Transition Systems and
Service Composition

Giuseppe De Giacomo

Seminari di Ingegneria del Software
A.A. 2006/2007

Transition Systems

Dipartimento di

Concentrating on behaviors: Ak

temistica
i

I S
SUM two integers @ onz

e Consider a program for computing the sum of two integers.
e Such a program has essentially two states

- the state S, of the memory before the computation: including
the two number to sum

- the state S, of the memory after the computation: including the
result of the computation

e Only one action, i.e. “sum”, can be performed

sum
So S

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 3

Concentrating on behaviors:
CheckValidity

e Consider a program for computing the validity of a FOL
formula:

e Also such a program has essentially two states

- the state S, of the memory before the computation: including
the formula to be checked

- the state S, of the memory after the computation: including

“yeS", “nO”, “time'out"

e Only one action, i.e. “checkValidity”, can be performed

checkValidity

~g o

So Si

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 4

Concentrating on behaviors

%/ UNIVERSITA DI ROMA

e The programs SUM and CheckValidity are very different from
a computational point of view.

- SUM is trivial
- CheckValidity is a theorem prover hence very complex

e However they are equally trivial from a behavioral point of
view:
- two states S, and S,
- a single action a causing the transition

v

So Si

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 5

Concentrating on behaviors:

D SAPIENZA

RockPaperScissor W Srwriovion

e Consider the program RockPaperScissor that allows to play
two players the the well-known game.

e The behavior of this prograis not triaI:

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 6

Concentrating on behaviors:
RockPaperScissor (automatic) W) Gommsrions

e Consider a variant of the program RockPaperScissor that
allows one players to play against the computer.

e The behavior of this prograis now nondeterministic:

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 7

Concentrating on behaviors:
: SAPIENZA
WebP a g e W%/ UNIVERSITA DIROMA

http://www.informatik.uni-trier.de/~ley/db/

Duovms Rrdor de

ol
2]

A web page can have a complex behavior!

dblp.uni-trier.de
COMPUTER SCIENCE BIBLIOGRAPHY

UNIVERSITAT TRIER

sainsained by Michad Loy - Weltope - FAQ
Mirrors: ACM SIGMOD - VILDE Endow. - SusSITE Central Easoge

Search

« AUor - Twde - Advapced - New: Faceted search (135 Research Cemter, U, Hanvover)

Bibliographies

« Jewrasds CACM TODS TOIS TOPLAS DEE VIDE I luf Svesems TPLP TCS
« Serkes: ENCSIENAL TFIP
« Books: Collections - DB Teutbooks

Log Prog, IR
Full Text: ACM SIGMOD Anthology
Links
Science Oy ACM(DL/ SIGMOD | SIGIR), IEEE Comgater Socety
(DL IEEE Xphore IFIP. .

o Relied Services: CileSeer, S BibTeX so-portpet, CoRE. NZ DI Zeatralblan MATH
JuhSciNes Frdis Nopbey Prog, Mah Geacalogs Proy, BibSopsmy, .. Giuseppe De Giacomo 8

Concentrating on behaviors: Ao Ko
i H TENZA
Vending Machine

collect, S, collect,

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 9

Concentratin jOrs: Ao Fuber
g on behay:ors
Another Vending Machine W) Soswsrroiions

collect, S, collect,

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 10

Concentrating on behaviors:
Vending Machine with Tilt

collect, S, collect,

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 11

Transition Systems #

UNTVERSITA DI ROMA

e A transition system TS isatuple T = <A, S, S9, 8§, F> where:
- A is the set of actions
- S is the set of states
- SO0 C S is the set of initial states
- 8 CS x A xS is the transition relation
- F C S is the set of final states

e Variants:
- No initial states
- Single initial state
— Deterministic actions
- States labeled by propositions other than Final/-Final

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 12

Process Algebras are
Formalisms for Describing TS

collect, Ven collect,

e Trans (a la CCS)
- Ven = 20c.Ven, + 10c.Ven,
- Ven, = big.collect,.Ven
- Ven, = small.collect,.Ven
e Final
- +/ Ven

* TS may have infinite states - e.g., this happens when generated by
process algebras involving iterated concurrency

e However we have good formal tools to deal only with finite states TS

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 13

Example (Clock) & ye—

UNTVERSITA DI ROMA

TS may describe (legal) nonterminating processes

tick

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 14

rtimento di
Sistemistica

o Fubertr

Example (Slot Machine)

-~ UNTVERSITA DI ROMA

Nondereminisic transitions express
choice that is not under the control of clients

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 15

Example

80 SAPIENZA

(Vending Machine - Variant 1) W) Giviworion

collect,

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 16

Example

SAPIENZA

(Vending Machine - Variant 2) W) Goawrinion

collect,

collect,

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 17

APTENZA

W%/ UNTVERSITA DI ROMA

Inductive vs Coinductive Definitions:
Reachability, Bisimilarity, ...

Reachability

e A binary relation R is a reachability-like relation iff:

- (s,8) eR
- if3a.s’.s—,s" A(s,s”) € Rthen (s,5”")e R

e A state s_0 of transition system S is reachable-from a state s; iff for all a
reachability-like relations R we have (sj, sf)€ R.

e Notably that
- reachable-from is a reachability-like relation itself
- reachable-from is the smallest reachability-like relation

Note it is a inductive definition!

