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temistica
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SUM two integers @ onz

e Consider a program for computing the sum of two integers.
e Such a program has essentially two states

- the state S, of the memory before the computation: including
the two number to sum

- the state S, of the memory after the computation: including the
result of the computation

e Only one action, i.e. “sum”, can be performed

sum
So S
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Concentrating on behaviors:
CheckValidity

e Consider a program for computing the validity of a FOL
formula:

e Also such a program has essentially two states

- the state S, of the memory before the computation: including
the formula to be checked

- the state S, of the memory after the computation: including

“yeS", “nO”, “time'out"

e Only one action, i.e. “checkValidity”, can be performed

checkValidity

~g o

So Si
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Concentrating on behaviors

%/  UNIVERSITA DI ROMA

e The programs SUM and CheckValidity are very different from
a computational point of view.

- SUM is trivial
- CheckValidity is a theorem prover hence very complex

e However they are equally trivial from a behavioral point of
view:
- two states S, and S,
- a single action a causing the transition

v

So Si
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Concentrating on behaviors:

D SAPIENZA

RockPaperScissor W Srwriovion

e Consider the program RockPaperScissor that allows to play
two players the the well-known game.

e The behavior of this prograis not triaI:
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Concentrating on behaviors:
RockPaperScissor (automatic) W) Gommsrions

e Consider a variant of the program RockPaperScissor that
allows one players to play against the computer.

e The behavior of this prograis now nondeterministic:
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Concentrating on behaviors:
: SAPIENZA
WebP a g e W%/ UNIVERSITA DIROMA
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Concentrating on behaviors: Ao Ko
i H TENZA
Vending Machine

collect, S, collect,
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Concentratin jOrs: Ao Fuber
g on behay:ors
Another Vending Machine W) Soswsrroiions

collect, S, collect,
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Concentrating on behaviors:
Vending Machine with Tilt

collect, S, collect,
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Transition Systems #

UNTVERSITA DI ROMA

e A transition system TS isatuple T = <A, S, S9, 8§, F> where:
- A is the set of actions
- S is the set of states
- SO0 C S is the set of initial states
- 8 CS x A xS is the transition relation
- F C S is the set of final states

e Variants:
- No initial states
- Single initial state
— Deterministic actions
- States labeled by propositions other than Final/-Final
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Process Algebras are
Formalisms for Describing TS

collect, Ven collect,

e Trans (a la CCS)
- Ven = 20c.Ven, + 10c.Ven,
- Ven, = big.collect,.Ven
- Ven, = small.collect,.Ven
e Final
- +/ Ven

* TS may have infinite states - e.g., this happens when generated by
process algebras involving iterated concurrency

e However we have good formal tools to deal only with finite states TS
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Example (Clock) & ye—

UNTVERSITA DI ROMA

TS may describe (legal) nonterminating processes

tick

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 Giuseppe De Giacomo 14



rtimento di
Sistemistica

o Fubertr

Example (Slot Machine)

-~ UNTVERSITA DI ROMA

Nondereminisic transitions express
choice that is not under the control of clients
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Example

80 SAPIENZA

(Vending Machine - Variant 1) W) Giviworion

collect,
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Example

SAPIENZA

(Vending Machine - Variant 2) W) Goawrinion

collect,

collect,
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APTENZA

W%/ UNTVERSITA DI ROMA

Inductive vs Coinductive Definitions:
Reachability, Bisimilarity, ...



Reachability

e A binary relation R is a reachability-like relation iff:

- (s,8) eR
- if3a.s’.s—,s" A(s,s”) € Rthen (s,5”")e R

e A state s_0 of transition system S is reachable-from a state s; iff for all a
reachability-like relations R we have (sj, sf)€ R.

e Notably that
- reachable-from is a reachability-like relation itself
- reachable-from is the smallest reachability-like relation

Note it is a inductive definition!
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Computing Reachability on
Finite Transition Systems

Algorithm ComputingReachability

Input: transition system TS
Output: the reachable-from relation (the smallest reachability-like relation)

Body
R=190
R"= {(s,s) | s € S}
while (R #R") {
R :=R’
R":=R"U{(s,s") | 3s’,a.s —,s"A(s",s")eR }
b
return R’
YdoB
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Dipartimento di
I te
!

