Conjunctive queries

Giuseppe De Giacomo

Universita di Roma “La Sapienza”

Corso di Seminari di Ingegneria del Software:
Data and Service Integration
Laurea Specialistica in Ingegneria Informatica
Universita degli Studi di Roma “La Sapienza”
A.A. 2006-07

FOL queries
A FOL query is an (open) FOL formula.

Let ¢ be a FOL query with free variables (x;, ..., xx), then we sometimes
write it as ¢(x1, ..., k).

Given an interpretation Z, the assignments we are interested in are those that
map the variables x4, ..., x; (and only those). We will write such assignment
explicitly sometimes: i.e., a(x;) = a; (1 = 1,..., k), is written simply as

(@rs- ey an).

Now we define the answer to a query ¢(xq,...,xy) as follows

¢(w13--°733k)I: {(01,---,ak) |Ia <a13-°~,ak> |: ¢(w1"°'amk)}

Note: We will also use the notation: ¢Z, keeping the free variables implicit, and
¢(Z) making apparent that ¢ becomes a functions from interpretations to set
of tuples.

A conjunctive query (CQ) q is a query of the form
3y.conj (%,)

where conj (&, y) is a conjunction (an “and”) of atoms and equalities, with free
variables & and ¥.

e CQs are the most frequently asked queries

e CQs correspond to relational algebra Select-Project-Join (SPJ) queries

A conjunctive query ¢ = 3y.conj (&, ¥) is denoted in datalog notation as
q(z') — conj’(x',y’)

where conj’(x’, y’) is the list of atoms in conj (&, §) obtained after having
equated the variables &, i according to the equalities in conj (&, ¥). As a
result of such equality elimination, we have that z’ and y_” can actually contain
constants and multiple occurrences of the same variable.

We call g(z’) the head of ¢, and conj’(z’, y’) the body. Moreover, we call the
variables in #’ the distinguished variables of g and those in y’ the
non-distinguished variables.

e Consider an interpretation Z = (AZ, ET), where E7 is a binary relation —
note that such interpretation is a (directed) graph;

¢ the following CQ q returns all nodes that participate to a triangle in the
graph:
Jy, z.E(z,y) N\ E(y, 2) N E(z, %)

e the query ¢ in datalog notation becomes:
Q(m) — E(CL‘, y)7 E(y, z)7 E(za .CC)

e the query g in SQL is (E(x,y) ~ Edge(F,S)):

select el.F
from Edge el, Edge e2, Edge e3
where el.S=e2.F, e2.S5=e3.F, e3.S=el.F

boolean ConjTruth(Z,a,3y. conj(Z,y)) {
GUESS assignment a[y— a] {
return Truth(Z,a[Z — d],conj(&,7));

boolean Truth(Z,a,¢)) {
if(¢p is t1 = t2)
return TermEval(f{.1) = TermEval(t.2);
if(¢ is P(t1,...,t k))
return P"Z (TermEval(t1l),...,TermEval(tk));
if(¢ is Y AY)
return Truth(Z,a,v¥) A Truth(Z,a,v’);

o € AT TermEval(Z,a,t) {
if(t is a variable z) return a(x);

if(t is a constant c) return c"Z;

Combined complexity: complexity of {(Z,a,q) | Z, o |= g}, i.e.,
interpretation, tuple, and query part of the input:

e NP (NP-complete —see below for hardness)
e time: exponential

e space: polynomial

Data complexity: complexity of {(Z,) | Z, o = ¢}, i.e., interpretation fixed
(not part of the input):

e LOGSPACE (LOGSPACE-complete —see [Vardi82] for hardness)
e time: polynomial

e space: logarithmic

Query complexity: complexity of {{a, q) | Z, a = g}, i.e., query fixed (not
part of the input):

e NP (NP-complete —see below for hardness)
e time: exponential

e space: polynomial

3-colorability

3-colorability: Given a graph G = (V,, E), is it 3-colorable?

Thm: 3-colorability is NP-complete.

can we deduce 3-colorability to conjunctive query evaluation?
YES

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph, we define:

e Interpretation: T = (AZ, ET) where:

- AT = {r,g,b}
- E* = {("“79)7 (97 ’l“), (Tv b)a (b7 ’l“), (b7 g)a (ga b)}
e Conjunctive query: Let V = {x1,...,x,}, then consider the boolean

conjunctive query q defined as:

3T1, ...y The /\ E(xi,z;) N E(zj,x;)
(mi’mj)eE

Thm: G is 3-colorable iff Z = gq.

Thm: CQ evaluation is NP-hard in query and combined complexity.

LetZ = (AT, P%,...,ct,...)and J = (A7, P7,...,c7,...) be two
interpretation over the same alphabet (for simplicity, we consider only
constants as functions). Then an homomorphism form Z to J is a mapping
h : AT — A7 such that:

o h(ct) = &7

° h(PI(al, ceesag)) = Pj(h(al)’ ..+ h(ar))

Note: An isomorphism is a homomorphism, which is one-to-one and onto.

Thm: FOL is unable to distinguish between interpretations that are isomorphic
— any standard book on logic.

Consider the recognition problem associated to the evaluation of a query gq,
then

I,a F q(@) iff I’ = q(c)

where Z" is identical to Z but includes a new constant ¢ which is interpreted as

' = a(x).

That is, we can reduce the recognition problem to the evaluation of a boolean
query.

