
FOL Query Evaluation

Giuseppe De Giacomo

Università di Roma “La Sapienza”

Corso di Seminari di Ingegneria del Software:
Data and Service Integration

Laurea Specialistica in Ingegneria Informatica

Università degli Studi di Roma “La Sapienza”
A.A. 2006-07

First-order logic

• First-order logic (FOL) is the logic to speak about object, which are the

domain of discourse or universe.

• FOL is concerned about Properties of these objects and Relations over

objects (resp. unary and n-ary Predicates)

• FOL also has Functions including Constants that denote objects.

G. De Giacomo FOL queries 1

First-order logic: syntax - terms

Terms: defined inductively as follows

• Vars: A set {x1, . . . , xn} of individual variables (variables that denote

single objects)

• Function symbols (including constants: a set of functions symbols of given

arity > 0. Functions of arity 0 are called constants.

• Vars ⊆ Terms

• if t1, . . . , tk ∈ Terms and fk is a k-ary function, then

fk(t1, . . . , tk) ∈ Terms

• nothing else is in Terms.

G. De Giacomo FOL queries 2

First-order logic: syntax - formulas

Formulas: defined inductively as follows

• if t1, . . . , tk ∈ Terms and P k is a k-ary predicate, then

P k(t1, . . . , tk) ∈ Formulas (atomic formulas)

• φ ∈ Formulas and ψ ∈ Formulas then

– ¬φ ∈ Formulas

– φ ∧ ψ ∈ Formulas

– φ ∨ ψ ∈ Formulas

– φ ⊃ ψ ∈ Formulas

• φ ∈ Formulas and x ∈ Vars then

– ∃x.φ ∈ Formulas

– ∀x.φ ∈ Formulas

G. De Giacomo FOL queries 3

• nothing else is in Formulas.

Note: if a predicate is of arity Pi , then it is a proposition of propositional logic.

G. De Giacomo FOL queries 4

First-order logic: Semantics - interpretations

Given an alphabet of predicates and functions, each with associated arity,

P1, . . . Pi, . . . , f1, . . . , fi, . . ., A FOL interpretation is

I = (∆I, P I
1

, . . . P I
i , . . . , fI

1
, . . . , fI

i , . . .)

where:

• ∆I is the domain (a set of objects)

• if Pi is a k-arity predicate, then P I
i ⊆ ∆I × · · · × ∆I (k times)

• if fi is a k-arity function, then fI
i : ∆I × · · · × ∆I −→ ∆I (k times)

• if fi is a constant (i.e., 0-arity function), then fI
i : () −→ ∆I (i.e., denotes

exactly one object of the domain)

G. De Giacomo FOL queries 5

First-order logic: Semantics - assignment

Let Vars be a set of (individual) variables, then given an interpretation I an

assignment is a function

α : Vars −→ ∆I

that assigns to each variable x ∈ Vars an object α(x) ∈ ∆I.

It is convenient to extend the notion of assignment to terms. We can do it by

defining a function ᾱ : Terms −→ ∆I inductively as follows:

• ᾱ(x) = α(x), if x ∈ Vars

• ᾱ(f(t1, . . . , tk)) = fI(ᾱ(t1), . . . , ᾱ(tk))

Note: for constants ᾱ(c) = cI.

G. De Giacomo FOL queries 6

First-order logic: Semantics - truth in an interpretation wrt an

assignment

We say that a FOL formula φ is true in an interpretation I wrt an assignment

α, written I, α |= φ

• I, α |= P (t1, . . . , tk) if (ᾱ(t1), . . . , ᾱ(tk)) ∈ P I;

• I, α |= ¬φ if I, α *|= φ

• I, α |= φ ∧ ψ if I, α |= φ and I, α |= ψ

• I, α |= φ ∨ ψ if I, α |= φ or I, α |= ψ

• I, α |= φ ⊃ ψ if, I, α |= φ implies I, α |= ψ

• I, α |= ∃x.φ if for some a ∈ ∆I we have I, α[x +→ a] |= φ

• I, α |= ∀x.φ if for every a ∈ ∆I we have I, α[x +→ a] |= φ

G. De Giacomo FOL queries 7

Here α[x +→ a] stands for the new assignment obtained from α as follows:

α[x +→ a](x) = a

α[y +→ a](y) = α(y) (y *= x)

Note: for constants ᾱ(c) = cI.