Bisimulation

SAPIENZA
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e A binary relation R is a bisimulation iff:

(s,t) € R implies that

- sis final iff tis final

- for all actions a
e ifs—,s" then3t' .t —,_t and (s',t)e R
e ift—,t' then3s'.s —,s" and (s',t")e R

e A state s, of transition system S is bisimilar, or simply equivalent,
to a state t, of transition system T iff there exists a bisimulation
between the initial states s, and t,.

e Notably
- bisimilarity is a bisimulation
- bisimilarity is the largest bisimulation

Note it is a co-inductive definition!
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Computing Bisimilarity on

Finite Transition Systems ) o

Algorithm ComputingBisimulation

Input: transition system TSg; = < A, S, SO, &g, Fs> and
transition system TS; = < A, T, T9, &, F;>

Output: the bisimilarity relation (the largest bisimulation)

Body
R=190
Ri=SxT-{(s,t) | «(seFg = te F)}
while (R #R") {
R :=R’
R :=R"-({(st) | 3s’,a. s =,s" A3t .t 5, ' A(st) eR"}
{(s,t) |Itha.t =, t" A—-3s".s—,s"A(s',t) eR"})
b
return R’
Ydob
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Example of Bisimulation @ SNz
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collect, S, collect,

Oc
‘ ‘ S, collect,

X 2
‘ T0c )
c ' S,
)
S5
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Example of Bisimulation B SAPENzA
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collect,

collect,

collect,

pe De Giacomo 24



Automata vs.Transition Systems SAPIENZA

S/ UNIVERSITA DI ROMA

e Automata
- define sets of runs (or traces or strings): (finite) length sequences of
actions
e TSs

- ... but I can be interested also in the alternatives “encountered” during
runs, as they represent client’s “choice points”

As automata they
recognize the

Different as
TSs

same language: a
abc* + ade* :
1 o d 1
| 1
|
| C e |
1
| 1
e e e e e e e e e e e o o e e e o o = 1
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Logics of Programs



Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Logics of Programs @ srrenza

¢/ UNTVERSITA DI ROMA

e Are modal logics that allow to describe properties of
transition systems

e Examples:
- HennesyMilner Logic
- Propositional Dynamic Logics
- Modal (Propositional) Mu-calculus

e Perfectly suited for describing transition systems: they can
tell apart transition systems modulo bisimulation
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HennessyMilner Logic @ sariEnza
o =P | (atomic propositions)
DD AND, | D,V D, (closed under boolean operators)
[a]® | <a>d (modal operators)

e Propositions are used to denote final states

e <a>® means there exists an a-transition that leads to a state
where ® holds; i.e., expresses the capability of executing
action a bringing about @

e [a]® means that all a-transitions lead to states where ®
holds; i.e., express that executing action a brings about @
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Logics of Programs: Examples @ srrenza

UNTVERSITA DI ROMA

e Usefull abbreviation:
- <any> @ stands for <a;>® Vv --- V <3, >

- [any] @ stands for [a;]® A --- A [a,]®
- <any - a,> ® stands for <a,>® Vv --- V <a,>®
- [any -a,] ® stands for [a,]® A --- A [a,]®

e Examples:
- <a>true cabability of performing action a
- [alfalse inability of performing action a

- =Final A <any>true A [any-a]false
necessity/inevitability of performing action a

(i.e., action a is the only action possible)

- =Final A [any]false deadlock!
Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 29
Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"
Propositional Dynamic Logic | SAPIENZA
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° ¢ :=P | (atomic propositions)
D[ Dy AND, | Dy VD, (closed under boolean operators)
[rl® | <r>® (modal operators)
r.=a | r, + I‘2| rl;rz\ r* | p? (complex actions as regular expressions)

e Essentially add the capability of expressing partial correctness assertions via
formulas of the form

- @, —[r]o, under the conditions @, all possible executions of r that terminate
reach a state of the TS where @, holds

e Also add the ability of asserting that a property holds in all nodes of the

transition system
- [(a,+ - +a)*]o in every reachable state of the TS @& holds

e Useful abbereviations:
- any stands for (a,+ --- + a,) Note that + can be expressed also in HM Logic

- u stands for any* This is the so called master/universal modality
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Modal Mu-Calculus @ srrenza

UNTVERSITA DI ROMA

° o =P \ (atomic propositions)
Q| D, AND, | D,V D,| (closed under boolean operators)
[rl® | <r>® (modal operators)
u X.@(X) | v X.®(X) (fixpoint operators)

e It is the most expressive logic of the family of logics of programs.
It subsumes
- PDL (modalities involving complex actions are translated into fomulas involving fixpoints)
- LTL (linear time temporal logic),
- CTS, CTS* (branching time temporal logics)

