Data Integration I

Local as View: View-based Query Processing

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Universita di Roma “La Sapienza”

Seminart di Ingnegneria del Software: Integrazione di Dati e Servizi
Corso di Laurea Specialistica in Ingegneria Informatica
Univesita degli Studi di Roma “La Sapenza”

A.A. 2006/07

View-based query processing'

Basic Idea: Computing the answer to a query based on a set of views,
rather than on the raw data in the database.

Significance: Relevant problem in query optimization, query answering with

incomplete information, data warehousing, data integration, etc.

Two approaches:
e View-based query rewriting (indirect)

e View-based query answering (direct)

Jiuseppe De Giacomo ata tntegration ocal As View: View-based Query Processing
Gi De G 7 Dat tegrat L Il As 'V V 1 I

View-based query processing: Computing the answer to a query based on

a set of views, rather than on the raw data in the database.

e View-based query rewriting (indirect)
e View-based query answering (direct)
e Relationship between query answering and query rewriting

We study view-based query processing within the relational data model,

focusing on conjunctive queries (CQs).

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

LAV: formal framework'

The integrated database (DB) DB is simply a set of structures

(relations, in the relational model), one for each symbol in an alphabet

AQ

e the structure of the global view is specified in the schema language
Lg over AY

e cach source structure is modeled as a view over the global view,

expressed in the view language £y over AY

e queries are issued over the global view, and are expressed in the
query language Lg over AY

Jiuseppe De Giacomo ata tntegration ocal As View: View-based Query Processing
Gi De G 7 Dat tegrat L Il As 'V V 1 I

LAV: formal framework'

e The global view G is specified as a set of constraints in Lg, and
associated to each source structure we have a set (its extension)
e We have a view V; for each source structure, with
— extension ext(V;),
— definition def (V;), i.e., a query V;(X) -: v;(X,¥), where v;(X,¥) is
expressed in the language £y over AY
— assumption as(V;), i.e., how to interpret ext(V;) wrt the tuples

satisfying V;

e A query (Q is expressed in the language Lo over AY. If DB satisfies
G, ans(Q, DB) is the set of objects in DB that satisfy @

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

LAV: formal framework'

The specification as(V;) determines how accurate is the extension of the
the view with respect to the specification def (V;)

e Sound Views: a database DB is coherent with the sound view V;,
if ext(V;) C ans(def(V;), DB)

e Complete Views: a database DB is coherent with the complete
view Vy, if ext(V;) O ans(def (V;), DB)

e Exact Views: a database DB is coherent with the exact view V;, if
ext(V;) = ans(def (V;), DB)

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

LAV: formal framework'

Suppose we have the extensions of the source structures. Let G be the
specification (or, schema) of the global view, @ a query of arity n, and

—

d = (dy,...,d,) a tuple of constants

Query answering is defined as follows:
d e cert(Q,V) iff (dy,...,d,) € ans(Q, DB), for each DB such
that:
e DB satisfies G
e DB is coherent with Vq,...,V,,

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

View-based query answering'

Basic Idea: Given a query @, a set of views V with definitions def (V) and
extensions ext()), compute the tuples ¢ which are in the answer to @ in all

databases consistent with the views (certain tuples).

yes! (certain tuple)

—>[is t in Q7]{Emaybe (possible tuple)
A

no!

Accessible views

def (V7q) def (Vi)
3 S

= =
e%i) el

x\ \\\

= S

[})
,,,,,,,,,, fInaccessible database

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

View-based query rewriting'

Basic Idea: Given a query @ and a set of views VV with definitions def (V),
reformulate @ into a new query @’ expressed in some language on the

alphabet of the view names V.

yes! (certain tuple)

[is t in Q7]{‘Emaybe (possible tuple)

1 no!
Accessible views Réwfitiﬁg B
/
def (V1) def (V) QL ___
S =
e ~ e \N C
= S =
S = =
[} [}
Ry Eh,” iInaccessible database

Giuseppe De Giacomo Data integration — Local As View: View-based Query Proc

Query rewriting I

There are many results on view-based query rewriting.
e Conjunctive queries
e Limitations on binding patterns
e (Queries with aggregates

e Under constraints (Functional dependencies, Inclusions dependencies,
etc.)

e Description Logics queries

e Recursive queries

Queries for semi-structured data

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Query rewriting: the setting studied here'

View definitions are CQs over the global schema

e View are all sound

e Queries are CQs, or also UCQ)s, i.e., union of conjunctive queries, over

the global schema

e Rewritings are UCQ)s, i.e., finite sets of CQs, in the alphabet of the

views.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Query rewriting I

Query answering by rewriting:
e Rewrite the query in the alphabet of the view names;

e Evaluate the rewriting on the view extension.