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 19

Computing Reachability on
Finite Transition Systems

Algorithm ComputingReachability

Input: transition system TS
Output: the reachable-from relation (the smallest reachability-like relation)

Body
R=190
R"= {(s,s) | s € S}
while (R #R") {
R :=R’
R":=R"U{(s,s") | 3s’,a.s —,s"A(s",s")eR }
b
return R’
YdoB

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 20

Dipartimento di
I te
!

Bisimulation

SAPIENZA

UNTVERSITA DI ROMA

e A binary relation R is a bisimulation iff:

(s,t) € R implies that

- sis final iff tis final

- for all actions a
e ifs—,s" then3t' .t —,_t and (s',t)e R
e ift—,t' then3s'.s —,s" and (s',t")e R

e A state s, of transition system S is bisimilar, or simply equivalent,
to a state t, of transition system T iff there exists a bisimulation
between the initial states s, and t,.

e Notably
- bisimilarity is a bisimulation
- bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 21

Computing Bisimilarity on

Finite Transition Systems) o

Algorithm ComputingBisimulation

Input: transition system TSg; = < A, S, SO, &g, Fs> and
transition system TS; = < A, T, T9, &, F;>

Output: the bisimilarity relation (the largest bisimulation)

Body
R=190
Ri=SxT-{(s,t) | «(seFg = te F)}
while (R #R") {
R :=R’
R :=R"-({(st) | 3s’,a. s =,s" A3t .t 5, ' A(st) eR"}
{(s,t) |Itha.t =, t" A—-3s".s—,s"A(s',t) eR"})
b
return R’
Ydob

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 22

Dipartimento di
I M

temistica
"

Example of Bisimulation @ SNz

¢/ UNIVERSITA DI ROMA

collect, S, collect,

Oc
‘ ‘ S, collect,

X 2
‘ T0c)
c ' S,
)
S5
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 23

Example of Bisimulation B SAPENzA

0%/ UNTVERSITA DI ROMA

collect,

collect,

collect,

pe De Giacomo 24

Automata vs.Transition Systems SAPIENZA

S/ UNIVERSITA DI ROMA

e Automata
- define sets of runs (or traces or strings): (finite) length sequences of
actions
e TSs

- ... but I can be interested also in the alternatives “encountered” during
runs, as they represent client’s “choice points”

As automata they
recognize the

Different as
TSs

same language: a
abc* + ade* :
1 o d 1
| 1
|
| C e |
1
| 1
e e e e e e e e e e e o o e e e o o = 1
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 25

UNTVERSITA DI ROMA

Logics of Programs

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Logics of Programs @ srrenza

¢/ UNTVERSITA DI ROMA

e Are modal logics that allow to describe properties of
transition systems

e Examples:
- HennesyMilner Logic
- Propositional Dynamic Logics
- Modal (Propositional) Mu-calculus

e Perfectly suited for describing transition systems: they can
tell apart transition systems modulo bisimulation

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 27

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

HennessyMilner Logic @ sariEnza
o =P | (atomic propositions)
DD AND, | D,V D, (closed under boolean operators)
[a]® | <a>d (modal operators)

e Propositions are used to denote final states

e <a>® means there exists an a-transition that leads to a state
where ® holds; i.e., expresses the capability of executing
action a bringing about @

e [a]® means that all a-transitions lead to states where ®
holds; i.e., express that executing action a brings about @

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 28

Dipartimento di
Informatica e Sistemistica

"Antonio Ruberti"

Logics of Programs: Examples @ srrenza

UNTVERSITA DI ROMA

e Usefull abbreviation:
- <any> @ stands for <a;>® Vv --- V <3, >

- [any] @ stands for [a;]® A --- A [a,]®
- <any - a,> ® stands for <a,>® Vv --- V <a,>®
- [any -a,] ® stands for [a,]® A --- A [a,]®

e Examples:
- <a>true cabability of performing action a
- [alfalse inability of performing action a

- =Final A <any>true A [any-a]false
necessity/inevitability of performing action a

(i.e., action a is the only action possible)

- =Final A [any]false deadlock!
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 29
Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"
Propositional Dynamic Logic | SAPIENZA
¢/ UNIVERSITA DI ROMA
° ¢ :=P | (atomic propositions)
D[Dy AND, | Dy VD, (closed under boolean operators)
[rl® | <r>® (modal operators)
r.=a | r, + I‘2| rl;rz\ r* | p? (complex actions as regular expressions)

e Essentially add the capability of expressing partial correctness assertions via
formulas of the form

- @, —[r]o, under the conditions @, all possible executions of r that terminate
reach a state of the TS where @, holds

e Also add the ability of asserting that a property holds in all nodes of the

transition system
- [(a,+ - +a)*]o in every reachable state of the TS @& holds

e Useful abbereviations:
- any stands for (a,+ --- + a,) Note that + can be expressed also in HM Logic

- u stands for any* This is the so called master/universal modality

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 30

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Modal Mu-Calculus @ srrenza

UNTVERSITA DI ROMA

° o =P \ (atomic propositions)
Q| D, AND, | D,V D,| (closed under boolean operators)
[rl® | <r>® (modal operators)
u X.@(X) | v X.®(X) (fixpoint operators)

e It is the most expressive logic of the family of logics of programs.
It subsumes
- PDL (modalities involving complex actions are translated into fomulas involving fixpoints)
- LTL (linear time temporal logic),
- CTS, CTS* (branching time temporal logics)