Examples:
[any*]® can be expressed as v X. ® A [any]X

u X. ® Vv [any]X along all runs eventually ®
u X. ® Vv <any>X along some run eventually @
v X. [@](n Y. <any>true A [any-b]Y) A X
every run that that contains a contains later b
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Model Checking SAPIENZA
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e Model checking is polynomial in the size of the TS for
- HennessyMilner Logic
- PDL
- Mu-Calculus
e Also model checking is wrt the formula
- Polynomial for HennessyMiner Logic
- Polynomial for PDL

- Polynomial for Mu-Calculus with bounded alternation of fixpoints
and NPNcoNP in general
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Model Checking @ sapiEnzA

UNTVERSITA DI ROMA

e Given a TS T, one of its states s, and a formula ® verify whether the
formula holds in s. Formally:

T,sE®

e Examples (TS is our vending machine):

- Sy F Final

- Sy F <10c>true capability of performing action 10c
- S, F [big]false inability of performing action big

- S, F [10c][big]false after 10c cannot execute big

- S;EF u X. Final v [any] X eventually a final state is reached

- SpgF v Z. (u X. Final v [any] X) A [any] Z  or equivalently
Sy F [any*](n X. Final v [any] X)
from everywhere eventually final
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AI Planning as Model Checking [ EFhaa
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e Build the TS of the domain:

- Consider the set of states formed all possible truth value of the
propositions (this works only for propositional setting).

- Use Pre’s and Post of actions for determining the transitions
Note: the TS is exponential in the size od the description.

e Write the goal in a logic of program

- typically a single least fixpoint formula of Mu-Calculus (compute
reachable states intersection states where goal true)

e Planning:
- model check the formula on the TS starting from the given initial state.

- ulse the path (paths) used in the above model checking for returning the
plan.

e This basic technique works only when we have complete information (or at least total
observability on state):
- Sequiential plans if initial state known and actions are deterministic
- Conditional plans if many possible initial states and/or actions are nondeterministic
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Example

UNTVERSITA DI ROMA

e Operators (Services + Mappings)
- Registered A —FlightBooked — [S,:bookFlight] FlightBooked
- -—Registered — [S;:register] Registered
- —HotelBooked — [S,:bookHotel] HotelBooked

e Additional constraints (Community Ontology):

- TravelSettledUp =
FlightBooked A HotelBooked A EventBooked

e Goals (Client Service Requests):
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Example

UNTVERSITA DI ROMA

Plan:
S_1:bookFlight;
S_2:bookHotel

Starting from state

) ngls‘rer'ed A — FlightBooked A — HotelBooked A — EventBooked
chec

<any*>TravelSettledUp
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& UNTVERSITA DI ROMA

Plan:
if(—Registered) {
S;iregister;
}

S;:bookFlight;
S,:bookHotel

Starting from states where
. ﬂkF ightBooked A — HotelBooked A — EventBooked
chec

<any*>TravelSettledUp

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 37

Satisfiability

0%/ UNTVERSITA DI ROMA

e Observe that a formula ® may be used to select among all TS
T those such that for a given state s we have that T,s E @

e SATISFIABILITY: Given a formula @ verify whether there
exists a TS T and a state s such that. Formally:

check whether exists T, s such that T,s F @
o Satisfiability is:
- PSPACE for HennesyMilner Logic

- EXPTIME for PDL
- EXPTIME for Mu-Calculus
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The Roman Approach

@ Client

Service request

Community Ontology

4
Mapping?2 MappingN®

L4
L4
L4

Mappingl

n
L]
D - S
g - .
v - .
v d .
L] n Y
D n

Dipartimento di
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Qv SAPIENZA

UNTVERSITA DI ROMA

Client-tailored!

Community ontology: just
a set of actions

formulates the
service it requires as a
TS using the actions of
the common ontology

Available services:
described in terms of a TS
using actions of the
community ontology

The community realizes
the

by “reversing” the mapping
and hence using fragments
of the computation of the
the available services

Servicel Service2 ServiceN
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Community of Services

e A community of Services is

— a set of services ...

Giuseppe De Giacomo 41
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% SAPTENZA
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- ... that share implicitly a common understanding on a common
set of actions (common ontology limited to the alphabet of

actions)...

