Universita di Roma “La Sapienza”
A.A. 2006-2007

Facolta di Ingegneria
Corso di Laurea in Ingegneria Informatica

Corso di “PROGETTAZIONE DEL SOFTWARE I"
(Canale A-L & M-Z)
Esercitazione numero 9
LA FASE DI REALIZZAZIONE
Realizzazione di associazioni a responsabilita multipla e ISA

(SOLUZIONE)

Fase di analisi

")La Sapienza

Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 2

Diagramma delle classi e degli use-case

‘isual Paradigm for UML I)onimunnﬁﬁ mmg{aot Tarammercial use]
tdata : date
tooalSeqgnati : int= =0
Arbitra -qoalSupﬂ_i : i_nt_= =0 Squadra
[nome : string Fammanizion ; int= = 0} [eeloreMagiia : string
+cognome : string ; FnumMondialiinti : int= = 0
reta : int=0 |
|
|
0.* ! o.r 0.1
i
1
ArbitroSudamericano | 0..* natoA 1 Nazione
tpeso : flogt=0 [neme : string
Wignyl Paradigm for UML Community Edition [not for commere
calcolafmmonizioni @

FIF &

")La Sapienza

S Universita deghi Studi di Roma Prog. del Software 1. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 3

Specifica degli use case

InizioSpecificaUseCase Calcola Ammonizioni

TotaleAmmonizioni (a: Arbitro): intero
pre: true // nessuna precondizione
post: result =3 _, .« cHaArbitrato HaArbitrato.ammonizioni(< a,s >).

FineSpecifica

")La Sapienza

Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 4

Fase di progetto

~)La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 5

Algoritmi per le operazioni dello use-case

Per I'operazione totaleAmmonizioni(a: Arbitro) : int >= 0 adottiamo il
seguente algoritmo:

result = 0;

per ogni link 1 di tipo HaArbitrato che coinvolge a {
result += l.ammonizionij;

}

return result;

~)La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 6

Responsabilita sulle associazioni

Riportiamo la tabella delle responsabilita.

| Associazione | Classe | ha resp. |
HaArbitrato Arbitro SIitl.2
Squadra sit
NatoA ArbitroSudamericano SI3
Nazione NO
Di Squadra SI3
Nazione SI3

1. dai requisiti
2. dagli algoritmi
3. dai vincoli di molteplicita

~)La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 7

Strutture di dati

Abbiamo la necessita di rappresentare collezioni omogenee di oggetti, a
causa dei vincoli di molteplicita 0..* delle associazioni e dei parametri e delle
variabili locali dell’operazione dello use-case necessarie per |'algoritmo. Per
fare ci0o, utilizzeremo la classe Java HashSet.

Abbiamo anche la necessita di rappresentare date. A tale scopo utilizzeremo
la classe Java Data.

~/La Sapienza

3 degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 8

API per le strutture di dati

package Data;

public class Data implements Cloneable {
public Data();
public Data(int a, int me, int g);
public int giorno();
public int mese();
public int anno();
public boolean prima(Data d);
public void avanzaUnGiorno();
public String toString();
public Object clone();
public boolean equals(Object o);

")La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 9

Corrispondenza fra tipi UML e Java

Possiamo riassumere il risultato delle nostre scelte nella seguente tabella di
corrispondenza dei tipi UML.

| Tipo UML [Rappresentazione in Java |

int int
int>0 int
int>=0 int
string String
data Data
float>0 float

Si noti come in tre casi (int>0, int>=0, e float>0) il tipo Java & semanti-
camente piu esteso del corrispondente tipo UML. Prevediamo una verifica
delle condizioni di ammissibilita sul lato server, perché & una soluzione di
migliore qualita.

"')La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 10

Tabelle di gestione delle proprieta di classi UML

Riassumiamo tutte le nostre scelte differenti da quelle di default mediante
la tabella delle proprieta immutabili e |la tabella delle assunzioni sulla nascita.

\ Classe UML | Proprieta immutabile |
Arbitro nome
cognome
Squadra di
Nazione nome
di
ArbitroSudamericano natoA
Proprieta

Classe UML | nota alla nascita | non nota alla nascita

")La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 11

Sequenza di nascita degli oggetti

e Al momento della creazione di un oggetto di classe Squadra, possiamo
assumere che sia nota la nazione di appartenenza;

e Al momento della creazione di un oggetto di classe ArbitroSudameri-
cano, possiamo assumere che sia nota la nazione di nascita.

