

FOL Query Evaluation

Giuseppe De Giacomo

Università di Roma “La Sapienza”

Corso di Seminari di Ingegneria del Software:

Data and Service Integration

Laurea Specialistica in Ingegneria Informatica

Università degli Studi di Roma “La Sapienza”

A.A. 2006-07

First-order logic

- First-order logic (FOL) is the logic to speak about **object**, which are the domain of discourse or universe.
- FOL is concerned about **Properties** of these objects and **Relations** over objects (resp. unary and n-ary **Predicates**)
- FOL also has **Functions** including **Constants** that denote objects.

First-order logic: syntax - terms

Terms: defined inductively as follows

- *Vars*: A set $\{x_1, \dots, x_n\}$ of **individual variables** (variables that denote single objects)
- **Function symbols** (including **constants**: a set of functions symbols of given arity > 0 . Functions of arity 0 are called **constants**).
- $\text{Vars} \subseteq \text{Terms}$
- if $t_1, \dots, t_k \in \text{Terms}$ and f^k is a k -ary function, then $f^k(t_1, \dots, t_k) \in \text{Terms}$
- nothing else is in *Terms*.

First-order logic: syntax - formulas

Formulas: defined inductively as follows

- if $t_1, \dots, t_k \in \text{Terms}$ and P^k is a k -ary predicate, then $P^k(t_1, \dots, t_k) \in \text{Formulas}$ (atomic formulas)
- $\phi \in \text{Formulas}$ and $\psi \in \text{Formulas}$ then
 - $\neg\phi \in \text{Formulas}$
 - $\phi \wedge \psi \in \text{Formulas}$
 - $\phi \vee \psi \in \text{Formulas}$
 - $\phi \supset \psi \in \text{Formulas}$
- $\phi \in \text{Formulas}$ and $x \in \text{Vars}$ then
 - $\exists x.\phi \in \text{Formulas}$
 - $\forall x.\phi \in \text{Formulas}$

- nothing else is in *Formulas*.

Note: if a predicate is of arity P_i , then it is a proposition of propositional logic.

First-order logic: Semantics - interpretations

Given an **alphabet** of predicates and functions, each with associated arity, $P_1, \dots, P_i, \dots, f_1, \dots, f_i, \dots$, A FOL **interpretation** is

$$\mathcal{I} = (\Delta^{\mathcal{I}}, P_1^{\mathcal{I}}, \dots, P_i^{\mathcal{I}}, \dots, f_1^{\mathcal{I}}, \dots, f_i^{\mathcal{I}}, \dots)$$

where:

- $\Delta^{\mathcal{I}}$ is the domain (a set of objects)
- if P_i is a k -arity predicate, then $P_i^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \dots \times \Delta^{\mathcal{I}}$ (k times)
- if f_i is a k -arity function, then $f_i^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \dots \times \Delta^{\mathcal{I}} \rightarrow \Delta^{\mathcal{I}}$ (k times)
- if f_i is a constant (i.e., 0-arity function), then $f_i^{\mathcal{I}} : () \rightarrow \Delta^{\mathcal{I}}$ (i.e., denotes exactly one object of the domain)

First-order logic: Semantics - assignment

Let $Vars$ be a set of (individual) variables, then given an interpretation \mathcal{I} an **assignment** is a function

$$\alpha : Vars \longrightarrow \Delta^{\mathcal{I}}$$

that assigns to each variable $x \in Vars$ an object $\alpha(x) \in \Delta^{\mathcal{I}}$.

It is convenient to extend the notion of assignment to terms. We can do it by defining a function $\bar{\alpha} : Terms \longrightarrow \Delta^{\mathcal{I}}$ inductively as follows:

- $\bar{\alpha}(x) = \alpha(x)$, if $x \in Vars$
- $\bar{\alpha}(f(t_1, \dots, t_k)) = f^{\mathcal{I}}(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_k))$

Note: for constants $\bar{\alpha}(c) = c^{\mathcal{I}}$.