- ... and export their behavior using (finite) TS over this common

set of actions

e A client specifies needs as a service behavior, i.e, a (finite)
TS using the common set of actions of the community
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(Target & Available) Service TS

e We model services as finite TS T = (%, S, s9, §, F) with
- single initial state (s?)
- deterministic transitions (i.e., dis a partial function from SxX
to S)

Note: In this way the client entirely controls/chooses the transition to
execute

Example:

a: "search by author (and select)”
S b: "search by title (and select)”
0 c: "listen (the selected song)”
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Composition: an Example

\@W®/  UNIVERSITA DI ROMA

available service 2

orchestrator b

Lets get some intuition of what a composition is
through an example
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SAPIENZA
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Composition: an Example

[ ]
g;u' available service 2

orchestrator b
c
A sample run
action request:
orchestrator response:
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SAPIENZA
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\@ a

Composition: an Example

@

C
Cc
\ 2. /
24 L]
-J available service 2
orchestrator b
C
A sample run
action request: a

orchestrator response:
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Composition: an Example D SAPIENZA
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a
“ ¢ “~
c
g \ available service 2
orchestrator b
c
A sample run
action request: a c
orchestrator response:
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Composition: an Example b SAPIENZA

lg;,f available service 2
orchestrator \@j
A sample run

action request: a c b

orchestrator response: b,2
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Composition: an Example D SapENZA

%9/ UNIVERSITA DI ROMA

g \ available service 2
orchestrator \.—b,O

W
A sample run
action request: a c b c
orchestrator response: b,2 c,2
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A orchestrator program realizing the
target behavior @ DA oo

SAPIENZA

L ]
'g available service 2
orchestrator program

/ \r*Qhestrator b

\ 1/grazione di dati e servizi —aa 2006/07 50




Orchestrator programs

Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

A history is the sequence of actions done so far:

h=aja,..a

Observe that to take a decision P has full access to the past, but no
access to the future

- Note given an history h = a, a, ... a, an the function P we can reconstruct the state
of the target service and of each available service

. a, a, ... a, determines the state of the target service

o (ay,P(I]1,a,))(a,,P([a,], a,)) ... (&, ,P([a,a,..a,,],a,)) determines the state
of of each available service

Problem: synthesize a orchestrator program P that realizes the
target service making use of the available services
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Service Execution Tree

By “unfolding” a (finite) TS one gets an (infinite) execution tree
-- yet another (infinite) TS which bisimilar to the original one)

e Nodes: history i.e., sequence of actions
executed so far

e Root: no action yet performed

e Successor node x-a of x: action a can
be executed after the sequence of
action x

e Final nodes: the service can terminate
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Alternative (but Equivalent)
Definition of Service Composition

Composition:
- coordinating program ...
- ... that realizes the target service ...
- ... by suitably coordinating available services

= Composition can be seen as:
- a labeling of the execution tree of the target service such that

- ... each action in the execution tree is labeled by the available
service that executes it ...

- ... and each possible sequence of actions on the target service
execution tree corresponds to possible sequences of actions on
the available service execution trees, suitably interleaved
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Example of Composition § Swiena
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Sy= orch(S;||S,)
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Example of Composition

56



Hikn

Example of composition (6)
S)= orch(S, I S.)

When the target service can be left, then all component services must be in a final state

Example of composition (7)
Sy= orch(S;||S,)
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Example of composition (8)

Sy= orch( S 1IS,)
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Observation § SAPIENZA

S0%/  UNIVERSITA DI ROMA

e This labeled execution tree has a finite representation as
a finite TS ...

e _.with transitions labeled by an action and the service
performing the action

Is this always the case when we deal with services expressible as finite
TS? See later...
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Questions @ Srrienza

#/  UNIVERSITA DI ROMA

Assume services of community and target service are finite
TSs

- Can we always check composition existence?

- If a composition exists there exists one which is a finite
TS?

- If yes, how can a finite TS composition by computed?

To answer ICSOC’03 exploits PDL SAT
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Answers

@ SAPIENZA

vl UNTVERSITA DI ROMA

Reduce service composition synthesis to satisfability in
(deterministic) PDL

- Can we always check composition existence?
Yes, SAT in PDL is decidable in EXPTIME
- If a composition exists there exists one which is a finite
TS?
Yes, by the small model property of PDL
- How can a finite TS composition be computed?
From a (small) model of the corresponding PDL formula
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Encoding in PDL “SAPIENZA

UNTVERSITA DI ROMA

Basic idea:
e A orchestrator program P realizes the target service T iff at each point:
- ¥V transition labeled a of the target service T ...