")La Sapienza

3 degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 12

API delle classi Java

A titolo di esempio, viene fornita I'API della classe Arbitro:

public class Arbitro {
public Arbitro(String n, String c, int e);
public String getNome();
public String getCognome();
public int getEta();
public void setEta(int e);
public void inseriscilinkHaArbitrato(AssocHaArbitrato a);
public void eliminalinkHaArbitrato(AssocHaArbitrato a);
public Set getLinkHaArbitrato();
public String toString();

~)La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 13

Fase di realizzazione

~)La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 14

Considerazioni

Dalle fasi precedenti traiamo come conseguenza che dobbiamo realizzare:

quattro classi UML,

e una associazione (HaArbitrato) con attributi e a responsabilita doppia,
con vincoli di molteplicita 0..*% e 0..%;

e una associazione (natoA) senza attributi e a responsabilita singola, con
vincoli di molteplicita 0..* e 1..1;

e una associazione (di) senza attributi e a responsabilita doppia, con
vincoli di molteplicita 0..1 e 1..1;

® UNO use case.
")La Sapienza
Y Universita d

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 15

Considerazioni (cont.)

Notiamo che le associazioni natoA e di hanno un vincolo di molteplicita
minima diverso da zero. Sappiamo che, in generale, cid ci obbliga a prendere
dei provvedimenti, in particolare generando opportune eccezioni nel caso in
Cui un oggetto sia in uno stato tale da non rispettare tale vincolo.

Nel caso in esame, possiamo evitare tali provvedimenti, in quanto gli ogget-
ti di interesse non possono mai essere in uno stato inconsistente. In-
fatti, quando nasce un oggetto di classe Squadra, ne & nota la Nazione,
che & immutabile. Analogamente, quando nasce un oggetto di classe
ArbitroSudamericano, ne & nota |la Nazione, che &€ immutabile.

~/La Sapienza

3 degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 16

Considerazioni (cont.)

L'associazione di, a responsabilita doppia, richiede considerazioni partico-
lari, in quanto deve essere gestita durante la nascita dell’oggetto di classe

Struttura dei file e dei package

+---AppArbitri
Squadra. | | AssociazioneDi.java
| | AssociazioneHaArbitrato.java
| | CalcolaAmmonizioni.java
. | EccezionePrecondizioni. java
AssociazioneDi: SOlO inserisci(), ma non elimina(), in quanto si tratta di : | Naziome.java J
una proprieta immutabile per entrambe le classi. | | Squadra.java
| | Test.java
| | TipoLinkDi.java
Nazione: costruttore senza parametro di classe Squadra; solo inserisci(), : : TipoLinkHaArbitrato. java
ma non elimina(), in quanto si tratta di una proprieta immutabile per | +-—-Arbitro
la classe. | | Arbitro. java
| |
| \---ArbitroSudamericano
. X . . . | ArbitroSudamericano. java
Squadra: costruttore con parametro di classe Nazione, in quanto si tratta di | J
una proprieta nota alla nascita; il costruttore invoca \---Data
AssociazioneDi.inserisci(); solo inserisci(), ma non elimina(), in quan- Data. java
to si tratta di una proprieta immutabile per la classe.
"")La Sapienza "")La Sapienza
S Universiva degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 17 S Universina deghi St di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 18
La classe Java Arbitro if (eta < 0) // CONTROLLO PRECONDIZIONI
throw new EccezionePrecondizioni("L’eta’ deve essere non nulla");
// File Arbitro/Arbitro.java eta = e;
package AppArbitri.Arbitro; }
public void inseriscilinkHaArbitrato(AssociazioneHaArbitrato a) {
import AppArbitri.*; if (a != null && a.getLink().getSquadra() != null &&
import java.util.*; a.getLink() .getArbitro() == this)
insiemelLinkHaArbitrato.add(a.getLink());
public class Arbitro { }
protected final String nome; public void eliminalinkHaArbitrato(AssociazioneHaArbitrato a) {
protected final String cognome; if (a != null && a.getLink().getArbitro() == this)
protected int eta; insiemelLinkHaArbitrato.remove(a.getLink());
protected HashSet <TipoLinkHaArbitrato> insiemeLinkHaArbitrato; }
public Arbitro(String n, String c, int e) throws EccezionePrecondizioni { public Set getLinkHaArbitrato() {
if (eta < 0) // CONTROLLO PRECONDIZIONI return new HashSet<TipoLinkHaArbitrato>(insiemeLinkHaArbitrato);
throw new EccezionePrecondizioni("L’eta’ deve essere non nulla"); }
nome = n; public String toString() { // per il test
cognome = c; return nome + " " + cognome + " (" + eta + " anni)";
eta = e; }
insiemeLinkHaArbitrato = new }

HashSet<TipoLinkHaArbitrato>();
}
public String getNome() { return nome; }
public String getCognome() { return cognome; }
public int getEta() { return eta; }
public void setEta(int e) throws EccezionePrecondizioni {