Let g be a conjunctive query
dxi,...,x,.cONJ

then the canonical interpretation Z, associated with q is the interpretation
Z,= (AT, PTa ... cTa,...), where

o ATa = {x,,...,xz,} U {c| cconstant occurring in q} ,i.e., all the
variables and constants

e ¢« = ¢ forall constants in g

o (ti,t;) € PZa iff the atom P(t,,ty) occurs in q

Sometime the procedure for obtaining the canonical interpretation is call
freezing of g.

Example Given the boolean query q:
q(c) < E(c,y), E(y, 2), E(z,c)
the canonical structure Z, is defined as

Z, = (A%, E%a, %)

q
where

o ATa = {y’zac}

.CIq:C

o F1a = {(c,y), (y,2),(2,¢)}

Thm [Chandra&Merlin77]: For (boolean) CQs, Z |= q iff there exists an
homomorphism from Z, to Z.

Proof.

= Let Z = g, let a be the assignment to an existential variables that makes
the query true in Z, and let & be its extension to constants. Then & is an
homomorphism from Z, to Z.

< Let h be an homomorphism from Z, to Z, then restricting h to the variables
only we obtain an assignment of the existential variables that makes q true in
Z.0O

In other words (the recognition problem associated to) query evaluation can be
reduced to finding an homomorphism.

Finding an homomorphism between two interpretations (aka relational
structure) is also known as solving a CSP (Constraint Satisfaction Problem),
well-studied in Al —see also [Kolaitis&Vardi98].

Query containment

Query containment: given two FOL queries ¢ and 1 check whether ¢ C 1) for
all interpretations Z and all assignments o we have that

T,a = ¢impliesZ,a = ¢

(In logical terms check whether ¢ = .)
Note: of special interest in query optimization.

Thm: For FOL queries, query containment is undecidible.

Proof: Reduction from FOL logical implication.O

Query containment for CQs

For CQs, query containment can be reduced to query evaluation!

Step 1 — freeze the free variables: q(Z) C q’(Z) iff
e Z,a = q(&) impliesZ,a = q' (&), forall T and «; or equivalently

e 7' = q(©) implies Z’ |= ¢’ (<), for all Z’, where ¢ are new constants, and
T’ extends T to the new constants as follows ¢’ = a(x).

Step 2 — construct the canonical intepretation of the CQ on the left q(€)
consider the canonical interpretation Z,) ...

Step 3 — evaluate the CQ on the right ¢’(¢) on Zy(g
... check whether Z,z = ¢'(¢).

Query containment for CQs (cont.)

Thm [Chandra&Merlin77]: For CQs, q(&) C ¢’ (%) iff Zyz = ¢'(€), where €
are new constants.

Proof.

= Assume that g(¢) C ¢’(¢©):
e since Z,) = q(c) it follows that Z,z = q'(©).

< Assume that Z 5 = ¢’(<).

e by Thm[Chandra&Merlin77] on homomorphism, for every Z such that
Z = q(c) there exists an homomorphism h from Z,z to Z;

¢ on the other hand, since Z,z = ¢’(¢), again by Thm[Chandra&Merlin77]
on homomorphism, there exists an homomorphism h’ from Z,) t0 Z,(z);

e the mapping h o h’ obtained composing h and h’ is an homomorphism

from Z, to Z. Hence, once again for Thm[Chandra&Merlin77] on
homomorphism, Z = q’(¢).

So we can conclude ¢(¢) C ¢’(¢). O

Thm: Containment of CQs is NP-complete.

A union of conjunctive queries (UCQ) q is a query of the form
\/ Jyi.conj ;(Z, ;)
t=1,...,m

where each conj,;(Z, ;) is, as before, a conjunction of atoms and equalities
with free variables Z and ;.

Note: Obviously, conjunctive queries are a subset of union of conjunctive
queries.

The datalog notation is then extended to union of conjunctive queries as
follows. A union of conjunctive queries

qg=\/ 3gconji(&)

1=1,....,n
is denoted in datalog notation as
q = {qla'“a(In}

where each g; is the datalog expression corresponding to the conjunctive
query g; = { & | Igi.conj,(Z, %) }.

UCQs: query evaluation

Form the definition of FOL query we have that:

T,a = \/ 3giconj,(Z,)

i=1,...,n
iff
T, a = 3Y;.conj (L, v;) forsomei =1,...,n.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of
q of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity of evaluating CQs.

UCQs: combined, data, query complexity

Combined complexity: complexity of {(Z,«a,q) | Z, o = q}, i.e.,
interpretation, tuple, and query part of the input:

e NP-complete
e time: exponential

e space: polynomial

Data complexity: complexity of {(Z,) | Z, o |= g}, i.e., interpretation fixed
(not part of the input):

e LOGSPACE-complete
e time: polynomial

e space: logarithmic

Query complexity: complexity of {{a, q) | Z, a |= g}, i.e., query fixed (not
part of the input):

e NP-complete
e time: exponential

e space: polynomial

Query containment for UCQs

Thm: For UCQs, {q1,...,qx} C {q],....q, } iff for all g; there is a g} such

Proof.

<= Obvious.

= If the containment holds, then we have
{¢1(©),...,q(©)} C {q,(E),...,q. (E)}, where € are new variables:

e now consider Z,, z, we have Z, s = g;(¢), and hence

qu‘(a |: {Q1(5)a) Qk(a};

e by the containment we have that Z,, s = {q;(¢),...,q,(c)}, thatis
there exists a g’;(¢) such that Z,,) = ¢(2);

e hence, by the Thm[Chandra&Merlin77] on containment of CQs, we have

II ! D
—_ q] -

