
A t ti W bA t ti W bAutomatic WebAutomatic Web
Service CompositionService CompositionService CompositionService Composition

Giuseppe De Giacomo
Massimo MecellaMassimo Mecella

Dipartimento di Informatica e Sistemistica
“Antonio Ruberti”Antonio Ruberti

SAPIENZA -- Università di Roma
{degiacomo,mecella}@dis.uniroma1.it

based on joint work with Daniela Berardi Diego Calvanese Rick Hull based on joint work with Daniela Berardi, Diego Calvanese, Rick Hull,
Alessandro Iuliani, Maurizio Lenzerini, Damiano Pozzi, Ruggero Russo

LectureLecture 11

1 Basic Technologies1. Basic Technologies
2. Abstracting Service

B h iBehaviors

ee--Services, Web Services, Web
Services Services (1)Services Services (1)Services, Services … (1)Services, Services … (1)
• An e-Service is often defined as an application accessible via the Web, that

id f f i li i b i i di id l Wh k h provides a set of functionalities to businesses or individuals. What makes the e-
Service vision attractive is the ability to automatically discover the e-Services
that fulfill the users’ needs, negotiate service contracts, and have the services
delivered where and when users needs themdelivered where and when users needs them

Guest editorial. In [VLDBJ01]

• e-Service: an application component provided by an organization in order to be e Serv ce an appl cat on component prov ded by an organ zat on n order to be
assembled and reused in a distributed, Internet-based environment; an application
component is considered as an e-Service if it is: (i) open, that is independent, as
much as possible, of specific platforms and computing paradigms; (ii) developed

i l f i t i ti li ti t l f i t i ti mainly for inter-organizations applications, not only for intra-organization
applications; (iii) easily composable; its assembling and integration in an inter-
organizations application does not require the development of complex adapters.
e-Application: a distributed application which integrates in a cooperative way the e-pp pp g p y
Services offered by different organizations

M. Mecella, B. Pernici: Designing Wrapper Components for e-Services in
Integrating Heterogeneous Systems. In [VLDBJ01]

De Giacomo & Mecella 6

ee--Services, Web Services, Web
Services Services (2)Services Services (2)Services, Services … (2)Services, Services … (2)

A Web service is a software system identified A Web serv ce s a software system dent f ed
by a URI, whose public interfaces and bindings
are defined and described using XML. Its g
definition can be discovered by other software
systems. These systems may then interact with
th W b i i ib d b it the Web service in a manner prescribed by its
definition, using XML based messages conveyed
by Internet protocolsby Internet protocols

Web Services Architecture RequirementsWeb Services Architecture Requirements,
W3C Working Group Note, 11 Feb. 2004,
http://www.w3.org/TR/wsa-reqs/

De Giacomo & Mecella 7

ee--Services, Web Services, Web
Services Services (3)Services Services (3)Services, Services … (3)Services, Services … (3)
• Services are self-describing, open components that support rapid, low-cost

composition of distributed applications Services are offered by service providers composition of distributed applications. Services are offered by service providers
— organizations that procure the service implementations, supply their service
descriptions, and provide related technical and business support.
Since services may be offered by different enterprises and communicate over the
Internet they provide a distributed computing infrastructure for both intra and Internet, they provide a distributed computing infrastructure for both intra and
cross-enterprise application integration and collaboration.
Service descriptions are used to advertise the service capabilities, interface,
behavior, and quality. Publication of such information about available services
provides the necessary means for discovery, selection, binding, and composition of p y m f y, , g, mp f
services. In particular, the service capability description states the conceptual
purpose and expected results of the service (by using terms or concepts defined in
an application-specific taxonomy). The service interface description publishes the
service signature (its input/output/error parameters and message types). The
(xp t d) b h i f s i d in its x ti n is d s ib d b its s i (expected) behavior of a service during its execution is described by its service
behavior description. Finally, the Quality of Service (QoS) description publishes
important functional and nonfunctional service quality attributes […]. Service
clients (end-user organizations that use some service) and service aggregators
(organizations that consolidate multiple services into a new single service offering) (organizations that consolidate multiple services into a new, single service offering)
utilize service descriptions to achieve their objectives.

• The application on the Web (including several aspects of the SOA) is manifested
by Web services

De Giacomo & Mecella 8

Guest editorial. In [CACM03]

((naivenaive)) BusinessBusiness--toto--BusinessBusiness
I t tiI t tiIntegrationIntegration

web
server

internal

customer

infrastructure
internal
procurement
requests

supplier
internal

infrastructure

web
serverB2B interactions occur

by accessing Web

internal
inf ast ct e

by accessing Web
pages, filling Web
forms, or via email

9
warehouse

infrastructure
[from ACKM04]

WSsWSs: : thethe EvolutionEvolution of of MiddlewareMiddleware
and and EAIEAI Technologies (1)Technologies (1)and and EAIEAI Technologies (1)Technologies (1)

supplier
middleware for

supplier-customer
interaction

iddl f at
in

g

customer

warehouse

middleware for
supplier-warehouse

interaction

middleware for re
 f

or
 in

te
gr

a
m

id
dl

ew
ar

e

middleware for
supplier-XYZ
interaction

m
id

dl
ew

a
th

e
m

th t
middleware for

another party
(XYZ)

supplier-ABC
interaction

supplier’s supplier’s supplier’s

internal infrastructure

yet another party (ABC)

adapters
pp

adapters
pp

adapters

Giuseppe De Giacomo & Massimo Mecella 10

internal infrastructure

[from ACKM04]

WSsWSs: : thethe EvolutionEvolution of of
MiddlewareMiddleware and and EAIEAIMiddlewareMiddleware and and EAIEAI
Technologies (2)Technologies (2)

wide area
network
(Internet)

Web
service

Company A
(provider)

Company B
client

Web
service

p y
(client)

middleware middleware

internal
service

internal
service

internal
service

internal
service

Giuseppe De Giacomo & Massimo Mecella 11
[from ACKM04]

(WS(WS--based) Businessbased) Business--toto--
Business IntegrationBusiness IntegrationBusiness IntegrationBusiness Integration Standardized languages and

protocols, eliminating the need for
many different middleware
infrastructures (need only the

customer

internal
Web

service

(y
Web services middleware)

supplier
internal

infrastructure

procurement
requests

service

Web
service

internal
infrastructure

infrastructure

Interactions based on

warehouseWeb
service

te act o s based o
protocols redesigned for
peer to peer and B2B
settings

internal
infrastructure

service

Internal functionality
made available as a

i

Giuseppe De Giacomo & Massimo Mecella 12

infrastructureservice

[from ACKM04]

When Web ServicesWhen Web Services
Should Be Applied ?Should Be Applied ?Should Be Applied ?Should Be Applied ?
• When it is no possible to easily manage When t s no poss ble to eas ly manage

deployment so that all requesters and
providers are upgraded at oncep pg

• When components of the distributed system
run on different platforms and vendor p
products

• When an existing application needs to be pp
exposed over a network for use by unknown
requesters

Web Services Architecture,
W3C Working Group Note, 11 Feb. 2004,
http://www.w3.org/TR/ws-arch/

Giuseppe De Giacomo & Massimo Mecella 13

Two ArchitecturesTwo Architectures
(and Middlewares) (1)(and Middlewares) (1)

Company D
(client)

(and Middlewares) (1)(and Middlewares) (1)

Company A
(provider)

Web service interface

Web service

client
Web

Logic for accessing to
internal systems Web

service

Web
service

internal
architecture &

Web
service

se ce

external
architecture &

middlewarearchitecture &
middleware

middleware
Company C
(provider)

internal
service logic

internal
service logic

Web
service

Web
service

Company B

De Giacomo & Mecella 14

Company B
(provider)

[from ACKM04]

Two ArchitecturesTwo Architectures
(and Middlewares) (2)(and Middlewares) (2)(and Middlewares) (2)(and Middlewares) (2)

Company A
(service requester)

Company B
(service provider)

external middleware

Web service
client

Web service

external middleware

internal
middleware

transaction
mgmt internal

middleware
h l

transaction
mgmt

th t l

other tiers other tierscomposition
i

other protocol
infrastructure

composition
engine

other protocol
infrastructure

engine engine

C
om

p
(dire

ser
prov

i d i ti

15

pan
y C

ectory
rvice
vider)

service descriptions

[from ACKM04]

A Minimalist Infrastructure for A Minimalist Infrastructure for
Web ServiceWeb ServiceWeb ServiceWeb Service

service providerservice requestor

application object
(client)

application object
(service provider)

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

exchanged on top of exchanged on top of,
HTTP, SMTP, or other
transport

converts procedure calls to/from XML p
messages sent through HTTP or other
protocols.

From Interfaces to From Interfaces to
Stub/SkeletonStub/Skeleton

<operation name="orderGoods">

Stub/SkeletonStub/Skeleton
WSDL of

service provider

<operation name= orderGoods >
<input message = "OrderMsg"/>

</operation>

service providerservice requestor

WSDL compiler
(server side)

WSDL compiler
(client side)

service providerservice requestor

application object
(client)

application object
(service provider)(client) (service provider)

stub skeleton

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

RegistryRegistry
service providerservice requestor service providerservice requestor

g yg y

application object
(client)

application object
(service provider)

stub skeleton

application object
(client)

application object
(service provider)

stub skeleton

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

SOAP messages
(to look for services)

SOAP messages
(to publish service description)

SOAP messages
(to look for services)

SOAP messages
(to publish service description)

SOAP-based middlewareSOAP-based middleware

service descriptionsservice descriptions

UDDI registry UDDI registry

SOAP (1)SOAP (1)()()

SOAP envelope

SOAP header

SOAP envelope

SOAP body

PurchaseOrder
d t

SOAP envelope

SOAP body

AcknowledgementSOAP header

header block

document
-product item

-quantity

g
document
-order id

SOAP envelope

SOAP body

SOAP envelope

SOAP body

(a) Document-style interaction

SOAP body

body block

y
method name
orderGoods
input parameter 1
product item

y

method return

return value
order id

input parameter 2
quantity

(b) RPC-style interaction(b) RPC style interaction

SOAP (2)SOAP (2)

<ProductItem> <ProductItem P d tIt m m “ ”

()()

<ProductItem>
<name>…</name>
<type>…</type>
<make>…</make>
/ d

ProductItem
name=“…”
type=“…”
make=“…”

/

<ProductItem name=“…”
<type>…</type>
<make>…</make>

</ProductItem>
</ProductItem> />

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope" >

<env:Header>

envelope
<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope" >

<env:Header>

envelope

<env:Header>
<t:transactionID

xmlns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.org/2002/06/soap-envelope/role/next"
env:mustUnderstand="true" >
57539

</t:transactionID>
</env:Header>

header
<env:Header>
<t:transactionID

xmlns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.org/2002/06/soap-envelope/role/next"
env:mustUnderstand="true" >
57539

</t:transactionID>
</env:Header>

header

Different

<env:Body>
<m:orderGoods

env:encodingStyle="http://www.w3.org/2002/06/soap-encoding"
xmlns:m="http://example.com/procurement">

<m:productItem> body

blocks
<env:Body>
<m:orderGoods

env:encodingStyle="http://www.w3.org/2002/06/soap-encoding"
xmlns:m="http://example.com/procurement">

<m:productItem> body

blocks
Different
encoding
styles

<name>ACME Softener</name>
</m:productItem>
<m:quantity>

35
</m:quantity>
</m:orderGoods>
</env:Body>

body
<name>ACME Softener</name>

</m:productItem>
<m:quantity>

35
</m:quantity>
</m:orderGoods>
</env:Body>

body

</env:Envelope></env:Envelope>

RPC with SOAPRPC with SOAP
SOAP envelope

HTTP Post

SOAP header

transactional
context

SOAP body

service providerservice requestor

SOAP body

name of the
procedure

input parameter 1

SOAP
engine

service implementation

HTTP
engine

HTTP
engine

client implementation

SOAP
engine input parameter 2

HTTP Post service implementation
(other tiers)

client implementation
(other tiers)

SOAP envelope

SOAP header

transactional
context

SOAP envelope

SOAP header

transactional
context

HTTP Post

context

SOAP body

return
parameter

context

SOAP body

return
parameter pp

The Simplest SOAP MiddlewareThe Simplest SOAP Middleware

i t service providerservice requestor

client
implementation

service provider

service
implementationimplementation

invokes the service
as a local call

implementation

invokes the local procedure of
the service implementation

client stub

invoke SOAP engine to
prepare SOAP message

server stub

the router parses the message,
identifies the appropriate stub,

SOAP engine

prepare SOAP message

packages SOAP into HTTP and

SOAP router

f pp p ,
and delivers the parsed message

HTTP engine

packages SOAP into HTTP and
passes it to an HTTP client that
sends it to the provider

HTTP server

passes the content of the HTTP
message to the router

UDDI Data StructuresUDDI Data Structures
businessEntity
name

tModel
key
tModel
key
tModel
key
tModel
key
tModeltModelnam

contacts
description
identifiers
categories

key
name
description
overviewDoc
identifiers

key
name
description
overviewDoc
identifiers

key
name
description
overviewDoc
id tifi

key
name
description
overviewDoc
id tifi

key
name
description
overviewDoc

key
name
description
overviewDoccategories

businessService
service key

identifiers
categories
identifiers
categories

identifiers
categories
identifiers
categories
identifiers
categories
identifiers
categories

name
description
categories tModel

key
tModel
key
tModel
k
tModel
kbindingTemplate

binding key
description
address

bindingTemplate
binding key
description
address

bindingTemplate
binding key
description
address

key
name
description
overviewDoc
identifiers

key
name
description
overviewDoc
identifiers

Specs stored
at the

provider’s

key
name
description
overviewDoc

key
name
description
overviewDoc

detailed info
references to tModels
detailed info
references to tModels
detailed info
references to tModels

identifiers
categories
identifiers
categories

provider s
siteidentifiers

categories
identifiers
categories

Stored in the UDDI registry

A Registry NotA Registry Not
a Repositorya Repository

tM d l tM d lK ” ddi ddi 3 bli ti ”

a Repositorya Repository

<tModel tModelKey=”uddi:uddi.org:v3_publication”>
<name>uddi-org:publication_v3</name>
<description>UDDI Publication API V3.0</description>
<overviewDoc>

<overviewURL useType=”wsdlInterface”>
http://uddi.org/wsdl/uddi api v3 binding.wsdl#UDDI Publication SoapBinding

i D
p g _ p _ _ g _ _ p g
</overviewURL>

</overviewDoc>
<overviewDoc>

<overviewURL useType=”text”>
http://uddi.org/pubs/uddi_v3.htm#PubV3

</overviewURL>

overviewDoc
(refer to WSDL
specs and to API
specs)

</overviewURL>
</overviewDoc>

<categoryBag>
<keyedReference keyName=”uddi-org:types:wsdl”

keyValue="wsdlSpec"

classification
information
(specifies that this tModelKey="uddi:uddi.org:categorization:types”/>

<keyedReference keyName=”uddi-org:types:soap”
keyValue="soapSpec"
tModelKey="uddi:uddi.org:categorization:types”/>

<keyedReference keyName=”uddi-org:types:xml”
keyValue="xmlSpec"

(specifies that this
tModel is about
XML, WSDL, and
SOAP specs)

y p
tModelKey="uddi:uddi.org:categorization:types”/>

<keyedReference keyName=”uddi-org:types:specification”
keyValue="specification"
tModelKey="uddi:uddi.org:categorization:types”/>

</categoryBag>

</tModel>

UDDI and WSDLUDDI and WSDL
service requestor service provider

WSDL service
descriptions

P bl h P

SOAP/HTTP SOAP/HTTPS

Web service interface

Inquiry API Publishers API

tModeltModel

service descriptions

businessEntity
businessServicep

UDDI registry

bindingTemplatebindingTemplatebindingTemplate

UDDI UDDI APIAPI
service requestor service provider

SOAP/HTTP SOAP/HTTPS

P bl h P

Web service interface

Inquiry API Publishers API

Web service interface

Inquiry API Publishers API

service descriptions service descriptions

Subscription,
Replication, and
Custody
transfer APIs
(SOAP/HTTPS)

<?xml version="1.0"?>
<find tModel generic="1 0" xmlns="urn:uddi org:api">

UDDI registry A UDDI registry B

<find_tModel generic="1.0" xmlns="urn:uddi-org:api">
<categoryBag>
<keyedReference tModelKey="UUID:C25893AF-1977-3528-36B5-4192C2AB9E2C"

keyName="uddi-org:types" keyValue="wsdlSpec"/>
<keyedReference tModelKey="UUID:A15019C5 AE14 236C 331C 650857AE0221"<keyedReference tModelKey="UUID:A15019C5-AE14-236C-331C-650857AE0221"

keyName="book pricing"
keyValue="36611349"/>

</categoryBag>

Putting All TogetherPutting All Together
service provider service

implementation
WSDL

generator
1service provider service

implementation
WSDL

generator
1

g gg g

implementation

server stub

generator

WSDL service
descriptions

implementation

server stub

generator

WSDL service
descriptions

HTTP engine

SOAP router WSDL compiler
2

UDDI publisherHTTP engine

SOAP router WSDL compiler
2

UDDI publisherHTTP engine UDDI publisher

3

b in Entit

HTTP engine UDDI publisher

3

b in Entit

tModel

businessEntity
businessService

bindingTemplate tModeltModel

businessEntity
businessService

bindingTemplatebindingTemplatebindingTemplate

Inquiry API Publishers APIInquiry API Publishers API

UDDI registryUDDI registryUDDI registry

ServicesServices
requestQuote• A service is characterized by the

set of (atomic) operations that it
(1)

• … and possibly by constraints on
Client Service

orderGoods

fi O d

set of (atomic) operations that it
exports … (2)

p y y
the possible conversations
– Using a service typically involves

performing sequences of

confirmOrder

makePayment

(3)

(4)
perform ng sequences of
operations in a particular order
(conversations)

– During a conversation the client
[requestQuote]

During a conversation, the client
typically chooses the next
operation to invoke (on the basis
of previous results, etc.) among

QuoteRequested

[orderGoods]f p , .) m g
the ones that the service allows
at that point

GoodsOrdered

[confirmOrder(FALSE)]

[confirmOrder(TRUE)]

28

OrderConfirmed[makePayment]

ChoreographyChoreography: : CoordinationCoordination
of of ConversationsConversations of of NN
ServicesServices
• Global specification of the conversations of N p

peer services (i.e., multi-party conversations)
– Roles

M h– Message exchanges
– Constraints on the order in which such exchanges

should occur
1:requestQuote

2:orderGoods

suppliercustomer

5:makePaymenth D l

4:confirmOrder

5:makePayment

3:checkShipAvailable
7:getShipmentDetail

6:orderShipment

29
warehouse

8:confirmShipment 9:confirmShipment

ChoreographyChoreography: : CoordinationCoordination
of of ConversationsConversations of of NN
ServicesServices

suppliercustomer warehouse

supplier warehousecustomer

requestQuote

orderGoods

pp

checkShipAvailable

requestQuote
(to supplier)

orderGoods

confirmOrder

makePayment

orderShipment
checkShipAvailable

(to warehouse)

confirmOrder

orderGoods
(to supplier)

cancelOrder

warehouse
confirms

warehouse
cancels

getShipmentDetail

confirmShipment

p

confirmShipment
(to customer) (to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

getShipmentDetails
(to customer)(to customer)

confirmShipment
(to warehouse)

confirmShipment
(to supplier)

De Giacomo & Mecella 30

(to supplier)

[from ACKM04]