- .. Jan available service B; (the one chosen by P) that can make an a-
transition, realizing the a-transition of T

e Encoding in PDL:

- Y transition labeled a ...
use branching

- 3 an available service B, that can make an a-transition ...
use underspecified predicates assigned through SAT
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Structure of the PDL Encoding ® s,

WS/ UNIVERSITA DI ROMA

® = Init A [u](q)o A Ai=1,...,n(I)i A (I)aux)

Initial states of all
services

PDL encoding of -
th component
service

PDL additional
domain-
independent
conditions

PDL encoding of
target service

PDL encoding is polynomial in the size of the service TSs
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PDL Encoding @ SApiENzA

UNTVERSITA DI ROMA

Target service S, = (=, Sy, s%, 8, Fy) in PDL we define @, as
the conjunction of:

- s§—=-¢ for all pairs of distinct states in S,
service states are pair-wise disjoint

- s—=<a>Ta[a]s for each s'=§,(s,a)
target service can do an a-transition going to state s’

- s—J[a]l for each §,(s,a) undef.

target service cannot do an a-transition

Fo=Vvser S
denotes target service final states
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PDL Encoding (cont.d) @& Sarienza

UNTVERSITA DI ROMA

e available services S, = (Z, S;, s%, 9, F;) in PDL we define @, as
the conjunction of:

- Ss—==-¢ for all pairs of distinct states in S,
Service states are pair-wise disjoint

- s —[a](moved, A s' v - moved, A s) for each s'=9,(s,a)
if service moved then new state, otherwise old state

- s —[a](- moved,rs) for each §,(s,a) undef.
if service cannot do a, and a is performed then it did not move
- F=v

i seFis

denotes available service final states
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PDL Encoding (cont.d) @ sapiEnzA

¢/ UNTVERSITA DI ROMA

e Additional assertions @,

- <a>T —[a] V ;zy,.,n Moved, for each action a

at least one of the available services must move at each step

- Fo—=Aizq,.nFi
when target service is final all comm. services are final

= Init=5% Aiy..n 8%

Initially all services are in their initial state

PDL encoding: ® = Init A [u](®, A D, A D

i=1,...,n i aux )
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Results ﬁ, SAPIENZA

¢/ UNIVERSITA DI ROMA

Thm[ICSOC'03,I1JCIS’'05]:
Composition exists iff PDL formula ® SAT

From composition labeling of the target service one can build a
tree model of the PDL formula and viceversa

Corollary [ICSOC’03,I1JCIS'05]:
Checking composition existence is decidable in EXPTIME

Thm[Muscholl&Walukiewicz FoSSaCS’'07]:
Checking composition existence is EXPTIME-hard
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Results on TS Composition "{s[\mmm

¥/ UNTVERSITA DI ROMA

Thm[ICSOC’03,I1JCIS’'05]:
If composition exists then finite TS composition exists.
From a small model of the PDL formula @,
one can build a finite TS machine

= finite TS composition existence of services expressible as
finite TS is EXPTIME-complete
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?ﬁé?@%ﬁi{pisﬁca
Example (1) § s
Target service PDL
a
So

) ) Se% A 5,0A 8,0
Available services

<a> T — [a] (moved, v moved,)

S @ a ‘ <b> T — [b] (moved, v moved,)
! ’ <c> T — [c] (moved, v moved,)

Fo = Fy A F,
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Example ( 2 ) | SAIENZA

UNTVERSITA DI ROMA

Target service 5.0 — - 5,1
S? — <a>T a [a] syt
a So° — <b> T A [b] st

Sot = <c> T a [c] sy

s? = [c]lL
sot = [a]l L
st = [b] L

_ <0
o= So
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Example (3)

SAPIENZA

UNTVERSITA DI ROMA

510 — 4 sll
s,° — [a] (moved,; As,;' v -moved, A s,°)
s,° — [c] -moved, 1 s,°
a s,° — [b] -moved, 2 s,°
S s,! = [a] -moved, A s,?
1 s,! — [b] -moved, 1 s,?
s,! — [c] (moved, As,°v -moved, A s,°)
F,=s,°

Available services

szo — o 521
s, — [b] (moved, A s,' v -moved, A s,°)
b s,% — [c] -moved, 1 s,°
S2 s,% — [a] -moved, 1 s,°
s,! — [b] -moved, A s,
s,! — [a] -moved, r s,
s,! — [c] (moved, A s,° v -moved, A s,°)
F,=s,°
2T 22
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UNTVERSITA DI ROMA

Check: run SAT on PDL formula @
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Example

Check: run SAT on PDL formula @
Yes = (small) model

sly sty s b st s, s,

F,, moved,

S%: 8%, 5%

For Fur For Fy Fy, F
moved, o e 2
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Example @ SNz

Check: run SAT on PDL formula @ \@

Yes = (small) model

= extract finite TS
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Example @ SApiEnzA

UNIVERSITA DI ROMA

Check: run SAT on PDL formula @
Yes = (small) model

= extract finite TS

= minimize finite TS
(similar to Mealy machine minimization)
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Results on Synthesizing
Composition

