
Università di Roma “La Sapienza”

A.A. 2006-2007

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Informatica

Corso di “PROGETTAZIONE DEL SOFTWARE I”

(Canale A-L & M-Z)

Esercitazione numero 8

LA FASE DI REALIZZAZIONE

Realizzazione di diagrammi degli stati e delle transizioni

(SOLUZIONE)

Fase di analisi

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 2

Diagramma delle classi e degli use case

effettua

MinisteroIstruzione

GestioneLavoratori

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 3

Diagramma degli stati e
delle transizioni classe LavoratoreScolastico

feriein ferie

in malattia

rientro

in malattia

in aspettativa

in servizio

assente

aspettativa

malattia

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 4

Specifica classe LavoratoreScolastico

InizioSpecificaClasse LavoratoreScolastico

isInServizio (): booleano

pre: nessuna

post: result è pari a true se e solo se this si trova nello stato

“in servizio” (cf. diagramma degli stati e transizioni).

isInFerie (): booleano

pre: nessuna

post: result è pari a true se e solo se this si trova nello stato “ferie”

(cf. diagramma degli stati e transizioni).

FineSpecifica

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 5

Specifica dello use-case

InizioSpecificaUseCase GestioneLavoratori

rientroForzatoDaFerie (S: Insieme(LavoratoreScolastico)): boolean

pre: nessuna

post: Definiamo preliminarmente alcuni insiemi.

Scuole
.
= {x | x ∈ Scuola ∧ (∃lav lav ∈ S ∧ lav.dipendente = x)}

ScuoleNonOK
.
= {s | s ∈ Scuole ∧

(∀lav (lav ∈ S ∧ lav.dipendente = s) → lav.isInServizio = false)}

Per ogni s ∈ ScuoleNonOK definiamo:

InFeries
.
= {l | l ∈ S ∧ l.isInFerie = true ∧ l.dipendente = s)}

• Se ∃s (s ∈ ScuoleNonOK ∧ InFeries = ∅) allora result è false.

• Altrimenti, per ogni s ∈ ScuoleNonOK sia l un elemento arbitrario

di InFeries; va generato l’evento l.rientro(). Inoltre, result vale

true.

FineSpecifica

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 6

Fase di progetto

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 7

Algoritmi per le operazioni dello use case

Per l’operazione rientroForzatoDaFerie() adottiamo il seguente algorit-
mo:

Insieme(LavoratoreScolastico) daFarRientrare = insieme vuoto;
Insieme(ScuolaElementare) scuoleNonOk = insieme vuoto;
Insieme(ScuolaElementare) scuoleOk = insieme vuoto;

per ogni LavoratoreScolastico lav in S {
ScuolaElementare scuola = lav.dipende;
se lav.isInServizio() == true {

aggiungi scuola a scuoleOk;
rimuovi scuola da scuoleNonOk;

};
altrimenti se scuola non è in scuoleOk

aggiungi scuola a scuoleNonOk;
}
... CONTINUA

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 8

Algoritmi per le operazioni dello use case (cont.)

...
per ogni LavoratoreScolastico lav in S {
ScuolaElementare scuola = lav.dipende;
se scuola è in scuoleNonOk

se lav.isInFerie() == true {
aggiungi lav nell’insieme daFarRientrare;
elimina scuola da scuoleNonOk;

}
}
se scuoleNonOk non è l’insieme vuoto {
result = false;
return result;

}
altrimenti {
per ogni lavoratore lav in daFarRientrare

genera l’evento rientro per lav
result = true;
return result;

}

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 9

Responsabilità sulle associazioni

Riportiamo la tabella delle responsabilità.

Associazione Classe ha resp.

insegna Classe S̀I1,2,3

Insegnante S̀I1,2,3

dipendente ScuolaElementare NO

LavoratoreScolastico S̀I1,3

appartiene ScuolaElementare S̀I1,3

Provveditorato NO

1. dai requisiti

2. dagli algoritmi

3. dai vincoli di molteplicità

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 10

Strutture di dati

Abbiamo la necessità di rappresentare collezioni omogenee di oggetti, a

causa dei parametri dell’operazione dello use-case e delle variabili locali

necessarie per l’algoritmo. Per fare ciò, utilizzeremo la classe Java HashSet.

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 11

Corrispondenza fra tipi UML e Java

Possiamo riassumere il risultato delle nostre scelte nella seguente tabella di

corrispondenza dei tipi UML.

Tipo UML Rappresentazione in Java

intero int

interoPositivo int

1..8 int

stringa String

Insieme HashSet

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 12

Tabelle di gestione delle proprietà di classi UML

Riassumiamo tutte le nostre scelte differenti da quelle di default mediante
la tabella delle proprietà immutabili e la tabella delle assunzioni sulla nascita
(v. lucidi della terza parte del corso).

Classe UML Proprietà immutabile

Provveditorato nome
Classe nome

LavoratoreScolastico nome
cognome

anno vincita concorso
Dirigente laurea

ScuolaElementare appartiene

Proprietà
Classe UML nota alla nascita non nota alla nascita

LavoratoreScolastico – dipendente

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 13

Sequenza di nascita degli oggetti

Poiché le responsabilità su dipendente ed appartiene sono singole, e la

molteplicità è per entrambe 1..1, è ragionevole assumere che:

• quando nasce un oggetto Java corrispondente ad un lavoratore scolas-

tico sia nota la scuola elementare di cui è dipendente;

• quando nasce un oggetto Java corrispondente ad una scuola elementare

sia noto il suo provveditorato di appartenenza.