First-order logic: Semantics - truth in an interpretation wrt an assignment

We say that a FOL formula ϕ is true in an interpretation \mathcal{I} wrt an assignment α , written $\mathcal{I}, \alpha \models \phi$

- $\mathcal{I}, \alpha \models P(t_1, \dots, t_k)$ if $(\bar{\alpha}(t_1), \dots, \bar{\alpha}(t_k)) \in P^{\mathcal{I}}$;
- $\mathcal{I}, \alpha \models \neg\phi$ if $\mathcal{I}, \alpha \not\models \phi$
- $\mathcal{I}, \alpha \models \phi \wedge \psi$ if $\mathcal{I}, \alpha \models \phi$ and $\mathcal{I}, \alpha \models \psi$
- $\mathcal{I}, \alpha \models \phi \vee \psi$ if $\mathcal{I}, \alpha \models \phi$ or $\mathcal{I}, \alpha \models \psi$
- $\mathcal{I}, \alpha \models \phi \supset \psi$ if, $\mathcal{I}, \alpha \models \phi$ implies $\mathcal{I}, \alpha \models \psi$
- $\mathcal{I}, \alpha \models \exists x.\phi$ if for some $a \in \Delta^{\mathcal{I}}$ we have $\mathcal{I}, \alpha[x \mapsto a] \models \phi$
- $\mathcal{I}, \alpha \models \forall x.\phi$ if for every $a \in \Delta^{\mathcal{I}}$ we have $\mathcal{I}, \alpha[x \mapsto a] \models \phi$

Here $\alpha[x \mapsto a]$ stands for the new assignment obtained from α as follows:

$$\begin{aligned}\alpha[x \mapsto a](x) &= a \\ \alpha[y \mapsto a](y) &= \alpha(y) \quad (y \neq x)\end{aligned}$$

Note: for constants $\bar{\alpha}(c) = c^{\mathcal{I}}$.

First-order logic: open vs. closed formulas

A variable x in a formula ϕ is **free** if x does not occur in the scope of any quantifier, otherwise is **bounded**.

An **open formula** is a formula that has some free variable.

A **closed formula**, also called **sentence**, is a formula that has no free variables.

For **closed formulas** (but not for open formulas) we can straightforwardly define what it means to **true in an interpretation**, written $\mathcal{I} \models \phi$, without mentioning the assignment, since the assignment α does not play any role in verifying $\mathcal{I}, \alpha \models \phi$.

Instead open formulas are strongly related to **queries** – cf. relational databases.

FOL queries

A *FOL query* is an (open) FOL formula.

Let ϕ be a FOL query with free variables (x_1, \dots, x_k) , then we sometimes write it as $\phi(x_1, \dots, x_k)$.

Given an interpretation \mathcal{I} , the assignments we are interested in are those that map the variables x_1, \dots, x_k (and only those). We will write such assignment explicitly sometimes: i.e., $\alpha(x_i) = a_i$ ($i = 1, \dots, k$), is written simply as $\langle a_1, \dots, a_k \rangle$.

Now we define the *answer to a query* $\phi(x_1, \dots, x_k)$ as follows

$$\phi(x_1, \dots, x_k)^{\mathcal{I}} = \{(a_1, \dots, a_k) \mid \mathcal{I}, \langle a_1, \dots, a_k \rangle \models \phi(x_1, \dots, x_k)\}$$

Note: We will also use the notation: $\phi^{\mathcal{I}}$, keeping the free variables implicit, and $\phi(\mathcal{I})$ making apparent that ϕ becomes a functions from interpretations to set of tuples.

FOL boolean queries

A *FOL boolean query* is a FOL query without free variables.

Hence the answer to a boolean query $\phi()$ as follows

$$\phi()^{\mathcal{I}} = \{() \mid \mathcal{I}, \langle \rangle \models \phi()\}$$

Such an answer is $\langle \rangle$ if $\mathcal{I} \models \phi$ and \emptyset is $\mathcal{I} \neg \models \phi$. As an obvious convention we read $\langle \rangle$ as “true” and \emptyset as “false”.

