Web service composition
via TLV

Seminari di Ingegneria del SW
—_ Fabio Patrizi
DIS, Sapienza — Universita di Roma

Essential overview

Computing composition via simulation

Using TLV for computing composition via
simulation

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV

The Problem

Given:
a community of available services
C={S,....S.}
a target service
T;
Find a composition (or orchestrator) s.t.
C mimicks T

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV

The Problem (cont.)

We model services as transition systems:

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV

Finding a composition

Strategies for computing compositions:
Reducion to PDL

Simulation-based <«

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV

Simulation Relation

Intuition:

a service S can simulate T if it can reproduce
T’s behavior over time.

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV

Simulation Relation (cont.)

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV

Simulation Relation (cont.)

Can C simulate T?

ES!

Rome - May, 2007 Fabio Patrizi - Web servicé composition via TLV

Computing composition via simulation

ldea:

A service community can be seen as the
(possibly N-DET) asynchronous product of
available services...

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 9

Computing composition via simulation
(cont.)

Available services Community TS

input_french input_french
~
> /
; / X
NAf @ output_italian $1.50.50 input german (s s081 | =
{ -
\ SO S1 /
7\ -\ “ \ A
. ~
N Q-
% P %
S@‘f N /. ESN ‘ \ f"
& \\L\\ output_italian %, < e, N,
R) %, S
input_french N input_french oo \ %
input_german put_f \)\QQ/ 4 P! p L %,
[\g% "%,
y %
N : N ~ . N \
N o «~ input_german ‘ input_french y
N /) Yoo s0.8 -~ ~ input_german TGS
[e output_italian $0.80,80) | S0S1.S0 | S1.51.50 = SLS1S1
L[(l SO)= S1 irali / \ / \
~ X QuipuIRIay output_italian -
x - N - N P
P y N s
% %, . B y
output_italian % output_italian 2 output_italian Y g(qf\ &
\ﬁ("; %, / &w
i %, S
N e
n‘\\
\ N
input_french ,f input_german %
N
. 50,5051 * | sosist
input_german)~ ‘)

"\ output_italian

output_italian

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV “ 10

Computing composition via simulation
(cont.)

Theorem:
A composition exists if and only if
C simulates T

... thus, the problem becomes:
“Can the community TS C simulate
e target service T?"

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 11

Computing composition via simulation
(cont.)

Community TS

.............

....................................
...............

A e,
......

RN

), %, o/ N\ %, & /| e e
——— ;i1 % output_italiane, % output_italian & o e T
- N2, e, %, / § /2 S BPRL LLLAs Quipil_ital,
3 o A Y (OO Lt &
N NI PO
.............. RSN
......... R o
/AN G
S e
german ot
put_g « N
VA
NS
NG
7% &+

.

Computing composition via simulation

(cont.)

Rome - May, 2007

From the maximal simulation, we can easily
derive an orchestrator generator, e.g.:

input_french,c/{a,c}

<
$50,50,50.S0

output_italian,c/{c}

\\‘\\}\

. 2
% 2
N 2,
%y, s
Zs. \%
/3,
\
S1.50.51.80

S1,81,80,S1

= 181,50,80,80

S1,80.S1,S1

Fabio Patrizi - Web service composition via TLV

Computing composition via simulation
(cont.)

From OG, one can select services to perform

Rome -

client actions.

_
Z
Y %
2,
& %z
’ 1
_/ N
S <
s 3
3 3
= =
S S
3 |
3 3
& &
S S
Nt/
= o
y % ¥y %
& = N =
. &
A g%
a = Q =
& % & %
$ = N =
I 1 ¥ 1
\

May, 2007

Fabio Patrizi - Web service composition via TLV

Comments

Full observability is crucial for OG to work properly. In
fact, in order to propose services for action execution,
state of each available service needs to be known.

This technique is well-suited for deterministic target
and available services.

Interesting extension: dealing with nondeterministic
(devilish) available services (a slightly different notion
of simulation is needed).

Such points are object of current/future work.

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 15

Computing composition via simulation
(cont.)

Summing up:
Compute community TS C;
Compute the maximal simulation of T by C;

If simulation exists, compute OG;
else return “unrealizable”;

Exploit OG for available service selection,
even in a just-in-time fashion.

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 16

Essential overview (2)

Any questions?

Using TLV for computing composition via
simulation

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 17

Composing services via TLV

The environment TLV (Temporal Logic Verifier)
[Pnueli and Shahar, 1996] is a useful tool that
can be used to

automatically compute the orchestrator
generator,

given a problem instance.

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 18

Composing services via TLV (cont.)

file .smv: - .
Community HOW tO W”te th|S?
+
Target
Comp-inv.pf > TLV OG or

[13 : 99
unrelizable
W

Synth-inv.tlv

Given

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 19

Composing services via TLV (cont.)