Examples:
[any*]® can be expressed as v X. ® A [any]X

u X. ® Vv [any]X along all runs eventually ®
u X. ® Vv <any>X along some run eventually @
v X. [@](n Y. <any>true A [any-b]Y) A X
every run that that contains a contains later b

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 31

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Model Checking SAPIENZA

UNIVERSITA DI ROMA

e Model checking is polynomial in the size of the TS for
- HennessyMilner Logic
- PDL
- Mu-Calculus
e Also model checking is wrt the formula
- Polynomial for HennessyMiner Logic
- Polynomial for PDL

- Polynomial for Mu-Calculus with bounded alternation of fixpoints
and NPNcoNP in general

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 32

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Model Checking @ sapiEnzA

UNTVERSITA DI ROMA

e Given a TS T, one of its states s, and a formula ® verify whether the
formula holds in s. Formally:

T,sE®

e Examples (TS is our vending machine):

- Sy F Final

- Sy F <10c>true capability of performing action 10c
- S, F [big]false inability of performing action big

- S, F [10c][big]false after 10c cannot execute big

- S;EF u X. Final v [any] X eventually a final state is reached

- SpgF v Z. (u X. Final v [any] X) A [any] Z or equivalently
Sy F [any*](n X. Final v [any] X)
from everywhere eventually final

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 33

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

AI Planning as Model Checking [EFhaa

UNIVERSITA DI ROMA

e Build the TS of the domain:

- Consider the set of states formed all possible truth value of the
propositions (this works only for propositional setting).

- Use Pre’s and Post of actions for determining the transitions
Note: the TS is exponential in the size od the description.

e Write the goal in a logic of program

- typically a single least fixpoint formula of Mu-Calculus (compute
reachable states intersection states where goal true)

e Planning:
- model check the formula on the TS starting from the given initial state.

- ulse the path (paths) used in the above model checking for returning the
plan.

e This basic technique works only when we have complete information (or at least total
observability on state):
- Sequiential plans if initial state known and actions are deterministic
- Conditional plans if many possible initial states and/or actions are nondeterministic

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 34

Example

UNTVERSITA DI ROMA

e Operators (Services + Mappings)
- Registered A —FlightBooked — [S,:bookFlight] FlightBooked
- -—Registered — [S;:register] Registered
- —HotelBooked — [S,:bookHotel] HotelBooked

e Additional constraints (Community Ontology):

- TravelSettledUp =
FlightBooked A HotelBooked A EventBooked

e Goals (Client Service Requests):

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 35

Example

UNTVERSITA DI ROMA

Plan:
S_1:bookFlight;
S_2:bookHotel

Starting from state

) ngls‘rer'ed A — FlightBooked A — HotelBooked A — EventBooked
chec

<any*>TravelSettledUp

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 36

& UNTVERSITA DI ROMA

Plan:
if(—Registered) {
S;iregister;
}

S;:bookFlight;
S,:bookHotel

Starting from states where
. ﬂkF ightBooked A — HotelBooked A — EventBooked
chec

<any*>TravelSettledUp

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 37

Satisfiability

0%/ UNTVERSITA DI ROMA

e Observe that a formula ® may be used to select among all TS
T those such that for a given state s we have that T,s E @

e SATISFIABILITY: Given a formula @ verify whether there
exists a TS T and a state s such that. Formally:

check whether exists T, s such that T,s F @
o Satisfiability is:
- PSPACE for HennesyMilner Logic

- EXPTIME for PDL
- EXPTIME for Mu-Calculus

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 38

References # SAPIENZA

UNTVERSITA DI ROMA

[Stirling Banff96] C. Stirling: Modal and temporal logics for processes. Banff Higher Order
Workshop LNCS 1043, 149-237, Springer 1996

[Bradfield&Stirling HPAO1] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook
of Process Algebra, 293-332, Elsevier, 2001.

[Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer
Science, Springer 2001

[Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical
Computer Science, Vol. B, 789-840. North Holland, 1990.

[HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.

[Clarke& Schlingloff HARO1] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of
Automated Reasoning 2001: 1635-1790

[CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.

[Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical
Computer Science, Vol B: 995-1072. North Holland, 1990.

[Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive
Systems. Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996

[Vardi CST] M. Vardi: Alternating automata and program verification. Computer Science
Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.

[Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic
Approach to Branching-Time Model Checking (full version of CAV'94 paper).

[Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 39

UNTVERSITA DI ROMA

Name by
Rick Hull

Composition: the "Roman” Approach

The Roman Approach

@ Client

Service request

Community Ontology

4
Mapping?2 MappingN®

L4
L4
L4

Mappingl

n
L]
D - S
g - .
v - .
v d .
L] n Y
D n

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Qv SAPIENZA

UNTVERSITA DI ROMA

Client-tailored!

Community ontology: just
a set of actions

formulates the
service it requires as a
TS using the actions of
the common ontology

Available services:
described in terms of a TS
using actions of the
community ontology

The community realizes
the

by “reversing” the mapping
and hence using fragments
of the computation of the
the available services

Servicel Service2 ServiceN

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07

Community of Services

e A community of Services is

— a set of services ...