Typically people are interested in rewritings that are:
e Contained in the original query;
e Expressed in a given query language;
e Maximal for the given class of queries;

o Exact(?7), i.e., rewritings that are logically equivalent to the query, if

possible (observe that such rewritings may not exists).

sruseppe De Giacomo ata integration ocal As View: View-based Quer TOCESSING
G De G 7 Data integrat Local As View: View-t 1 Query Pr X

10

11

Exact rewriting: example'

nonstop(Airline, Number, From, To).

Global schema:

Views:

flights_by_United(From, To) -: nonstop(’UA’, Number, From, To)
flights_from_SFO(Airline, Number, To) -:
nonstop(Airline, Number, ’SF0’, To)

Query:
q(Airline, Number) :- nonstop(Airline, Number, ’SF0’, ’LAX’)
An exact rewriting exists! Namely:

q(Airline, Number) :- flight_from_SFO(Airline, Number, ’LAX’)

12

Maximal rewriting: example'

nonstop(Airline, Number, From, To).

Global schema:

Views:

flights_by_UA(Number, From, To) -: nonstop(’UA’, Number, From, To)
flights_from_SFO(From, To) -: nonstop(Flight, Number, ’SF0’, To)

Query:
q(Airline, Number) :- nonstop(Airline, Number, ’LAX’, ’PHX’)
A maximal rewriting (wrt UCQs) is:

q(’UA’, Number) :- flight_by_UA(Number, ’LAX’, ’PHX’)

13

Rewriting: extensions are not considered!'

Observe that in computing the rewriting we are taking into account only the

view definitions, not the view extensions!
How should such definitions be interpreted wrt to the possible extensions?

e A view definition gives properties that the tuples produced by the view

must have.

e The view definition is not a guarantee that all such tuples are provided

by the view (i.e., views are only sound in general).

e There is not even guarantee that the results produced by two views are
consistent (they may need to be reconciled).

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Example: a richer domain'
Global schema:

emp(E) E is an employee

phone (E,P) P is E’s phone
office(E,0) O is E’s office
mgr (E,M) M is E’s manager
dept(E,D) D is E’s department

Views:
vi(E,P,M) -: emp(E), phone(E,P), mgr(E,M)
v2(E,0,D) -: emp(E), office(E,0), dept(E,D)
v3(E,P) -: emp(E), phone(E,P), dept(E,’ToyDept’)

e vl gives information about employees, their phones and managers.
e v2 gives information about employees, their offices and department.
e v3 gives information about employees and their phones but only of the

Toy Department.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

14

15

Example: a richer domain (cont.) I

Query: “What are Sally’s phone and office?”
q(P,0) :- phone(’Sally’,P), office(’Sally’,0)
Maximal rewriting (wrt UCQs):

q(P,0) :- vi(’Sally’,P,M), v2(’Sally’,0,D)
q(P,0) :- v3(’Sally’,P), v2(’Sally’,0,D)

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 16

Example: view expansion (cont.)'

If we expand the views in the rewriting above, we can compare the

rewriting with the original query:

q(P,0) :- emp(’Sally’), phone(’Sally’,P), mgr(’Sally’,M),
emp(’Sally’), office(’Sally’,0), dept(’Sally’,D)

q(P,0) :- emp(’Sally’), phone(’Sally’,P), dept(’Sally’,’ToyDept’),
emp(’Sally’), office(’Sally’,0), dept(’Sally’,D);

Observe:
e Both CQs are contained in the original query.

e The original query is contained in neither of them, nor in their union,

i.e., the rewriting is not exact.

e These are the CQs that come closest to the original query while still
constructable from the views (their union is a maximal rewriting wrt

UCQs).