G. De Giacomo FOL queries 8

First-order logic: open vs. closed formulas

A variable x in a formula φ is free if x does not occur in the scope of any

quantifier, otherwise is bounded.

An open formula is a formula that has some free variable.

A closed formula, also called sentence, is a formula that has no free variables.

For closed formulas (but not for open formulas) we can straightforwardly define

what it means to true in an interpretation, written I |= φ, without mentioning

the assignment, since the assignment α does not play any role in verifying

I, α |= φ.

Instead open formulas are strongly related to queries – cf. relational databases.

G. De Giacomo FOL queries 9

FOL queries

A FOL query is an (open) FOL formula.

Let φ be a FOL query with free variables (x1, . . . , xk), then we sometimes

write it as φ(x1, . . . , xk).

Given an interpretation I , the assignments we are interested in are those that

map the variables x1, . . . , xk (and only those). We will write such assignment

explicitly sometimes: i.e., α(xi) = ai (i = 1, . . . , k), is written simply as

〈a1, . . . , ak〉.

Now we define the answer to a query φ(x1, . . . , xk) as follows

φ(x1, . . . , xk)
I = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= φ(x1, . . . , xk)}

G. De Giacomo FOL queries 10

Note: We will also use the notation: φI, keeping the free variables implicit, and

φ(I) making apparent that φ becomes a functions from interpretations to set

of tuples.

G. De Giacomo FOL queries 11

FOL boolean queries

A FOL boolean query is a FOL query without free variables.

Hence the answer to a boolean query φ() as follows

φ()I = {() | I, 〈〉 |= φ()}

Such an answer is 〈〉 if I |= φ and ∅ is I¬ |= φ. As an obvious convention we

read 〈〉 as “true” and ∅ as “false”.

G. De Giacomo FOL queries 12

FOL formulas: logical tasks

• Validity: φ is valid iff for all I and α we have I, α |= φ;

• Satisfiability: φ is satisfiable iff there exists an I and α such that

I, α |= φ; unsatisfiable otherwise;

• Logical implication: φ logically implies ψ, written φ |= ψ iff for all I and α,

if I, α |= φ then I, α |= ψ;

• Logical equivalence: φ is logically equivalent to ψ, iff for all I and α,

I, α |= φ iff I, α |= ψ (i.e., φ |= ψ and ψ |= φ);

G. De Giacomo FOL queries 13

FOL queries: logical tasks

• Validity: if φ is valid, then φI = ∆I × . . . × ∆I, i.e., the query returns all

the tuples of I .

• Satisfiability: φ is satisfiable, then φI *= ∅, i.e., the query returns some

tuples.

• Logical implication: φ logically implies ψ, then φI ⊆ ψI for all I , written

φ ⊆ ψ, i.e., the answer to φ is contained in that of ψ in every

interpretation; this is called query containment;

• Logical equivalence: φ is logically equivalent to ψ, then φI = ψI for all I ,

written φ = ψ, i.e., the answer to the two queries is the same in every

interpretation. This is called query equivalence and correspond to query

containment in both directions.

Note: We have analogous tasks if we have axioms, i.e., constraints on the

G. De Giacomo FOL queries 14

admissible interpretations.

G. De Giacomo FOL queries 15

Query evaluation problem

Let us consider a finite alphabet (i.e., we have a finite number of predicates

and functions) and a finite interpretation I (an interpretation over a finite

alphabet, where ∆I is finite).

Then we can define query evaluation (aka query answering) as an algorithmic

problem and study its computational complexity. In fact since to study

complexity we need to look at the recognition problem, which is a decision

• query answering problem: given finite interpretation I and a FOL query φ,

compute:

φI = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= φ}

• (query answering) recognition problem: given finite interpretation I and a

FOL query φ and a tuple 〈a1, . . . , ak〉 (ai ∈ ∆I), check whether

G. De Giacomo FOL queries 16

(a1, . . . , ak) ∈ φI, i.e., whether

I, 〈a1, . . . , ak〉 |= φ

G. De Giacomo FOL queries 17

Query evaluation algorithm

boolean Truth(I,α,φ) {

if(φ is t 1 = t 2)

return TermEval(t 1) = TermEval(t 2);

if(φ is P (t 1, . . . , t k))

return PˆI(TermEval(t 1),...,TermEval(t k));

if(φ is ¬ψ)

return ¬Truth(I,α,ψ);

if(φ is ψ ◦ ψ′)

return Truth(I,α,ψ) ◦ Truth(I,α,ψ′);

if(φ is ∃ x. ψ) {

boolean b = false;

forall(a ∈ ∆I)

b = b ∨ Truth(I,α[x +→ a],ψ);

return b;