La classe Java Squadra

// File Squadra.java
package AppArbitri;

import java.util.x*;

public class Squadra {
private String coloreMaglia;
private int mondialiVinti;
private HashSet<TipoLinkHaArbitrato> insiemeLinkHaArbitrato;
private TipoLinkDi 1inkDi;
public Squadra(Nazione n, String c, int m)
throws EccezionePrecondizioni {
if (m < 0) // CONTROLLO PRECONDIZIONI
throw new EccezionePrecondizioni
("I1 numero di mondiali vinti deve essere positivo");
TipoLinkDi td = null;
try {
td = new TipoLinkDi(this,n);
}
catch (EccezionePrecondizioni e) {
System.out.println(e);
}
AssociazioneDi.inserisci(td);
coloreMaglia = c;

mondialiVinti = m;
insiemeLinkHaArbitrato =
new HashSet<TipoLinkHaArbitrato>();
}
public TipoLinkDi getLinkDi() {
return linkDi;
}
public void inseriscilinkDi(AssociazioneDi a) {
if (a != null) 1linkDi = a.getLink();
}
public String getColoreMaglia() { return coloreMaglia; }
public void setColoreMaglia(String c) { coloreMaglia = c; }
public int getNumeroMondialiVinti() { return mondialiVinti; }
public void setNumeroMondialiVinti(int n)
throws EccezionePrecondizioni {
if (n < 0) // CONTROLLO PRECONDIZIONI
throw new EccezionePrecondizioni
("I1 numero di mondiali vinti deve essere positivo");
mondialiVinti = n;
}
// In alternativa:
public void incrNumeroMondialiVinti() { mondialiVinti++; }
public void inseriscilinkHaArbitrato(AssociazioneHaArbitrato a) {
if (a != null && a.getLink().getArbitro() !'= null &%
a.getLink() .getSquadra() == this)
insiemelLinkHaArbitrato.add(a.getLink());

}
public void eliminalinkHaArbitrato(AssociazioneHaArbitrato a) {
if (a !'= null && a.getLink().getSquadra() == this)
insiemeLinkHaArbitrato.remove(a.getLink());
}
public Set getLinkHaArbitrato() {
return new HashSet<TipoLinkHaArbitrato>(insiemeLinkHaArbitrato) ;
}
public String toString() { // per il test
return 1inkDi.getNazione().getNome(); }

La classe Java ArbitroSudamericano

// File ArbitroSudamericano/ArbitroSudamericano.java
package AppArbitri.ArbitroSudamericano;

import AppArbitri.Arbitro.x*;
import AppArbitri.x*;

public class ArbitroSudamericano extends Arbitro {

protected float peso;
protected final Nazione nazioneNascita;
public ArbitroSudamericano(String nome, String cognome, int eta,
float pe, Nazione naz)
throws EccezionePrecondizioni {
super (nome, cognome, eta);
if (pe <= 0) // CONTROLLO PRECONDIZIONI
throw new EccezionePrecondizioni("I1 peso deve essere positivo");
peso = pe;
nazioneNascita = naz;
}
public float getPeso() { return peso; }
public Nazione getNazioneNascita() { return nazioneNascita; }
public void setPeso(float pe)
throws EccezionePrecondizioni {
if (peso <= 0) // CONTROLLO PRECONDIZIONI
throw new EccezionePrecondizioni("I1l peso deve essere positivo");

peso = pe;
}
public String toString() { // per il test

return super.toString() + " nato in " + nazioneNascita;

La classe Java Nazione

// File Nazione.java
package AppArbitri;

}
public class Nazione {
private Squadra squadra;
private final String nome;
private int abitanti;
private TipoLinkDi 1inkDi;
public Nazione(String n, int a) {
nome = n;
abitanti = a;
squadra = null;
}
public void inseriscilinkDi(AssociazioneDi a) {
if (a != null) 1linkDi = a.getLink();
}
public TipoLinkDi getLinkDi() {
return 1linkDi;
}
public String getNome() { return nome; }
public float getAbitanti() { return abitanti; }
public void setAbitanti(int a) { abitanti = a; }
public Squadra getSquadra() { return squadra; }
public String toString() { // per il test
return nome + " - " + abitanti + " mln ab."; La Classe Java TIDOLInkHaArbltratO
}