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 17

Rewriting algorithms I

Given a query and a collection of views that are both CQs, there is a

maximal rewriting made up of finite set of CQs (i.e., a UCQ)!
We can use two algorithms to compute maximal rewritings:
e Bucket algorithm

e Inverse-rules algorithm

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Bucket algorithm: basis'

Theorem 1 If R is a CQ rewriting for a query QQ, and R has more atoms
then Q, then there exists a CQ rewriting R’ such that R C R'.

Proof. R**?* C () (rewriting), hence there is a homomorphism p from Zg to
Tpeapa (the canonical models of @ and R**P¢, respectively).

If R has more atoms that (), then there is an atom «a such that no atoms of Q

is mapped by p to any atom that comes from o°*P?.

If we delete o from R we get a new rewriting R’ (R'“*? ¢ C @, since u is an

homomorphism from @ to R'“*? d).

Moreover R C R’ (identity mapping on atoms gives us the

homomophism). O

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

18

19

Bucket algorithm: raw form'

for all (CQs on the alphabet of the views with a number of atoms
that is less or equal to than those in Q) {

if (R“*P* C Q) add R to the returned solution, else discard R

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Bucket algorithm: refined form.

/* bucket initialization */
Create a bucket for each atom « in the query @, that will contain views that

are relevant to answering the subgoal

Put a view V in the bucket for « if the definition of V' contains an atom J

that unifies with o

/* solution generation */
for all (CQs R on the alphabet of the views
formed by taking one atom from each bucket) {

if (R°*P?* C Q) add R to the returned solution, else discard R

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

20

21

Bucket algorithm: example'
Views:

vi(E,P,M) -: emp(E), phone(E,P), mgr(E,M)
v2(E,0,D) -: emp(E), office(E,0), dept(E,D)
v3(E,P) -: emp(E), phone(E,P), dept(E,’ToyDept’)

Query: “What are Sally’s phone and office?”
q(P,0) :- phone(’Sally’,P), office(’Sally’,0)

Buckets:
B1 B2

v1(’Sally’,P,M) v2(’Sally’,0,D)
v3(’Sally’, P)

Rewriting:
q(P,0) :- vi(’Sally’,P,M), v2(’Sally’,0,D)
q(P,0) :- v3(’Sally’,P), v2(’Sally’,0,D)

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Bucket algorithm: main result'

Theorem 2 The rewriting generated by the bucket algorithm is the maximal
rewriting wrt UCQs.

Proof. For the raw form, immediate.

For the refined form [Grahne&Mendelzon, ICDT’99] O

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

22

23

Inverse-rule algorithm: basis'

Obtain inverse rules by:

1. Replace existential variable in the body of each view definition by a
Skolem function.
Recall v(X) -: a1(X,Y), a2(X,Y) stands for:
Ve.w(z) = Jy.ai(z,y) A az(x,y).
By applying Skolemization we get Vz.v(z) = ai(z, f(z)) A az(z, f(z)).

2. Split the body of the rules.

Recall that Vz.v(z) = ai(z, f(z)) A az(z, f(x)) is equivalent to
(Vz.w(z) = ai1(x, f(x))) A (Vz.v(x) = a2(x, f(x))), thus we obtain:
al(X,£(X)) :- v(X)

a2(X,f£(X)) :- v(X)

Evaluate the query considering inverse rules as IDB and views as EDB.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Inverse-rule algorithm: observations'

e Because all functions symbols are in the head of the inverse rules, we
never introduce a function symbol within a function symbol, leading to a

finite process.

e Bottom-up evaluation can produce tuples with function symbols, but

these cannot be real answers to the query and need to be discarded.

e The algorithm works for datalog (recursive) queries (but CQ views) as

well.

e For non recursive queries we can easily get an equivalent UCQs by

evaluating the query a la prolog.

e If required, functional symbols can be polynomially eliminated by adding

new predicates.

sruseppe De Giacomo ata integration ocal As View: View-based Quer TOCESSING
G De G 7 Data integrat Local As View: View-t 1 Query Pr X

Inverse-rule algorithm: example'
Views:

vi(E,P,M) -: emp(E), phone(E,P), mgr(E,M)
v2(E,0,D) -: emp(E), office(E,0), dept(E,D)
v3(E,P) -: emp(E), phone(E,P), dept(E,’ToyDept’)

