FOL Query Evaluation

Giuseppe De Giacomo

Universita di Roma “La Sapienza”

Corso di Seminari di Ingegneria del Software:
Data and Service Integration
Laurea Specialistica in Ingegneria Informatica
Universita degli Studi di Roma “La Sapienza”
A.A. 2006-07

First-order logic

e First-order logic (FOL) is the logic to speak about object, which are the
domain of discourse or universe.

e FOL is concerned about Properties of these objects and Relations over
objects (resp. unary and n-ary Predicates)

e FOL also has Functions including Constants that denote objects.

First-order logic: syntax - terms

Terms: defined inductively as follows

e Vars: Aset{xz,...,x,} of individual variables (variables that denote
single objects)

e Function symbols (including constants: a set of functions symbols of given
arity > 0. Functions of arity 0 are called constants.

e Vars C Terms

o ift;,...,t, € Terms and f* is a k-ary function, then
FE(t,...,tx) € Terms

e nothing else is in Terms.

First-order logic: syntax - formulas

Formulas: defined inductively as follows

o ifty,...,t, € Terms and P* is a k-ary predicate, then
Pk(ty,...,t,) € Formulas (atomic formulas)
e ¢ € Formulas and v € Formulas then
- —¢ € Formulas
- ¢ A Y € Formulas
- ¢ V 1 € Formulas
- ¢ D ¢ € Formulas

e ¢ € Formulas and = € Vars then
— Jx.¢p € Formulas

- Vz.¢p € Formulas

e nothing else is in Formulas.

Note: if a predicate is of arity P; , then it is a proposition of propositional logic.

Given an alphabet of predicates and functions, each with associated arity,
Py,...P,...,f1y...5 fis..., AFOL interpretation is

I=(A%LPE...PE . fE L fE)
where:
e A7 is the domain (a set of objects)
o if P; is a k-arity predicate, then P* C A% x --- x A% (k times)
o if f; is a k-arity function, then fI : AT x ... x AT — AT (k times)

e if f; is a constant (i.e., 0-arity function), then fZ : () — A7 (i.e., denotes
exactly one object of the domain)

Let Vars be a set of (individual) variables, then given an interpretation Z an
assignment is a function
o : Vars — AT

that assigns to each variable x € Vars an object a(z) € AZ,

It is convenient to extend the notion of assignment to terms. We can do it by
defining a function & : Terms — AZ inductively as follows:

e a(x) = ax), fx € Vars
o a(f(try..-ytr)) = fE(@(ts),-..,a(ty))

Note: for constants a(c) = ¢Z.

We say that a FOL formula ¢ is true in an interpretation Z wrt an assignment
a, writtenZ, a |= ¢

o Z,a = P(tyy... 1) if (a(ty),...,a(ty)) € P7;
Tabk-¢ iT,alkd

T.aE=odNY fZ,aFE¢pandZ,a = ¢

T,aEo¢Vy ifT,aE¢orT,akEp

T,a = ¢ D if, Z,a = ¢ implies Z, a = 1

Z,o = 3z if for some a € AT we have Z, a[x +— a] = ¢

Z,a E=Vz.p if for every a € AT we have Z, o[z — a] &= ¢

Here a[xz — a] stands for the new assignment obtained from « as follows:

afr — a](x) = a

aly —al(y) =aly) (y#=x)

Note: for constants a(c) = c*.

First-order logic: open vs. closed formulas

A variable x in a formula ¢ is free if & does not occur in the scope of any
quantifier, otherwise is bounded.

An open formula is a formula that has some free variable.
A closed formula, also called sentence, is a formula that has no free variables.

For closed formulas (but not for open formulas) we can straightforwardly define
what it means to frue in an interpretation, written Z |= ¢, without mentioning
the assignment, since the assignment a does not play any role in verifying

T,a = ¢.

Instead open formulas are strongly related to queries — cf. relational databases.

A FOL query is an (open) FOL formula.

Let ¢ be a FOL query with free variables (x1, . .., xx), then we sometimes
write it as ¢(x1, ..., k).

Given an interpretation Z, the assignments we are interested in are those that
map the variables x4, . .., xx (and only those). We will write such assignment
explicitly sometimes: i.e., a(xz;) = a; (1 = 1,..., k), is written simply as

(A1y...,ap).

Now we define the answer to a query ¢(x1,...,xx) as follows

d)(xl,...,mk)I:{(al,...,ak,) | Z,{a1,...,ax) = d(x1y...,2%)}

Note: We will also use the notation: ¢Z, keeping the free variables implicit, and
¢(Z) making apparent that ¢ becomes a functions from interpretations to set
of tuples.

FOL boolean queries

A FOL boolean query is a FOL query without free variables.

Hence the answer to a boolean query ¢() as follows

()" ={01Z,() E o0}

Such an answer is () if Z = ¢ and 0 is Z— = ¢. As an obvious convention we
read () as “true” and 0 as “false”.