Giuseppe De Giacomo 41

Dipartimento di
Informatica e Sistemistica

"Antonio Ruberti"

% SAPTENZA

UNIVERSITA DI ROMA

- ... that share implicitly a common understanding on a common
set of actions (common ontology limited to the alphabet of

actions)...

- ... and export their behavior using (finite) TS over this common

set of actions

e A client specifies needs as a service behavior, i.e, a (finite)
TS using the common set of actions of the community

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07

Giuseppe De Giacomo 42

(Target & Available) Service TS

e We model services as finite TS T = (%, S, s9, §, F) with
- single initial state (s?)
- deterministic transitions (i.e., dis a partial function from SxX
to S)

Note: In this way the client entirely controls/chooses the transition to
execute

Example:

a: "search by author (and select)”
S b: "search by title (and select)”
0 c: "listen (the selected song)”

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 43

Composition: an Example

\@W®/ UNIVERSITA DI ROMA

available service 2

orchestrator b

Lets get some intuition of what a composition is
through an example

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 44

SAPIENZA

%9/ UNIVERSITA DI ROMA

Composition: an Example

[]
g;u' available service 2

orchestrator b
c
A sample run
action request:
orchestrator response:
Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 45

SAPIENZA

W%/ UNIVERSITA DI ROMA

\@ a

Composition: an Example

@

C
Cc
\ 2. /
24 L]
-J available service 2
orchestrator b
C
A sample run
action request: a

orchestrator response:

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 46

Composition: an Example D SAPIENZA

¢/ UNIVERSITA DI ROMA

a
“ ¢ “~
c
g \ available service 2
orchestrator b
c
A sample run
action request: a c
orchestrator response:
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 47
Composition: an Example b SAPIENZA

lg;,f available service 2
orchestrator \@j
A sample run

action request: a c b

orchestrator response: b,2

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 48

Composition: an Example D SapENZA

%9/ UNIVERSITA DI ROMA

g \ available service 2
orchestrator \.—b,O

W
A sample run
action request: a c b c
orchestrator response: b,2 c,2
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 49

A orchestrator program realizing the
target behavior @ DA oo

SAPIENZA

L]
'g available service 2
orchestrator program

/ \r*Qhestrator b

\ 1/grazione di dati e servizi —aa 2006/07 50

Orchestrator programs

Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

A history is the sequence of actions done so far:

h=aja,..a

Observe that to take a decision P has full access to the past, but no
access to the future

- Note given an history h = a, a, ... a, an the function P we can reconstruct the state
of the target service and of each available service

. a, a, ... a, determines the state of the target service

o (ay,P(I]1,a,))(a,,P([a,], a,)) ... (&, ,P([a,a,..a,,],a,)) determines the state
of of each available service

Problem: synthesize a orchestrator program P that realizes the
target service making use of the available services

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 51

Service Execution Tree

By “unfolding” a (finite) TS one gets an (infinite) execution tree
-- yet another (infinite) TS which bisimilar to the original one)

e Nodes: history i.e., sequence of actions
executed so far

e Root: no action yet performed

e Successor node x-a of x: action a can
be executed after the sequence of
action x

e Final nodes: the service can terminate

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 52

Alternative (but Equivalent)
Definition of Service Composition

Composition:
- coordinating program ...
- ... that realizes the target service ...
- ... by suitably coordinating available services

= Composition can be seen as:
- a labeling of the execution tree of the target service such that

- ... each action in the execution tree is labeled by the available
service that executes it ...

- ... and each possible sequence of actions on the target service
execution tree corresponds to possible sequences of actions on
the available service execution trees, suitably interleaved

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 53

Example of Composition § Swiena

S0%/ UNIVERSITA DI ROMA

Sy= orch(S;||S,)

54

Example of Composition

56

Hikn

Example of composition (6)
S)= orch(S, I S.)

When the target service can be left, then all component services must be in a final state

Example of composition (7)
Sy= orch(S;||S,)

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 58

Example of composition (8)

Sy= orch(S 1IS,)

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 59

Sistemistica
berti"

Observation § SAPIENZA

S0%/ UNIVERSITA DI ROMA

e This labeled execution tree has a finite representation as
a finite TS ...

e _.with transitions labeled by an action and the service
performing the action

Is this always the case when we deal with services expressible as finite
TS? See later...

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 60

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Questions @ Srrienza

#/ UNIVERSITA DI ROMA

Assume services of community and target service are finite
TSs

- Can we always check composition existence?

- If a composition exists there exists one which is a finite
TS?

- If yes, how can a finite TS composition by computed?

To answer ICSOC’03 exploits PDL SAT

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 61

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Answers

@ SAPIENZA

vl UNTVERSITA DI ROMA

Reduce service composition synthesis to satisfability in
(deterministic) PDL

- Can we always check composition existence?
Yes, SAT in PDL is decidable in EXPTIME
- If a composition exists there exists one which is a finite
TS?
Yes, by the small model property of PDL
- How can a finite TS composition be computed?
From a (small) model of the corresponding PDL formula

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 62

stemistica
i

erti

Encoding in PDL “SAPIENZA

UNTVERSITA DI ROMA

Basic idea:
e A orchestrator program P realizes the target service T iff at each point:
- ¥V transition labeled a of the target service T ...