G. De Giacomo FOL queries 18

}

if(φ is ∀ x. ψ) {

boolean b = true;

forall(a ∈ ∆I)

b = b ∧ Truth(I,α[x +→ a],ψ);

return b;

}

}

o ∈ ∆I TermEval(I,α,t) {

if(t is x ∈ Vars) return α(x);

if(t is f(t 1, . . . , t k))

return fˆI(TermEval(t 1),...,TermEval(t k));

}

G. De Giacomo FOL queries 19

Query evaluation: results

Thm1(Termination): The algorithm Truth terminates.

Proof. immediate. !

Thm2 (Correctness): The algorithm Truth is sound and complete: I, α |= φ

if and only if Truth(I,α,φ) = true.

Proof. Easy: the algorithm is very close to the semantic definition of I, α |= φ.

!

G. De Giacomo FOL queries 20

Query evaluation: time complexity

Thm (time complexity): (|I| + |α| + |φ|)|φ|, i.e., polynomial in the size of I

and exponential in the size of φ.

Proof.

1. fI(. . .) can be represented as k-dimensional array, hence accessing the

required element can be done in linear time in I ;

2. TermEval(...) simply visits the term, so it generates a polynomial

number of recursive calls, hence is time polynomial in (|I| + |α| + |φ|);

3. P I(. . .) can be represented as k-dimensional boolean array, hence

accessing the required element can be done in linear time in I ;

G. De Giacomo FOL queries 21

4. Truth(...) for the boolean cases simply visit the formula, so generate

either one or two recursive calls;

5. Truth(...) for the quantified cases ∃x.φ and ∀x.ψ involve looping for

all elements in∆I and testing the resulting assignments;

6. The total number of such testings is O(|I||Vars|);

Hence the thesis !.

G. De Giacomo FOL queries 22

Query evaluation: space complexity

Thm (space complexity): |φ| ∗ (|φ| ∗ log(|I|)), i.e., logarithmic in the size of I

and polynomial in the size of φ.

Proof.

1. fI(. . .) can be represented as k-dimensional array, hence accessing the

required element requires O(log(|I|);

2. TermEval(...) simply visits the term, so it generates a polynomial

number of recursive calls. each activation record has a constant size, and

we need O(|φ|) activation record;

3. P I(. . .) can be represented as k-dimensional boolean array, hence

accessing the required element requires O(log(|I|);

G. De Giacomo FOL queries 23

4. Truth(...) for the boolean cases simply visit the formula, so generate

either one or two recursive calls, each of constant size;

5. Truth(...) for the quantified cases ∃x.φ and ∀x.ψ involve looping for

all elements in∆I and testing the resulting assignments;

6. The total number of activation records that need to be at the same time on

the stack is O(#Vars) ≤ O(|φ|);

(the worst case form for the formula is

∀x1.∃x2. · · · ∀xn−1.∃xn.p(x1, x2, . . . , xn−1, xn).)

Hence the thesis !.

G. De Giacomo FOL queries 24

Query evaluation: combined, data, query complexity

Combined complexity: complexity of {〈I, α, φ〉 | I, α |= φ}, i.e.,

interpretation, tuple, and query part of the input:

• time: exponential

• space: PSPACE (PSPACE-complete –see [Vardi82] for hardness)

Data complexity: complexity of {〈I, α〉 | I, α |= φ}, i.e., interpretation fixed

(not part of the input):

• time: polynomial

• space: LOGSPACE (LOGSPACE-complete –see [Vardi82] for hardness)

Query complexity: complexity of {〈α, φ〉 | I, α |= φ}, i.e., query fixed (not

part of the input):

G. De Giacomo FOL queries 25

• time: exponential

• space: PSPACE (PSPACE-complete –see [Vardi82] for hardness)

G. De Giacomo FOL queries 26