CompositionCompositionpp

• Deals with the implementation of an Deals with the implementation of an
application (in turn offered as a service)

h se applicati n l ic inv lves the whose application logic involves the
invocation of operations offered by other
services
– The new service is the composite servicehe new ser ce s the compos te ser ce
– The invoked services are the component

services services

De Giacomo & Mecella 31

The Composition The Composition
Engine/MiddlewareEngine/MiddlewareEngine/MiddlewareEngine/Middleware

Orchestration: the run-time environment
executes the composite service business
logic by invoking other services (through

Through the development environment, a composition schema is
synthesized, either manually or
(semi-)automatically. A service composition model and a language logic by invoking other services (through

appropriate protocols)

Web service composition middleware

(semi)automatically. A service composition model and a language
(maybe characterized by a graphical and a textual
representation) are adopted

development
environment

House hunting
service

Packaging service Flight reservation
service

Shipment service
Phone line

installation service

Internet DSL line
installation service

run-time environment
(orchestration engine)

Web service composition middleware

Component
services offered
by other env ronment

composite service s h m

installation service (orchestrat on eng ne) by other
providerscomposition

schema

composite service
execution data

schema
definitions

composition
schema

Supplier WS

designer
other Web Services middleware
(e.g., SOAP invocation engine)

Warehouse WS

32Accounting WSComposite service provider [from ACKM04]

Synthesis and Synthesis and
OrchestrationOrchestrationOrchestrationOrchestration
• (Composition) Synthesis: building the

ifi i f h i i (i
p y g

specification of the composite service (i.e.,
the composition schema)

M l– Manual
– Automatic

• Orchestration: the run time management of • Orchestration: the run-time management of
the composite service (invoking other
services scheduling the different steps services, scheduling the different steps,
etc.)
– Composition schema is the “program” to be p p g

executed
– Similarities with WfMSs (Workflow

Management Systems)
De Giacomo & Mecella 33

Management Systems)

CompositionComposition SchemaSchemapp

• A composition schema specifies the A composition schema specifies the
“process” of the composite service

Th “ kfl ” f h i– The “workflow” of the service
• Different clients, by interacting with the , y g

composite service, satisfy their specific
needs (reach their goals)needs (reach their goals)
– A specific execution of the composition

schema for a given client is an orchestration schema for a given client is an orchestration
instance

De Giacomo & Mecella 34

ChoreographyChoreography ((CoordinationCoordination))
vs.vs. CompositionCompositionpp
((OrchestrationOrchestration))
• Composition is about implementing new servicesp p g

– From the point of view of the client, a composite service and a
basic (i.e., implemented in a traditional programming language)
one are indistinguishable

Ch h b l b l d l f N f • Choreography is about global modeling of N peers, for
proving correctness, design-time discovery of possible
partners and run-time bindingsp g

• N.B.: There is a strong relationship between a service
internal composition and the external choreographies it internal composition and the external choreographies it
can participate in
– if A is a composite service that invokes B, the A’s composition

schema must reflect the coordination protocol governing A B schema must reflect the coordination protocol governing A – B
interactions

– in turn, the composition schema of A determines the
coordination protocols that A is able to support (i e the

De Giacomo & Mecella 35

coordination protocols that A is able to support (i.e., the
choreographies it can participate in)

The “Stacks” of Service The “Stacks” of Service
TechnologiesTechnologiesTechnologiesTechnologies

Registry/Repository
& Discovery

Multiple Interacting
Services

y

Single Service

Messaging

WSDL-based Semantic-basedebXML-based

De Giacomo & Mecella 36

The WSDLThe WSDL--based based
“Stack”“Stack”

Includes 3 specifications:
(i) Web Service Context (WS-CTX)
(ii) Web Service Coordination Framework

(WS-CF)
(iii) Web Service Transaction ManagementStackStack

repository & discoveryUDDI

(iii) Web Service Transaction Management
(WS-TXM)

WS-Transaction

WS-Coordination
transaction management

WS Composite
Application Framework
(WS-CAF)

B
P

E
L4

W
S

r s

ho
rt)

WS-BPEL orchestration

WS-CDL choreography

WSFL, XLANG

WSCI

BPML

Fo
rm

er
ly

 B
(B

P
E

L
fo

r

WS-Policy, WSLA non-functional features, QoS

W
eb

 S
er

vi
ce

IB

M
ca

de
m

ic
 p

ro
po

sa
l

an
gu

ag
e

[W
S

O
L] WSCL, CS-WS

conversation description /
interaction protocol

Both the Web Service Conversation
Language (WSCL, by HP) and
Conversation Support for Web Services
(CS-WS, by IBM) proposals are no
more supported

WS-DL

WS Reliable Messaging
advanced messaging

description (interface definition)

m
er

ly
 a

ls
o

W
S

E
L

(W
oi

nt
 L

an
gu

ag
e)

 b
y

I
so

 th
e

re
se

ar
ch

/a
cc

S
er

vi
ce

 O
ffe

rin
g

La

WS-Routing, WS-Addressing

XML Protocol – XMLP (SOAP)

advanced messaging

basic messaging

(i)
fo

rm
E

nd
po

(ii
)a

ls
W

eb
 S

37

XML & XML Schema, …

HTTP, SMTP, …

content

transport

Web Service Definition Web Service Definition
Language (WSLanguage (WS DL)DL)Language (WSLanguage (WS--DL)DL)
• WS-DL (v2.0) provides a framework for defining

Service interface
(abstract definition)

p g
– Interface: operations and input/output formal parameters
– Access specification: protocol bindings (e.g., SOAP)
– Endpoint: the location of service– Endpoint: the location of service

support
Interface

1..n0..n
Operation

specify (how to invoke)

1..n

Interface

Message

consist ofextend
1..2

Operation

implement
1

Binding

specify (how to invoke) Message

consist of
1..n

provide
Service

1..n

implement

Endpoint
Part

De Giacomo & Mecella 38

Service implementation
(concrete definition)

Message Exchange Message Exchange
Patterns (1)Patterns (1)Patterns (1)Patterns (1)

Client Service

input

Client Service

input

Client Service

in-only (no faults)

Client Service

robust in-only (message triggers fault)

fault

y () y (g gg)

fault

Client Service
output

Client Service
output

out-only (no faults) robust out-only (message triggers fault)

De Giacomo & Mecella 39

Message Exchange Message Exchange
Patterns (2)Patterns (2)Patterns (2)Patterns (2)

(1) input input

Client Service

(2) output

Client Service

(?) output

in-out (fault replaces message)

(2’) fault

in-optional-out
(i f l)

fault

(2’) fault fault
(message triggers fault)

Client Service

(2) input

Client Service

(?) input

Cl ent Serv ce

(1) output

out-in (fault replaces message) out-optional-in

Client Service

output

De Giacomo & Mecella 40

out-in (fault replaces message) out optional in
(message triggers fault)

An Example (1)An Example (1)
D fi i i f

p ()p ()
<definitions … >

<types>

Definition of a
message and its
formal
parameters

<element name="ListOfSong_Type">
<complexType><sequence>

<element minOccurs="0" maxOccurs="unbound“
name="SongTitle" type="xs:string"/>

parameters

name= SongTitle type= xs:string />
</sequence></complexType>

</element>
<element name="SearchByTitleRequest">

<complexType><all>
<element name="containedInTitle“

type="xs:string"/>
</all></complexType></all></complexType>

</element>
<element name="SearchByTitleResponse">

<complexType><all>
<element name="matchingSongs“

xsi:type="ListOfSong_Type"/>
</all></complexType>

</element>

De Giacomo & Mecella 41

</element>

An Example (2)An Example (2)p ()p ()
<element name="SearchByAuthorRequest">

<complexType><all><complexType><all>
<element name="authorName“

type="xs:string"/>
</all></complexType>p yp

</element>
<element name="SearchByAuthorResponse">

<complexType><all>
<element name="matchingSongs“<element name="matchingSongs“

xsi:type="ListOfSong_Type"/>
</all></complexType>

</element>
<element name="ListenRequest">

<complexType><all>
<element name="selectedSong“

type="xs:string"/>type="xs:string"/>
</all></complexType>

</element>

De Giacomo & Mecella 42

An Example (3)An Example (3)p ()p ()

<element name="ListenResponse">

<complexType><all>
<element name="MP3fileURL" type="xs:string"/><element name= MP3fileURL type= xs:string />

</all></complexType>
</element>
<element name="ErrorMessage"><element name= ErrorMessage >

<complexType><all>
<element name="cause" type="xs:string"/>

</all></complexType></all></complexType>
</element>

</types>

De Giacomo & Mecella 43

An Example (4)An Example (4) Definition of a
service interfacep ()p ()

<interface name="MP3ServiceType">
< ti " h b titl " tt "i t"><operation name="search_by_title" pattern="in-out">

<input message="SearchByTitleRequest"/>
<output message="SearchByTitleResponse"/>
<outfault message="ErrorMessage"/>g g /

</operation>
<operation name="search_by_author" pattern="in-out">

<input message="SearchByAuthorRequest"/>
< t t "S hB A th R "/><output message="SearchByAuthorResponse"/>
<outfault message="ErrorMessage"/>

</operation>
<operation name="listen" pattern="in-out">p p

<input message="ListenRequest"/>
<output message="ListenResponse"/>
<outfault message="ErrorMessage"/>

</ ti >

Definition of an
operation and its
message exchange </operation>

</interface>
</definitions>

message exchange
pattern

De Giacomo & Mecella 44

Business Process Execution Business Process Execution
LanguageLanguage
for Web Services (WSfor Web Services (WS--BPEL)BPEL)
• Allows specification of

i i h f W b
p

composition schemas of Web
Services
– Business processes as coordinated

Clientp
interactions of Web Services

– Business processes as Web
Services

Activity A

t of the com

• Allows abstract and executable
processes

• Influenced from
Activity B

m
posite servInfluenced from

– Traditional flow models
– Structured programming

Successor of WSFL and XLANG

Activity C

vice

– Successor of WSFL and XLANG
• Component Web Services

described in WS-DL (v1.1)

De Giacomo & Mecella 45

WSWS--BPEL SpecificationBPEL Specificationpp
An XML document specifyingp y g
• Roles exchanging messages with the

composite service/process
• The (WSDL) interfaces supported

b h l
Orchestrationpp

by such roles

i f

- variables and data transfers,
- exception handling,
- correlation information (for instance routing)• The

orchestration of

invoke

receive orderGoods

interfaces
Variables:
warehouse: URI
inStock, shippingAvail: bool
customer: String
…

roles
orchestration of
the process
– Variables and

data transfer invoke
checkLocalStock

invoke

customer

h

data transfer
– Exception

handling
invoke

checkShipAvailablewarehouse

local service
offered by the

ppli

– Correlation
information

invoke confirmOrderinvoke cancelOrder

supplier

supplier

Process ModelProcess Model
(A ti iti)(A ti iti)(Activities)(Activities)
• Primitive

invoke: to invoke a Web Service (in out) operation– invoke: to invoke a Web Service (in-out) operation
– receive: to wait for a message from an external source
– reply: to reply to an external source message

it t i idl f i ti i d– wait: to remain idle for a given time period
– assign: to copy data from one variable to another
– throw: to raise exception errors
– empty: to do nothing

• Structured
– sequence: sequential order

A link connects exactly one source
activity S to exactly one target
activity T; T starts only after S ends.
An activity can have multiple incoming sequence sequential order

– switch: conditional routing
– while: loop iteration
– pick: choices based on events

n act v ty can have mult ple ncom ng
(possibly with join conditions) and
outgoing links. Links can be guarded

– pick: choices based on events
– flow: concurrent execution (synchronized by links)
– scope: to group activities to be treated “transactionally”

(managed by the same fault handler within the same

De Giacomo & Mecella 47

(managed by the same fault handler, within the same
transactional context)

Process ModelProcess Model
(Data Manipulation and Exception (Data Manipulation and Exception (p p(p p
Handling)Handling)

• Blackboard approachBlackboard approach
– a blackboard of variables is associated to each

orchestration instance (i.e., a shared memory within
 h i i)an orchestration instance)

– variables are not initialized at the beginning; they
are modified (read/write) by assignments and are modified (read/write) by assignments and
messages

– manipulation through XPathp g
• Try-catch-throw approach

– definition of fault handlersf f f
– … but also event handlers and compensation handlers

(for managing transactionality as in the SAGA
d l)

De Giacomo & Mecella 48

model)

ChoreographyChoreography
(As Reported in Literature: Classical (As Reported in Literature: Classical (As Reported in Literature Classical (As Reported in Literature Classical
Ballet Style)Ballet Style)

• Consider a dance with more than one dancerCons der a dance w th more than one dancer
– Each dancer has a set of steps that they will

perform. They orchestrate their own steps because
h i l l f h i d i (h i they are in complete control of their domain (their

body)
– A choreographer ensures that the steps all of the – A choreographer ensures that the steps all of the

dancers make is according to some overall, pre-
defined scheme. This is a choreography

– The dancers have no control over the steps they
make: their steps must conform to the choreography
Th d s h si l i i t f th d– The dancers have a single view-point of the dance

– The choreographer has a multi-party or global view-
point of the dance

De Giacomo & Mecella 49

point of the dance

ChoreographyChoreography
(A P ibl E l ti J S i St l)(A P ibl E l ti J S i St l)(A Possible Evolution: Jam Session Style)(A Possible Evolution: Jam Session Style)

• Consider a jazz band with many playersConsider a jazz band with many players
– There is a rhythm and a main theme. This is the

choreographychoreography
– Each player executes his piece by improvising

variations over the main theme and following the g
given rhythm

– The players still have a single view-point of the
music; in addition they have full control over the
music they play
Th i l i l b l i i f h – There is a multi-party or global view-point of the
music, but this is only a set of “sketchy” guidelines

De Giacomo & Mecella 50

WSWS--BPEL vs. WSBPEL vs. WS--CDLCDL

• Orchestration/WS-BPEL is about Orchestration/WS BPEL is about
describing and executing a single peer

h h / DL b • Choreography/WS-CDL is about
describing and guiding a global modelg g g g
(N peers)

• You should derive the single peer from • You should derive the single peer from
the global model by projecting based on

ti i tparticipant

De Giacomo & Mecella 51

WSWS--CDL Basics (1)CDL Basics (1)()()

• Participants & Rolesp
– Role type

• Enumerate the observable behavior that a collaborating
participant exhibitsparticipant exhibits

• Behavior type specifies the operations supported
– Optional WSDL interface type

– Relationship type– Relationship type
• Specify the mutual commitments, in terms of the

Roles/Behavior types, two collaborating participants are
required to providerequired to provide

• Note: all multi-party relationships are transformed into
binary ones

– Participant type– Participant type
• Enumerate a set of one or more Roles that a collaborating

participant plays

De Giacomo & Mecella 52

WSWS--CDL Basics (2)CDL Basics (2)()()
• Channels

– A channel realizes a dynamic point of collaboration, through A channel realizes a dynamic point of collaboration, through
which collaborating participants interact

• Where & how to communicate a message
– Specify the Role/Behavior and the Reference of a collaborating

ti i t participant
– Identify an Instance of a Role

• Identify an instance of a conversation between two or more
collaborating participantscollaborat ng part c pants

– A conversation groups a set of related message exchanges
• One or more channel(s) MAY be passed around from a

Role to one or more other Role(s) possibly in a daisy Role to one or more other Role(s), possibly in a daisy
fashion through one or more intermediate Role(s),
creating new points of collaboration dynamically
– A Channel type MAY restrict the types of Channel(s) allowed – A Channel type MAY restrict the types of Channel(s) allowed

to be exchanged between the Web Services participants,
through this Channel

– A Channel type MAY restrict its usage, by specifying the

De Giacomo & Mecella 53

A Channel type MAY restrict its usage, by specifying the
number of times a Channel can be used

WSWS--CDL Basics (3)CDL Basics (3)()()

• Activities are the building blocks of a choreographyg g p y
– Basic Activity

• Interaction: message exchange between participants
– Only in-out and in-onlyOnly in out and in only

• Assign: within one role, assign the value of a variable to another
one

– Variables can be about information (exchanged documents), states f m (g m),
and channels

• No action: do null
– Ordering structure

Attention: a choreography
performing another one is referred g

• Sequence (P.Q)
• Parallel (P | Q)
• Choice (P + Q)

p g
to as “choreography composition” in
the standard

Choice (P + Q)
– Perform: a complete, separately defined choreography is

performed
• Basis for scalable modeling

De Giacomo & Mecella 54

• Basis for scalable modeling

WSWS--CDL Basics (4)CDL Basics (4)()()

• A Choreography combines all previous elements A Choreography combines all previous elements,
forming a collaboration unit of work
– Enumerate all the binary relationships interactions Enumerate all the binary relationships interactions

act in
– Localize the visibility of variablesLocalize the visibility of variables

• Using variable definitions

– Prescribe alternative patterns of behaviorp
• Using work/units and reactions

– Enable Recovery
 / • Using work/units and reactions

• Backward: handle exceptional conditions
• Forward: finalize already completed activities

De Giacomo & Mecella 55

y p

ServicesServices
requestQuote• A service is characterized by the

set of (atomic) operations that it
(1)

• … and possibly by constraints on
Client Service

orderGoods

fi O d

set of (atomic) operations that it
exports … (2)

p y y
the possible conversations
– Using a service typically involves

performing sequences of

confirmOrder

makePayment

(3)

(4)
perform ng sequences of
operations in a particular order
(conversations)

– During a conversation the client
[requestQuote]

T iti During a conversation, the client
typically chooses the next
operation to invoke (on the basis
of previous results, etc.) among

QuoteRequested

[orderGoods]

Transition
system

f p , .) m g
the ones that the service allows
at that point

GoodsOrdered

[confirmOrder(FALSE)]

[confirmOrder(TRUE)]

56

OrderConfirmed[makePayment]

Transition SystemsTransition Systemsyy

• A transition system (TS) trans t on syst m (S)
is a tuple
T = < A, S, S0, δ, F >

h Ven

collectB
collectL

where:
– A is the set of actions

S is the set of states

Ven

2pInserted

2p

1p
– S is the set of states
– S0 ∈ F is the initial

state

p

1pInsertedbig

stat
– δ ⊆ S × A × S is the

transition relation

ChoiceB

ChoiceL

little

– F ⊆ S is the set of final
states

De Giacomo & Mecella 57

ProcessProcess AlgebrasAlgebras and and
TSsTSsTSsTSs
• Process theory: collectB

collecty
– a process is a term of an

algebraic language
– a transition E → F means

Ven
2p

1

collectL

a transition E →a F means
that process E may
become F by performing
(participating in or

2pInserted

1pInserted

1p

big(participating in, or
accepting) action a

– structured rules guide the
derivation

ChoiceB

p

little
derivation

• A graph: Ven = 2p.2pInserted + 1p.1pInserted

ChoiceL

g p
– nodes are process terms
– labelled directed arcs

between nodes

2pInserted = big.ChoiceB

1pInserted = little.ChoiceL

ChoiceB = collectB.Ven

De Giacomo & Mecella 58

between nodes
ChoiceL = collectL.Ven

Automata vs.Automata vs.
Transition SystemsTransition SystemsTransition SystemsTransition Systems
• AutomataAutomata

– define sets of runs (or traces or strings): (finite)
length sequences of actions

• TSs
– … but I can be interested also in the alternatives

“ d” d h l ’ “encountered” during runs, as they represent client’s
“choice points”

a aa
Different as
TSs

As automata they
recognize the
same language:
abc* + ade*

b

c e

d b

c e

d
abc* + ade*

De Giacomo & Mecella 59

WSWS--DL is the Set of DL is the Set of
ActionsActionsActionsActions

• A message exchange pattern (and the A message exchange pattern (and the
related operation) represents an
interacti n ith the service clientinteraction with the service client
– an action that the service can perform by

interacting with its client
• Abstracting from formal parameters, we Abstracting from formal parameters, we

can associate a different symbol to each
operation operation …

• … thus obtaining the alphabet of actions
De Giacomo & Mecella 60

An ExampleAn Examplepp

• The The
MP3ServiceInterface
defines 3 acti ns:

start
defines 3 actions:
– search_by_title / st st sal
– search_by_author / sa
– listen / l

stl

listen / l

F ll A { t l}

readyToPlay

• Formally A = {st,sa,l}

De Giacomo & Mecella 61

TSs and ChoreographyTSs and Choreography
(l i t iti (l i t iti))))(only an intuition :(only an intuition :--))))

• A Choreography can be seen as the specification of a g p y p
set of concurrent peers, each one exposing a TS, that
fulfills the global model

start

l

start

sast sal sa

l

readyToPlay

st

De Giacomo & Mecella 62

st

LectureLecture 44

1 State of the Art on 1. State of the Art on
Automatic Composition

Service Composition SystemService Composition System

f i l

clientclient

target
service
invocation

functional
requirements
of the

non-functional
requirements
of the target
service Orchestration

invocation

target
service

Synthesis
specification of
the process of
the composite

Monitoring

service

additional
requirements for

h t ti

service
descriptions

service
descriptions available

orchestration

service
descriptions

service
descriptions

available
i 1

functional
features available

i 1
available

i 1

functional
features

available
service
invocation

available
i

functional
features available

i
available

i

functional
features

service 1non-
functional
features

service 1service 1non-
functional
features

… … … service nnon-
functional
features

service nservice nnon-
functional
features 64De Giacomo & Mecella

Service compositionService composition How to model pp

1. Composition Synthesis:

client request ?

p y
Input:
– client request

set of available services
How to model
available services ?– set of available services

Output:
– specification of composite service

available services ?

specification of composite service

2. Orchestration:
Input:

How to model the
composite service ?