- .. Jan available service B; (the one chosen by P) that can make an a-
transition, realizing the a-transition of T

e Encoding in PDL:

- Y transition labeled a ...
use branching

- 3 an available service B, that can make an a-transition ...
use underspecified predicates assigned through SAT

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 63

stemistica
erti"

Structure of the PDL Encoding ® s,

WS/ UNIVERSITA DI ROMA

® = Init A [u](q)o A Ai=1,...,n(I)i A (I)aux)

Initial states of all
services

PDL encoding of -
th component
service

PDL additional
domain-
independent
conditions

PDL encoding of
target service

PDL encoding is polynomial in the size of the service TSs

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 64

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

PDL Encoding @ SApiENzA

UNTVERSITA DI ROMA

Target service S, = (=, Sy, s%, 8, Fy) in PDL we define @, as
the conjunction of:

- s§—=-¢ for all pairs of distinct states in S,
service states are pair-wise disjoint

- s—=<a>Ta[a]s for each s'=§,(s,a)
target service can do an a-transition going to state s’

- s—J[a]l for each §,(s,a) undef.

target service cannot do an a-transition

Fo=Vvser S
denotes target service final states

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 65

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

PDL Encoding (cont.d) @& Sarienza

UNTVERSITA DI ROMA

e available services S, = (Z, S;, s%, 9, F;) in PDL we define @, as
the conjunction of:

- Ss—==-¢ for all pairs of distinct states in S,
Service states are pair-wise disjoint

- s —[a](moved, A s' v - moved, A s) for each s'=9,(s,a)
if service moved then new state, otherwise old state

- s —[a](- moved,rs) for each §,(s,a) undef.
if service cannot do a, and a is performed then it did not move
- F=v

i seFis

denotes available service final states

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 66

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

PDL Encoding (cont.d) @ sapiEnzA

¢/ UNTVERSITA DI ROMA

e Additional assertions @,

- <a>T —[a] V ;zy,.,n Moved, for each action a

at least one of the available services must move at each step

- Fo—=Aizq,.nFi
when target service is final all comm. services are final

= Init=5% Aiy..n 8%

Initially all services are in their initial state

PDL encoding: ® = Init A [u](®, A D, A D

i=1,...,n i aux)

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 67

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Results ﬁ, SAPIENZA

¢/ UNIVERSITA DI ROMA

Thm[ICSOC'03,I1JCIS’'05]:
Composition exists iff PDL formula ® SAT

From composition labeling of the target service one can build a
tree model of the PDL formula and viceversa

Corollary [ICSOC’03,I1JCIS'05]:
Checking composition existence is decidable in EXPTIME

Thm[Muscholl&Walukiewicz FoSSaCS’'07]:
Checking composition existence is EXPTIME-hard

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 68

di
L : Sistemistica
Snio Ruberti

Results on TS Composition "{s[\mmm

¥/ UNTVERSITA DI ROMA

Thm[ICSOC’03,I1JCIS’'05]:
If composition exists then finite TS composition exists.
From a small model of the PDL formula @,
one can build a finite TS machine

= finite TS composition existence of services expressible as
finite TS is EXPTIME-complete

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 69

?ﬁé?@%ﬁi{pisﬁca
Example (1) § s
Target service PDL
a
So

)) Se% A 5,0A 8,0
Available services

<a> T — [a] (moved, v moved,)

S @ a ‘ T — [b] (moved, v moved,)
! ’ <c> T — [c] (moved, v moved,)

Fo = Fy A F,

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 70

-

Example (2) | SAIENZA

UNTVERSITA DI ROMA

Target service 5.0 — - 5,1
S? — <a>T a [a] syt
a So° — T A [b] st

Sot = <c> T a [c] sy

s? = [c]lL
sot = [a]l L
st = [b] L

_ <0
o= So

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 71

Example (3)

SAPIENZA

UNTVERSITA DI ROMA

510 — 4 sll
s,° — [a] (moved,; As,;' v -moved, A s,°)
s,° — [c] -moved, 1 s,°
a s,° — [b] -moved, 2 s,°
S s,! = [a] -moved, A s,?
1 s,! — [b] -moved, 1 s,?
s,! — [c] (moved, As,°v -moved, A s,°)
F,=s,°

Available services

szo — o 521
s, — [b] (moved, A s,' v -moved, A s,°)
b s,% — [c] -moved, 1 s,°
S2 s,% — [a] -moved, 1 s,°
s,! — [b] -moved, A s,
s,! — [a] -moved, r s,
s,! — [c] (moved, A s,° v -moved, A s,°)
F,=s,°
2T 22

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 72

Example (4) : ‘. SA?;NZA

UNTVERSITA DI ROMA

Check: run SAT on PDL formula @

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 73

Example

Check: run SAT on PDL formula @
Yes = (small) model

sly sty s b st s, s,

F,, moved,

S%: 8%, 5%

For Fur For Fy Fy, F
moved, o e 2

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 74

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Example @ SNz

Check: run SAT on PDL formula @ \@

Yes = (small) model

= extract finite TS

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 75

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Example @ SApiEnzA

UNIVERSITA DI ROMA

Check: run SAT on PDL formula @
Yes = (small) model

= extract finite TS

= minimize finite TS
(similar to Mealy machine minimization)

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 76

Results on Synthesizing
Composition

'/ UNIVERSITA DI ROMA

e Using PDL reasoning algorithms based on model
construction (cf. tableaux), build a (small) model