FOL formulas: logical tasks

- **Validity**: ϕ is **valid** iff for all \mathcal{I} and α we have $\mathcal{I}, \alpha \models \phi$;
- **Satisfiability**: ϕ is **satisfiable** iff there exists an \mathcal{I} and α such that $\mathcal{I}, \alpha \models \phi$; **unsatisfiable** otherwise;
- **Logical implication**: ϕ **logically implies** ψ , written $\phi \models \psi$ iff for all \mathcal{I} and α , if $\mathcal{I}, \alpha \models \phi$ then $\mathcal{I}, \alpha \models \psi$;
- **Logical equivalence**: ϕ is **logically equivalent** to ψ , iff for all \mathcal{I} and α , $\mathcal{I}, \alpha \models \phi$ iff $\mathcal{I}, \alpha \models \psi$ (i.e., $\phi \models \psi$ and $\psi \models \phi$);

FOL queries: logical tasks

- **Validity**: if ϕ is valid, then $\phi^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \dots \times \Delta^{\mathcal{I}}$, i.e., the query returns all the tuples of \mathcal{I} .
- **Satisfiability**: ϕ is satisfiable, then $\phi^{\mathcal{I}} \neq \emptyset$, i.e., the query returns some tuples.
- **Logical implication**: ϕ logically implies ψ , then $\phi^{\mathcal{I}} \subseteq \psi^{\mathcal{I}}$ for all \mathcal{I} , written $\phi \subseteq \psi$, i.e., the answer to ϕ is contained in that of ψ in every interpretation; this is called **query containment**;
- **Logical equivalence**: ϕ is logically equivalent to ψ , then $\phi^{\mathcal{I}} = \psi^{\mathcal{I}}$ for all \mathcal{I} , written $\phi = \psi$, i.e., the answer to the two queries is the same in every interpretation. This is called **query equivalence** and correspond to query containment in both directions.

Note: We have analogous tasks if we have **axioms**, i.e., **constraints** on the

admissible interpretations.

Query evaluation problem

Let us consider a finite alphabet (i.e., we have a finite number of predicates and functions) and a **finite interpretation** \mathcal{I} (an interpretation over a finite alphabet, where $\Delta^{\mathcal{I}}$ is finite).

Then we can define **query evaluation** (aka **query answering**) as an algorithmic problem and study its computational complexity. In fact since to study complexity we need to look at the **recognition problem**, which is a decision

- **query answering problem**: given finite interpretation \mathcal{I} and a FOL query ϕ , compute:

$$\phi^{\mathcal{I}} = \{(a_1, \dots, a_k) \mid \mathcal{I}, \langle a_1, \dots, a_k \rangle \models \phi\}$$

- **(query answering) recognition problem**: given finite interpretation \mathcal{I} and a FOL query ϕ and a tuple $\langle a_1, \dots, a_k \rangle$ ($a_i \in \Delta^{\mathcal{I}}$), check whether

$(a_1, \dots, a_k) \in \phi^{\mathcal{I}}$, i.e., whether

$$\mathcal{I}, \langle a_1, \dots, a_k \rangle \models \phi$$

Query evaluation algorithm

```

boolean Truth( $\mathcal{I}, \alpha, \phi$  ) {
    if( $\phi$  is  $t_1 = t_2$ )
        return TermEval( $t_1$ ) = TermEval( $t_2$ );
    if( $\phi$  is  $P(t_1, \dots, t_k)$ )
        return  $P^{\mathcal{I}}(\text{TermEval}(t_1), \dots, \text{TermEval}(t_k))$ ;
    if( $\phi$  is  $\neg\psi$ )
        return  $\neg\text{Truth}(\mathcal{I}, \alpha, \psi)$ ;
    if( $\phi$  is  $\psi \circ \psi'$ )
        return Truth( $\mathcal{I}, \alpha, \psi$ )  $\circ$  Truth( $\mathcal{I}, \alpha, \psi'$ );
    if( $\phi$  is  $\exists x. \psi$ ) {
        boolean b = false;
        forall( $a \in \Delta^{\mathcal{I}}$ )
            b = b  $\vee$  Truth( $\mathcal{I}, \alpha[x \mapsto a], \psi$ );
        return b;
    }
    if( $\phi$  is  $\forall x. \psi$ ) {
        boolean b = true;
        forall( $a \in \Delta^{\mathcal{I}}$ )
            b = b  $\wedge$  Truth( $\mathcal{I}, \alpha[x \mapsto a], \psi$ );
        return b;
    }
}

```

```

 $t \in \Delta^{\mathcal{I}}$  TermEval( $\mathcal{I}, \alpha, t$ ) {
    if( $t$  is  $x \in \text{Vars}$ ) return  $\alpha(x)$ ;
    if( $t$  is  $f(t_1, \dots, t_k)$ )
        return  $f^{\mathcal{I}}(\text{TermEval}(t_1), \dots, \text{TermEval}(t_k))$ ;
}

```

Query evaluation: results

Thm1(Termination): The algorithm `Truth` terminates.