Inverse rules:

emp(E) :- v1(E,P,M) mgr (E,M) :- vi(E,P,M)

emp(E) :- v2(E,0,D)

emp(E) :- v3(E,P) office(E,0) :- v2(E,0,D)
phone(E,P) :- vi(E,P,M) dept(E,D) :- v2(E, 0, D)
phone (E,P) :- v3(E,P) dept (E, ’ToyDept’) :- v3(E,P)

Query: “What are Sally’s phone and office?”
q(P,0) :- phone(’Sally’,P), office(’Sally’,0)

26

Inverse-rule algorithm: example (cont.) I

Observe, if we unfold the query
q(P,0) :- phone(’Sally’,P), office(’Sally’,0)

using the inverse rules

emp(E) :- v1(E,P,M) mgr (E,M) :- vi(E,P,M)

emp(E) :- v2(E,0,D)

emp(E) :- v3(E,P) office(E,0) :- v2(E,0,D)

phone (E,P) :- v1(E,P,M) dept(E,D) :- v2(E, 0, D)

phone(E,P) :- v3(E,P) dept(E, ’ToyDept’) :- v3(E,P)
we get

q(P,0) :- vi(’Sally’,P,M), v2(’Sally’,0,D)
q(P,0) :- v3(’Sally’,P), v2(’Sally’,0,D)

27

Inverse-rule algorithm: main result'

Theorem 3 For CQs (and UCQs) the rewriting generated by the inverse-rule

algorithm is the maximal rewriting wrt UCQ)s.

For datalog (recursive) queries the rewriting generated by the inverse-rule

algorithm is the mazximal rewriting wrt datalog queries.

Proof. See [Duschka&Genesereth, PODS’97]. 0

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Maximal rewriting vs certain answers'

Query answering (QA) is defined as follows:

t € cert(Q,V) iff t € ans(Q, DB), for each DB such that:
e DB satisfies G
e DB is coherent with Vi,...,V,,

For sound views, LAV mapping and no constraint on the global view, the

definition of certain answers becomes as follows:

cert(Q,V) = {t | VDB. ext(V) C ans(def (V), DB) =t € ans(Q, DB)}

Next we show that for CQs the maximal rewriting wrt UCQs, coincides with

the certain answers.

sruseppe De Giacomo ata integration ocal As View: View-based Quer TOCESSING
G pe De G 7 Data integratior Local As View: View-t 1 Query Pr .

28

29

Maximal rewriting vs certain answers (cont.) I

Theorem 4 FEvery answer generated by evaluating the maximal rewriting

Rmazycgs(Q,V) is a certain answer in cert(Q,V).

Proof. Assume not. Let R = Rmaxucqs(Q,V), then there is a
t € ans(R, ext(V)) such that t & cert(Q,V).

Now for all DB such that ext(V) C ans(def(V), DB) we have that
t € ans(R“*** DB).

Since R is a rewriting, we have that R°*?? C @, and hence t € ans(Q, DB).

That is, for all DB such that ext(V) C ans(def(V), DB) we have that
t € ans(Q, DB), i.e., t € cert(Q,V). Contradiction. O

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Maximal rewriting vs certain answers (cont.) I

Theorem 5 Fvery certain answer in cert(Q,V) is generated by evaluating

the maximal rewriting Rmazvcgs(Q,V).

Proof. Suppose not. Let t € cert(Q,V) such that

t & ans(Rmazucgs(Q,V), ext(V)). Consider the CQ C; on the alphabet of
the views defined as:

Ci(z) -z =t,Vi(ti1), -, Vi(tiky), -, Va(tn1), -+, Va(tnk,)
or simply,
Cf(t> e Vl(tll)g v) Vl(tlk‘l)’ te)] ‘/'n,(t'n,l), v 9 ‘/n,(tnk:n)

where V = {V1,...,V,,}, and ext(v;) = {ti1 ..., tix, } foreachi=1,... n.

(cont...)

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

30

31

Then, C* C @, indeed

e since t € cert(Q,V), we have that for all DB conforming with the views
ans(C™? DB) = {t} C ans(Q, DB)

e while for those DB’ not conforming with the views
ans(CE*P* DB') = 0 C ans(Q, DB’).

