary and binary tables)
 2. the conjunctive query Q is rewritten with respect to the TBox, obtaining an SQL query Q'
 3. query Q' is passed to the DBMS which returns the answers

Query answering in DL-Lite

Example

TBox:

MALE \sqsubseteq PERSON
MALE $\sqsubseteq \neg$ FEMALE
 \exists hasFather $^{-}$ \sqsubseteq MALE
 \exists hasMother $^{-}$ \sqsubseteq FEMALE

FEMALE \sqsubseteq PERSON
PERSON $\sqsubseteq \exists$ hasFather
PERSON $\sqsubseteq \exists$ hasMother

input query:

$q(x) \leftarrow \text{PERSON}(x)$

rewritten query:

$q'(x) \leftarrow \text{PERSON}(x) \vee$
FEMALE(x) \vee
MALE(x) \vee
hasFather(y,x) \vee
hasMother(y,x)

Example

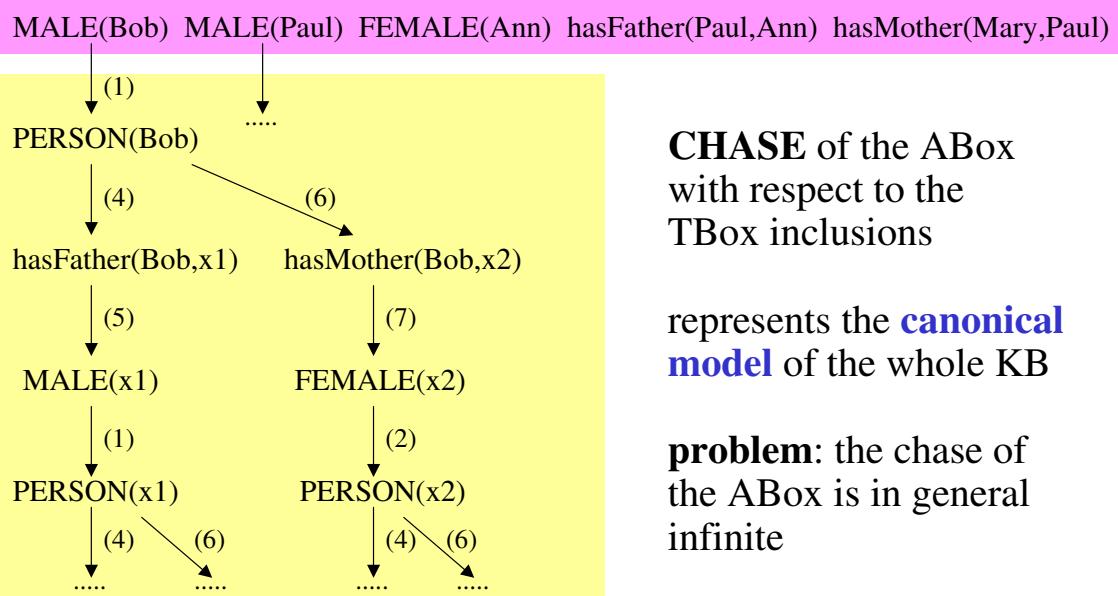
rewritten query:

$q'(x) \leftarrow \text{PERSON}(x) \vee$
FEMALE(x) \vee
MALE(x) \vee
hasFather(y,x) \vee
hasMother(y,x)

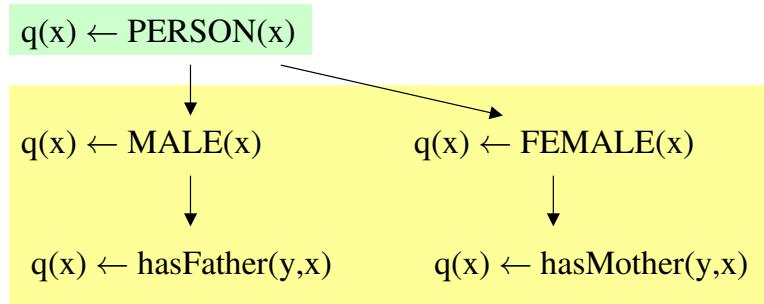
ABox:

MALE(Bob)
MALE(Paul)
FEMALE(Ann)
hasFather(Paul,Ann)
hasMother(Mary,Paul)

answers to query:


{ Bob, Paul, Ann, Mary }

Query rewriting algorithm for DL-Lite


TBox:

- MALE \sqsubseteq PERSON (1)
- FEMALE \sqsubseteq PERSON (2)
- MALE $\sqsubseteq \neg$ FEMALE (3)
- PERSON $\sqsubseteq \exists$ hasFather (4)
- \exists hasFather $^{-}$ \sqsubseteq MALE (5)
- PERSON $\sqsubseteq \exists$ hasMother (6)
- \exists hasMother $^{-}$ \sqsubseteq FEMALE (7)

Answering queries: chasing the ABox

Query rewriting algorithm for DL-Lite

CHASE of the query:

- inclusions are applied “from right to left”
- this chase always terminates
- this chase is computed independently of the ABox

Query rewriting algorithm for DL-Lite

the rewriting algorithm iteratively applies two rewriting rules:

- **atom-rewrite**: takes an atom of the conjunctive query and rewrites it applying a TBox inclusion
 - the inclusion is used as a rewriting rule (right-to-left)
- **reduce**: takes two **unifiable** atoms of the conjunctive query and merges (unifies) them

Query rewriting algorithm for DL-Lite

Algorithm PerfectRef ($q; \mathcal{T}$)

Input: conjunctive query q , DL-Lite TBox \mathcal{T}

Output: union of conjunctive queries PR

$PR := \{q\};$

repeat

$PR_0 := PR;$

 for each $q \in PR_0$ do

 (a) for each g in q do

 for each positive inclusion I in \mathcal{T} do

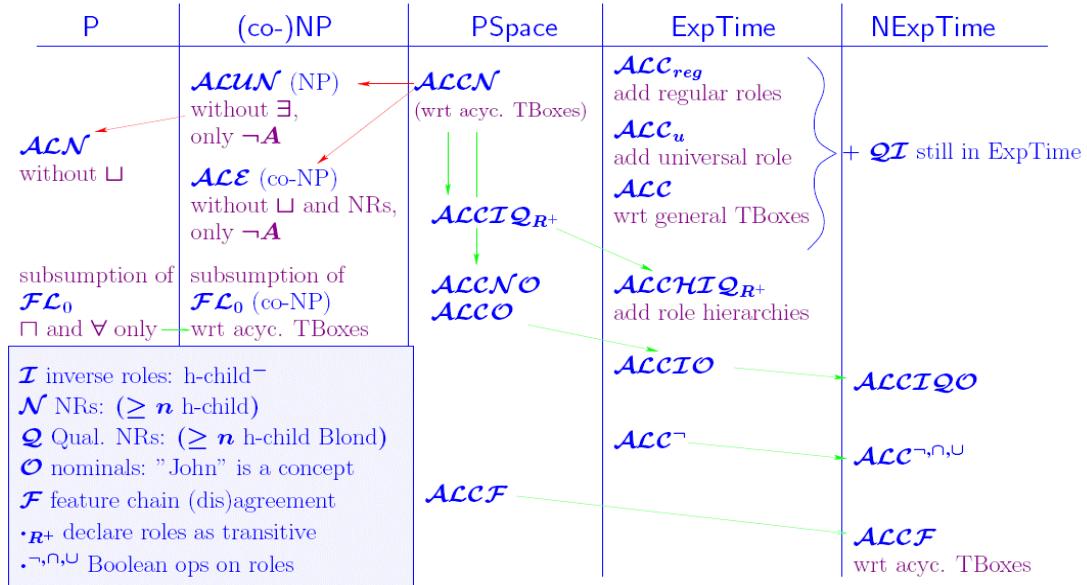
 if I is applicable to g then $PR := PR \cup \{q[g/\text{gr}(g,I)]\}$;

 (b) for each g_1, g_2 in q do

 if g_1 and g_2 unify then $PR := PR \cup \{f(\text{reduce}(q,g_1,g_2))\}$

 until $PR_0 = PR$;

return PR



Reasoning in DL-Lite

- this query answering technique is in LOGSPACE with respect to data (ABox) complexity
- polynomial technique for deciding KB consistency in DL-Lite
- all main reasoning tasks in DL-Lite can be reduced to either KB consistency or query answering
=> all main reasoning tasks in DL-Lite are tractable

Complexity of concept consistency