// File TipoLinkHaArbitrato.java
package AppArbitri;

import AppArbitri.Arbitro.x*;
import AppArbitri.x;
import Data.x*;

public class TipoLinkHaArbitrato {
private final Arbitro arbitro;
private final Squadra squadra;
private final Data data;
private final int goalSegnati;
private final int goalSubiti;
private final int ammonizioni;
public Arbitro getArbitro() { return arbitro; }
public Squadra getSquadra() { return squadra; }
public Data getData() { return data; }
public int getGoalSegnati() { return goalSegnati; }
public int getGoalSubiti() { return goalSubiti; }
public int getAmmonizioni() { return ammonizioni; }
public TipoLinkHaArbitrato(Arbitro a, Squadra s, Data d, int gseg,
int gsub, int amm)
throws EccezionePrecondizioni {
if (a2 == null || s == null || 4 == null ||

gseg < 0 || gsub < 0 || amm < 0) // CONTROLLO PRECONDIZIONI
throw new EccezionePrecondizioni
("Gli oggetti devono essere inizializzati\n" +
"e i goal e le ammonizioni devono essere positivi");
arbitro = a;
squadra = s;
data = d;
goalSegnati = gseg;
goalSubiti = gsub;
ammonizioni = amm;

}
public boolean equals(Object o) {
if (o != null && getClass().equals(o.getClass())) {
TipoLinkHaArbitrato a = (TipoLinkHaArbitrato)o;
return arbitro == a.arbitro && squadra == a.squadra;
}

else return false;

La classe Java AssociazioneHaArbitrato

// File AssocHaArbitrato.java
package AppArbitri;

import AppArbitri.Arbitro.x*;

public class AssociazioneHaArbitrato {
private AssociazioneHaArbitrato(TipoLinkHaArbitrato x) { link = x; }
private TipoLinkHaArbitrato link;
public TipoLinkHaArbitrato getLink() { return link; }
public static void inserisci(TipoLinkHaArbitrato y) {
if (y != null && y.getArbitro() != null && y.getSquadra() != null) {
AssociazioneHaArbitrato k = new AssociazioneHaArbitrato(y);
k.link.getArbitro().inserisciLinkHaArbitrato(k);
k.link.getSquadra() .inserisciLinkHaArbitrato (k) ;
}
}
public static void elimina(TipoLinkHaArbitrato y) {
if (y != null && y.getArbitro() != null && y.getSquadra() != null) {
AssociazioneHaArbitrato k = new AssociazioneHaArbitrato(y);
k.link.getArbitro().eliminalinkHaArbitrato (k) ;
k.link.getSquadra() .eliminalinkHaArbitrato (k) ;

}
}
}
"")La Sapienza

a'degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 24

La classe Java TipoLinkDi

// File TipoLinkDi.java
package AppArbitri;

import AppArbitri.Arbitro.x*;

public class TipoLinkDi {
private final Squadra laSquadra;
private final Nazione laNazione;
public TipoLinkDi(Squadra x, Nazione y)
throws EccezionePrecondizioni {
if (x == null || y == null) // CONTROLLO PRECONDIZIONI
throw new EccezionePrecondizioni
("Gli oggetti devono essere inizializzati");
laSquadra = x; laNazione = y;
}
public boolean equals(Object o) {
if (o !'= null && getClass().equals(o.getClass())) {
TipoLinkDi b = (TipoLinkDi)o;
return b.laNazione == laNazione && b.laSquadra == laSquadra;
}
else return false;
}
public Squadra getSquadra() { return laSquadra; }
public Nazione getNazione() { return laNazione; }

La classe Java AssociazioneDi

// File AssocDi.java
package AppArbitri;

import AppArbitri.Arbitro.x*;

public class AssociazioneDi {

private AssociazioneDi(TipoLinkDi x) { link = x; }

private TipoLinkDi link;

public TipoLinkDi getLink() { return link; }

public static void inserisci(TipoLinkDi y) {

if (y !'= null &&

y.getSquadra() .getLinkDi() == null &&
y.getNazione() .getLinkDi() == null) {
AssociazioneDi k = new AssociazioneDi(y);
y.getNazione() .inseriscilinkDi (k) ;
y.getSquadra() .inserisciLinkDi (k) ;

~/La Sapienza

3 degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 26

Realizzazione in Java dello use case

// File CalcolaAmmonizioni.java
package AppArbitri;

import java.util.x*;
import AppArbitri.Arbitro.*;

public final class CalcolaAmmonizioni {
private CalcolaAmmonizioni() { };
public static int totaleAmmonizioni(Arbitro a) {
int result = 0;
Set insiemeLink = a.getLinkHaArbitrato();
Iterator it = insiemeLink.iterator();
while(it.hasNext()) {
TipoLinkHaArbitrato link =
(TipoLinkHaArbitrato)it.next();
result += link.getAmmonizioni();

}
return result;
}
}
"")La Sapienza

" Universita deghi Studi di Roma Prog. del Software 1. Esercitazione: realizzazione resp. doppia. A.A. 2006-07 27