Input:
– specification of composite service

Output: Output:
– coordination of available services

according to the composition schema
data flow and control flow monitoring

How to orchestrate
the composite

i ?– data flow and control flow monitoring

65De Giacomo & Mecella

service ?

Service descriptionService descriptionpp

• Services export a view of their behaviorServices export a view of their behavior
– I/O interface

D A
information
i d i• Data Access

– focus on data
for information gathering

oriented services

– for information gathering
• Atomic Actions

– focus on actions

services as
atomic actions

focus on actions
– world altering services services as

processes

– Complex Behavioral Description
(typically represented using finite states, e.g., TSs)

66De Giacomo & Mecella

The whole pictureThe whole picturepp
Papazoglou’s
group * Diagram inspired

f H ll& 2004 Bouguettaya’s
group *

st
em

from Hull&Su 2004
SIGMOD tutorial

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s

p gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

group

H ll’

St
at

g p

Hull’s group

* d kl

De Giacomo & Mecella 67

* do not tackle
automatic composition

Key dimensions in service Key dimensions in service
composition (1)composition (1)composition (1)composition (1)

1 Statics of the composition system1. Statics of the composition system
(i.e., static semantics):

– e g ontologies of services (for sharing semantics e.g, ontologies of services (for sharing semantics
of data/information), inputs and outputs, etc.

2. Dynamics of component services
(i e dynamic semantics process):(i.e., dynamic semantics, process):

– e.g., behavioral features, complex forms of
dataflow transactional attitudes adaptability to dataflow, transactional attitudes, adaptability to
varying circumstances

68De Giacomo & Mecella

Key dimensions in service Key dimensions in service
composition (2)composition (2)composition (2)composition (2)

3 Dynamics of the target service3. Dynamics of the target service
(i.e., dynamic semantics, process)
The target service exposed as:The target service exposed as:
– single step

(set f) sequenci l steps

atomic
action

– (set of) sequencial steps
– (set of) conditional steps

hil /l i b t h– while/loops, running batch
– while/loops, running under an external control

processprocess

69De Giacomo & Mecella

Key dimensions in service Key dimensions in service
composition: the 4composition: the 4ththdimensiondimensioncomposition: the 4composition: the 4ththdimensiondimension

4 D f () l h
For

simplicity not 4. Degree of (in)completeness in the
specification of:

simplicity not
shown in the

following
slides

– Static Aspects (of the composition system)
– Dynamic Aspects (of component services)

slides

– Target service specification

• Note: Orthogonal to previous dimensions

70De Giacomo & Mecella

WhatWhat isis addressedaddressed fromfrom the the
technicaltechnical pointpoint of of viewview??technicaltechnical pointpoint of of viewview??

A t ti iti t h i ?• Automatic composition techniques?
– Which formal tools?
– Sound and complete techniques?
– Techniques/Problem investigated from Techniques/Problem investigated from

computational point of view?

71De Giacomo & Mecella

Analyzed worksAnalyzed worksyy
• Papazoglou’s group

B ’ (not automatic composition)• Bouguettaya’s group
• Knoblock’s group (information oriented services)

(not automatic composition)

Knoblock s group (information oriented services)

• Composition as Planning (services as atomic actions)

• Traverso’s group
• McIlraith’s groupMcIlraith s group
• Hull’s group

(services as processes)

• The Roman group
as called by Rick Hull

72De Giacomo & Mecella

as called by Rick Hull
in his SIGMOD 2004
tutorial

Papazoglou’s groupPapazoglou’s group
J. Yang and M.P. Papazoglou: Service Components for Managing the J. Yang and M.P. Papazoglou: Service Components for Managing the
LifeLife--cycle of Service Compositions Informationcycle of Service Compositions Information Systems 29 (2004) Systems 29 (2004) LifeLife cycle of Service Compositions, Informationcycle of Service Compositions, Information Systems 29 (2004), Systems 29 (2004),
no. 2, 97 no. 2, 97 –– 125125

• available services: I/O interfaces
– service component: simple or complex pre-existing service

wrapped into a web component
– they are stored in a service component class library they are stored in a service component class library
– operations offered through a uniform interface

• composite service: complex behavioral composite service complex behavioral
description
– set of service components (from service component class p p

library) “glued” together by composition logics
• composition logics defines execution order (either sequential

or concurrent) of service components within composition, or concurrent) of service components within composition,
dependencies among input and output parameters, etc.

– support for manual composition: designer specifies
composite service using the Service Scheduling Language composite service using the Service Scheduling Language
and the Service Composition Execution Language

73De Giacomo & Mecella

Papazoglou’s groupPapazoglou’s groupp g g pp g g p
Papazoglou’s
group

st
em

group

th
e

sy
s

ti
cs

 o
f

St
at

De Giacomo & Mecella 74

Bouguettaya’s groupBouguettaya’s group
B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid: Composing B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid: Composing

 h l h l Web services on the Semantic Web, Very Large Data Base Journal Web services on the Semantic Web, Very Large Data Base Journal
12 (2003), no. 4, 33312 (2003), no. 4, 333––351351

• available services: atomic actionsavailable services: atomic actions
– semantically described in terms of their I/O

interfaces and non-functional properties such asinterfaces and non functional properties such as
their purpose, their category and their quality

– Available services stored into an ontology on the gy
basis of their non-functional properties

75De Giacomo & Mecella

BouguettayaBouguettaya’s group ’s group g yg y g pg p
• client request:

– expressed in the Composite Service Specification – expressed in the Composite Service Specification
Language (CSSL): it specifies the sequence of
desired operations that the composite service

l l l should perform and control flow between operations
• service composition problem:

– Input: (i) I/O descr. of available services
(ii) client request expr. in CSSL

O t t it i f ti– Output: composite service as sequence of operations
(semi-automatically) obtained from the client
specification by identifying, for each operation, the specification by identifying, for each operation, the
operation(s) of available services that matches it, on
the basis of their I/O interface and non-functional
featuresfeatures

76De Giacomo & Mecella

Bouguettaya’s groupBouguettaya’s groupg y g pg y g p
Papazoglou’s

st
em

groupBouguettaya’s
group

th
e

sy
s

ti
cs

 o
f

St
at

De Giacomo & Mecella 77

Knoblock’s groupKnoblock’s group
M.M. Michalowski, JMichalowski, J..LL.. Ambite, SAmbite, S.. Thakkar, RThakkar, R. . Tuchinda, CTuchinda, C..A. A.
Knoblock and SKnoblock and S Minton:Minton: Retrieving and semantically integrating Retrieving and semantically integrating Knoblock, and SKnoblock, and S.. Minton:Minton: Retrieving and semantically integrating Retrieving and semantically integrating
heterogeneous data from the web. heterogeneous data from the web. IIEEE Intelligent Systems, 19EEE Intelligent Systems, 19
((20042004),), no. 3,no. 3, pp.72pp.72 –– 7979

• available service: data queryavailable service: data query
– basic idea: informative services as views over data

sourcessources
– each service described in terms of I/O parameters

(of course, the latter being provided by the data (g p y
source), binding patterns and additional constraints
on the source

• client request:
– data query, expressed in terms of inputs provided by y p p p y

the client and requested outputs

78De Giacomo & Mecella

Knoblock’s groupKnoblock’s groupg pg p

• service composition problem: serv ce compos t on problem
– Input: (i) available services modeled as data-

sources, and (ii) client request as user query
– Output: (automatically obtained) composite service

as integration plan for a generalized user query, so
that all the user queries that differ only for that all the user queries that differ only for
intensional input values can be answered by the same
(composite) service. Integration plan as a sequence
f i ki bi di i of source queries, taking binding pattern into

account

79De Giacomo & Mecella

Knoblock’s groupKnoblock’s groupg pg p
Papazoglou’s

st
em

Bouguettaya’s
group

group

Knoblock’s
group

th
e

sy
s

ti
cs

 o
f

St
at

De Giacomo & Mecella 80

Composition as PlanningComposition as Planningp gp g

• available services: atomic actions ava lable serv ces atom c act ons
• client request: client (propositional) goal
• service composition problem: planning problemservice composition problem: planning problem

– Input: (i) client goal (also encodes initial condition)
(ii) available services as atomic actions

– Output: composite service as a (possibly conditional) plan, i.e.,
sequence of actions that transform the initial state into a
state satisfying the goal.y g g

• Sirin, Parsia, Wu, Hendler & Nau [Sirin etal ICWS03]
• ICAPS 2003 Planning for Web Services workshop [P4WS03]
• ICAPS 2004 Planning for Web and Grid Services workshop ICAPS 004 Plann ng for Web and Gr d Serv ces workshop

[P4WGS04]
• NOTE: the client has not influence over the control

flow of the composite serviceflow of the composite service
81De Giacomo & Mecella

Example (1)Example (1)p ()p ()
• Component Services

– S1: True → {S1:bookFlight} FlightBooked Æ MayBookLimo
M B kLi {S b kLi } Li B k dMayBookLimo → {S1:bookLimo} LimoBooked

– S2: True → {S2:bookHotel} HotelBooked
HotelBooked → {S2:bookShuttle} ShuttleBookedHotelBooked → {S2:bookShuttle} ShuttleBooked

– S3: True → {S3:bookEvent} EventBooked

• Ontology:
– TravelSettledUp ≡ FlightBooked Æ HotelBooked Æ EventBooked
– CommutingSettled ≡ ShuttleBooked Ç LimoBooked ÇCommutingSettled ≡ ShuttleBooked Ç LimoBooked Ç

TaxiAvailablilityChecked
– ...

• Client Service Request:
–– Find a composition of the actions (i.e., a sequence, a program Find a composition of the actions (i.e., a sequence, a program

i h ti b i i t ti) h th t i i h ti b i i t ti) h th t i using such actions as basic instructions) such that a given using such actions as basic instructions) such that a given
property is fulfilledproperty is fulfilled

82De Giacomo & Mecella

Example (2)Example (2)p ()p ()
• Component Services

– S1: True → {S1:bookFlight} FlightBooked Æ MayBookLimo
MayBookLimo → {S1:bookLimo} LimoBooked

– S2: True → {S2:bookHotel} HotelBooked
HotelBooked → {S2:bookShuttle} ShuttleBookedHotelBooked → {S2:bookShuttle} ShuttleBooked

– S3: True → {S3:bookEvent} EventBooked

l• Ontology:
– TravelSettledUp ≡ FlightBooked Æ HotelBooked Æ EventBooked
– CommutingSettled ≡ ShuttleBooked Ç LimoBooked Ç

TaxiAvailablilityCheckedTaxiAvailablilityChecked
– ...

• Client Service Request:
–– Starting from: Starting from: ¬¬FlightBooked FlightBooked ÆÆ ¬¬ HotelBooked HotelBooked ÆÆ

¬¬EventBooked EventBooked ÆÆ ¬¬CommutingSettledCommutingSettled
–– Achieve: TravelSettledUp Achieve: TravelSettledUp ÆÆ CommutingSettledCommutingSettled

83De Giacomo & Mecella

Example (3)Example (3)p ()p ()
• Component Services

– S1: True → {S1:bookFlight} FlightBooked Æ MayBookLimo
MayBookLimo → {S1:bookLimo} LimoBooked

– S2: True → {S2:bookHotel} HotelBooked
HotelBooked → {S2:bookShuttle} ShuttleBooked

– S3: True → {S3:bookEvent} EventBooked

• Ontology:
– TravelSettledUp ≡ FlightBooked Æ HotelBooked Æ EventBooked
– CommutingSettled ≡ ShuttleBooked Ç LimoBooked Ç TaxiAvailablilityCheckedCommut ngSettled ShuttleBooked Ç L moBooked Ç ax Ava labl l tyChecked
– ...

• Client Service Request:
Starting from:Starting from:gg
¬¬FlightBooked FlightBooked ÆÆ ¬¬ HotelBooked HotelBooked ÆÆ ¬¬EventBooked EventBooked ÆÆ ¬¬CommutingSettledCommutingSettled

achieve: achieve:
TravelSettedUp TravelSettedUp ÆÆ CommutingSettledCommutingSettledpp gg

• Compositions:
– S1:bookFlight; S1:bookLimo; S2:bookHotel; S3:bookEvent
– S3:bookEvent; S2:bookHotel; S1:bookFlight; S2:bookShuttle

84De Giacomo & Mecella

Another Example (1)Another Example (1)p ()p ()
• Component Services:

– S1: Registered → {S1:bookFlight} FlightBookedS1: Registered → {S1:bookFlight} FlightBooked
¬Registered → {S1:register} Registered

– S2: True → {S2:bookHotel} HotelBooked2 { 2 }
HotelBooked → {S2:bookShuttle} ShuttleBooked

– S3: True → {S3:bookEvent} EventBooked

• Ontology:
– TravelSettedUp ≡ FlightBooked Æ HotelBooked Æ EventBookedp g

• Client Service Request:
Starting from: Starting from: Starting from: Starting from:

¬¬FlightBooked FlightBooked ÆÆ ¬¬ HotelBooked HotelBooked ÆÆ ¬¬EventBookedEventBooked
Achieve: Achieve:

TravelSettedUpTravelSettedUpTravelSettedUpTravelSettedUp

85De Giacomo & Mecella

Another Example (2)Another Example (2)p ()p ()

Client Service Request:q
–– Starting from: Starting from: ¬¬FlightBooked FlightBooked ÆÆ ¬¬ HotelBooked HotelBooked ÆÆ ¬¬EventBooked EventBooked
–– Achieve: TravelSettedUpAchieve: TravelSettedUp

Wh t b t R i t d? What about Registered?
The client does not know whether he/she/it is registered

or notor not.
The composition must resolve this at runtime:

if (¬Registered){g
S1:register;

}
S :bookFlight; S1:bookFlight;
S2:bookHotel;
S3:bookEvent

86De Giacomo & Mecella

Composition as PlanningComposition as Planningp gp g

Bouguettaya’s
Papazoglou’s

st
em

Bouguettaya s
group

group

Knoblock’s
group

Composition as
(classical)

planningth
e

sy
s

group

ti
cs

 o
f

St
at

De Giacomo & Mecella 87

Planning is a Rich Planning is a Rich
Area!!!Area!!!Area!!!Area!!!
• Sequential Planning (plans are sequences of actions)q g p q
• Conditional Planning (plans are programs with if’s and

while’s)
• Conformant Planning (plans the work in spite of • Conformant Planning (plans the work in spite of

incomplete -non observable- information)
• Knowledge Producing Actions/Sensing (distinction

b t t th d k l d)between truth and knowledge)
• Plan Monitoring
• Interleaving Deliberation and ExecutionInterleaving Deliberation and Execution
• Form of the Goals:

– Achieve something
h h h l k h l– Achieve something while keeping something else

– Temporal goals
– Main goal + exception handlingg p g

88De Giacomo & Mecella

References on PlanningReferences on Planninggg
• Read and exploit planning and reasoning about actions literature!

BooksBooks
Chapters on Planning and on Reasoning about Actions in any Artificial Intelligence textbook.
[GNT04] M. Ghallab, D. Nau, P. Traverso. Automated Planning: Theory and Practice. Morgan

Kaufmann, 2004.
[Reiter02] R Reiter: Knowledge in Action MIT Press 2002[Reiter02] R.Reiter: Knowledge in Action. MIT Press, 2002.

Interesting papers
[Levesque AAAI/IAAI96] H. J. Levesque: What Is Planning in the Presence of Sensing?

AAAI/IAAI, Vol. 2 1996: 1139-1146 ,
[Bacchus&Kabanza AAAI/IAAI96] F. Bacchus, F. Kabanza: Planning for Temporally Extended

Goals. AAAI/IAAI, Vol. 2 1996: 1215-1222
[Giunchiglia&Traverso ECP99] F. Giunchiglia, P. Traverso: Planning as Model Checking. ECP

1999: 1-20
[C l t l KR02] D C l G D Gi M Y V di R i b t A ti d [Calvanese etal KR02] D. Calvanese, G. De Giacomo, M. Y. Vardi: Reasoning about Actions and

Planning in LTL Action Theories. KR 2002: 593-602
[De Giacomo&Vardi ECP99] G. De Giacomo, M. Y. Vardi: Automata-Theoretic Approach to

Planning for Temporally Extended Goals. ECP 1999: 226-238
[Bylander IJCAI91] Tom Bylander: Complexity Results for Planning. IJCAI 1991: 274-279[Bylander IJCAI91] Tom Bylander: Complexity Results for Planning. IJCAI 1991: 274 279

• See how other service-researchers have used it!
– Proceedings of P4WGS – ICAPS Workshop 2004
– Proceedings of P4WS – ICAPS Workshop 2003Proceedings of P4WS ICAPS Workshop 2003

89De Giacomo & Mecella

Traverso’Traverso’s groups groupg pg p

• available services:
– non-deterministic transition systems characterized by

a set of initial states and by a transition relation that
defines how the execution of each action leads from defines how the execution of each action leads from
one state to a set of states

– among such services, one represents the client

• client request (called global goal):
it s ifi s i ti t f ll l s s sid – it specifies a main execution to follow, plus some side
paths that are typically used to resolve exceptional
circumstances e.g., Do Φ else Try Ψ

90De Giacomo & Mecella

TraversoTraverso’s group’s groupg pg p

• service composition problem: (extended) planning p p () p g
problem
– Input: (i) a set of services, including the one

representing the client (behavior) and (ii) the global representing the client (behavior), and (ii) the global
goal,

– Output: a plan that specifies how to coordinate the
ti f i i i d t li th

p p p
execution of various services in order to realize the
global goal.