We provide TLV a file written in (a flavour of)
SMV, a language for specifying TSs.
SMV specifications are tipically composed of
modules, properly interconnected;

Intuitively, a module is a sort of TS which may
share variables with other modules;

A module may contain several submodules,
properly synchronized;

Module main is mandatory and contains all
relevant modules, properly interconnected and
synchronized.

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 20

Composing services via TLV (cont.)

A name jyle:

- - parameter(s)

~A — o=
MODULE mTl(ac€’
initialization VAR ; -
— loc o= gm—————=—"=" internal variable(s)
T~ .o _ AssIcN
init(loc) := 0;
Ly . init(act) := nil;
transition relation | Lextcioc) :=
~ case
SS - loc = 0 & act = search 1
S loc = 1 & act = display : 0;
A TRUE 3 Nees
esac
next(act) :=
case
act = nil : {search};
loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE : {act};
esac;
DEFINE
final := (loc = 0); = ==—==——~ """ boolean expression
Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 21

Composing services via TLV (cont.)

We introduce SMV formalization by means of
the following example, proceeding top-down:

search
’ display
return P
\ - . /
- pe
o\ . -
780\ search TN >
-~ “‘\ 0 81 / N\
N . PN / ol S
display -~ " V4 "/
a) Available service S, (b) Available service
S2
search
N
- SO S1
\ S/

> display

(¢) Target service 1)

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 22

Composing services via TLV (cont.)

The application is structured as follows:
1 module main
1 module Output, representing OG service
selection

1 module Input, representing the
(synchronous) interaction community-target

1 module mT1 representing the target service
1 module mSi per available service

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 23

Module interconnections

main
________ S
Output e Input(index)
index -~~~ L
v ,/
S2(index, action) «---f-""" action
II /z’— - 1
1 ,’ 1
1 ’ \
1 4 \
I 1 \
.' 1
&y 1
o .V >
S1(index, action) T1(action)

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 24

The module main

Instance independent
Includes synchronous submodules In and

Out. Parameter:

4 variable index of

Community +) Keyword ,/
I
e s N MDDULE main > K submodule Out
\YAR ,’I / X’
Service selection “ATnw .s_ystém Input (Out.index)
77 >0ut :system Output;
DEFINE ~"“~~::::\ In and Out evolve

Expression: _wgood := !In.failure; =~ synchronously
condition of e
“‘good” composition
(depends on In)

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 25

The module Output

Depends on number of available services. In

this case: 2
Number of
MODULE Output A avaiable.
VAR e - services
indeX:O..Q? e
nly for ini
ASSIGN -
init (index) := Of

next (index) := 1..2;

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 26

The module Output (cont.)

MODULE Output

VAR
index:0..2;

ASSIGN
init(index) := 0;
next (index) := 1..2;

|
MODULE main .
VAR Synchronized

_ovem Input(Out.index)
Out: system Output;

DEFINE , The goal is computing a restriction
good := !In.failure; , ;. .
- on Output’s transition relation such
that good is satisfied. RECALL that
In is affected by Out through
parameter Out.index
Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 27

The module Input

Action alphabet +
special action
nil (used for init)

=
~ -
-~
-~

MODULE Input(index)

Target service A ~~=-

~_ action b {nil,search,display,return};
AT1 : mTi(action);
S1 : mS1(index,action);
Available service 2 | S2 : mS2(index,action);
DEFINE

7

Available service 1

failure := (S1.failure | S2.failure) |
I o ! (T1.final -> (S1.final & S2.final));

Fail if:
*S10rS2 (... or SN) fail, OR
* T1 can be in a final state when S1 or S2 (... or SN) are no}.

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 28

The target module mT1

Think of mT1 as an action producer

TS States |- MODULE mT1(act) scarch
\ER N
Joc: ¥ Okl
ASSIGN /
Init - =" """ P init(loc) := 0; . display
nep o= B init(act) := nil; Transition function
next(loc) := T
_—— (deterministic, in general)
Ot t |t loc = 0 & act = search : 1; ’,—’
utput relaton loc = 1 & act = display : 0; &
(non-deterministic, TRUE =¥loc;
. | esac;
In genera) next (act) :=
S~ case
S~ act = nil : {search};
'S loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE : {act};
esac;
DEFINE
final := (loc = 0); q— o State 0 is final
Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 29
The target module mT1 (cont.)
1. A statement of the form
next(loc) :=
case_1;
d for defining next loc value. Each case_i expression refers to a
‘ x Ay such that 4;(s.a) is defined (order does not
matter) and assumes the form
ind(s) & act = a :4;(s.a
2. A statement of the form
next(act) :=
is included for defining next act assignment. Let acf : S; — 24 be defined
as act(s) = {a € A, €8 st s Then, case_0 assumes the
form
act = nil : act(sg
For i > 0, each case_i expression refers to a different pair < s.a >€ Sy x 4,
such that act(d,(s.a)) # 0 (order does not matter) and assumes the form
loc = ind(s) & act = a : act(d:(s.a))
Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 30

The target module mT1 (cont.)