Being C; a CQ on the alphabet of the views and being C£*P* C Q it follows
Cy € Rmazucgs(Q,V). Contradiction! 0

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Part 1: conclusions'

For the setting considered here, i.e,

e View definitions are CQ)s over the global schema

e View are all sound

e Queries are CQs, or also UCQ)s, i.e., union of conjunctive queries, over
the global schema

e Rewritings are UCQ)s, i.e., finite sets of CQs, in the alphabet of the

views
everything works fine:

e We can focus on maximal rewriting wrt UCQs.
e Maximal rewriting computes exactly the certain answers.
e Maximal rewriting is expressible in a simple (LOGSPACE in data

complexity) query language.

Does these nice results extend to more general settings? See Part 2 and Part 3.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

32

33

View-based query processing: Computing the answer to a query based on
a set of views, rather than on the raw data in the database.

e View-based query rewriting (indirect)
e View-based query answering (direct)
e Relationship between query answering and query rewriting

We are studying view-based query processing within the relational data

model.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 34

View-based query answering'

Basic Idea: Given a query @, a set of views V with definitions def (V) and
extensions ext()), compute the tuples ¢ which are in the answer to @ in all
databases consistent with the views (certain tuples).

yes! (certain tuple)

—>[is t in Q7]<‘Emaybe (possible tuple)
A

no!

Accessible views

def (V1) def (V)
S S
= =
) :
x\ \i
x\ S
i i
Ry Ry .

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 35

View-based query rewriting'

Basic Idea: Given a query @ and a set of views VV with definitions def (V),
reformulate @ into a new query @’ expressed in some language on the

alphabet of the view names V.

yes! (certain tuple)

[is t in Q7]{‘Emaybe (possible tuple)

1 no!
Accessible views Réwfitiﬂg N
/
def(Vq) def (V) %\W
o \N
e ~ e \N C
= Q@ =
S N =
))
Ry Eh,” iInaccessible database
Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 36

View-based query answering'

There are several results also on view-based query answering.

e Complexity for several query and view languages
e CQs and UCQs under Description Logics constraints

e Regular path queries

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 37

View-based query answering'

As said above query answering (QA) is defined as follows:

t € cert(Q,V) iff t € ans(Q, DB), for each DB such that:
e DB satisfies §
e DB is coherent with Vi,...,V,,

For sound views, LAV mapping and no constraint on the global view, the

definition of certain answers becomes as follows:

cert(Q,V) = {t | VDB. ext(V) C ans(def (V), DB) =t € ans(Q, DB)}

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

View-based query answering and query containment'

There is a strong relationship between QA and QC when the views are

sound.

For query languages at least as powerful as CQs (CQs, UCQs,
datalog, FOL, etc.).

QA and QC are mutually reducible one into the other in

polynomial time!

sruseppe De Giacomo ata integration ocal As View: View-based Quer TOCESSING
G pe De G 7 Data integratior Local As View: View-t 1 Query Pr .

38

39

Reduction to query containment'

Consider the query @’ on the alphabet of the views defined as:
Q(z) -2z =t AVi(ti1) A AVi(tik) A AVa(tn1) A A Via(tnk,)
where V = {Vi,...V,,}, and ext(Vi) = {ti1...,tix, } foreach i =1,... n.

Theorem 6 t € cert(Q,V) iff Q™" C Q.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Proof.
= If t € cert(Q,V) then

e for all DB conforming with the views
ans(Q'““**, DB) = {t} C ans(Q, DB)

e while for those DB’ not conforming with the views
ans(Q'“***, DB') = 0 C ans(Q, DB').

hence Q'“"?* C Q.

< Assume Q'“*?* C Q. For all DB conforming with the views

ans(Q"“P*, DB) = {t} and since Q'“*** C Q, we have t € ans(Q, DB). O

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

40

41

Reduction from query containment'

Let Q1 and Q2 be two queries (z is a tuple of variables):

Q1(x) :- P1(x)
Q2(z) - P2(2)

Consider a single view V:
o def(V): V(z) -x=c A Fy.(P(y) Ap(y)), where p is a new predicate
o cxt(V) = {c}
e as(V) = sound

and the query @) defined as

Qz) =z =cAJy.(2(y) Ap(y))
Theorem 7 Q1 C Q2 iff c € cert(Q,{V}).