• NOTE:
– the composition is not tailored towards satisfying

l l h l d h
p y g

completely the client requested behavior, but
concerns with the global behavior of the system in
which some client desired executions may happen not y pp
to be fulfilled

91De Giacomo & Mecella

Traverso’s groupTraverso’s groupg pg p

Bouguettaya’s
Papazoglou’s

st
em

Bouguettaya s
group

group

Knoblock’s
group

Composition as
(classical)

planningth
e

sy
s

group

ti
cs

 o
f

Traverso’s

St
at group

De Giacomo & Mecella 92

References on Traverso’s References on Traverso’s
groupgroupgroupgroup

Papers on Planning as Model Checking
[Giunchiglia&Traverso ECP99]F Giunchiglia P Traverso: Planning as Model Checking ECP [Giunchiglia&Traverso ECP99]F. Giunchiglia, P. Traverso: Planning as Model Checking. ECP

1999: 1-20
[Pistore&Traverso IJCAI01] M. Pistore, P. Traverso: Planning as Model Checking for Extended

Goals in Non-deterministic Domains. IJCAI 2001: 479-486
[Bertoli etal IJCAI01] P. Bertoli, A. Cimatti, M. Roveri, P. Traverso: Planning in

N d i i i D i d P i l Ob bili i S b li M d l Ch ki IJCAI
g

Nondeterministic Domains under Partial Observability via Symbolic Model Checking. IJCAI
2001: 473-478

[Dal Lago etal AAAI/IAAI02] U. Dal Lago, M. Pistore, P. Traverso: Planning with a Language
for Extended Goals. AAAI/IAAI 2002: 447-454

[Cimatti etal AIJ03] A Cimatti M Pistore M Roveri P Traverso: Weak strong and strong [Cimatti etal AIJ03] A. Cimatti, M. Pistore, M. Roveri, P. Traverso: Weak, strong, and strong
cyclic planning via symbolic model checking. Artif. Intell. 147(1-2): 35-84 (2003)

[Bertoli etal ICAPS03] P. Bertoli, A. Cimatti, M. Pistore, P. Traverso: A Framework for
Planning with Extended Goals under Partial Observability. ICAPS 2003: 215-225

Papers on Service Composition
[Pistore&Traverso ISWC04] M. Pistore, P. Traverso: Automated Composition of Semantic

Web Services into Executable Processes. ISWC2004.
[Pistore etal P4WGS04] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso: Planning

d M it i W b S i C iti P4WGS ICAPS WS 2004and Monitoring Web Service Composition. P4WGS – ICAPS WS 2004
[Pistore etal AIMSA04] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso: Planning

and Monitoring Web Service Composition. AIMSA 2004: 106-115

93De Giacomo & Mecella

McIlraith’s group McIlraith’s group g pg p

• both available and composite service: both available and composite service:
behavioral description seen as procedures
invokable by clientsinvokable by clients
– Golog procedure, atomically executed, i.e., seen by

its client as an atomic Situation Calculus action, ts cl ent as an atom c S tuat on Calculus act on,
presenting an I/O interface

– each service stored in an OWL-S ontologygy

94De Giacomo & Mecella

McIlraith’s groupMcIlraith’s groupg pg p

• client request: cl ent request
– skeleton of a Golog procedure expressing also client

constraints and preferences
• service composition problem:

– Input: (i) OWL-S ontology of services as atomic
 d () l actions, and (ii) client request

– Output: Golog procedure obtained by automatically
instantiating the client request with services instantiating the client request with services
contained in the ontology, by also taking client
preferences and constraints into account

• NOTE: the client has not influence over the control
flow of the composite service

95De Giacomo & Mecella

McIlraith’s groupMcIlraith’s groupg pg p

Bouguettaya’s
Papazoglou’s

st
em

Bouguettaya s
group

group

Knoblock’s
group

Composition as
(classical)

planningth
e

sy
s

ti
cs

 o
f

Traverso’s
McIlraith’
s group

St
at group

g p

De Giacomo & Mecella 96

References on References on McIlraith’s McIlraith’s
groupgroupgroupgroup

Background
[McCarthy IFIP62] J. L. McCarthy: Towards a Mathematical Science of Computation. IFIP Congress 1962: [Mc arthy F 6] J. L. Mc arthy war a Math mat ca c nc f mputat n. F ngr 96

21-28
[McCarthy&Hayes MI69] J. L. McCarthy and P. C. Hayes: Some Philosophical Problems from the Standpoint of

Artificial Intelligence. Machine Intelligence 4, 1969
[Reiter 2002] R. Reiter: Knowledge in Action. MIT Press, 2002.
[Levesque etal JLP2000] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. B. Scherl: GOLOG: A Logic [q] q , , p , , g

Programming Language for Dynamic Domains. J. Log. Program. 31(1-3): 59-83 (1997)
[De Giacomo etal AIJ2000] G. De Giacomo, Y. Lespérance, H. J. Levesque: ConGolog, a concurrent

programming language based on the situation calculus. Artif. Intell. 121(1-2): 109-169 (2000)
[De Giacomo etal KR02] G. De Giacomo, Y. Lespérance, H. J. Levesque, S. Sardiña: On the Semantics of

Deliberation in IndiGolog: From Theory to Implementation. KR 2002: 603-614
[h l&L AIJ03] R B h l H J L K l d i d h f bl A if [Scherl&Levesque AIJ03] R. B. Scherl, H. J. Levesque: Knowledge, action, and the frame problem. Artif.

Intell. 144(1-2): 1-39 (2003)

Papers
[McIlraith etal IEEE01] S. A. McIlraith, T. Cao Son, H. Zeng: Semantic Web Services. IEEE Intelligent

S t 16(2) 46 53 (2001)Systems 16(2): 46-53 (2001)
[Narayanan&McIlraith WWW02] S. Narayanan, S. A. McIlraith: Simulation, verification and automated

composition of web services. WWW 2002:
[McIlraith&Son KR02] S. A. McIlraith, T. Cao Son: Adapting Golog for Composition of Semantic Web

Services. KR 2002: 482-496
[Burstein et l ISWC02] M H Burstein J R H bbs O L ssil D M rtin D V McDerm tt S A McIlr ith [Burstein etal ISWC02] M. H. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. V. McDermott, S. A. McIlraith,

S. Narayanan, M. Paolucci, T. R. Payne, K. P. Sycara: DAML-S: Web Service Description for the Semantic
Web. International Semantic Web Conference 2002: 348-363

[Narayanan&McIlraith CN03] Srini Narayanan, Sheila A. McIlraith: Analysis and simulation of Web services.
Computer Networks 42(5): 675-693 (2003)

[McIlraith&Martin IEEE03] S A McIlraith D L Martin: Bringing Semantics to Web Services IEEE [McIlraith&Martin IEEE03] S. A. McIlraith, D. L. Martin: Bringing Semantics to Web Services. IEEE
Intelligent Systems 18(1): 90-93 (2003)

97De Giacomo & Mecella

Hull’s groupHull’s groupg pg p

• both available and composite service (peer): both ava lable and compos te serv ce (peer)
behavioral description
– Mealy machine, that exchanges messages with other y g g

peers according to a predefined communication
topology (channels among peers)
peers equipped with (bounded) queue to store – peers equipped with (bounded) queue to store
messages received but not yet processed

– Conversation: sequence of messages exchanged by Conversation sequence of messages exchanged by
peers

– At each step, a peer can either (i) send a message,
 (ii) i (iii) or (ii) receive a message, or (iii) consume a message

from the queue, or (iv) perform an empty move, by
just changing statejust changing state

98De Giacomo & Mecella

Hull’s groupHull’s groupg pg p

• Choreography mapping problem:Choreography mapp ng problem
– Input: (i) a desired global behavior (i.e., set of

desired conversations) as a Linear Temporal Logic
f l d (ii) i f (f h l formula, and (ii) an infrastructure (a set of channels,
a set of peer names and a set of messages)

– Output: Mealy machines (automatically obtained) for– Output: Mealy machines (automatically obtained) for
all the peers such that their conversations are
compliant with the LTL specification

• NOTE: not yet a “jam session style” choreography

99De Giacomo & Mecella

Hull’s groupHull’s groupg pg p

Bouguettaya’s
Papazoglou’s

st
em

Bouguettaya s
group

group

Knoblock’s
group

Composition as
(classical)

planningth
e

sy
s

group

ti
cs

 o
f

Traverso’s
McIlraith’
s group

St
at group

g p

Hull’s group

De Giacomo & Mecella 100

References on Hull’s References on Hull’s
groupgroupgroupgroup

[Hull etal PODS03] R. Hull, M. Benedikt, V. Christophides, J. Su: p
E-services: a look behind the curtain. PODS 2003: 1-14

[Hull etal SIGMOD03] R. Hull, J. Su: Tools for Design of
Composite Web Services SIGMOD Conference 2004: 958-961 Composite Web Services. SIGMOD Conference 2004: 958-961

[Bultan etal WWW03] T. Bultan, X. Fu, R. Hull, J. Su:
Conversation specification: a new approach to design and

l i f i i i WWW 2003 403 410 analysis of e-service composition. WWW 2003: 403-410

101De Giacomo & Mecella

The Roman groupThe Roman groupg pg p

• available service: behavioral descriptionavailable service: behavioral description
– service as an interactive program: at each step it

presents the client with a set of actions among presents the client with a set of actions among
which to choose the next one to be executed

– client choice depends on outcome of previously client choice depends on outcome of previously
executed actions, but the rationale behind this
choice depends entirely on the client

– behavior modeled by a finite state transition
system, each transition being labeled by a
d t i i ti (t i) ti th deterministic (atomic) action, seen as the
abstraction of the effective input/output messages
and operations offered by the serviceand operations offered by the service

102De Giacomo & Mecella

The Roman groupThe Roman groupg pg p
• client request (target service):

– set of executions organized in a (finite state) set of executions organized in a (finite state)
transition system of the activities he is interested
in doing

• service composition problem:
– Input: (i) finite state transition system of available

i d (ii) fi it t t t iti t f services, and (ii) finite state transition system of
target service

– Output: (automatically obtained) composite service Output: (automatically obtained) composite service
that realizes the client request, such that each
action of the target service is delegated to at least

il bl i i d ith thone available service, in accordance with the
behavior of such service.

• NOTE: the client “strongly” influence the composite NOTE: the client strongly influence the composite
service control flow

103De Giacomo & Mecella

The Roman groupThe Roman group
Papazoglou’s
group

Bouguettaya’s
group

st
em

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s

p gg p

Traverso’s ti
cs

 o
f The Roman

groupMcIlraith’
s group

group

St
at

g p

Hull’s group

De Giacomo & Mecella 104

References on the Roman References on the Roman
groupgroupgroupgroup

[Berardi etal ICSOC03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella:
Automatic Composition of E-services That Export Their Behavior. ICSOC 2003: 43-58 Automatic Composition of E services That Export Their Behavior. ICSOC 2003 43 58

[Berardi etal ICSOC04] D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, D. Calvanese:
Synthesis of Underspecified Composite e-Services based on Automated Reasoning. ICSOC
2004

[Berardi etal WES03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella: A
Foundational Vision of e Services WES 2003: 28 40 Foundational Vision of e-Services. WES 2003: 28-40

[Berardi etal P4WS03] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella: Composing e-
Services by Reasoning about Actions, ICAPS 2003 Workshop on Planning for Web
Services (P4WS03).

[Berardi etal DL03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella: e-[DL] D. , D. n , . D m , M. L nz n , M. M
Service Composition by Description Logics Based Reasoning. Description Logics 2003

[Berardi etal P4WGS04] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella:
Synthesis of Composite e-Services based on Automated Reasoning. ICAPS 2004 Workshop
on Planning and Scheduling for Web and Grid Services (P4WGS04).

[Berardi etal TES04] D Berardi D Calvanese G De Giacomo M Lenzerini M Mecella: ESC: [Berardi etal TES04] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella: ESC:
A Tool for Automatic Composition of e-Services based on Logics of Programs, VLDB-TES
2004

[Berardi Ph.D] D. Berardi Automatic Service Composition.Models, Techniques and Tools. Ph.D.
thesis, Dipartimento di Informatica e Sistemistica – Universita’ di Roma “La Sapienza”,
R It l 2005Rome, Italy, 2005.

[IJCIS 2004] D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, D. Calvanese: Automatic
Service Composition based on Behavioral Description. To appear in IJCIS 2005

[Gerede etal ICSOC04] C. E. Gerede, R. Hull, O. H. Ibarra, J. Su: Automated Composition of
E-services: Lookaheads ICSOC 2004E services: Lookaheads. ICSOC 2004

105De Giacomo & Mecella

The whole pictureThe whole picturepp
Papazoglou’s
group *

Bouguettaya’s
group *

st
em

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s

p gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

group

H ll’

St
at

g p

Hull’s group

* d kl

De Giacomo & Mecella 106

* do not tackle
automatic composition

Other Relevant WorksOther Relevant Works

• Approaches proposing interesting
conceptual models for services, not conceptual models for services, not
targeted towards composition:

Vianu ‘s roup– Vianu s group
– Benatallah & Casati’s group

107De Giacomo & Mecella

Vianu’s groupVianu’s group
AA.. Deutsch, Deutsch, L. L. Sui, and VSui, and V.. Vianu: Specification and Verification of Vianu: Specification and Verification of
DataData--drivendriven Web Services Web Services In In Proceedings of the 23nd ACM SIGACT Proceedings of the 23nd ACM SIGACT DataData drivendriven Web Services, Web Services, In In Proceedings of the 23nd ACM SIGACT Proceedings of the 23nd ACM SIGACT
SIGMOD SIGART Symposium onSIGMOD SIGART Symposium on Principles of Database Systems Principles of Database Systems
(PODS 2004), ACM, 2004, pp. 71(PODS 2004), ACM, 2004, pp. 71––8282

• available service: data query + behavioral descr.ava lable serv ce data query behav oral descr.
– service as a data-driven entity characterized by a

database and a tree of web pages
A h f i h i d li – At each step, set of input choices presented to client:
some generated as queries over the database; specific
client data treated as constants. The client chooses one
of such inputs, and in response, the service produces as
output updates over the service database and/or
performs some actions, and makes a transition from a p rforms som act ons, an ma s a trans t on from a
web page to another

• automatic verification of service properties:
– both over runs (linear setting) and over sets of runs

(branching setting)
– they characterize the complexity of verifying such – they characterize the complexity of verifying such

properties for various classes of services
108De Giacomo & Mecella

Benatallah & Casati’s Benatallah & Casati’s
groupgroupg pg p
BB.. Benatallah, FBenatallah, F.. Casati, and FCasati, and F. . Toumani:Toumani:
Web services conversation modeling: The Cornerstone for EWeb services conversation modeling: The Cornerstone for E--Business Business
Automation. IEEE Internet Computing, Automation. IEEE Internet Computing, 8 8 ((20042004),), no. 1,no. 1, pp.46pp.46 –– 5454

• available service: behavioral descriptionava lable serv ce behav oral descr pt on
– behavior of a service as finite state transition system in

terms of message exchanged with the clients
(conversations)(conversations)

– transitions labeled by messages, and states labeled with
the status of the conversation (e.g., effect of the(g
message exchange leading to it, if clearly defined)

• they study how to automatically generate the
k l t f BPEL4WS t ti f th skeleton of a BPEL4WS spec. starting from the

transition system modeling the service
behaviorbehavior

• they also study properties of service behavior
in order for two services to correctly interactin order for two services to correctly interact

109De Giacomo & Mecella

(Only) Orchestration(Only) Orchestration(y)(y)

• Two main kinds of orchestration [Hull etal PODS03] :Two main kinds of orchestration [Hull etal PODS03] :
– (i) the mediated approach, based on a hub-and-spoke

topology, in which one service is given the role of topology, in which one service is given the role of
process mediator/delegator, and all the interactions
pass through such a service, and

– (ii) the peer-to-peer approach, in which there is no
centralized control

110De Giacomo & Mecella

Mediated Mediated
Orchestration EnginesOrchestration EnginesOrchestration EnginesOrchestration Engines
• e-Flow [Casati & Shan, IS01] : e Flow [Casat & Shan, IS0]

– Platform for specifying, enacting and monitoring
composite service
C i E S i (CES) i i i – Composite E-Service (CES) is a service process engine
offered as (meta-) service that performs coordination of
services, with some process adaption/evolution p p
mechanisms

– A provider can offer a value added service as
coordination of different services: it registers the new coordination of different services: it registers the new
service to the CES and let the CES enact its execution

• AZTEC [Christophides etal TES01] : [p]
– Framework for orchestration of session-oriented, long

running telecommunication services is studied. It is based
on active flowcharts thus coping with asynchronous on active flowcharts thus coping with asynchronous
events that can happen during active telecom sessions

111De Giacomo & Mecella

Mediated Mediated
Orchestration EnginesOrchestration EnginesOrchestration EnginesOrchestration Engines
• WISE [Lazcano etal CSSE2000] :WISE [Lazcano etal CSSE 000]

– Orchestration engine that coordinates the execution of
distributed applications (virtual processes), and a set of
brokers enables the interaction with already existing brokers enables the interaction with already existing
systems that are to be used as building blocks.

– Process meta-model based on Petri Nets, with the
possibility to add Event-Condition-Action (ECA) rules

• MENTOR-lite [Shegalov etal VLDBJ01] :
– Workow management system based on a XML mediator

for coordinating services which are distributed among
different organizations and deployed on heterogeneous g p y g
platforms

– Process meta-model is based on a specific statechart
dialectdialect

112De Giacomo & Mecella

PeerPeer--toto--PeerPeer
Orchestration EnginesOrchestration EnginesOrchestration EnginesOrchestration Engines
• Self-Serv [Benatallah etal IEEE03] :

– Platform for composing services and executing new composed
services in a decentralized way, through peer-to-peer
interactionsinteractions

– Composite service modeled as an activity diagram
– Its enactment carried out through the coordination of

different state coordinators (one for each service involved in
the specification and one for the composite service itself)

• PARIDE Orchestrator [Mecella etal VLDB-TES02] : PARIDE Orchestrator [Mecella etal VLDB TES02] :
– A composition schema, modeled as a specific Coloured Petri

Net, is orchestrated by a set of organizations, which moves it
(“ k ”) l h i(as a “token”) along the execution

– Separation between the responsibility of the orchestration and
the providing of services (suitable in specific scenarios)p ng f (u n p f n)

– Services can be substituted with other compatibles
113De Giacomo & Mecella

ReferencesReferences
[Casati & Shan, IS01] - F. Casati and M.C. Shan, Dynamic and Adaptive Composition of

e-Services, Information Systems 6 (2001), no. 3, 143 – 163., f y (), ,
[Christophides etal TES01] - V. Christophides, R. Hull, G. Karvounarakis, A. Kumar, G.

Tong, and M. Xiong. Beyond Discrete e-Services: Composing Session-oriented
Services in Telecommunications. In Proc. of VLDB-TES, 2001.

[Lazcano etal CSSE2000] - A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler, The
WISE approach to Electronic Commerce, International Journal of Computer
Systems Science & Engineering 15 (2000), no. 5

[Sh l t l VLDBJ01] G Sh l M Gill d G W ik XML bl d [Shegalov etal VLDBJ01] - G. Shegalov, M. Gillmann, and G. Weikum, XML-enabled
Workflow Management for e- Services across Heterogeneous Platforms, Very
Large Data Base Journal 10 (2001), no. 1, 91–103.