'/  UNIVERSITA DI ROMA

e Using PDL reasoning algorithms based on model
construction (cf. tableaux), build a (small) model

Exponential in the size of the PDL encoding/services finite TS

e From this model extract a corresponding finite TS
Polynomial in the size of the model

e Minimize such a finite TS using standard techniques (opt.)
Polynomial in the size of the TS
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Tools for Synthesizing
Composition

e In fact we use only a fragment of PDL in particular we use
fixpoint (transitive closure) only to get the universal
modality ...

e ... thanks to a tight correspondence between PDLs and
Description Logics (DLs), we can use current highly
optimized DL reasoning systems to do synthesis ...

e ... when the ability or returning models will be added ...
Pellet already has this ability, and we are exploring its use

e ... meanwhile we have developed a prototype tool on this
idea (see last Massimo’s lecture)
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SAPIENZA

UNTVERSITA DI ROMA

Composition via Simulation

Dipartimento di
I Sist

Bisimulation

¥ UNIVERSITA DI ROMA

e A binary relation R is a bisimulation iff:

(s,t) € R implies that

- sis final iff tis final

- for all actions a
e ifs—,s" then3t .t—,t" and (s',t")e R
e ift—,t then3s'.s—,s" and (s',t)e R

e A state s, of transition system S is bisimilar, or simply equivalent, to a
state t, of transition system T iff there exists a bisimulation between the
initial states sy and t,.

e Notably
- bisimilarity is a bisimulation
- bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Seminari di Ingegneria del Software: integrazione di dati e servizi —aa 2006/07 Giuseppe De Giacomo 80



Dipartimento di
I te

Computing Bisimilarity on riich

Finite Transition Systems W LD

Algorithm ComputingBisimulation

Input: transition system TS, = < A, S, SO, &, Fs> and
transition system TS; = < A, T, T9, &, F>

Output: the bisimilarity relation (the largest bisimulation)

Body
R=190
Ri=SxT-{(s,t) | «(seFg = te F)}
while (R #R’) {
R:=R’
R :=R"-({(st) | 3s’,a. s =,s" A3t .t 5, ' A(st) eR" }
{(s,t) | Itha. t=,t" A—-3s".s—,s"A(s',t) eR" })

return R’
Ydob
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Simulation D SAPIENZA

UNTVERSITA DI ROMA

e A binary relation R is a simulation iff:
(s,t) € R implies that
- sis final implies that tis final
- for all actions a
o ifs—,s" then3t .t—,t" and (s',t")e R

e A state s, of transition system S is simulated by a state t; of transition
system T iff there exists a simulation between the initial states s, and t,.

e Notably
- simulated-by is a simulation
- simulated-by is the largest simulation

Note it is a co-inductive definition!

e NB: A simulation is just one of the two directions of a bisimulation
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Computing Simulation on :

- - - S )
Finite Transition Systems W onie

Algorithm ComputingSimulation

Input: transition system TS, = < A, S, SO, &, Fs> and
transition system TS; = < A, T, T9, &, F>

Output: the simulated-by relation (the largest simulation)

Body
R=190
R'=SxT-{(s,t) | seFgAn=(te FO}
while (R #R’) {
R:=R’
R":=R"-{(s,t) | 3s"/a. s =,s" A3t .t t"A(s,t') eR" }
b
return R’
Ydob
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Potential Behavior of the

SAPIENZA

Whole Community W) Sevorroion

e LetTS,, ---, TS, be the TSs of the component services.

e The Community TS is defined as
the asynchronous product of TS, --- ,TS,, namely:

TS. = <A, S, SO, &, F.> where:
- Ais the set of actions
- S.=5; x:x §,
= S = (8% %)}
- FCF,x-xF,
- 8. C S.xAxS,is defined as follows:
(Syx - x58,) =, (s'yx - x ) iff
1. 3i.s, —,5, €9,
2. Vj#H. sy =s;
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Example of Composition

e Available Services

"R

eTarget Service

TS,
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Example of Composition
Community TS

Target Service

Composition exists!
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Composition via Simulation

Thm[SubmO07]
A composition realizing a target service TS TS& exists if there exists a

simulation relation between the initial state s,Y of TS, and the initial state
(s,9 .., s,0) of the community TS TS..

Notice if we take the union of all simulation relations then we get the largest
simulation relation S, still satisfying the above condition.

Corollary[Subm07]
A composition realizing a target service TS TS; exists
iff (5%, (519 .., 8.0)) €S.