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 14

Rappresentazione degli stati in Java

Classe UML LavoratoreScolastico.

Rappresentazione in Java del diagramma degli stati e delle transizioni.

Tabella di codifica degli stati mediante una variabile int.

Rappresentazione in Java
tipo var. int

Stato nome var. stato

in servizio valore 1

ferie valore 2

malattia valore 3

aspettativa valore 4

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 15

Fase di realizzazione

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 16

Considerazioni

Dalle fasi precedenti traiamo come conseguenza che dobbiamo realizzare:

• tre classi UML, di cui una ha associato un diagramma degli stati e delle

transizioni,

• due associazioni con attributi e a responsabilità singola, entrambe con

vincolo di molteplicità 1..1,

• uno use case.

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 17

Struttura dei file e dei package

AppScuole

| LavoratoreScolastico.java

| Main.java

| Provveditorato.java

| GestioneLavoratori.java

| ScuolaElementare.java

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 18

Classe Provveditorato

// File Provveditorato.java

public class Provveditorato {
private final String nome;
private String codMin;
public Provveditorato(String no, String cod) {

nome = no;
codMin = cod;

};
public String getNome() {

return nome;
};
public String getCodMin() {

return codMin;
};
public void setCodMin(String c) {

codMin = c;
};
public String toString() {

return nome + " (" + codMin + ")";
};

};

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 19

Classe ScuolaElementare

// File ScuolaElementare.java

public class ScuolaElementare {
private String nome;
private String indirizzo;
private final Provveditorato provv;

public ScuolaElementare(String no, String ind, Provveditorato p) {
nome = no; indirizzo = ind;
provv = p;

}
public String getNome() { return nome; };
public void setNome(String no) { nome = no; };
public String getIndirizzo() { return indirizzo; };
public void setIndirizzo(String ind) { indirizzo = ind; };
public String toString() {

return nome + " (" + indirizzo + ", " + provv + ")";
};

};

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 20

Classe LavoratoreScolastico

// File LavoratoreScolastico.java

public class LavoratoreScolastico {
private final String nome, cogn;
private final int annoVinc;
private ScuolaElementare dipendente;

private static final int in_servizio = 1, ferie = 2, malattia = 3, aspettativa = 4;

private int stato_corrente = in_servizio;

public LavoratoreScolastico(String n, String cog, int a, ScuolaElementare dip) {
nome = n; cogn = cog; annoVinc = a; dipendente = dip;

};
public String getNome() { return nome; }
public String getCognome() { return cogn; }
public ScuolaElementare getScuolaElementare() { return dipendente; }
public void setScuolaElementare(ScuolaElementare s) { dipendente = s; };
public boolean isInFerie() { return stato_corrente == ferie; };
public boolean isInServizio() { return stato_corrente == in_servizio; };

// Gestione eventi, stati e transizioni
public void in_ferie() {

if (stato_corrente == in_servizio) stato_corrente = ferie;
};
public void in_malattia() {

if (stato_corrente==in_servizio || stato_corrente==ferie) stato_corrente=malattia;
};
public void in_aspettativa() {

if (stato_corrente == in_servizio) stato_corrente = aspettativa;
};
public void rientro() {

if (stato_corrente == ferie || stato_corrente == malattia ||
stato_corrente == aspettativa) stato_corrente = in_servizio;

};
public String toString() {

return nome + " " + cogn + "(" + dipendente + ")";
};

};

Classe GestioneLavoratori

// File GestioneLavoratori.java

import java.util.*;

public final class GestioneLavoratori {

private GestioneLavoratori() {};

public static boolean rientroForzatoDaFerie(Set<LavoratoreScolastico> s) {
HashSet<LavoratoreScolastico> daFarRientrare =

new HashSet<LavoratoreScolastico>();
HashSet<ScuolaElementare> scuoleNonOk = new HashSet<ScuolaElementare>();
HashSet<ScuolaElementare> scuoleOk = new HashSet<ScuolaElementare>();
Iterator<LavoratoreScolastico> it = s.iterator();
while (it.hasNext()) {

LavoratoreScolastico lav = it.next();
ScuolaElementare scuola = lav.getScuolaElementare();
if (lav.isInServizio()) {

scuoleOk.add(scuola);
scuoleNonOk.remove(scuola);

}
else if (!scuoleOk.contains(scuola))

scuoleNonOk.add(scuola);
};

it = s.iterator();
while(it.hasNext()) {

LavoratoreScolastico lav = it.next();
ScuolaElementare scuola = lav.getScuolaElementare();
if (!scuoleNonOk.contains(scuola)) continue;

if (lav.isInFerie()) {
daFarRientrare.add(lav);
scuoleNonOk.remove(scuola);

};
};
if (scuoleNonOk.size() != 0)

// Non tutte le scuole hanno un lavoratore che può rientrare
return false;

it = daFarRientrare.iterator();
while (it.hasNext()) {

LavoratoreScolastico lav = it.next();
lav.rientro();

};
return true;

};
}