[Benatallah etal IEEE03] - B Benatallah Q Z Sheng and M Dumas The Self-Serv [Benatallah etal IEEE03] - B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv
Environment for Web Services Composition. IEEE Internet Computing, 7(1):40–48,
2003

[Mecella etal VLDB-TES02] – M. Mecella, F. Parisi Presicce, B. Pernici: Modeling e-[] , , g
Service Orchestration Through Petri Nets. Proc. VLDB-TES 2002, LNCS 2444. An
extended version as M. Mecella, B. Pernici: Building Flexible and Cooperative
Applications Based on eServices, Technical Report 21-02, DIS Univ. Roma “La
Sapienza” 2002Sapienza , 2002

114De Giacomo & Mecella

Automatic Composition: Automatic Composition: Automatic Composition: Automatic Composition:
A Basic Research PerspectiveA Basic Research Perspective

Basic ResearchBasic Research

• Envision of a sort of Envision of a sort of
“Service Semantic Integration System”

• Semantic integration via composition synthesis

• Several directions (as we have seen):
f O d • Information Oriented Services

• Services as Atomic Actions
• Services as Processes

116De Giacomo & Mecella

Semantic Service Semantic Service
IntegrationIntegrationIntegrationIntegration

Community Basics
ClientClient makes a service

Client

C it O t l

ClientClient makes a service
request in term of the
community ontology

Service request

Community Ontology
(virtual service building blocks)

Available services express
their behavior in terms of
the community ontology

The community realizes
the client service request

Mapping1 Mapping2 MappingN making use of the
available services

117De Giacomo & Mecella

Service1 Service2 ServiceN

Service Integration Service Integration
SystemsSystemsSystemsSystems
• In building such system we can take two In building such system we can take two

general approach:

– Service-tailored

– Client-tailored

118De Giacomo & Mecella

ServiceService--Tailored Tailored
ApproachApproachApproachApproach

Service-tailored
approach

Client

C it O t l

pp
Build the community
ontology oriented by
suitably reconciling the
available services

Service request

Community Ontology
(virtual service building blocks)

available services

Map the available
services as elements of
the community ontology

Compose the service
request by directly

Mapping1 Mapping2 MappingN
request by directly
applying the mappings for
accessing concrete
computationsp

119De Giacomo & Mecella

Service1 Service2 ServiceN

ClientClient--Tailored Tailored
ApproachApproachApproachApproach

Client-tailored
approach

Client

C it O t l

pp
Build the community
ontology oriented to the
client, independently

Service request

Community Ontology
(virtual service building blocks)

, p y
from the services
available

Describe (map) the Describe (map) the
available services using
the community ontology

Mapping1 Mapping2 MappingN Compose the service
request by reversing
these mappings for pp g
accessing concrete
computations

120De Giacomo & Mecella

Service1 Service2 ServiceN

Data Integration Data Integration gg

• The Service-tailored vs Client-tailored The Service tailored vs Client tailored
distinction mimics the GAV (Global As
Vie) vs LAV (L cal As Vie) appr ach in View) vs LAV (Local As View) approach in
data integration …

121De Giacomo & Mecella

Data Integration Data Integration
SystemSystemSystemSystem

Client Integration System
Basics

Gl b l V

Client’s query Client’s request: query
over the global view

Global View Available sources express
their information in terms
of a query over the global q y g
view

The integration system
Mapping1 Mapping2 MappingN

g y
answers the client’s query
by
reformulating/rewriting it
in terms of the in terms of the
information in the
available sources

122De Giacomo & Mecella

Source1 Source2 SourceN

Example Example pp

Paperauthor

Researchers arch r
cites

Selfcitation(x)Ã ∃ z, y. cite(x,y) Æ author(z,x) Æ author(z,y)

Selfcitation …
Selfcitation: contains papers that cite
(other) papers by the same authors

123De Giacomo & Mecella

GAV and LAV Mappings GAV and LAV Mappings
in Data Integrationin Data Integrationin Data Integrationin Data Integration
• In data integration we can distinguish In data integration, we can distinguish

two approaches in defining the mapping:

– GAV (Global As View): terms of the Global ()
View are mapped to queries over the
sources

LAV (Local As View): sources are described – LAV (Local As View): sources are described
by mapping them to a query over the Global
View (cf previous example)View (cf. previous example)

124De Giacomo & Mecella

GAV vs LAVGAV vs LAV
• GAV:

d d i l D I i – Adopted in early Data Integration Systems

– Typical setting
S l ti l DB• Sources are relational DBs

• Global View is a relational schema
• Mapping associate relations in the global view with a relational

query over the sourcesquery over the sources

– Query Answering is performed by
• “unfolding” (substituting) each relation in the client’s query with unfolding (substituting) each relation in the client s query with

the corresponding query over the sources (the mapping),
c.f., computing the composition

• the evaluating the resulting query
c.f., executing the composition

– If constrains are present in the Global View, QA becomes more
involvedinvolved

125De Giacomo & Mecella

GAV vs LAVGAV vs LAV
• LAV:

R t h d t i t ti f th LAV h th GAV – Recent research on data integration favors the LAV approach over the GAV
approach

– Better support of dynamic changes in the system: sources (services) can be
dd d d d l t d ith t t t i th l b l i (it t l)

pp y y
added and deleted without restructuring the global view (community ontology),
and hence without impacting the clients

– Query Answering is a challenge because it needs to deal with incomplete
f

Q y g g p
information

– QA is conceptually performed by
• first “rewriting” the client query to an “equivalent” query over the first, rewriting the client query to an equivalent query over the

sources,
c.f., computing the composition

• then, evaluating the resulting query
c f executin the composition c.f., executing the composition

– Often rewriting is not obvious and/or may require query languages that are
different from the one used by the client and the mappings

126De Giacomo & Mecella

Impact on Service Impact on Service
CompositionCompositionCompositionComposition
• Work in data integration as a direct impact on information-based

s rvic c mp siti n s st msservice composition systems
– Techniques developed there can be often used off-the-shelf or with

minor adaptation for information-based services

• More generally data integration research has deeply looked at
systems that share many conceptual notions with service
composition systems:p y
– Insights in data integration systems can be applied to service

composition systems
– Examples:

Th di i i b G V d L V• The distinction between GAV and LAV
• The distinction between query evaluation and query rewriting

(execution time vs. composition time)

• However Data Integration has not looked at the procedural
aspects typical of services (except for binding patterns)

127De Giacomo & Mecella

Basically a
data integration
LAV approach, hence
Client-tailored

st
em

Client tailored

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s

p gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

group

H ll’

St
at

g p

Hull’s group

De Giacomo & Mecella 128

- Services seen as atomic – only I/O behavior modeledServices seen as atomic only I/O behavior modeled
(no entry points other than the start and the end of
the computation)

- Community Ontology:
- Propositions/Formulas: facts that are known to be

st
em

Propositions/Formulas: facts that are known to be
true

- Actions: change the truth-value of the propositions
- Mappings:
- Services are mapped into the Community Ontology

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s Services are mapped into the Community Ontology
as

atomic actions with preconditions and
postconditions

- Client Service Request:p gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

Client Service Request:
- Constraints on the sequence of actions to be

performed
Typically Service-tailored (difficult to abstract entire
services as atomic actions if not already built-in in the

group

H ll’

St
at

g pservices as atomic actions if not already built in in the
ontology)

Hull’s group

De Giacomo & Mecella 129

- Services seen as (finite) transition systems
- Common ontology:gy
- atomic actions and propositions, as in Planning

- Mapping:
- A service is mapped to the community ontology as a
transition system using the alphabet of the community

st
em

transition system using the alphabet of the community
and defining how transitions affect the propositions

- Client Service Request:
- try to find a sequence of actions to achieve Goal1

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s y q
(main computation), with guarantees that upon failure
Goal2 is reached (exception handling)

Can be seen as a Client tailored approachp gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

Can be seen as a Client-tailored approach

group

H ll’

St
at

g p

Hull’s group

De Giacomo & Mecella 130

- Services seen as (possibly infinite) transition systems
Common ontology is a Situation Calculus Theory and service names- Common ontology is a Situation Calculus Theory and service names

- Mapping:
- each service name in the common ontology is mapped to a service
seen as a procedure in Golog/Congolog SitCalc based high level
programming language these languages describe (possibly infinite

st
em

programming language these languages describe (possibly infinite
transition system)

- Client Service Request
- Golog/Congolog program having service name as atomic actions

with the undertandment that it specify acceptable sequenced of
Composition as

(classical)
planning

Knoblock’s
groupth

e
sy

s with the undertandment that it specify acceptable sequenced of
actions for the client (as in planning) and not a transition system
that the client want to realize (see later)

Essentially a Service-tailored approachp gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

Essentially a Service-tailored approach

group

H ll’

St
at

g p

Hull’s group

De Giacomo & Mecella 131

st
em

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s

p gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

group

H ll’

St
at

g p

Hull’s group

De Giacomo & Mecella 132

It is more an approach to choreography
synthesis than to composition synthesis
… possibly the very first one

- Services seen as (finite) transition systems
- Common ontology: Alphabet of atomic actions

 - Mapping:
- A service is mapped to the community ontology as a transition

system using the alphabet of the community
- Client Service Request:

D d b h (f) T h

st
em

- Desired service behavior, i.e., a (finite) TS using the common
set of actions of the community

Is a Client-tailored approach

Composition as
(classical)

planning
Knoblock’s
groupth

e
sy

s

p gg p

Traverso’s

The Roman
group

ti
cs

 o
f

McIlraith’s
group

group

H ll’

St
at

g p

Hull’s group

De Giacomo & Mecella 133

ReferencesReferences
• Read and exploit data integration literature!

Survey on data integrationSurvey on data integration
[Halevy VLDBJ01] A. Y. Halevy: Answering queries using views: A survey. VLDB J. 10(4): 270-294 (2001)
[Lenzerini PODS02] M. Lenzerini: Data Integration: A Theoretical Perspective. PODS 2002: 233-246
[Ullman ICDT97] J. D. Ullman: Information Integration Using Logical Views. ICDT 1997: 19-40

Seminal papersSeminal papers
[Levy etal PODS05] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava: Answering Queries Using Views.

PODS 1995: 95-104
[Abiteboul etal PODS98] S. Abiteboul, O. M. Duschka: Complexity of Answering Queries Using Materialized

Views. PODS 1998: 254-263
[Duschka etal PODS97] O M Duschka M R Genesereth: Answering Recursive Queries Using Views PODS [Duschka etal PODS97] O. M. Duschka, M. R. Genesereth: Answering Recursive Queries Using Views. PODS

1997: 109-116
[Calvanese etal JCSS02] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Y. Vardi: Rewriting of Regular

Expressions and Regular Path Queries. J. Comput. Syst. Sci. 64(3): 443-465 (2002)
[Rajaraman etal PODS95] A. Rajaraman, Y. Sagiv, J. D. Ullman: Answering Queries Using Templates with

Binding Patterns. PODS 1995: 105-112Binding Patterns. PODS 1995 105 112

• See how other service-researchers have used it!
[Ghandeharizadeh etal ICWS03] S. Ghandeharizadeh, C. A. Knoblock, C. Papadopoulos, C. Shahabi, E. Alwagait,

J. L. Ambite, M. Cai, C. Chen, P. Pol, R. R. Schmidt, S. Song, S. Thakkar, R. Zhou: Proteus: A System for
Dynamically Composing and Intelligently Executing Web Services ICWS 2003: 17-21 Dynamically Composing and Intelligently Executing Web Services. ICWS 2003: 17 21

[Thakkar etal P4WGS] S. Thakkar, J. L. Ambite, C. A. Knoblock: A Data Integration Approach to
Automatically Composing and Optimizing Web Services. P4WGS –ICAPS WS 2004: 86-93

134De Giacomo & Mecella

LectureLecture 55

1 Technical Details on WSCE1. Technical Details on WSCE
2. Security
3. Composition in Distributed

Mobile Scenarios

Automatic Composition Automatic Composition
Synthesis (1)Synthesis (1)Synthesis (1)Synthesis (1)

• Given:Given:
– a set (S1, …, Sn) of component services

 l – a client service request T
• Automatically build:m y

– a composition schema CS that fulfills T by
suitably orchestrating (S1 S) suitably orchestrating (S1, …, Sn)

De Giacomo & Mecella 131

Automatic Composition Automatic Composition
Synthesis (2)Synthesis (2)

Abstract Abstract
specification of specification of Synthesis (2)Synthesis (2) the composition the composition
schema (e.g., schema (e.g.,
TS) TS)

Synthesis EngineSynthesis Engine

Abstraction Abstraction
ModuleModule Abstract service Abstract service

descriptions (e g descriptions (e g

RealizationRealization
ModuleModule

descriptions (e.g., descriptions (e.g.,
TSs)TSs)

WSWS--BPEL specification BPEL specification
of the composite service of the composite service
t b n ct dt b n ct d

Client service requestClient service requestWSDL + behavioral WSDL + behavioral
descriptionsdescriptions
(i e specifications of (i e specifications of

132

to be enactedto be enacted(i.e., specifications of (i.e., specifications of
supported conversations) supported conversations)
of servicesof services [Berardi etal VLDB-TES04]

Representing ServiceRepresenting Service
Behaviors in XMLBehaviors in XMLBehaviors in XMLBehaviors in XML
• Different approaches for representing TSspp p g

– Web Service Transition Language (WSTL)
• Accademic proposal

Web Service Choreography Description Language – Web Service Choreography Description Language
(WS-CDL)

• Standard
• Not really designed for this

– Web Service Business Process Execution Language
(WS-BPEL) abstract(WS B EL) abstract

– OWL-S
• see, e.g., [Pistore&Traverso ISWC04]

WSMO– WSMO
– … … …

De Giacomo & Mecella 133

Web Service Transition Language Web Service Transition Language
(WSTL)(WSTL)
[B di t l @ T ti f th SDPS J l f [B di t l @ T ti f th SDPS J l f [Berardi et al. @ Transactions of the SDPS: Journal of [Berardi et al. @ Transactions of the SDPS: Journal of
Integrated Design and Process Science 8 (2004), no. 2]Integrated Design and Process Science 8 (2004), no. 2]

• WSTL is a XML-based description language able to WS L s a XML as scr pt on anguag a to
represent the observable (i.e., from the point of
view of the service users) behavior of service
– describe the correct sequence of the exchanged

messages

consist of
Conversation

1..n
Transition

Message

consist of
1..2

consist of 1
Al d

1..n

State
Already

defined in
the related
WSDL fil

De Giacomo & Mecella 134

WSDL file

An ExampleAn Examplepp
<?xml version="1.0" encoding="UTF-8"?>

i<Conversation … … …
<Transition source="start" target="1">

<InputMessage>SearchByTitleRequest</InputMessage>
<O t tM >S hB Titl R </O t tM ><OutputMessage>SearchByTitleResponse</OutputMessage>

</Transition>
<Transition source=“start" target="1">

<InputMessage>SearchByAuthorRequest</InputMessage><InputMessage>SearchByAuthorRequest</InputMessage>
<OutputMessage>SearchByAuthorResponse</OutputMessage>

</Transition>
<Transition source="1" target=“start">g

<InputMessage>ListenRequest</InputMessage>
<OutputMessage>ListenResponse</OutputMessage>

</Transition>
</Conversation>

De Giacomo & Mecella 135

TS in WSTS in WS--CDLCDL(1)(1)(1)(1)
What we have to represent?

• States : name and typology (initail final or transient)States : name and typology (initail, final or transient)

• Transitions : name of the operation and the states that will be reached

States :

S0

S1 • S0 = initail/final
• S1,S2 = transient

S0 Transitions :
{zeroToOne, zeroToTwo_A,
zeroToTwo_B, oneTwoZero,

T Z }

S2

twoToZero}

De Giacomo & Mecella 136

TS in WSTS in WS--CDLCDL(2)(2)(2)(2)
In WS-CDL some useful elements can be used for the issue :

<choerography> represents a set of atomic actions that a web service - <choerography> represents a set of atomic actions that a web service
perfoms inside a choreography. In our representation a state can be mapped
in a choreography element declaring in its attributes the name of the state

- <workunit> is used in a choreography when a declared event is coming up.
In mapping operation, a workunit can be used to declare the goal state
reached by the state declared in <choreography>reached by the state declared in choreography

- <interaction> is used in WS-CDL to describe the interactions among
the Web Services. This element can map all the possible transitions that the p p
state declared in <choreography> can perfom to reach the goal state

- <exchange> is used to declare the message exchanged during the web g g g
service invocation

- <description> is used to declare the typology of the states : initial,

De Giacomo & Mecella 137

final, transient

TS in WSTS in WS--CDLCDL(3)(3)(3)(3)

For each state Si {
declare <choreography name = Si >
declare <description name =“ documentation” ….. //typology of state

For each state reached by S {For each state reached by Si {
declare <workunit name = Sj >
declare <description type=“documentation” ….. //typology of state

For each transition from Si to Si+1 {
declare <interaction name=“nameOfAction” operation=“operationName”>
declare <exchange action=“request” name=“operationNameRequest”>
declare <exchange action=“response” name=“operationNameResponse”>declare <exchange action= response name= operationNameResponse >
}

}
}

De Giacomo & Mecella 138

TS in WSTS in WS--CDLCDL(4)(4)(4)(4)

S
S1

S0

S2

S S1S0 S1 S2

De Giacomo & Mecella 139

TS in WSTS in WS--CDLCDL(5)(5)(5)(5)

<choreography name=“S0” root=“false”>

… start translating state S0 …

choreography name S0 root false
<description type="documentation">initial-final</description>

<workunit name="S1">
<description type="documentation">transient</description>

<interaction name=“S0_to_S1“ operation=“zeroToOne”>
<exchange action="request" name=“zeroToOneRequest">

S0

<exchange action= request name= zeroToOneRequest >
<exchange action="response" name=“zeroToOneResponse">

</interaction>
</workunit>

k " "S0 <workunit name="S2">
<description type="documentation">transient</description>

<choice>
<interaction name=“S0_to_S2_A“ operation=“zeroToTwo_A”>

<exchange action="request" name=“zeroToTwo ARequest">g q _ q
<exchange action="response" name=“zeroToTwo_AResponse">

</interaction>
<interaction name=“S0_to_S2_B“ operation=“zeroToTwo_B”>

<exchange action="request" name=“zeroToTwo_BRequest">
<exchange action="response" name=“zeroToTwo BResponse"><exchange action= response name= zeroToTwo_BResponse >

</interaction>
</choice>

</workunit>
</choreography>

De Giacomo & Mecella 140

TS in WSTS in WS--CDLCDL(6)(6)(6)(6)

<choreography name=“S1”>
d i i "d i " i /d i i

… and the state S1 and S2.