Thm[SubmO07]
Computing the largest simulation S is polynomial in the size of the
target service TS and the size of the community TS...

... hence it is EXPTIME in the size of the available services.
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Composition via Simulation @ SNz

UNTVERSITA DI ROMA

Given the Iar%est simulation S form TS, to TS (which include the initial states), we can
build the orchestrator generator.

This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

Def: OG = < A, [1,..,n], S,, s,° o, d,, F,> with
- A : the actions shared by the community
[1,...,n]: the identifiers of the available services in the community

S, = Sx S; x---x S, : the states of the orchestrator program
s.? = (s%, s%, ..., s%,) : the initial state of the orchestrator program
F.C{(S¢,Si, . Sn) | s € F.: the final states of the orchestrator program

- o, : S, x A, = [1,..,n] : the service selection function, defined as follows:
o Ifs —, s’ithen
chose ks.t. 3s,”. s, =, S’ A(S, (S s S'ks e/ Sp) )JES

- 3, CS. xA x[1,.,n] =S, : the state transition function, defined as follows:

o lLetw (s, Sy, vy Sy e Sy @) = k then
(Str S1 s ++er Sk eowr Sn)=ak (St's S1 4 eors Sk s ++ey Sp) Where s, —, s’y
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Composition via Simulation @ s

-~ UNTVERSITA DI ROMA

e For generating OG we need only to compute S and then
apply the template above

e For running an orchestrator from the OG we need to store
and access S (polynomial time, exponential space) ...

e .. and compute o, and 9§, at each step (polynomial time and space)
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Extensions @ SApiENzA

Nondeterministic (angelic) target specification
- Loose specification in client request
- Angelic (don’t care) vs devilish (don’t know) nondeterminism
- See [ICSOC'04]

Nondeterministic (devilish) available services
- Incomplete specification in available services
- Devilish (don’t know) vs angelic (don’t care) nondeterminism
- See below & [1JCAI'07]

Distributing the orchestration
- Often a centralized orchestration is unrealistic: eg. services deployed on mobile devices
e too tight coordination
e too much communication
e orchestrator cannot be embodied anywhere
- Drop centralized orchestrator in favor of independent controllers on single available services
(exchanging messages)
- Under suitable conditions: a distributed orchestrator exists iff a centralized one does
- Still decidable (EXPTIME-complete)
- See [AAAI'07]
Dealing with data
- This is the single most difficult issue to tackle
e First results: actions as DB updates, see [VLDB'05]
e Literature on Abstraction in Verification
- From finite to infinite transition systems!

Security and trust aware composition [SWS'06]
Automatic Workflows Composition of Mobile Services [ICWS'07]

See later
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Nondeterminism in
Available Services Devilish (don’t know)!

e Nondeterministic available services
- Incomplete information on the actual behavior

- Mismatch between behavior description (which is in
terms of the environment actions) and actual behavior of
the agents/devices

e Deterministic target service

- it's a spec of a desired service: (devilish) nondeterminism is
banned

In general, devilish nondeterminism difficult to cope with
eg. nondeterminism moves Al Planning from PSPACE (classical planning) to EXPTIME
(contingent planning with full observability [Rintanen04])
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Example: Nondeterministic
A H TENZA
Available Services W) Srvsriorion

orchestrator\A service 2

Devilish nondeterminism!

Available services represented as nondeterministic transition systems

Seminari di Ingegneria del Software: integrazione di dati e servizi -aa 2006/07 94



Example: Nondeterministic
Available Services ) ARG

SAPIENZA

-
rvice 2
orch estrator\A serviee
b
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Example: Nondeterministic
Available Services ) Givisrionion
a

S$10 nI S11

orchestrato\ service 2

SAPIENZA

a
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Example: Nondeterministic
Available Services

a
observe the a
b actual state! 5

.*
.
.
.
.
.
.
.*
.

SAPIENZA

¥/ UNIVERSITA DI ROMA

A b
PRY o
L]
ok,
-
orchestrator\A service 2
b
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Example: inisti
_ ple Nonc{etermlmstlc e
Available Services w Dk o

Q@

orchestrator\A service 2

observe the
actual state!