MODULE mT1 (act) search
VAR .
loc : 0..1; N / \
ASSIGN a {50)) | s)
init(loc) := N :
init(act) :=1il; > display
next(loc) :=
case
loc = 0 & act = search : 1;
loc = 1 & act = display : 0;
TRUE : loc;
esa
next(act) :=
case
act = nil : {search};
loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE : {act};
esac;
DEFINE
final := (loc = 0);

Rome - May, 2007

Fabio Patrizi - Web service composition via TLV

[MODULE Input(index) loc=1
VAR _m
action : {nil,se¢arch,display,return}; aCt_dISplay
T1 : mTi(action);
S1 : mS1(index,action);
S2 : mS2(index,action);
DEFINE
failure := (S1.failure | S2.failure) |
'(T1.final -> (S1.final & S2.final));
Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 31
externally T~=o search
C:OﬂtrO”ed MODULE mSTl md; Ta’ction) N AL
(input parameters) VAR N scarch
loc : 0..1; -~ J. $1
. . __display
If service is not (et} e O = ” :
. next(loc) se Transition relation
PP Rl e = — . _ _ ND, in general
... remain stilll | - - - - —; > il SRR TYT (//g)
K : HOMINE &~
service loc=1 & actidn in {display,return} : {0k .
E— TRUE loc; Sets, instead of
selecion I~ esac; elements.
DEFINE 9= o
Check whether ailure := R .
assigned action index = - ~ - next(action)
= . 1(¢ iccinal
is actually 0) missing:
executable - ——-p (loc = 1 & action in {display, return})
. B)5
Directly derived from final := (loc = 0);
transition relation.

32

The available service module mS2

MODULE mS2(index,action) Y

ADEFINE

// failure := =\

K index = 2 & !(action in {displayl});
4 final := TRUE;

Vi

Stateless system:
neither states nor
transition relation
needed

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 33

Putting things together

MODULE main
VAR
In: system Input(Out.index);
Out: system Output;
DEFINE
good :=!In.failure;

-« Never changes

MODULE Output
VAR
index:0..2;
ASSIGN
init(index) := 0;
next(index) := 1..2;

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 34

Putting things together (cont.)

MODULE Input(index) Whole shared action
VAR -« alphabet plus special
action : {nil,search,display,return}; action nil
T1 : mT1(action); «— 00—
S1 : mS1(index,action); Never changes
S2 : mS2(index,action); ¥~ Index changes, add one
DEFINE module per available service

failure := (S1.failure | S2.failure) |

I(T1.final -> (S1.final & S2xfinal));

Index changes, add one
conjunct/disjunct per available service

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 35

Putting things together (cont.)

MODULE mT1(act)

Target service states
VAR
loc:0..1; /

ASSIGN Never changes
init(loc) := 0;
init(act) := nil;
next(loc) :=

case
loc = 0 & act = search : 1; Depends on service,

loc = 1 & act = display - 0; see general rules.
TRUE : loc;

esac;
next(act) :=
case
act = nil : {search};
loc = 0 & act = search : {display};
loc = 1 & act = display : {search};
TRUE : {act};

esac; List final states using either logical OR ‘|
DEFINE (e.g., (loc=0l|loc=1|loc=3)) or set
final := (loc = 0); — construction (e.g., (loc={0,1,3})).

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 36

Putting things together (cont.)

MODULE mS1(index,action)
VAR
loc:0Q..1;

index !=1 : loc;
loc=0 & action i

Index changes. Same

| Never changes

Available service states

& action in {search})|

as module name & action in {display, return})

);

final := (loc = 0);

Rome - May, 2007

Fabio Patrizi - Web service composition via TLV

Depends on service,
see general rules.

37

Putting things together (cont.)

MODULE mS2(index,action)

DEFINE
failure =

index = 2 & !(action in {display});

final := TRUE;

Rome - May, 2007

Fabio Patrizi - Web service composition via TLV

38

Running the specification

Running TLV with our specification as input...

State 1
~ In.action = nil, In.T1.loc =0, In.S1.loc =0, Out.index =0,
Ptate 2
~"In.action = search, In.T1.loc = 0, In.S1.loc =0, Out.index =1,
State 3 @

.....
. .
oD e
.. [

.

From 1 to ’
From 2 to
From 3 to
From 4 to

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 39

Running the specification (cont.)

That is, the following OG:

4;
In.action=display
In.T1.loc=1
In.S1.loc=1
Out.index=1

1.

: 2:
In.action=nil

In.action=search
In.T1.loc=0 In.T1.loc=0
In.S1.loc=0 In.S1.loc=0

Out.index=0 Out.index=1 3:

In.action=display
In.T1.loc=1
In.S1.loc=0

Out.index=2

Rome - May, 2007 Fabio Patrizi - Web service composition via TLV 40