42

Proof.
=

If ¢ & cert(Q,V), then there exists a database DB conforming with the views
such that ¢ € ans(Q, DB). This implies that there exists a tuple in
t € ans(Q1, DB) but t & ans(Qz2, DB), i.e., Q1 € Q2.

< Assume Q1 € Q2. Then there exists a database DB and a tuple ¢t such
that t € ans(Q1, DB) but t € ans(Q2, DB). We can extend DB by assigning
to new predicate p the interpretation ans(p, DB) = {t}. But then we have
that DB conforms to the view V while ans(Q, DB) = (). Hence

c & cert(Q,V). O

43

QA and QC: observationsl

e We can transfer upper-bounds from QC to QA, using the reduction
form QA to QC.

e We can transfer lower-bounds from QC to QA, using the reduction

from QC to QA.

e We can use algorithms for query containment to get algorithms for
query answering.

o What kind of complexity are we characterizing for QA? Combined
complexity.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Combined complexity of QA for sound VieWSI

QC[Q1, Q2] CQs PQs* datalog FOL
CQs NP NP EXPTIME undec.
PQ B I EXPTIME undec.
datalog 2EXPTIME 2EXPTIME undec. undec.
FOL undec. undec. undec. undec.

QA[V, Q] CQs PQs datalog FOL
CQs NP NP EXPTIME | undec.
PQs I 115 EXPTIME | undec.
datalog 2EXPTIME | 2EXPTIME undec. undec.
FOL undec. undec. undec. undec.

* PQs, i.e., are UCQs that allow to nest disjunctions in conjunctions.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

44

45

What about data complexity?'

We want to refine the complexity analysis to take into account that data in

the database are orders of magnitude bigger that the size of the queries.

In other words we would like to characterize the data complexity of QA!

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Complexity of view based query answering'

Can be measured in three different ways:

data complexity: as a function of the size of the view extensions
ext(Vi)U---U ext(Vi)

expression complexity: as a function of the size of the query @) and of the
view definitions def (V1), ..., def (Vi)

combined complexity: as a function of the size of both
ext(Vi)U--- U ext(Vk) and the expressions @, def (V1), ..., def (Vi)

Jiuseppe De Giacomo ata tntegration ocal As View: View-based Query Processing
Gi De G 7 Dat tegrat L Il As V V 1 I

46

47

QA coNP-hard for UCQs VieWSI

Theorem 8 Let Lo and Ly be UCQs, and let view be sound. Then QA is
coNP-hard in data complexity.

Proof. Reduction from graph 3-colorability.

Views: Vs(z,y) -1 Rs(z,y)
VG(CI?,Z/) - RTg(xay)\/Rg""(xay)VRrb(xay)\/Rbr(x7y)\/Rgb($7y)VRbg(xay)
Vi(z,y) - Ry(z,y)
Query: Q(z,y) - Vﬁ;ﬁv 3z,v,w.(Rs(x,z) A Rapg(2,v) A Rys(v,w) A Rp(w,y))
Only the view extensions depend on graph G = (N, E)
C. » Extensions: ext(Vs) = {(¢,a)|a€ N}
Vs r ext(VG') = {(CL, b): (ba a’) | (CL, b) € E}

1 ext(Vy) = {(a,d)|a€ N}

G is 3-colorable iff (¢,d) is not a certain answer

\ 4 of Q.

Vf \\\\sv;’///
d

Note: queries and view definitions used in this proof are UPQs! See Part 3.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

QA for PQs views: algorithm'

Let n be the number of tuples in ext()V) and % the number of atoms in the

longest (wrt atoms) view definition.

Theorem 9 Let Ly be PQs and Lg be datalog, then t & cert(Q,V) iff there
exists a database DB’ of size nk conforming with the views such that
t & ans(Q, DB). (For both sound and exact views).

Proof. Since t & cert(Q,V), there exists a database DB conforming with the
views such that t ¢ ans(Q, DB).

Consider the database DB’ C DB having only the nk tuples required by the
views. DB’ still conforms with the views, moreover still have t € ans(Q, DB')
(it is sufficient only that @ is monotone!). O

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

48

49

QA for PQs views: algorithm (cont.)'

Theorem 10 Let Ly be PQs and Lg be datalog, then QA is in coNP. (For
both sound and exact views.)