.*
.
.
.
.
.
.
.*
.
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Example: Nondeterministic
Available Services

\I . a ( )
observe the a

SAPIENZA

¢/ UNIVERSITA DI ROMA

“—_b ~“ actual state! .
& b
PRY o
L
ok,
-
orchestrator\A service 2
b
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An Orchestrator Program Realizing A - e
the Target Service

a
b
orchestrator program nrchestrator\A service 2

-

S11?
O b

K S107? b, J
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contains all the observable
information up the current situation

Orchestrator Programs

e Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

e A history is a sequence of the form:
(5,9,559,...,5.9,€9) a; (s41,55%,...,s,1,€1) ... a (s¢L,S5K, ..., 8., €K)

e Observe that to take a decision P has full access to the past, but no
access to the future

e  Problem: synthesize a orchestrator program P that realizes the target
service making use of the available services
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e
i

Technique: Reduction to PDL @ Svienza

UNTVERSITA DI ROMA

Basic idea:
e A orchestrator program P realizes the target service T iff at each point:
- ¥V transition labeled a of the target service T ...

- ..3 an available service B; (the one chosen by P) which can make an a-
transition ...

- ..andV a-transition of B, realize the a-transition of T

e Encoding in PDL:

- Y transition labeled a ...
use branching

- 3 an available service B; ...
use underspecified predicates assigned through SAT

- VY a-transition of B; ... :
use branching again
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Technical Results: Theoretical SAPIENZA
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Thm[IJCAI'0O7] Checking the existence of orchestrator
program realizing the target service is EXPTIME-complete.

EXPTIME-hardness due to Muscholl&Walukiewicz07
for deterministic services

Thm [IJCAI'0O7] If a orchestrator program exists there
exists one that is finite state.

Exploits the finite model property of PDL

Note: same results as for deterministic
services!
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Technical Results: Practical !

Reduction to PDL provides also a practical sound and
complete technique to compute the orchestrator program

also in this case
eg, PELLET @ Univ. Maryland

e Use state-of-the-art tableaux systems for OWL-DL for checking
SAT of PDL formula @ coding the composition existence

e If SAT, the tableau returns a finite model of ®
exponential in the size of the behaviors

e Project away irrelevant predicates from such model, and possibly
minimize

e The resulting structure is a finite orchestrator program that realizes
the target behavior
polynomial in the size of the model
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SAPIENZA

UNTVERSITA DI ROMA

Nondeterministic Available Services:
Composition a la Simulation

Composition a la Simulation ) SAPIENZA

UNTVERSITA DI ROMA

° We consider binary relations R satisfying the following co-inductive condition:

(s,(ay, -+, 95)) € R implies that
- if sis final then q;, withi=1, .., n, is final
- for all actions a
e ifs—, s thendkel..n.
- 3’ Qs Al
- Y4 A —. a’ D (s,(ay,0 - 9.))ER

Note similar in the spirit to simulation relation!
But more involved, since it deals with

e the existential choice (as the simulation) of the service, and
e the universal condition on the nondeterministic branches!

. A composition realizing a target service TS TS, exists if there exists a relation R satisfying the above
condition between theinitial state s,° of TS, and the initial state (s, .., s,°) of the community big TS

c

. Notice if we take the union of all such relation R then we get the largest relation RR satisfying the
above condition.

e A composition realizing a target service TS T exists iff (s,° , (s;% .., s,°)) € RR.
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Composition a la Simulation § s

UNTVERSITA DI ROMA

e Given RR form TS, to TS (which include the initial states), we can build the
orchestrator generator.

e This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

e Def: OG = <A, [1,..,n],S, s’ w,d, F> with
- A : the actions shared by the community
- [1,...,n]: the identifiers of the available services in the community

- S, = 5xS; x--x S, : the states of the orchestrator program
- s0=(s%, s%, ..., s%,) : the initial state of the orchestrator program
- F.C{(s/,S51,- 5, | s eF,: the final states of the orchestrator program

- o, : S, x A, = [1,...,n] : the service selection function, defined as follows:
o Ifs —, s'ithen
chose k's.t. 3s,”. s, =, S’ AV S s =, s D(S, (Sy 4 +s Sks--s Sp) JERR

5, CS, x A x[1,.,n] xS, : the state transition relation, defined as follows:

o Lletw(sy, Sy, ves Sis-ees Sy @) = k then
(Str S1 4 +++r Sk oor Sn)=ax (St's S1 4 -y Sk s -oey Sp) fOr each s, —, s’y
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Composition a la Simulation
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e Computing RR is polynomial in the size of the target service
TS and the size of the community TS...

e ... composition can be done in EXPTIME in the size of the
available services

e For generating OG we need only to compute RR and then
apply the template above

e For running the OG we need to store and access RR
(polynomial time, exponential space) ...

... and compute w, and 9§, at each step (polynomial time and space)
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Example of Composition o —
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Available Services
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Example of Composition @ s
Community TS

Target Service

Composition exists!
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