S1

<description type="documentation">transient</description>
<workunit name="S0">

<description type="documentation">initial-final</description>
<interaction name=“S1_to_S0“ operation=“oneToZero”>

<exchange action="request" name=“oneToZeroRequest">1 g q q
<exchange action="response" name=“oneToZeroResponse">

</interaction>
</workunit>
</choreography>

<choreography name=“S2”>
<description type="documentation">transient</description>

S2

<description type= documentation >transient</description>
<workunit name="S0">

<description type="documentation">initial-final</description>
<interaction name=“S2_to_S0“ operation=“twoToZero”>

<exchange action="request" name=“twoToZeroRequest">
h i " “ “ T Z R "S2 <exchange action="response“ name=“twoToZeroResponse">

</interaction>
</workunit>
</choreography>

De Giacomo & Mecella 141

TS in WSTS in WS--CDLCDL(7)(7)(7)(7)
Complete WS-CDL file created by mapping operation(1)
<?xml version="1.0" encoding="UTF-8"?>
<package

name=“SampleFSM" name= SampleFSM
author=“DIS Dipartimento di Informatica e Sistemistica"
version="1.0"
targetNamespace="uri"
xmlns="http://www.w3.org/2004/12/ws-chor/cdl" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance“

>
<choreography name=“S0” root=“false”>

<description type="documentation">initial-final</description>
<workunit name="S1">

<description type="documentation">transient</description>
<interaction name=“S0_to_S1“ operation=“zeroToOne”>_ _ p

<exchange action="request" name=“zeroToOneRequest">
<exchange action="response" name=“zeroToOneResponse">

</interaction>
</workunit>
<workunit name="S2">
<description type="documentation">transient</description>

<choice>
<interaction name=“S0_to_S2_A“ operation=“zeroToTwo_A”>

<exchange action="request" name=“zeroToTwo_ARequest">
<exchange action="response" name=“zeroToTwo_AResponse">

/</interaction>
<interaction name=“S0_to_S2_B“ operation=“zeroToTwo_B”>

<exchange action="request" name=“zeroToTwo_BRequest">
<exchange action="response" name=“zeroToTwo_BResponse">

</interaction>
/ h i

De Giacomo & Mecella 142

</choice>
</workunit>

</choreography>

FSM Mapping in WSFSM Mapping in WS--
CDLCDLCDLCDL(8)(8)

C l t WS CDL fil t d b i tiComplete WS-CDL file created by mapping operation(2)

<choreography name=“S1”>
<description type="documentation">initial-final</description>

<workunit name="S0"><workunit name S0 >
<description type="documentation">transient</description>

<interaction name=“S1_to_S0“ operation=“oneToZero”>
<exchange action="request" name=“oneToZeroRequest">
<exchange action="response" name=“oneToZeroResponse">

</interaction></interaction>
</workunit>

</choreography>

<choreography name=“S2”>
<description type="documentation">initial-final</description>

<workunit name="S0">
<description type="documentation">transient</description>

<interaction name=“S2_to_S0“ operation=“twoToZero”>
<exchange action="request" name=“twoToZeroRequest">exchange action request name twoToZeroRequest
<exchange action="response" name=“twoToZeroResponse">

</interaction>
</workunit>

</choreography>
</package>

De Giacomo & Mecella 143

</package>

TS in WSMOTS in WSMOS n WSMOS n WSMO

• Represented using a “reduced” Abstract Represented us ng a reduced Abstract
State Machine consisting of a sequence of
if-then rules without forall and choose rules f th n ru s w thout fora an choos ru s
(that conversely deal with data)

• Transition Rule for SearchByTitleTransition Rule for SearchByTitle

if(?SearchByTitleRequest[if(?SearchByTitleRequest[
… …
]memberOf uor#SearchByTitleRequest)and
(exists … … …
// this condition used for coding states of the TS
)then add(# memberOf SearchByTitleResponse)

De Giacomo & Mecella 144

)then add(_# memberOf SearchByTitleResponse)
endIf

From a TS to WSFrom a TS to WS--
BPEL (1)BPEL (1)BPEL (1)BPEL (1)

<process name = “…”>Transition
<partnerLinks>
…
</partnerLinks>

System

Mapping transitions

<variables>
…
</ i bl >

Transition
Skeletons

pp g

<flow>
<links>

</variables>

St t

Mapping states

<links>
…

</links>
<!-- state skel. -->
…

State
Skeletons

Connecting state
skeletons on the …

<!-- state skel. -->
</flow>

WS-BPEL Specification
Skeleton

basis of the graph

De Giacomo & Mecella 145

</process>Skeleton

From a TS to WSFrom a TS to WS--
BPEL (2)BPEL (2)BPEL (2)BPEL (2)
Intuition [Baina etal CAISE04, Berardi etal VLDB-TES04]

1. Each transition corresponds to a WS-BPEL pattern consisting of (i)
an <onMessage> operation (in order to wait for the input from the
client of the composite service), (ii) followed by the effective logic
of the transition and then (iii) a final operation for returning the of the transition, and then (iii) a final operation for returning the
result to the client. Of course both before the effective logic and
before returning the result, messages should be copied forth and
back in appropriate variables

2 All th t iti i i ti f th t t ll t d i 2. All the transitions originating from the same state are collected in
a <pick> operation, having as many <onMessage> clauses as
transitions originating from the state

3. The WS-BPEL file is built visiting all the nodes of the graph, 3. he WS B EL f le s bu lt v s t ng all the nodes of the graph,
starting from the initial state and applying the previous rules.

N.B.: (1) and (2) works for in-out interactions (the ones shown in the following).
Simple modifications are needed for in-only, robust-in-only and in-optional-out.
The other kinds of interactions implies a proactive behaviour of the composite
service, possibly guarded by <onAlarm> blocks.

De Giacomo & Mecella 146

service, possibly guarded by <onAlarm> blocks.

Transition SkeletonsTransition Skeletons
<onMessage … >

<sequence><sequence>
<assign>

<copy>
<from variable="input" ... />p
<to variable=“transitionData“ ... />

</copy>
</assign>
< ! logic of the transition >< !-- logic of the transition -->
<assign>

<copy>
<from variable=“transitionData" ... />
<to variable="output" ... />

</copy>
</assign>
<reply /><reply ... />

</sequence>
</onMessage>

De Giacomo & Mecella 147

State SkeletonsState Skeletons

• N transitions from state Si are mapped N trans t ons from state Si are mapped
onto:

<pick name = “Si”>
<!-- transition #1 -->

M <onMessage … >
<!-- transition skeleton -->

</onMessage>
… … …
<!-- transition #N -->
<onMessage … >g

<!-- transition skeleton -->
</onMessage>

</pick>
De Giacomo & Mecella 148

</pick>

Mapping the TSMapping the TSpp gpp g

• All the <pick> blocks are enclosed in a All the <pick> blocks are enclosed in a
surrounding <flow>; the dependencies are
modeled as <link>smodeled as <link>s
– <link>s are controlled by specific variables Si-to-
Sj that are set to TRUE iff the transition Si → Sj is j ff i j
executed

– Each state skeleton has many outgoing <link>s as y g g
states connected in output, each going to the
appropriate <pick> block

– Transitions going back into the initial state should
not be considered, as they can be represented as
the start of a new instance

De Giacomo & Mecella 149

the start of a new instance

An Example (1)An Example (1)p ()p ()
l

sa

start

1

st

l

start

2

<partnerLinks>
<!-- The “client” role represents the requester of this composite service -->

<partnerLink name="client" <partnerLink name= client
partnerLinkType="tns:Transition"
myRole="MP3ServiceTypeProvider"
partnerRole="MP3ServiceTypeRequester"/>
L k " " <partnerLink name="service"
partnerLinkType="nws:MP3CompositeService"
myRole="MP3ServiceTypeRequester"
partnerRole="MP3ServiceTypeProvider"/>

De Giacomo & Mecella 150

p yp
</partnerLinks>

An Example (2)An Example (2)p ()p ()
<variables>

<variable name="input" messageType="tns:listen_request"/>
<variable name="output“ messageType="tns:listen_response"/>
<variable name=“dataIn" messageType="nws:listen_request"/>

l “ l /<variable name=“dataOut" messageType="nws:listen_response"/>
</variables>

<pick>
<onMessage partnerLink="client"

portType="tns:MP3ServiceType" portType tns MP3ServiceType
operation="listen"
variable="input">
<sequence>

<assign>
<copy>

<from variable="input" part="selectedSong"/><from variable="input" part="selectedSong"/>
<to variable=“dataIn" part="selectedSong"/>

</copy>
</assign>
… …
<assign>g

<copy>
<from variable=“dataOut" part="MP3FileURL"/>
<to variable="output" part="MP3FileURL"/>

</copy>
</assign>
<reply name="replyOutput" <reply name= replyOutput

partnerLink="client"
portType="tns:MP3ServiceType"
operation="listen"
variable="output"/>

</sequence>
/ M

De Giacomo & Mecella 151

</onMessage>
… …

</pick>

An Example (3)An Example (3)
A new instance is created in the initial
state. This resolve also the presence
of the cycles without the need of p ()p ()

<process suppressJoinFailure = “no”>
<flow>
<links>

of the cycles w thout the need of
enclosing <while>

<links>
<link name=“start-to-1”/>
<link name=“start-to-2”/>

</links>

i k t I t “ ”>

The <sa> transition skeleton
should set variables:
start-to-1 = TRUE
start-to-2 = FALSE<pick createInstance = “yes”>

<onMessage=“sa">
<sequence>

<copy>...</copy>
… …

start to 2 FALSE

The <st> transition skeleton
h ld t i bl<copy>...</copy>

<reply ... />

</sequence>
</onMessage>

should set variables:
start-to-1 = FALSE
start-to-2 = TRUE

</onMessage>
<onMessage=“st">

<sequence>
<copy>...</copy>
… …
<copy> </copy><copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<source linkName=“start-to-1” transitionCondition = “bpws:getVariableData(‘start-to-1’) = ‘TRUE’ “ />

De Giacomo & Mecella 152

<source linkName=“start-to-2” transitionCondition = “bpws:getVariableData(‘start-to-2’) = ‘TRUE’ “ />
</pick>

An Example (4)An Example (4)p ()p ()
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
… …

<copy>...</copy>
l /<reply ... />

</sequence>
</onMessage>
<target linkName=“start-to-1” />

/ i k</pick>
<pick>

<onMessage="l">
<sequence>

p > / p ><copy>...</copy>
… …

<copy>...</copy>
<reply ... />

</sequence></sequence>
</onMessage>
<target linkName=“start-to-2” />

</pick>
</process>

De Giacomo & Mecella 153

</process>

Web Web ServiceService CompositionComposition
EngineEngine (WS(WS CE)CE)EngineEngine (WS(WS--CE)CE)

Each Web Service consists of theWSDLEach Web Service consists of theWSDL
document and an TS that represent the
behavior Currently all TSs are in WS CDLbehavior. Currently all TSs are in WS-CDL
The output of the composition process is a URLp p p
(endpoint) to the WS-BPEL instance of the
synthesized processy p

154De Giacomo & Mecella

(High level) Program(High level) Program(g) g(g) g

155De Giacomo & Mecella

Preprocessing WSDL Preprocessing WSDL
filesfilesfilesfiles(1)(1)
Each WSDL file has to be processed in order to obtain descriptorsp p
compliant with BPEL specifications

At the the beginning of the file, in <description> element must be
d l d th l ti t th t li k t d fi itideclared the namespace relative to the partner link type definition
Take as example SearchMP3.wsdl of the Target Web Service

<wsdl:definitions<wsdl:definitions
targetNamespace="http://localhost:8080/axis/services/SearchMP3"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://localhost:8080/axis/services/SearchMP3"
xmlns:intf="http://localhost:8080/axis/services/SearchMP3"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas xmlsoap org/wsdl/"xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

.

156De Giacomo & Mecella

.

Preprocessing WSDL Preprocessing WSDL
filesfilesfilesfiles(2)(2)
In the bottom of the WSDL file must be declared the partner linkIn the bottom of the WSDL file must be declared the partner link
type (PLT).
A PLT describes the kind of the exchanged messages that two WSDL
services intend to carry out A partner link type characterizes thisservices intend to carry out. A partner link type characterizes this
exchange by defining the roles played by each service and by
specifying the port type provided by the service to receive messages

i t t th happropriate to the exchange

.

.
<plnk:partnerLinkType name="SearchMP3PLT">

<plnk:role name="SearchMP3Service">
<plnk:portType name="impl:SearchMP3"/>

</plnk:role>
</plnk:partnerLinkType>

</wsdl:definitions>

157De Giacomo & Mecella

</wsdl:definitions>

Create initial contextCreate initial context(1)(1)(1)(1)
1. ”kb.txt”: contains the knowledge bases.
2. ”init.txt”: contains the initial state.
3. ”actions.xml”: contains the correspondence between the action
name and the relating input/output message.
4. ”moved.xml”: contains the correspondence between the proposition4. moved.xml contains the correspondence between the proposition
moved and the relating e-Service.
5. ”FsmToMinimize.xml”: it is the not minimized FSM relating to the
target e-Servicetarget e-Service.
6. ”FsmMinimized.xml”: it is the minimized FSM of the composed
target e-Service.

The files 5) and 6) will be created only in the case that it is possible
to realize the requested composition.

158De Giacomo & Mecella

Composition AlgorithmComposition Algorithm

INPUT: S0 /* TS of client specification */
S1..Sn /* TSs of Services in the Community C */1 n y

OUTPUT: if a composition of S0 wrt S1..Sn exists
then return TS of composition schema
else return nil

begin
Ф = TS_2_ALC(S0,S1,..,Sn) /* encode client spec. and services of C

into a PDL formula Ф */
I ALC T bl (Ф) /* t fi it d l I f Ф */If = ALC_Tableau(Ф) /* compute a finite model If for Ф */
if (If == nil) /* if If does not exist, i.e., no composition exists*/

then return nil
else /* else I exist */else / else If exist /

Sc = Extract_TS(If) /* extract a TS from If*/
TS = Minimize(Sc) /* minimize it */
return TS /* return it */return TS / return it /

end

De Giacomo & Mecella 159

Mapping TS in BPELMapping TS in BPELpp gpp g

As previously described we can map the TS in BPELAs previously described we can map the TS in BPEL.

However we have to refine the BPEL document in order to consider
the correlationSet issue

<correlationSets>
<correlationSet name="PID"

properties="ns3:ProcessIdentifier"/>p p
</correlationSets>

160De Giacomo & Mecella

Creating WSDL for Creating WSDL for
BPELBPELBPELBPEL(1)(1)

Every BPEL process is exposed like a Web Service and therefore itEvery BPEL process is exposed like a Web Service and therefore it
has a WSDL descriptor file. In WS-CE this descriptor is the WSDL
of the Target Service given in input.

This file have to be processed introducing a <correlationSet> in order
to couple each istance of the process to the appropriate client

A correlation set is a set of properties shared by messages. The
purpose of the correlation set is to act as a conversation identifier: it
keeps together all messages intended for the same conversationkeeps together all messages intended for the same conversation.

In order to address this issue it’s necessary declare a PID for each
client and couple it with all input messages coming from the sameclient and couple it with all input messages coming from the same
client.

161De Giacomo & Mecella

Creating WSDL for Creating WSDL for
BPELBPELBPELBPEL(2)(2)

BPEL introduce the concept of properties inside the WSDL documentBPEL introduce the concept of properties inside the WSDL document
in order to obtain a coupling between incoming messages and an
instance of process. In order to address this issue we need to define
 “k ” i id h ia “key” inside the input message

The SearchMP3.wsdl, after being processed, extends the input
messages introducing a new part element : ProcessID As an examplemessages introducing a new part element : ProcessID. As an example
examine the SearchByAuthorRequest message.

<wsdl:message name="SearchByAuthorRequest">
<wsdl:part name="authorName" type="xsd:string" />
<wsdl:part name="ProcessID" type="xsd:int" />

</wsdl:message>

162De Giacomo & Mecella

Creating WSDL for Creating WSDL for
BPELBPELBPELBPEL(3)(3)

The property alias in our example is called ProcessIdentifier. Below is
shown the property in SearchMP3.wsdl
<bpws:property name="ProcessIdentifier" type="xsd:int"/><bpws:property name ProcessIdentifier type xsd:int />
<bpws:propertyAlias messageType="impl:SearchByTitleRequest"

part="ProcessID" propertyName="impl:ProcessIdentifier"/>
<bpws:propertyAlias messageType="impl:ListenRequest"

part="ProcessID" propertyName="impl:ProcessIdentifier"/>part ProcessID propertyName impl:ProcessIdentifier />
<bpws:propertyAlias messageType="impl:ErrorMessageRequest"

part="ProcessID" propertyName="impl:ProcessIdentifier"/>
<bpws:propertyAlias messageType="impl:SearchByAuthorRequest"

part="ProcessID" propertyName="impl:ProcessIdentifier"/>part ProcessID propertyName impl:ProcessIdentifier />

Follow the declaration of the <correlationSet> in BPEL :
<correlationSets>

<correlationSet name="PID" properties="ns3:ProcessIdentifier"/>
</correlationSets>

163De Giacomo & Mecella

Deploy of the composed WSDeploy of the composed WSp y pp y p

The deploy of the BPEL process is composed by
th f ll i ti the following operations :

1. Find the PID to associate at the current 1. Find the PID to associate at the current
instance of the process.

2 C t S i i d t hid th 2.Create a proxyService in order to hide the
correlation management to the client.

3.Create the package runnable under the
ActiveBpel engine.ActiveBpel engine.

164De Giacomo & Mecella

Deploy of the composed WSDeploy of the composed WS
Find the PIDFind the PIDFind the PID.Find the PID.

WS-CE has a repository containing the interface of the
d l d ss s E h f th s id tifi d b b deployed processes. Each of these are identified by a number
(the PID). So every new instance of a process has to be
associated with a PID.

The interface of the process is able to handle the correlation
set. The client, on the other hand, doesn’t know the current
PID and it would be very hard re-write the software in order to
associate the correct PID with the instance of the process.

In order to avoid this issue, WS-CE creates a proxyService.
This is a Web Service which receives the request from the
client puts in line the PID and dispatches the message to the client, puts in line the PID, and dispatches the message to the
correct instance of process

165De Giacomo & Mecella

Deploy of the composed WSDeploy of the composed WS
Example of proxyServiceExample of proxyServiceExample of proxyService.Example of proxyService.
Consider the case where a client looks for the list of “U2” songs.

proxyWS_1

W

authorName = “U2”; authorName = “U2”;

PID = 2;
proxyWS_2

..

W
SD

L

BPEL
Process

proxyWS_N
L

SearchByAuthor WS

In case of success WS CE
SearchByTitle WS

In case of success WS-CE
returns the URL of the proxy
service to the client

166De Giacomo & Mecella

service to the client

Deploy of the composed WSDeploy of the composed WS
Create the packageCreate the packageCreate the packageCreate the package
Deployng a BPEL process involves creating a deployment archive file
(a JAR with an extension o “ bpr”) and copying that file in the servlet (a JAR with an extension o .bpr) and copying that file in the servlet
container. To create this archive, we need to organize the files into a
particular directory structure, create one or two configuration files,

d th t hi f th t di tand than create an archive from that directory.