FOL formulas: logical tasks

Validity: ¢ is valid iff for all Z and « we have Z, o |= ¢;

Satisfiability: ¢ is satisfiable iff there exists an Z and « such that
T, o = ¢; unsatisfiable otherwise;

Logical implication: ¢ logically implies v, written ¢ = v iff for all Z and «a,
fZ,a = ¢thenZ,a = 9;

Logical equivalence: ¢ is logically equivalent to 4, iff for all Z and «,

T,a k= ¢iftT,a k=4 (ie. ¢ = and ¢ = o);

FOL queries: logical tasks

e Validity: if ¢ is valid, then ¢ = A% x ... x AZ, i.e., the query returns all
the tuples of Z.

e Satisfiability: ¢ is satisfiable, then ¢~ # 0, i.e., the query returns some
tuples.

e Logical implication: ¢ logically implies 1, then ¢* C 1% for all Z, written
¢ C 1, i.e., the answer to ¢ is contained in that of v in every
interpretation; this is called query containment;

e Logical equivalence: ¢ is logically equivalent to v, then ¢pZ = 7 for all Z,
written ¢ = 1, i.e., the answer to the two queries is the same in every
interpretation. This is called query equivalence and correspond to query
containment in both directions.

Note: We have analogous tasks if we have axioms, i.e., constraints on the

admissible interpretations.

Query evaluation problem

Let us consider a finite alphabet (i.e., we have a finite number of predicates
and functions) and a finite interpretation Z (an interpretation over a finite
alphabet, where AZ is finite).

Then we can define query evaluation (aka query answering) as an algorithmic
problem and study its computational complexity. In fact since to study
complexity we need to look at the recognition problem, which is a decision

e query answering problem: given finite interpretation Z and a FOL query ¢,
compute:

qu:{(al,...,ak) | Z,{(a1,...,ax) &= ¢}

e (query answering) recognition problem: given finite interpretation Z and a
FOL query ¢ and a tuple {a,...,as) (a; € AZT), check whether

(ai,...,ax) € ¢, i.e., whether

Z,{a1y...,a) = ¢

boolean Truth(Z,a,¢) {

if(¢p is t1 = t2)

return TermEval(t.1l) = TermEval(t 2);
if(¢p is P(t1,...,t k))

return P Z(TermEval(t_1l),...,TermEval(tk));
if(¢ is)

return —Truth(Z,a,v);
if(¢ is Yo’

return Truth(Z,a,vy) o Truth(Z,a,vy’);
if(¢ is I =z ¥) {

boolean b = false;

forall(a € AI)

b =b V Truth(Z,alz— a],¥);
return b;

}
if(¢p is V x. o) {
boolean b = true;
forall(a € A7)
b =b A Truth(Z,alr — a],¥);
return b;

o € AT TermEval(Z,a,t) {
if(t is « € Vars) return a(x);
if(t is f(t1,...,t k))
return f"Z(TermgEval(t1l),...,TermEval(tk));

Thm1(Termination): The algorithm Truth terminates.

Proof. immediate. O

Thm2 (Correctness): The algorithm Truth is sound and complete: Z, o |= ¢
if and only if Truth(Z,a,¢) = true.

Proof. Easy: the algorithm is very close to the semantic definition of Z, a = ¢.
O

Thm (time complexity): (|Z] + |a| + |@])!?!, i.e., polynomial in the size of
and exponential in the size of ¢.

Proof.

1. fZ(...) can be represented as k-dimensional array, hence accessing the
required element can be done in linear time in Z;

2. TermEval(...) simply visits the term, so it generates a polynomial
number of recursive calls, hence is time polynomial in (|Z| + || + |®]);

3. PZ(...) can be represented as k-dimensional boolean array, hence
accessing the required element can be done in linear time in Z;

4. Truth(...) forthe boolean cases simply visit the formula, so generate
either one or two recursive calls;

5. Truth(...) for the quantified cases Jx.¢ and Vx.1 involve looping for
all elements in AZ and testing the resulting assignments;

6. The total number of such testings is O(|Z|/Yash:;

Hence the thesis O.

Thm (space complexity): |@| * (|¢| * log(|Z])), i.e., logarithmic in the size of T
and polynomial in the size of ¢.

Proof.

1. fZ(...) can be represented as k-dimensional array, hence accessing the
required element requires O(log(|Z|);

2. TermEval(...) simply visits the term, so it generates a polynomial
number of recursive calls. each activation record has a constant size, and
we need O(|¢|) activation record;

3. PZ(...) can be represented as k-dimensional boolean array, hence
accessing the required element requires O(log(|Z|);

4. Truth(...) forthe boolean cases simply visit the formula, so generate
either one or two recursive calls, each of constant size;

5. Truth(...) for the quantified cases Jx.¢ and Vx.1 involve looping for
all elements in AZ and testing the resulting assignments;

6. The total number of activation records that need to be at the same time on
the stack is O(#Vars) < O(|¢|);
(the worst case form for the formula is

Vai.3xs. - -V, 1.32,.p(T1, Tay e o oy Tp_1, Ty,).)

Hence the thesis O.

Combined complexity: complexity of {(Z,, ¢) | T, |= ¢}, i€,
interpretation, tuple, and query part of the input:

e time: exponential

e space: PSPACE (PSPACE-complete —see [Vardi82] for hardness)

Data complexity: complexity of {(Z,) | Z, o |= ¢}, i.e., interpretation fixed
(not part of the input):

e time: polynomial

e space: LOGSPACE (LOGSPACE-complete —see [Vardi82] for hardness)

Query complexity: complexity of {{a, ¢) | Z, o = ¢}, i.e., query fixed (not
part of the input):

e time: exponential

e space: PSPACE (PSPACE-complete —see [Vardi82] for hardness)