Exponential in the size of the PDL encoding/services finite TS

e From this model extract a corresponding finite TS
Polynomial in the size of the model

e Minimize such a finite TS using standard techniques (opt.)
Polynomial in the size of the TS

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 77

Tools for Synthesizing
Composition

e In fact we use only a fragment of PDL in particular we use
fixpoint (transitive closure) only to get the universal
modality ...

e ... thanks to a tight correspondence between PDLs and
Description Logics (DLs), we can use current highly
optimized DL reasoning systems to do synthesis ...

e ... when the ability or returning models will be added ...
Pellet already has this ability, and we are exploring its use

e ... meanwhile we have developed a prototype tool on this
idea (see last Massimo’s lecture)

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 78

Dipartimento di
I Sistemistica
-

berti

SAPIENZA

UNTVERSITA DI ROMA

Composition via Simulation

Dipartimento di
I Sist

Bisimulation

¥ UNIVERSITA DI ROMA

e A binary relation R is a bisimulation iff:

(s,t) € R implies that

- sis final iff tis final

- for all actions a
e ifs—,s" then3t .t—,t" and (s',t")e R
e ift—,t then3s'.s—,s" and (s',t)e R

e A state s, of transition system S is bisimilar, or simply equivalent, to a
state t, of transition system T iff there exists a bisimulation between the
initial states sy and t,.

e Notably
- bisimilarity is a bisimulation
- bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 80

Dipartimento di
I te

Computing Bisimilarity on riich

Finite Transition Systems W LD

Algorithm ComputingBisimulation

Input: transition system TS, = < A, S, SO, &, Fs> and
transition system TS; = < A, T, T9, &, F>

Output: the bisimilarity relation (the largest bisimulation)

Body
R=190
Ri=SxT-{(s,t) | «(seFg = te F)}
while (R #R’) {
R:=R’
R :=R"-({(st) | 3s’,a. s =,s" A3t .t 5, ' A(st) eR" }
{(s,t) | Itha. t=,t" A—-3s".s—,s"A(s',t) eR" })

return R’
Ydob
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 81
Ruberti"
- -
Simulation D SAPIENZA

UNTVERSITA DI ROMA

e A binary relation R is a simulation iff:
(s,t) € R implies that
- sis final implies that tis final
- for all actions a
o ifs—,s" then3t .t—,t" and (s',t")e R

e A state s, of transition system S is simulated by a state t; of transition
system T iff there exists a simulation between the initial states s, and t,.

e Notably
- simulated-by is a simulation
- simulated-by is the largest simulation

Note it is a co-inductive definition!

e NB: A simulation is just one of the two directions of a bisimulation

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 82

Computing Simulation on :

- - - S)
Finite Transition Systems W onie

Algorithm ComputingSimulation

Input: transition system TS, = < A, S, SO, &, Fs> and
transition system TS; = < A, T, T9, &, F>

Output: the simulated-by relation (the largest simulation)

Body
R=190
R'=SxT-{(s,t) | seFgAn=(te FO}
while (R #R’) {
R:=R’
R":=R"-{(s,t) | 3s"/a. s =,s" A3t .t t"A(s,t') eR" }
b
return R’
Ydob

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 83

Potential Behavior of the

SAPIENZA

Whole Community W) Sevorroion

e LetTS,, ---, TS, be the TSs of the component services.

e The Community TS is defined as
the asynchronous product of TS, --- ,TS,, namely:

TS. = <A, S, SO, &, F.> where:
- Ais the set of actions
- S.=5; x:x §,
= S = (8% %)}
- FCF,x-xF,
- 8. C S.xAxS,is defined as follows:
(Syx - x58,) =, (s'yx - x) iff
1. 3i.s, —,5, €9,
2. Vj#H. sy =s;

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 84

Example of Composition

e Available Services

"R

eTarget Service

TS,

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 85

Example of Composition
Community TS

Target Service

Composition exists!

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 86

Composition via Simulation

Thm[SubmO07]
A composition realizing a target service TS TS& exists if there exists a

simulation relation between the initial state s,Y of TS, and the initial state
(s,9 .., s,0) of the community TS TS..

Notice if we take the union of all simulation relations then we get the largest
simulation relation S, still satisfying the above condition.

Corollary[Subm07]
A composition realizing a target service TS TS; exists
iff (5%, (519 .., 8.0)) €S.

Thm[SubmO07]
Computing the largest simulation S is polynomial in the size of the
target service TS and the size of the community TS...

... hence it is EXPTIME in the size of the available services.

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 87

berti"

Composition via Simulation @ SNz

UNTVERSITA DI ROMA

Given the Iar%est simulation S form TS, to TS (which include the initial states), we can
build the orchestrator generator.