Algorithm:

bool certain (tuple t, query), views V)

{

guess(a database DB’ of size nk) { (nondet.)
verify whether DB’ conforms to the views (poly.)
verify whether ¢ ¢ ans(Q,DB’) (poly.)

if (both test positive) return false

}

return true;

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Data complexity for sound ViewsI

Sound Views CcQ PQ datalog FOL
CQ PTIME* | PTIME* | PTIME* | undec.
PQ coNP coNP coNP undec.
datalog coNP coNP undec. undec.
FOL undec. undec. undec. undec.

* This is shown, by proving that the maximal rewriting wrt a PTIME query language (namely CQs,
PQs, datalog) computes exactly the certain answers. See Part 1.

Jiuseppe De Giacomo ata tntegration ocal As View: View-based Query Processing
Gi De G 7 Dat tegrat L Il As V V 1 I

50

51

What about exact Views?'

Till now we have focused on sound views. What happen when we consider

exact views?

QA becomes coNP-hard even for views defined by CQs! See below.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

QA coNP-hard for exact CQs VieWSI

Theorem 11 Let £LY and LY be CQs, and let as(V) = exact. Then verifying
whether ¢ € cert(Q,V) is coNP-hard in data complexity.

Proof. Reduction from graph 3-colorability. Let G = (N, E) be an arbitrary
graph. Consider three exact views V = {V1, V5, Va}:

definitions extensions
Vi(zx) -: color(z,y) ext(Vi) =N
Va(y) -: color(z,y) ext(Va) = {red, green, blue}
Va(y) -: edge(x,y) ext(V3) = E

and the query Q:

Q(c) :- edge(z,y), color(x, z), color(y, z)

Then ¢ € cert(Q,V) iff the graph G is not 3-colorable. O

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

52

53

Data complexity for exact ViewsI

Complete Views cQ PQ datalog FOL
CQ coNP coNP coNP | undec.
PQ coNP coNP coNP | undec.
datalog undec. | undec. | undec. | undec.
FOL undec. | undec. | undec. | undec.

Giuseppe De Giacomo

Data wntegration

Local As View: View-based Query Processing

Part 2: conclusions.

We have gathered a lot of results on query rewriting (Part 1) and on query

answering (Part 2).

What can we say now about the relationships between these two ways of

performing view-based query processing? See Part 3.

Giuseppe De Giacomo

Data wntegration

Local As View: View-based Query Processing

54

View-based query processing: Computing the answer to a query based on
a set of views, rather than on the raw data in the database.

e View-based query rewriting (indirect)
e View-based query answering (direct)
e Relationship between query answering and query rewriting

We are studying view-based query processing within the relational data

model.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 56

View-based query answering'

Basic Idea: Given a query @, a set of views V with definitions def (V) and
extensions ext()), compute the tuples ¢ which are in the answer to @ in all
databases consistent with the views (certain tuples).

yes! (certain tuple)

—>[is t in Q7]<‘Emaybe (possible tuple)
A

no!

Accessible views

def (V1) def (V)
S S
= =
) :
x\ \i
x\ S
i i
Ry Ry .

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 57

View-based query rewriting'

Basic Idea: Given a query @ and a set of views VV with definitions def (V),
reformulate @ into a new query @’ expressed in some language on the

alphabet of the view names V.

yes! (certain tuple)

[is t in Q7]{‘Emaybe (possible tuple)

1 no!

Accessible views

Rewriting
/
def (V) def (V) Q\\
S =
= = c
e e X -
= S =
S = =
))
Ry Eh,” iInaccessible database
Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 58

Previous results '

There are many previous results on view-based query processing.

View-based query rewriting:

Conjunctive queries

Queries with aggregates
Under constraints (inclusion and functional dependencies)
Recursive queries

Description Logics queries

Queries for semi-structured data
View-based query answering;:

e Complexity for several query and view languages
e Under Description Logics constraints

e Regular path queries

But: For a long time, no clear understanding of the relationships between
query answering and query rewriting!!!

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing 59

Query rewriting vs. query answering'

Query answering by rewriting:

e Rewrite the query in the alphabet of the view names;

e Evaluate the rewriting on the view extension.
Typically people are interested in rewritings that are:

e Contained in the original query

e Expressed in a given query language

e Maximal for the given class of queries

But:

e Q1: When is the rewriting also complete — i.e., computes all certain
tuples?

e Q2: What do we gain or lose by focusing on a given class of queries?