Proof. immediate. \square

Thm2 (Correctness): The algorithm `Truth` is sound and complete: $\mathcal{I}, \alpha \models \phi$ if and only if $\text{Truth}(\mathcal{I}, \alpha, \phi) = \text{true}$.

Proof. Easy: the algorithm is very close to the semantic definition of $\mathcal{I}, \alpha \models \phi$.
 \square

Query evaluation: time complexity

Thm (time complexity): $(|\mathcal{I}| + |\alpha| + |\phi|)^{|\phi|}$, i.e., polynomial in the size of \mathcal{I} and exponential in the size of ϕ .

Proof.

1. $f^{\mathcal{I}}(\dots)$ can be represented as k-dimensional array, hence accessing the required element can be done in linear time in \mathcal{I} ;
2. `TermEval`(...) simply visits the term, so it generates a polynomial number of recursive calls, hence is time polynomial in $(|\mathcal{I}| + |\alpha| + |\phi|)$;
3. $P^{\mathcal{I}}(\dots)$ can be represented as k-dimensional boolean array, hence accessing the required element can be done in linear time in \mathcal{I} ;

4. $\text{Truth}(\dots)$ for the boolean cases simply visit the formula, so generate either one or two recursive calls;
5. $\text{Truth}(\dots)$ for the quantified cases $\exists x.\phi$ and $\forall x.\psi$ involve looping for all elements in $\Delta^{\mathcal{I}}$ and testing the resulting assignments;
6. The total number of such testings is $O(|\mathcal{I}|^{|Vars|})$;

Hence the thesis \square .

Query evaluation: space complexity

Thm (space complexity): $|\phi| * (|\phi| * \log(|\mathcal{I}|))$, i.e., logarithmic in the size of \mathcal{I} and polynomial in the size of ϕ .

Proof.

1. $f^{\mathcal{I}}(\dots)$ can be represented as k-dimensional array, hence accessing the required element requires $O(\log(|\mathcal{I}|))$;
2. $\text{TermEval}(\dots)$ simply visits the term, so it generates a polynomial number of recursive calls. each activation record has a constant size, and we need $O(|\phi|)$ activation record;
3. $P^{\mathcal{I}}(\dots)$ can be represented as k-dimensional boolean array, hence accessing the required element requires $O(\log(|\mathcal{I}|))$;

4. $\text{Truth}(\dots)$ for the boolean cases simply visit the formula, so generate either one or two recursive calls, each of constant size;
5. $\text{Truth}(\dots)$ for the quantified cases $\exists x.\phi$ and $\forall x.\psi$ involve looping for all elements in $\Delta^{\mathcal{I}}$ and testing the resulting assignments;
6. The total number of activation records that need to be at the same time on the stack is $O(\# \text{Vars}) \leq O(|\phi|)$;
(the worst case form for the formula is

$$\forall x_1.\exists x_2.\dots \forall x_{n-1}.\exists x_n.p(x_1, x_2, \dots, x_{n-1}, x_n).$$
)

Hence the thesis \square .

Query evaluation: combined, data, query complexity

Combined complexity: complexity of $\{\langle \mathcal{I}, \alpha, \phi \rangle \mid \mathcal{I}, \alpha \models \phi\}$, i.e., interpretation, tuple, and query part of the input:

- time: exponential
- space: PSPACE (PSPACE-complete –see [Vardi82] for hardness)

Data complexity: complexity of $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models \phi\}$, i.e., interpretation fixed (not part of the input):

- time: polynomial
- space: LOGSPACE (LOGSPACE-complete –see [Vardi82] for hardness)

Query complexity: complexity of $\{\langle \alpha, \phi \rangle \mid \mathcal{I}, \alpha \models \phi\}$, i.e., query fixed (not part of the input):

- time: exponential
- space: PSPACE (PSPACE-complete –see [Vardi82] for hardness)