This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

Def: OG = < A, [1,..,n], S,, s,° o, d,, F,> with
- A : the actions shared by the community
[1,...,n]: the identifiers of the available services in the community

S, = Sx S; x---x S, : the states of the orchestrator program
s.? = (s%, s%, ..., s%,) : the initial state of the orchestrator program
F.C{(S¢,Si, . Sn) | s € F.: the final states of the orchestrator program

- o, : S, x A, = [1,..,n] : the service selection function, defined as follows:
o Ifs —, s’ithen
chose ks.t. 3s,”. s, =, S’ A(S, (S s S'ks e/ Sp))JES

- 3, CS. xA x[1,.,n] =S, : the state transition function, defined as follows:

o lLetw (s, Sy, vy Sy e Sy @) = k then
(Str S1 s ++er Sk eowr Sn)=ak (St's S1 4 eors Sk s ++ey Sp) Where s, —, s’y

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 88

Composition via Simulation @ s

-~ UNTVERSITA DI ROMA

e For generating OG we need only to compute S and then
apply the template above

e For running an orchestrator from the OG we need to store
and access S (polynomial time, exponential space) ...

e .. and compute o, and 9§, at each step (polynomial time and space)

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 89

Extension to the Roman Model

Dipartimento di
Informatica e Sistemistica
it

Extensions @ SApiENzA

Nondeterministic (angelic) target specification
- Loose specification in client request
- Angelic (don’t care) vs devilish (don’t know) nondeterminism
- See [ICSOC'04]

Nondeterministic (devilish) available services
- Incomplete specification in available services
- Devilish (don’t know) vs angelic (don’t care) nondeterminism
- See below & [1JCAI'07]

Distributing the orchestration
- Often a centralized orchestration is unrealistic: eg. services deployed on mobile devices
e too tight coordination
e too much communication
e orchestrator cannot be embodied anywhere
- Drop centralized orchestrator in favor of independent controllers on single available services
(exchanging messages)
- Under suitable conditions: a distributed orchestrator exists iff a centralized one does
- Still decidable (EXPTIME-complete)
- See [AAAI'07]
Dealing with data
- This is the single most difficult issue to tackle
e First results: actions as DB updates, see [VLDB'05]
e Literature on Abstraction in Verification
- From finite to infinite transition systems!

Security and trust aware composition [SWS'06]
Automatic Workflows Composition of Mobile Services [ICWS'07]

See later

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 91

Nondeterministic Available Services

Nondeterminism in
Available Services Devilish (don’t know)!

e Nondeterministic available services
- Incomplete information on the actual behavior

- Mismatch between behavior description (which is in
terms of the environment actions) and actual behavior of
the agents/devices

e Deterministic target service

- it's a spec of a desired service: (devilish) nondeterminism is
banned

In general, devilish nondeterminism difficult to cope with
eg. nondeterminism moves Al Planning from PSPACE (classical planning) to EXPTIME
(contingent planning with full observability [Rintanen04])

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 93

Example: Nondeterministic
A H TENZA
Available Services W) Srvsriorion

orchestrator\A service 2

Devilish nondeterminism!

Available services represented as nondeterministic transition systems

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 94

Example: Nondeterministic
Available Services) ARG

SAPIENZA

-
rvice 2
orch estrator\A serviee
b
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 95

Example: Nondeterministic
Available Services) Givisrionion
a

S$10 nI S11

orchestrato\ service 2

SAPIENZA

a

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 96

Example: Nondeterministic
Available Services

a
observe the a
b actual state! 5

.*
.
.
.
.
.
.
.*
.

SAPIENZA

¥/ UNIVERSITA DI ROMA

A b
PRY o
L]
ok,
-
orchestrator\A service 2
b
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 97

Example: inisti
_ ple Nonc{etermlmstlc e
Available Services w Dk o

Q@

orchestrator\A service 2

observe the
actual state!

.*
.
.
.
.
.
.
.*
.

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 98

Example: Nondeterministic
Available Services

\I . a ()
observe the a

SAPIENZA

¢/ UNIVERSITA DI ROMA

“—_b ~“ actual state! .
& b
PRY o
L
ok,
-
orchestrator\A service 2
b
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 29

An Orchestrator Program Realizing A - e
the Target Service

a
b
orchestrator program nrchestrator\A service 2

-

S11?
O b

K S107? b, J

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 100

a e Sistemistica
i

rti

=

SAPIENZA

UNTVERSITA DI ROMA

contains all the observable
information up the current situation

Orchestrator Programs

e Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

e A history is a sequence of the form:
(5,9,559,...,5.9,€9) a; (s41,55%,...,s,1,€1) ... a (s¢L,S5K, ..., 8., €K)

e Observe that to take a decision P has full access to the past, but no
access to the future

e Problem: synthesize a orchestrator program P that realizes the target
service making use of the available services

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 101

e
i

Technique: Reduction to PDL @ Svienza

UNTVERSITA DI ROMA

Basic idea:
e A orchestrator program P realizes the target service T iff at each point:
- ¥V transition labeled a of the target service T ...

- ..3 an available service B; (the one chosen by P) which can make an a-
transition ...

- ..andV a-transition of B, realize the a-transition of T

e Encoding in PDL:

- Y transition labeled a ...
use branching

- 3 an available service B; ...
use underspecified predicates assigned through SAT

- VY a-transition of B; ... :
use branching again

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 102

Technical Results: Theoretical SAPIENZA

UNTVERSITA DI ROMA

Thm[IJCAI'0O7] Checking the existence of orchestrator
program realizing the target service is EXPTIME-complete.

EXPTIME-hardness due to Muscholl&Walukiewicz07
for deterministic services

Thm [IJCAI'0O7] If a orchestrator program exists there
exists one that is finite state.

Exploits the finite model property of PDL

Note: same results as for deterministic
services!

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 103

Technical Results: Practical !