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Perfect rewriting I

Query answering: Let cert(Q, def(V), ext(V)) be the function that
computes the certain tuples for Q wrt def (V) and ext(V).

Perfect rewriting:

Define cert|q,qe(vy) to be the Currying of cert wrt @ and def (V).

= — cert|q,def(v)] 1S @ query on the alphabet of the view names that given
ext(V) returns the certain tuples for the query @ wrt def (V) and
ext(V);

— cert[Q,def(v)] 18 a (sound) rewriting of Q wrt def (V);
— cert[qQ,def(v)) 18 complete (no better rewritings may exist);

— cert[Q,def(vy) is called the perfect rewriting of Q wrt def (V).

Jiuseppe De Giacomo ata tntegration ocal As View: View-based Query Processing
Gi De G 7 Dat tegrat L Il As 'V V 1 I

60

61

Comparing with the perfect rewriting'

e Q1: Can we express the perfect rewriting in a certain query language?

e Q2: How does maximal rewriting for a given class of queries compare
with the perfect rewriting?

— From a semantical point of view?

— From a computational point of view?

e Which is the computational complexity of the perfect rewriting?

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

The case of conjunctive queries'

ReWriting: [Levy,Mendelzon,Sagiv,Srivastava-PODS95], [DuschkaGenesereth-PODS97],
[AbiteboulDuschka-PODS98])

Let @ and def (V) be CQs, and let Q' be the union of all maximal
rewritings for the class of CQs. Then:

e Q' is the maximal rewriting for the class of unions of conjunctive queries
(UCQs);

e Query answering: generate Q’, evaluate Q" on ext(V);

e Q' is the perfect rewriting;

e (' is a PTIME query (in fact, LOGSPACE).

Q: Does this “ideal situation” carry on to cases where Q and def (V) allow for
union?

Jiuseppe De Giacomo ata tntegration ocal As View: View-based Query Processing
Gi De G 7 Dat tegrat L Il As 'V V 1 I

62

63

Unions of path queries (UPQS)I

Very simple query language defined as follows:
Q — P | QUQ:
P — R | P 10 P2

where R denotes a binary database relation, P denotes a path query,
which is a chaining of database relations, and) denotes a union of path

queries.

Observe: UPQs are a simple form of:
e Unions of conjunctive queries;

e Regular path queries.

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

View-based query processing for UPQSI

Thm: View-based query answering for UPQs is coNP-complete in data

CompleXity [Calvanese,DeGiacomo,Lenzerini,Vardi-ICDE’00].

In other words: cert(Q, def (V), ext(V)) with @ and def (V) fixed is
coNP-complete.

= The perfect rewriting cert|g 4cr(v) is a coNP-complete query.

Bad news: For query languages that include UPQs the perfect rewriting is
coNP-hard!

Jiuseppe De Giacomo ata tntegration ocal As View: View-based Query Processing
Gi De G 7 Dat tegrat L Il As 'V V 1 I

64

65

PTIME perfect rewritings'

Typically we are interested in PTIME queries, (or even better LOGSPACE
queries).

Program: Isolate those UPQs @ and def (V) for which the perfect rewriting
is PTIME (assuming P#NP).

Unfortunately, this reduces to one of the most difficult open questions in
computer science: the non-uniform CSP PTIME dicotomy (here phrased
directly on homomorphisms): Characterize the structures B such that for
each strcture A over the same alphabet, findingchecking the existence of an

homOTphism f7“0m A to B is PTIME[Calvanese,DeGiacomo,Lenzerini,Vardi—LICS’00].

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

Rewritings in PTIME query languages'

Fall back Program: Fiz the language of the rewriting, choosing a PTIME
query language.

Observe: This is exactly what is done in most papers on rewriting!!!

Important problem:

e How can we test the rewriting obtained for perfectness?

I’n general 1S an haTd pTOblem, see alSO [Calvanese, DeGiacomo, Lenzerini, Vardi-ICDT’05].

Giuseppe De Giacomo Data integration — Local As View: View-based Query Processing

66

67