167De Giacomo & Mecella

A A DemoDemo ApplicationApplicationpppp

• Automatic Composition can be used for substitutingutomat c ompos t on can us for su st tut ng
unavailable services with new ones synthesized on-the-
fly

• A demo application has been developed in the context
of the MAIS project
(htt // i j t it) i hi h WS CE h(http://www.mais-project.it), in which WS-CE has
been incorporated into a complex service platform

• When a client (application) of a Web service receives• When a client (application) of a Web service receives
an error, a request for composition is sent to WS-CE,
that synthesizes a new services, deploys it and returnsthat synthesizes a new services, deploys it and returns
the new service endpoint

168De Giacomo & Mecella

SecuritySecurityyy

• Standardization bodies are trying to Standardization bodies are trying to
define every facet of SOC, even security

Registry/Repository
& Discovery

Multiple Interacting
Services

Secu

Single Service

urity

Messaging

Massimo Mecella 169

Security Standards (1)Security Standards (1)y ()y ()

WS-SecureConversation WS-AuthorizationWS-Federation

WS-Policy

WS-Policy
WS-Trust WS-PrivacyWS-Policy

Attachments

y
Assertions &
WS-Security

Policy
Assertions

WS-Security

Basic standars, directly defined over SOAP / WSDL

Massimo Mecella 170

Security Standards (2)Security Standards (2)y ()y ()

• “Secure” ChannelSecure Channel
– Provides the abstraction of “secure & confidential”

communication channelcommunication channel
• XML Digital Signature: to sign parts of XML documents

(and therefore parts of the messages exchanged between
cli nt nd WS) client and WS)

• XML Encryption: to cypher parts of XML Documents
• XML Key Management Services: the interface of basic Web XML Key Management Services the interface of basic Web

Services for processing and management of keys based on
PKI
WS Security: integrity and confidentiality end to end of • WS-Security: integrity and confidentiality end-to-end of
messages

Massimo Mecella 171

Security Standards (3)Security Standards (3)y ()y ()

• Description of Features
Th WS P li f il ll th d i ti f i t d biliti – The WS-Policy family allows the description of requirements and capabilities
of a WS, in order to provide clients with needed information

– WS-PolicyAttachment: to link assertions to a WS
– WS-PolicyAssertions and WS-SecurityPolicyAssertions are the languages for

i h ti
y y y

expressing such assertions
• Trust

– WS-Trust defines a model for establishing trust between client and WS,
based on third parties (Security Token Services – to be realized as a n th r part (cur ty n r c t r a z a
infrastructural services)

– Definition of protocols and interfaces for verifying authenticity and freshness
of the tokens presented by the subjects

• Secure ConversationsSecure Conversations
– WS-SecureConversation: mechanisms for establishing and exchanging security

contexts, to be used during exchanges of messages belonging to the same
conversation

• Others (not yet mature)• Others (not yet mature)
– WS-Privacy
– WS-Authorization
– WS-Federation

Massimo Mecella 172

Security Standards (4)Security Standards (4)y ()y ()

• SAML (Security Assetion Markup SAML (Security Assetion Markup
Language)

XML f k f h i – XML framework for exchanging
authentication and authorization information
f i W b ifor securing Web services

• XACML (eXtensible Access Control (
Markup Language)
– XML framework for specifying access – XML framework for specifying access

control policies for Web-based resources

Massimo Mecella 173

P E P o b lig a t io n s
s e rv ic e1 3 . o b lig a t io n s

a c c e s s
re q u e s te r 2 . a c c e s s re q u e s t

3 . re q u e s t 1 2 . re s p o n s e

c o n te x t

4 . re q u e s t
n o t if ic a t io n

P D P 9 . re s o u rc e
5 . a t t r ib u te

q u e r ie s
h a n d le r

1 1 . re s p o n s e
c o n te x t

re s o u rc eP D P 9 e s o u c e
c o n te n t

q u e r ie s
1 0 . a t t r ib u te s

6 . a t t r ib u te
q u e ry 8 . a t t r ib u te

P IP1 . p o lic y 7 b . e n v iro n m e n t
a t t r ib u te s

7 c . re s o u rc e
a t t r ib u te s

7 a . s u b je c t
a t t r ib u te s

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 174e n v iro n m e n ts u b je c tsP A P

TrustTrust--awareaware
CompositionCompositionCompositionComposition
• Service in a community may not trust Service in a community may not trust

each other at the same level
h d d l• They may pose conditions on credentials

presented by clientsp y
• Taking care of these aspects during

composition is feasiblecomposition is feasible

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 175

SWS 2006 Workshop November 3, 2006 - Washington,
USA

4

Example

• We consider a community of services for
searching and listening mp3 files

• To use these services some credentials are
needed

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

5

General view

 Introduction Framework Composition problem Complexity Future works

 S0 CAinit

 S1 S2 Sn
…Community S

Client

Credentials
C={c1,…cm}

Reputation matrix Rep

SWS 2006 Workshop November 3, 2006 - Washington,
USA

6

Community

• A community S is formed by a finite set of
available services {S1, . . . , Sn} that share
the same set of actions A

• Reputation matrix Rep : Rep(i,j) represents
the reputation level that the service Si has
on the service Sj

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

7

Example

• We consider a community S={S1, S2,S3}

 Introduction Framework Composition problem Complexity Future works

500S3

050S2

505S1

S3S2S1Rep

SWS 2006 Workshop November 3, 2006 - Washington,
USA

8

Credentials

• Assertions about the client, issued by a
given service

• C ={c1, …, cm}: finite set of credentials
associated to the client

• ch=(Attr, Issuer)
Attr: Attribute variable ranging over ∆
Issuer: Issuer variable ranging over I

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

9

Example

• C={c1}

• c1=(Issuer, Inscribed)

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

10

Available Services

• An available service Si is defined in terms of a
transition system TSi

• TSi=(Qi, qi0, Gi, δi , Fi)
 - Qi : finite set of states
 - qi0 : single initial state
 - Gi : set of guards
 - δi : transition function
 - Fi : set of final states

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

11

qi0

qi1

δi(qi0, qi1)

Si

 Introduction Framework Composition problem Complexity Future works

Available Services

qi2

δi(qi0, qi1)

δi(qi0, qi1)

SWS 2006 Workshop November 3, 2006 - Washington,
USA

12

Available Services
• Transition function
 δi(si,si’) ⊆ Gi × A × Γ

• Guards
 - Atomic guards:
g:= Rep(i,ch.Issuer) ≤ v ch.Attr ≤ v
ch: credential of the client
v: value in Δ
 - ψ : set of closed FOL formulas

• Γ : reassignment for credential variables

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

13

Example

 Introduction Framework Composition problem Complexity Future works

q10 q11

l

S1

c1.inscribed = true
Rep(1,c1.Issuer)≥ 5 / sa

SWS 2006 Workshop November 3, 2006 - Washington,
USA

14

Example

 Introduction Framework Composition problem Complexity Future works

q20S2 q22c1.inscribed = true ∧

Rep(2,c1.Issuer) ≥ 2 / st

l

l / c1.inscribed = false ∧
c1.Issuer=2

SWS 2006 Workshop November 3, 2006 - Washington,
USA

15

Example

i /

c1.inscribed = true ∧ c1.Issuer = 3

q30S3
q31c1.inscribed = true ∧

Rep(3,c1.Issuer) ≥ 4 / st

l

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

16

Target Service

• TS0=(Q0, q00, G0, δ0, F0)
- Transition are not labeled by reassignments
- Guards can refer only to attribute variables

of credentials
- Transitions are deterministic
• Initial assignment CAinit

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

17

Example

 Introduction Framework Composition problem Complexity Future works

q00 q01

st

sa
S0

l

i

CAinit (c1.Issuer)=S3

CAinit (c1.Inscribed)=false

SWS 2006 Workshop November 3, 2006 - Washington,
USA

18

Orchestrator Programme
• OP: H×A →{1, …, n}
- H: set of all histories h
h = (q1

0, …, qn
0, CA0) . a1. (q1

1, …, qn
1, CA1)…aj . (q1

j, …,
qn

j, CAj)
- CA0= CAinit
- t=a1. a2… aj: trace of a target service
- qi

0=qi0 , i=1, …,n
- for one i, (qi

k, gi, a , γ, qi
k+1) ∈ δi , gi=true in CAk and

CAk+1 = CAk ° γ , 1≤ k ≤ l
- qj

k+1= qj
k , j≠i

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

19

Example
 Introduction Framework Composition problem Complexity Future works

OP

qOP0

i {3} / c1.inscribed =
true ∧ c1.issuer = 3

qOP1

c1.inscribed = true
Rep(1,c1.Issuer)≥ 5 / sa {1}

l {1}

qOP2

l {3}

c1.inscribed = true ∧

Rep(3,c1.Issuer) ≥ 4 / st {3}

Orchestrator program OP

SWS 2006 Workshop November 3, 2006 - Washington,
USA

20

Composition Problem

• Input:
 target service S0 , set C of credentials, initial

assignment CAinit, community S ={S1,…, Sn}
and reputation matrix Rep

• Output:
 checking the existence of an orchestrator

program for S that realizes the target service

 Introduction Framework Composition problem Complexity Future works

SWS 2006 Workshop November 3, 2006 - Washington,
USA

21

Complexity

• Theorem
The composition problem is Exptime-complete

Proof.
 1-We reduce our problem to satisfiability in

Propositional Dynamic Logic (upper bound)
 2- The problem with deterministic services and without

credentials is Exptime-hard (lower bound)

 Introduction Framework Composition problem Complexity Future works

DistributedDistributed CompositionComposition
Scenario (1)Scenario (1)Scenario (1)Scenario (1)
• Emergency management based on MANETsEmergency management based on MANETs

– Each team member is typically equipped with
handheld devices (PDAs) and communication handheld devices (PDAs) and communication
technologies

– through the interplay with the software running on g p y g
the device, can execute specific actions

• The team member and his device offer a The team member and his device offer a
service towards the other members, and
an overall workflow coordinates the an overall workflow coordinates the
actions of all the services

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 176

DistributedDistributed CompositionComposition
Scenario (2)Scenario (2)Scenario (2)Scenario (2)
• Actions offered by such mobile services are Actions offered by such mobile services are

typically constrained
– if a service A is instructed to take some photos if a service A is instructed to take some photos,

then it needs to be instructed to forward them to
another storage device B (and no other photos can g (p
be taken until the forwarding is executed), as the
device offering A has not enough storage space to
k lti l h tkeep multiple photos

• The effects of such actions can not be
f b b b bl f dforeseen, but can be observable afterwards

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 177

DistributedDistributed CompositionComposition
Scenario (3)Scenario (3)Scenario (3)Scenario (3)
• Generic workflows for the different teams are designed a-priori, g p

and then, just before a team is dropped off in the operation field,
they need to be instantiated on the basis of the currently
available services offered by the mobile devices and operators available services offered by the mobile devices and operators
effectively composing the team

• The effective workflow to be enacted by the team, through the
offered services cannot be centrally orchestrated as in general offered services, cannot be centrally orchestrated, as in general
devices may not be powerful enough

• Decentralized orchestrators (one for each device/service) should
distributively coordinate the workflow, through the appropriate
exchange of messages, conveying synchronization information and
the outputs of the performed actions by the servicesp f p f m y

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 178

The The SettingSetting (1)(1)gg ()()

• Non-deterministic services
• Workflow specified on the basis of a set of available actions and a

blackboard, i.e., a conceptual shared memory in which the services
provide information about the output of an action (cfr complete provide information about the output of an action (cfr. complete
observability wrt. the orchestrator)
– Workflow Specification Kit (WfSK)

S h kfl i ifi d i i ith t k i hi h • Such a workflow is specified a-priori without knowing which
effective services are available for its enactment

• How to compose (i.e., realize) such a workflow by suitably p (,) f y y
orchestrating available services
– When a team leader, before arriving on the operation field, by

observing (i) the available devices and operators constituting the team observing (i) the available devices and operators constituting the team
(i.e., the available services), and (ii) the target workflow the team is in
charge of, need to derive the orchestration

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 180

The The SettingSetting (2)(2)gg ()()

• At run-time (i.e., when the team is effectively on the operation y p
field), the orchestrator coordinates the different services in
order to enact the workflow.

• The communications between the orchestrator and the services The communications between the orchestrator and the services
are carried out through appropriate middleware, which offers
broadcasting of messages and a possible realization of the
blackboardblackboard

• The orchestrator is distributed, i.e., there is not any coordination
device hosting the orchestrator; conversely, each device, besides g y
the service, hosts also a local orchestrator

• All the orchestrators, by appropriately communicating among
them carry on the workflow in a distributed fashionthem, carry on the workflow in a distributed fashion

• Also the blackboard, from an implementation point of view, is
realized in a distributed fashion

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 181

BEHAVIOUR ABEHAVIOUR A

S0S5 S4
compile_qB

write_qB / {qB=T}eval_pC / {pC=F}

eval pC / {pC=T} Non deterministic

take_pA

S0S5

S3

S4

write_pA[available] / {pA=T}

__p {p }

read_pC

S1

move_A

Non deterministic
effects

S3

modify_pA || req_space / {available=T}

modify_pAS1

BEHAVIOUR BEHAVIOUR BB

S0S1 S2
{ compile_qB }

{ write_qB } / { qB=T }{ eval_pB } / { pB=F }

{ eval_pB } / { pB=T }

{ d B }

{ take pC }{ move C }

{ write_pC } [available] / { pC=T }
{ read_pB }

{ modify_pC }

{ compile_qC }

{ write qC } / { qC=T }
{ move_C }

{ _p }
S5 S6

{ move_C }

{ modify_pC, req_space } / {available=T}

S4S3
{ te_qC } / { qC }

BEHAVIOR CBEHAVIOR C

S0S1 S2
compile_qA

write_qA / {qA=T}eval_pA / {pA=F}

eval_pA / {pA=T}

take_pB
S3 S4

move_B
write_pB[available] / {pB=T}

read_pA

modify pB

modify_pB || req_space / {available=T}

od y_p

BEHAVIOUR BEHAVIOUR REPOSITORYREPOSITORY

{ forward } / {available=T}

S0
{ commit } /

{pA=pB=pC=qA=qB=qC=F} { forward } / {available=F}

TARGETTARGET

{ [pA & pB & pC] / commit }

{ [¬qA] / compile_qA,
[¬qB] / compile_qB,
[¬qC] / compile qC}

S0 S8

{ [¬pA] / move A,

{ [pA & pB & pC] / commit }

{ [¬pA] / eval_pA,
[¬pB] / eval_pB,
[¬pC] / eval pC }q p _q

S1

{ [¬qA] / write_qA,
[¬qB] / write qB,

{ [¬pA] / move_A,
[¬pB] / move_B,
[¬pC] / move_C }

p _p

S7

{ [¬pA] / read_pA,
[¬pB] / read pB,

S2
S6

[¬qB] / write_qB,
[¬qC] / write_qC,
/ forward }

{ [pA] / move A { [¬pA] / modify pA
{ [¬pA] / write_pA,
[B] / it B

[¬pB] / read_pB,
[¬pC] / read_pC }

S3 S4 S5

{ [¬pA] / move_A,
[¬pB] / move_B,
[¬pC] / move_C }

{ [¬pA] / take_pA,
[¬pB] / take_pB,
[¬pC] / take_pC }

{ [¬pA] / modify_pA,
[¬pB] / modify_pB,
[¬pC] / modify_pC,
[¬available] / req_space }

[¬pB] / write_pB,
[¬pC] / write_pC,
/ forward }

S0 S6S8 S7

τ
< { forward } { } S0 > /

ττ< { … commit } , { … }, S0 > / < { commit }, {m04} >

S1

S5

< { … forward } , { … }, S0 > /
< { forward }, {m04} >< { - commit } , { … }, S0 > / < { }, {m04} >

S3 S4S2

< { … forward } , { … }, S0 > /
< { forward }, {m04} >

τ
τ

S3 S4S2
τ ≡ < { …} , { … }, { … } > / < { }, { } >

CONTROLLER_REPOSITORYCONTROLLER_REPOSITORY

S0 S8 S7

< { … eval_pC }, { … m51 },S0 >
/ < { eval_pC }, { m01} >< { … commit }, { … }, { … } > / < { }, { } >

CONTROLLER_ACONTROLLER_A

< { ... compile_qB }, { … m01 }, S4 > / < { compile_qB }, { m41 } >

S1

S6

< { ... write_qB } , { ... m41} , S0 > / < { write_qB}, { m01 } >

< { … read_pC }, { … m01 }, S5 >
/ < { read_pC }, { m51 } >

S2

< { ... move_A }, { ... m01}, S1 >
/ < { move_A }, { m11 } > < { … write_pA }, { … m31 }, S0 >

< {… - req_space modify_pA }, { ... m21 } ∪ { … m31 }, S3 > /
< { modify_pA }, { m31 } >

/ < { write_pA }, { m01 } >

< { ... req_space }, { ... m01 }, S0 > /
< { req_space }, { m11 } >

S3 S4 S5

< { ... take_pA }, { ... m11 }, S2 >
/ < { take_pA }, { m21 } >

< { ... req_space, modify_Pa }, { ... m31 }, S3 > /
< {modify_pA, req_space }, { m31 } >

< { … req_space, modify_pA }, { … m21, m02 }, S3 > /
< { modify pA }, { m30 } >

< { ... take_pA } , { ... m11 }, S3 >
/ < { take_pA }, { m31 } >

{ y_p }, { 3 }

< { … req_space, modify_pA }, { … m21, m62 }, S3 > /
< { modify_pA }, {m31 } >

S0 S8 S7

< { … eval_pB }, { … m12 }, S0 >
/ < { eval_pC }, { m02} >< { … commit }, { … }, { … } > / < { }, { } >

CONTROLLER_BCONTROLLER_B

< { ... compile_qC }, { … m02 }, S3 > / < { compile_qC }, { m32 } >

S1

S6

< { ... write_qC } , { ... m32} , S4 > / < { write_qC}, { m42 } >

< { … read_pB }, { … m02 }, S1 >
/ < { read_pC }, { m12 } >

S2

< { ... move_C }, { ... m42 }, S5 >
/ < { move_C }, { m52 } > < { … write_pC }, { … m62 }, S0 >

< {… - req_space modify_pC }, { ... m62 }, S6 > /
< { modify_pC }, { m62 } >

/ < { write_pA }, { m02 } >

< { ... req_space, modify_Pa }, { ... m32 }, S6 > /
< {modify_pC }, { m62 } >

S3 S4 S5

< { ... take_pC }, { ... m42 }, S6 >
/ < { take_pC }, { m62 } > < { … req_space, modify_pA }, { … m21, m02 }, S6 > /

< { req_space }, { m62 } >

< { … req_space, modify_pC }, { … m21, m62}, S6 > /
< {req_space, modify_pC }, {m62 } >

S0 S8 S7

< { … eval_pA }, { … m13 }, S0 >
/ < { eval_pA }, { m03} >< { … commit }, { … }, { … } > / < { }, { } >

CONTROLLER_CCONTROLLER_C

< { ... compile_qA }, { … m03 }, S2 > / < { compile_qB }, { m23 } >

S1

S6

< { ... write_qA } , { ... m23} , S0 > / < { write_qA }, { m03 } >

< { … read_pA }, { … m03 }, S1 >
/ < { read_pA }, { m13 } >

S2

< { ... move_B }, { ... m03 }, S3 >
/ < { move_B }, { m33 } > < { … write_pB }, { … m43 }, S0 >

/ < { write_pB }, { m03 } >

S3 S4 S5

< { ... take_pB }, { ... m33 }, S4 >
/ < { take_pB }, { m43 } > < { ... modify_pB }, { ... m43 }, S4 > / < { modify_pB }, { m43

} >

The The ResultResult

[de Leoni De Giacomo Mecella Patrizi @ International Conference on[de Leoni, De Giacomo, Mecella, Patrizi @ International Conference on
Web Services 2007]

There exists a sound, complete and terminating
procedure for computing a distributed orchestratorp p g
X = (O1,. . .,On) that realizes a workflow W over a
WfSK K relative to services S1, . . . , Sn over K and
bl ckb d st t s M ch l c l ch st t Oiblackboard states. Moreover each local orchestrator Oi
returned by such a procedure is finite state and
require a finite number of messages (more precisely require a finite number of messages (more precisely
message types)

INFWEST Seminar (June 5 -- 7, 2007 – Tampere, Finland) De Giacomo & Mecella 189

AppendixesAppendixes

OWLOWL--S (formely S (formely
DAMLDAML S)S)DAMLDAML--S)S)
• An emerging standard to add semanticsAn emerg ng standard to add semant cs

– An upper ontology for describing properties &
capabilities of Web Services using OWL

• Enable automation of various activities (e.g.,
service discovery & selection)

De Giacomo & Mecella 191
[from DAML-S]

OWLOWL--S Service ProfileS Service Profile
(Wh t it d)(Wh t it d)(What it does)(What it does)

• High-level characterization/summary of a servicey
– Provider & participants
– Capabilities

Functional attributes (e g QoS region served)– Functional attributes (e.g., QoS, region served)
• Used for

– Populating service registriesp g g
• A service can have many profiles

– Automated service discovery
Service selection (matchmaking)– Service selection (matchmaking)

• One can derive:
– Service advertisements
– Service requests

De Giacomo & Mecella 192

OWLOWL--S Service ProfileS Service Profile
Capability DescriptionCapability Description

Provenance Provenance
DescriptionDescription

F i l ibF i l ib
De Giacomo & Mecella 193

Functional AttributesFunctional Attributes
[from DAML-S]

Capability DescriptionCapability Description
• Specification of

h h i

p y pp y p

what the service
provides
– High-level

functional
representation in representation in
terms of:

• preconditions
• inputs

• (conditional) outputs
• (conditional) effects

De Giacomo & Mecella 194

IOPEIOPE

• InputsInputs
– Set of necessary inputs that the requester should provide to

invoke the service
(C diti l) O t t• (Conditional) Outputs
– Results that the requester should expect after interaction

with the service provider is completedw th the serv ce prov der s completed
• Preconditions

– Set of conditions that should hold prior to service invocationp
• (Conditional) Effects

– Set of statements that should hold true if the service is
i k d f llinvoked successfully

– Often refer to real-world effects, e.g., a package being
delivered, or a credit card being debited

De Giacomo & Mecella 195

Functional AttributesFunctional Attributes
Provide supporting information
about the service including:about the service, including:

– geographical scope
Pizza Delivery only within D y y
the Pittsburgh area

– quality descriptions and
guarantees

Stock quotes delivered Stock quotes delivered
within 10 secs

– service types, service
categories

C i l / P bl Commercial / Problem
Solving, etc.