Reduction to PDL provides also a practical sound and
complete technique to compute the orchestrator program

also in this case
eg, PELLET @ Univ. Maryland

e Use state-of-the-art tableaux systems for OWL-DL for checking
SAT of PDL formula @ coding the composition existence

e If SAT, the tableau returns a finite model of ®
exponential in the size of the behaviors

e Project away irrelevant predicates from such model, and possibly
minimize

e The resulting structure is a finite orchestrator program that realizes
the target behavior
polynomial in the size of the model

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 104

SAPIENZA

UNTVERSITA DI ROMA

Nondeterministic Available Services:
Composition a la Simulation

Composition a la Simulation) SAPIENZA

UNTVERSITA DI ROMA

° We consider binary relations R satisfying the following co-inductive condition:

(s,(ay, -+, 95)) € R implies that
- if sis final then q;, withi=1, .., n, is final
- for all actions a
e ifs—, s thendkel..n.
- 3’ Qs Al
- Y4 A —. a’ D (s,(ay,0 - 9.))ER

Note similar in the spirit to simulation relation!
But more involved, since it deals with

e the existential choice (as the simulation) of the service, and
e the universal condition on the nondeterministic branches!

. A composition realizing a target service TS TS, exists if there exists a relation R satisfying the above
condition between theinitial state s,° of TS, and the initial state (s, .., s,°) of the community big TS

c

. Notice if we take the union of all such relation R then we get the largest relation RR satisfying the
above condition.

e A composition realizing a target service TS T exists iff (s,° , (s;% .., s,°)) € RR.

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 106

Dipartimento di
I Ml %

temistica
rti"

Composition a la Simulation § s

UNTVERSITA DI ROMA

e Given RR form TS, to TS (which include the initial states), we can build the
orchestrator generator.

e This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

e Def: OG = <A, [1,..,n],S, s’ w,d, F> with
- A : the actions shared by the community
- [1,...,n]: the identifiers of the available services in the community

- S, = 5xS; x--x S, : the states of the orchestrator program
- s0=(s%, s%, ..., s%,) : the initial state of the orchestrator program
- F.C{(s/,S51,- 5, | s eF,: the final states of the orchestrator program

- o, : S, x A, = [1,...,n] : the service selection function, defined as follows:
o Ifs —, s'ithen
chose k's.t. 3s,”. s, =, S’ AV S s =, s D(S, (Sy 4 +s Sks--s Sp) JERR

5, CS, x A x[1,.,n] xS, : the state transition relation, defined as follows:

o Lletw(sy, Sy, ves Sis-ees Sy @) = k then
(Str S1 4 +++r Sk oor Sn)=ax (St's S1 4 -y Sk s -oey Sp) fOr each s, —, s’y
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 107

Dipartimento di
I Sis

Composition a la Simulation

0%/ UNTVERSITA DI ROMA

e Computing RR is polynomial in the size of the target service
TS and the size of the community TS...

e ... composition can be done in EXPTIME in the size of the
available services

e For generating OG we need only to compute RR and then
apply the template above

e For running the OG we need to store and access RR
(polynomial time, exponential space) ...

... and compute w, and 9§, at each step (polynomial time and space)

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 108

Dipartimento di

‘"Mn oR

temistica
i

Example of Composition o —

& UNTVERSITA DI ROMA

Available Services

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 109

Example of Composition @ s
Community TS

Target Service

Composition exists!

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 110

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

References @ SNz

UNTVERSITA DI ROMA

[ICSOC’'03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:
Automatic Composition of E-services That Export Their Behavior. ICSOC 2003: 43-58

[WES'03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: A
Foundational Vision of e-Services. WES 2003: 28-40

[TES’04] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: : A
Tool for Automatic Composition ofServices Based on Logics of Programs. TES 2004: 80-94

[ICSOC’04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Diego Calvanese:
?yllzthesis of underspecified composite e-services based on automated reasoning. ICSOC 2004: 105-

[1JCIS’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:
Automatic Service Composition Based on Behavioral Descriptions. Int. J. Cooperative Inf. Syst. 14(4):
333-376 (2005)

[VLDB'05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, Massimo Mecella:
élz_laomatic Composition of Transition-based Semantic Web Services with Messaging. VLDB 2005: 613-

[ICSOC’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella: Composition of
Services with Nondeterministic Observable Behavior. ICSOC 2005: 520-526

[SWS’06] Fahima Cheikh, Giuseppe De Giacomo, Massimo Mecella: Automatic web services composition in
arélst%vzvare communities. Proceedings of the 3rd ACM workshop on Secure web services 2006. Pages:

[AISC'06] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella. Automatic Web
Service Composition: Service-tailored vs. Client-tailored Approaches. In Proc. AISC 2006, International
Workshop jointly with ECAI 2006.

[FOSSACS’07] Anca Muscholl, Igor Walukiewicz: A lower bound on web services composition. Proceedings
FOSSACS, LNCS, Springer, Volume 4423, page 274--287 - 2007.

[IJCAI'07] Giuseppe De Giacomo, Sebastian Sardifia: Automatic Synthesis of New Behaviors from a Library
of Available Behaviors. IJCAI 2007: 1866-1871

[AAAI'07] Sebastian Sardifia, Fabio Patrizi, Giuseppe De Giacomo: Automatic synthesis of a global behavior
from multiple distributed behaviors. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), Vancouver, Canada, July 2007.

[SubmO07] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, Fabio Patrizi: Automatic Service
Composition via Simulation. Submitted.

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 111