– service parameters
Average Response time is Average Response time is
currently ...

De Giacomo & Mecella 196

OWLOWL--S Service ModelS Service Model
(How it works)(How it works)(How it works)(How it works)

197[from DAML-S]

OWLOWL--S Process S Process
OntologyOntologyOntologyOntology
• Atomic processes: directly invokable no Atomic processes: directly invokable, no

subprocesses, executed in a single step
 f h • Composite processes: consist of other

(non-composite or composite) processes(p p) p
• Simple processes: a virtual view of atomic

process or composite process (as a “black process or composite process (as a black
box”)

De Giacomo & Mecella 198

Process ModelProcess Model

• Constructs for complex processesConstructs for complex processes
– Sequence
– Concurrency: Split; Split+Join; UnorderedConcurrency Split; Split Join; Unordered
– Choice
– If-Then-Else
– Looping: Repeat-Until; Iterate (non-deterministic)

• Data FlowData Flow
– No explicit variables, no internal data store
– Predicate “sameValues” to match input of composite m V u m pu f mp

service and input of subordinate service
• Less refined than, e.g., WS-BPEL

De Giacomo & Mecella 199

f , g ,

EnhancementsEnhancements

• Recent proposals aim at improving and p p p g
detailing process modeling and dynamic
semantics semantics …
– SWSL (Semantic Web Service Language)
 k i !!• … work in progress !!
– http://www.daml.org/services/swsl/p g

De Giacomo & Mecella 200

WSMFWSMF

Conceptual model for Semantic Web Services : • Conceptual model for Semantic Web Services :
– Ontology of core elements for Semantic Web

Services (WSMO) Services (WSMO)
– Formal description language (WSML)
– Execution environment (WSMX) Execution environment (WSMX)

• … derived from and based on the Web Service … derived from and based on the Web Service
Modeling Framework WSMF

• a SDK-Cluster Working Group
(joint European research and development initiative)

De Giacomo & Mecella 201

(joint European research and development initiative)

WSMO Working GroupsWSMO Working Groupsg pg p

A Conceptual Model
for SWS

A Formal Language for WSMO

A Rule-based Language for SWS

Execution Environment
for WSMO

De Giacomo & Mecella 202

WSMO Top Level WSMO Top Level
NotionsNotionsNotionsNotions

Objectives that a client wants toObjectives that a client wants to
achieve by using Web Services

Provide the
formally specified
terminology

Semantic description
of Web Services:
Capabilityterminology

of the information
used by all other
components

- Capability
(functional)

- Interfaces
(usage)

Connectors between components
with mediation facilities for with mediation facilities for
handling heterogeneities

De Giacomo & Mecella 203

WSMO Web Service WSMO Web Service
Description Description Description Description

- complete item description

Capability

- Advertising of Web Service
- Support for WS Discovery

Non functional Properties

complete item description
- quality aspects
- Web Service Management

Capability

functional description

Non-functional Properties

Dublin Core + QoS +
version + financial

W b S i WS

client-service
interaction interface

realization of
functionality by

version + financial

Web Service
Implementation
(not of interest in Web
Service Description)

WS

WS

for consuming WS
- External Visible

Behavior
Communication

aggregating
other Web Services
- functional

decompositionp)

Ch h S i I t f

- Communication
Structure

- “Grounding”

decomposition
- WS composition

WS

O h t ti

De Giacomo & Mecella 204

Choreography --- Service Interfaces --- Orchestration

Capability SpecificationCapability Specificationp y pp y p

• Non functional properties • Non functional properties
• Imported Ontologies
• Used mediators

– OO Mediator: importing ontologies with mismatch resolution OO Mediator: importing ontologies with mismatch resolution
– WG Mediator: link to a Goal wherefore service is not usable a priori

• Pre-conditions
– What a web service expects in order to be able to provide its service.

Th d fi diti th i t They define conditions over the input.
• Assumptions

– Conditions on the state of the world that has to hold before the Web
Service can be executed n u

• Post-conditions
– Describes the result of the Web Service in relation to the input, and

conditions on it
Eff cts • Effects
– Conditions on the state of the world that hold after execution of the

Web Service (i.e. changes in the state of the world)

De Giacomo & Mecella 205

Choreography & Choreography &
OrchestrationOrchestrationOrchestrationOrchestration
• VTA (Virtual Travel Agency) example:

When the service is When the service

Date, Time

When the service is
requested

When the service
requests

Date

Time

Flight Hotel

Hotel ServiceHotel

Error

VTA
Service

Flight, Hotel

Error

Confirmation
Fli ht S i

Date, Time

Flight

• Choreography = how to interact with the service to

Flight Service

Error

Choreography how to interact with the service to
consume its functionality

• Orchestration = how service functionality is achieved
by aggregating other Web Services

h l f d
ICWS 2006 Tutorial (September 19, 2006 – Chicago, IL, USA) De Giacomo & Mecella 206

y gg g g
What previosly referred as
conversation specification

Choreography Aspects Choreography Aspects g p y pg p y p
Interface for consuming Web Service

• External Visible Behavior
– those aspects of the workflow of a Web Service where Interaction is

required required
– described by workflow constructs: sequence, split, loop, parallel

• Communication Structure
ss s s t d i d – messages sent and received

– their order (communicative behavior for service consumption)
• Grounding

– executable communication technology for interaction
– choreography related errors (e.g. input wrong, message timeout, etc.)

• Formal Model
– reasoning on Web Service interfaces (service interoperability)
– allow mediation support on Web Service interfaces

De Giacomo & Mecella 207

Orchestration Aspects Orchestration Aspects pp
Control Structure for aggregation of other Web
ServicesServices

W
e State in eb S

ervice

1

3

WS

Orchestration
Control Flow
Data Flow
Service Interaction

- decomposition of

e B
usine

2

3 Service Interaction

decomposition of
service functionality

- all service interaction
via choreographies

WS

ess Logic

4

via choreographies c

De Giacomo & Mecella 208

WSMO Web Service WSMO Web Service
InterfacesInterfacesInterfacesInterfaces

• service interfaces are concerned with service
consumption and interaction

• Choreography and Orchestration as sub-concepts of
Service Interface Service Interface

• common requirements for service interface description:
1 represent the dynamics of information interchange during 1. represent the dynamics of information interchange during

service consumption and interaction
2. support ontologies as the underlying data model
3 appropriate communication technology for information 3. appropriate communication technology for information

interchange
4. sound formal model / semantics of service interface

s ifi ti s i d t ll ti s th mspecifications in order to allow operations on them.

De Giacomo & Mecella 209

Service Interface Service Interface
Description Description Description Description

• Ontologies as data model:
ll d l h d l – all data elements interchanged are ontology instances

– service interface = evolving ontology

• Abstract State Machines (ASM) as formal framework:
– dynamics representation: high expressiveness
– core principles: state-based state definition by formal core principles: state-based, state definition by formal

algebra, guarded transitions for state changes

• further characteristics: • further characteristics:
– not restricted to any specific communication technology
– ontology reasoning for service interoperability determination
– basis for declarative mediation techniques on service

interfaces

De Giacomo & Mecella 210

Service Interface Service Interface
Description ModelDescription ModelDescription ModelDescription Model

• Vocabulary Ω:
– ontology schema(s) used in service interface description
– usage for information interchange: in, out, shared,

controlledcontrolled

• States ω(Ω):
– a stable status in the information space
– defined by attribute values of ontology instances

• Guarded Transition GT(ω):
– state transition
– general structure: if (condition) then (action)
– different for Choreography and Orchestration

De Giacomo & Mecella 211

Service Interface Service Interface
ExampleExampleExampleExample

Communication Behavior of a Web Service

Ωin hasValues {
concept A [
att1 ofType X

Ωout hasValues {
concept B [
att1 ofType W

Vocabulary:
- Concept A in Ωin

Concept B in Ωyp
att2 ofType Y]

…}

yp
att2 ofType Z]

…}

- Concept B in Ωout

a memberOf A [
att1 hasValue x

tt2 h V l]

a memberOf A [
att1 hasValue x,

tt2 h V l]

IF (a memberOf A [
att1 hasValue x])
THEN

State ω1 Guarded Transition GT(ω1) State ω2

att2 hasValue y] att2 hasValue y]

b memberOf B [
att2 hasValue m]

THEN
(b memberOf B [
att2 hasValue m])

received ontology
instance a sent ontology

instance b

De Giacomo & Mecella 212

WSMO Future WorkWSMO Future WorkWSMO Future WorkWSMO Future Work

O h t i d t i t i th • Orchestrazione does not exist in the
last version of the WSMO documents

• ASM Graphical representation (possibly
through UML Activity Diagrams)ug ML y D g m)

More on Semantic Web Services: ESWC 2005 Tutorial -
http://kmi.open.ac.uk/projects/dip/

De Giacomo & Mecella 213

resources/eswc2005/SWStutorial-eswc05.ppt

ebXMLebXML
• ebXML is more a standardized “conceptual framework”,

 “ f d l” h l k f d d
p

a “reference model”, than a real stack of standard
technologies
– Stable version in 2001/2002

• Technical Architecture Specification (v1.04)
• Business Process Specification Schema (v1.01)
• Registry Information Model (v2.0)g y
• Registry Services Specification (v2.0)
• Requirements Specification (v1.06)
• Collaboration-Protocol Profile and Agreement Specification (v2.0)

 ()• Message Service Specification (v2.0)
• Currently in revision

– Indeed, many Technical Committees (TCs) are working in , m y mm () g
synergy with the promoters of the W3C/WSDL-based “stack”

• E.g., UDDI v2 has been developed in the context of
ebXML/OASIS, currently WS-BPEL and WS-CAF are being
evolved/developed in the context of specific TCs etc

Giuseppe De Giacomo & Massimo Mecella 214

evolved/developed in the context of specific TCs, etc.

ebXML: AimsebXML: Aims

• To define an open & public infrastructure, based on o f n an op n & pu c nfrastructur , as on
XML, for distributed electronic commerce
– Special attention to SMEs and developing countries

Registry/
Repository

Process

Business Process,
Core Components

Partner
Discovery

Process
Definition

Collaboration
Protocol
Profile

Process
Evolution

Process
Management

Electronic
Business

Collaboration Partner
Sign-up Collaboration

Protocol

Process
Execution

Message Service

Protocol
Agreement

Electronic
Plug-in

Business
Service

Giuseppe De Giacomo & Massimo Mecella 215

Message Service,
Business Service Interface

Service
Interface

ebXML: How ?ebXML: How ?
by using BPSS (Business
Process Specification
Schema)

Business Process and Information Models
(compliant to the Meta Model)

Model to XML Conversion

Registries
register

t i fil & / d t d d l
Registry Service Interface

Collaboration Protocolt i

retrieve profiles & new/updated modelsretrieve profiles &
new/updated models

Collaboration Protocol
Profile (CPP)

register

Collaboration Protocol
Profile (CPP)

register

retrieve
models and
profiles derive

Business
Service

Interface

Business
Service

Interface
implementers

buildbuild

governgovern
Internal
Business

Application

Internal
Business

Application
Collaboration Protocol

Agreement (CPA) exchangeexchange

govern

216
(message) payload

governderive in a sense, this is the
“maximum intersection”
choreography

ebXML: BPSS, CPP e CPA ebXML: BPSS, CPP e CPA
(1)(1)(1)(1)
• BPSS is used for modeling a business process BPSS is used for modeling a business process,

thus obtaining a BPS (Business Process
Specification)Specification)
– Partners, roles, collaborations and document

exchanges (business transactions)exchanges (bus ness transact ons)
– Collaboration: set of activities; an activity is a

business transaction or again a collaborationg
– Business transaction: a partner is the requester, the

other is the responder, in a business document flow
• CPP: expresses the capabilities of a partner in

partecipating in a BPS
Giuseppe De Giacomo & Massimo Mecella 217

p p g

ebXML: BPSS, CPP e CPA ebXML: BPSS, CPP e CPA
(2)(2)(2)(2)
• A wants to make electronic business with B; A is A wants to make electronic business with B; A is

the acquirer and B the vendor; the process
underlying the business is already defined in a underlying the business is already defined in a
BPS

• A discovers the B ’s CPP in a registry• A discovers the B s CPP in a registry
• A CPA is created, as the intersection of A ’s

CPP and B ’s CPPCPP and B s CPP
• On the basis of the CPA, the A ’s and B ’s

business service interfaces are configured in
order to support the business transactions

Giuseppe De Giacomo & Massimo Mecella 218

ebXMLebXML: : BPSSBPSS, , CPPCPP e e CPACPA
(3)(3)(3)(3)

1. Each partner has registered
its n CPP in th r istrB’s server

(5)

its own CPP in the registry
2. Partner A discovers B in the

registry and download CPPB on
its system

B s server

CPPB

its system
3. Partner A creates CPAA and B

and sends it to B
4 After a negotiation (both

Registry

(1)

(3 - 4) 4. After a negotiation (both
manual or automatic), both A
and B register identical copies
of the agreed upon CPAA and B
i h i CPPZ

CPPYCPPX

(2)
(6)

()

g p A and B
in their systems

5. Both A and B configure their
systems for runtime on the
basis of CPA

CPPZ

(1)CPAA d BCPAA d B basis of CPAA and B
6. Finally A and B engage their e-

Commerce processA’s server

CPAA and B

CPPA

CPAA and B

Giuseppe De Giacomo & Massimo Mecella 219

(5)

ReferencesReferences
[ACKM04] - G. Alonso, F. Casati, H. Kuno, V. Machiraju: Web Services.

Concepts Architectures and Applications Springer Verlag 2004Concepts, Architectures and Applications. Springer-Verlag 2004
[VLDBJ01] - F. Casati, M.C. Shan, D. Georgakopoulos (eds.): Special Issue on

e-Services. VLDB Journal, 10(1), 2001
Based on the 1st International Workshop on Technologies for e-
Services (VLDB TES 2001)Services (VLDB-TES 2001)

[CACM03] – M.P. Papazoglou, D. Georgakopoulos (eds.): Special Issue on
Service Oriented Computing. Communications of the ACM 46(10), 2003

[WSOL] - V.Tosic, B. Pagurek, K. Patel, B. Esfandiari, W. Ma: Management
A li ti f th W b S i Off i L (WSOL) T b Applications of the Web Service Offerings Language (WSOL). To be
published in Information Systems, Elsevier, 2004.

An early version of this paper was published in Proc. of CAiSE'03,
LNCS 2681, pp. 468-484, 2003

[Berardi etal WSCC04] - D. Berardi, R. Hull, M. Gruninger, S. McIlraith:
Towards a First-Order Ontology for Semantic Web Services. Proc. W3C
International Workshop on Constraints and Capabilities for Web Services
(WS-CC), 2004, http://www.w3.org/2004/06/ws-cc-cfp.html(WS CC), 2004, http //www.w3.org/2004/06/ws cc cfp.html

[Benatallah etal IJCIS04] - B. Benatallah, F. Casati, H. Skogsrud, F. Toumani:
Abstracting and Enforcing Web Service Protocols, International Journal
of Cooperative Information Systems (IJCIS), 13(4), 2004

De Giacomo & Mecella 220

ReferencesReferences
[Baina etal CAISE04] K. Baina, B. Benatallah, F. Casati, F. Toumani: Model-

d i W b S i D l t P f CAiSE'04 LNCS 3084 2004driven Web Service Development, Proc. of CAiSE'04, LNCS 3084, 2004
[Berardi etal ICSOC03] - D. Berardi, D. Calvanese, G. De Giacomo, M.

Lenzerini, M. Mecella: Proc. of ICSOC'03, LNCS 2910, 2004
[Berardi etal VLDB-TES04] - D. Berardi, D. Calvanese, G. De Giacomo, M.

Lenzerini, M. Mecella: Post-proc. of VLDB-TES'04, to appear
[Stirling Banff ‘96] - C. Stirling: Modal and Temporal Logics for Processes. [g ff] g mp g f

Banff Higher Order Workshop, LNCS 1043, 1996. Available at:
http://homepages.inf.ed.ac.uk/cps/banff.ps

[ebpml] - Jean-Jacques Dubray: the ebPML.org Web Site, [ebpml] Jean Jacques Dubray the ebPML.org Web Site,
http://www.ebpml.org/

[DAML-S] – DAML Semantic Web Services, http://www.daml.org/services

De Giacomo & Mecella 221

ReferencesReferences
[WS-Policy] - Web Services Policy Framework (WS-Policy), September 2004,

http://www 106 ibm com/developerworks/library/specification/wshttp://www-106.ibm.com/developerworks/library/specification/ws-
polfram/

[WSCL] - Web Services Conversation Language (WSCL) 1.0. W3C Note, 14
March 2002 http://www w3 org/TR/wscl10/March 2002, http://www.w3.org/TR/wscl10/

[WSLA] - A. Dan, D. Davis et al: Web Services On Demand: WSLA-driven
Automated Management. IBM Systems Journal, 43(1), 2004

[ebXML] Electronic Business using eXtensible Markup Language [ebXML] - Electronic Business using eXtensible Markup Language,
http://www.ebxml.org/

[OASIS] - Organization for the Advancement of Structured Information
Standards http://www oasis-open org/home/index phpStandards, http://www.oasis open.org/home/index.php

[WSDL] - R. Chinnici, M. Gudgin, J.J. Moreau, J. Schlimmer, and S.
Weerawarana, Web Services Description Language (WSDL) 2.0, Available
on line: http://www.w3.org/TR/wsdl20, 2003, W3C Working Draft.

[BPEL4W] T d F C b H Dh l k Y G l d Kl F [BPEL4WS] - T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S.
Weerawarana, Business Process Execution Language for Web Services
(BPEL4WS) -Version 1.1, http://www-

De Giacomo & Mecella 222

() , p
106.ibm.com/developerworks/library/ws-bpel/, 2004

ReferencesReferences
[WS-CDL] - N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon: Web Services

Choreography Description Language (WS CDL) Version 1 0 Available on Choreography Description Language (WS-CDL) Version 1.0, Available on
line at: http://www.w3.org/TR/ws-cdl-10/, W3C Working Draft.

[UDDI] – Universal Discovery, Description and Integration,
http://www uddi org/http://www.uddi.org/

[WS-C] – Web Services Coordination (WS-C), http://www-
106.ibm.com/developerworks/library/ws-coor/

[WS-T] - Web Services Transaction (WS-Transaction), http://www-
106 ib /d l k / b i /lib / t /

p
106.ibm.com/developerworks/webservices/library/ws-transpec/

[WS-CAF] – Web Services Composite Application Framework,
http://developers.sun.com/techtopics/webservices/wscaf/

De Giacomo & Mecella 223

