Universita di Roma “La Sapienza”
A.A. 2006-2007

Facolta di Ingegneria
Corso di Laurea in Ingegneria Informatica

Corso di “PROGETTAZIONE DEL SOFTWARE I"
(Canale A-L & M-Z)
Esercitazione numero 8
LA FASE DI REALIZZAZIONE
Realizzazione di diagrammi degli stati e delle transizioni

(SOLUZIONE)

.,'I
/4

La Sapienza

Universita deghi Studi di Roma

Fase di analisi

Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 2

Diagramma delle classi e degli use case

ScuolaElementare Provveditorato

appartiene

nome: stringa
0.* 1.

nome: stringa
codiceMinisteriale: stringa

indirizzo: stringa

1.1

dipendente
0.*

LavoratoreScolastico
nome: stringa | ved| diagramma degll
cognome: stringa stati e delle transizioni
annoVindtaConcorso: Intero

relnServiziol) | bocleand
slnFerie() : booleanc

M GestioneLavoratori

Ministerolstruzione

"")La Sapienza

S Universita degli Studi di Roma

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 3

Diagramma degli stati e

delle transizioni classe LavoratoreScolastico

"")La Sapienza

S Universita degli Studi di Roma

assente
in ferie ferie
in servizio .
rientro
in malattia
in malattia ~
malattia

in aspettativa

aspettativa

Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 4

Specifica classe LavoratoreScolastico

InizioSpecificaClasse LavoratoreScolastico

isInServizio (): booleano
pre: nessuna
post: result & pari a true se e solo se this si trova nello stato

“in_servizio" (cf. diagramma degli stati e transizioni).

isinFerie (): booleano
pre: nessuna
post: result & pari a true se e solo se this si trova nello stato ‘“ferie”

(cf. diagramma degli stati e transizioni).

FineSpecifica

Specifica dello use-case

InizioSpecificaUseCase GestionelLavoratori

rientroForzatoDaFerie (S: Insieme(LavoratoreScolastico)): boolean
pre: nessuna
post: Definiamo preliminarmente alcuni insiemi.
Scuole = {z | z € Scuola A (3lav lav € SA lav.dipendente = z)}
ScuoleNonOK = {s | s € Scuole A
(Wlav (lav € SA lav.dipendente = s) — lav.isInServizio = false)}

Per ogni s € ScuoleNonOK definiamo:
InFeries = {l | l € SAl.isInFerie = true Al.dipendente = s)}

e Se ds (s € ScuoleNonOK A InFeries = 1) allora result & false.

e Altrimenti, per ogni s € ScuoleNonOK sia Il un elemento arbitrario
di InFeries; va generato |'evento l.rientro(). Inoltre, result vale
true.

FineSpecifica

"")La Sapienza "")La Sapienza
S Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 5 S Universita degli Studi di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 6
Algoritmi per le operazioni dello use case
Per I'operazione rientroForzatoDaFerie() adottiamo il seguente algorit-
mo:
Insieme(LavoratoreScolastico) daFarRientrare = insieme vuoto;
Insieme(ScuolaElementare) scuoleNonOk = insieme vuoto;
Insieme(ScuolaElementare) scuoleOk = insieme vuoto;
H per ogni LavoratoreScolastico lav in S {
Fase dl progetto ScuolaElementare scuola = lav.dipende;
se lav.isInServizio() == true {
aggiungi scuola a scuoleOk;
rimuovi scuola da scuoleNonOk;
};
altrimenti se scuola non & in scuoleOk
aggiungi scuola a scuoleNonOk;
. CONTINUA
"")La Sapienza "")La Sapienza
S Universiva d S Universina degli Suudi di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 8

4 degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 7

Algoritmi per le operazioni dello use case (cont.)

per ogni LavoratoreScolastico lav in S {
ScuolaElementare scuola = lav.dipende;
se scuola & in scuoleNonOk
se lav.isInFerie() == true {
aggiungi lav nell’insieme daFarRientrare;
elimina scuola da scuoleNonOk;
X
}
se scuoleNonOk non & 1’insieme vuoto {
result = false;
return result;
}
altrimenti {
per ogni lavoratore lav in daFarRientrare
genera 1l’evento rientro per lav
result = true;
return result;

}

~)La Sapienza

A degli St di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 9

Responsabilita sulle associazioni

Riportiamo la tabella delle responsabilita.

| Associazione | Classe | ha resp. |
123
1,2,3
dipendente ScuolaElementare NO
LavoratoreScolastico | SI1:3
appartiene ScuolaElementare SIL3
Provveditorato NO
1. dai requisiti
dagli algoritmi
3. dai vincoli di molteplicita
"")La Sapienza
S Universina deghi St di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 10

Strutture di dati

Abbiamo la necessita di rappresentare collezioni omogenee di oggetti, a
causa dei parametri dell’'operazione dello use-case e delle variabili locali
necessarie per |'algoritmo. Per fare cio, utilizzeremo la classe Java HashSet.

~)La Sapienza

4 degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 11

Corrispondenza fra tipi UML e Java

Possiamo riassumere il risultato delle nostre scelte nella seqguente tabella di
corrispondenza dei tipi UML.

| Tipo UML | Rappresentazione in Java |

intero int
stringa String
Insieme HashSet

~/La Sapienza

8 degli Studi di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 12

Tabelle di gestione delle proprieta di classi UML

Riassumiamo tutte le nostre scelte differenti da quelle di default mediante
la tabella delle proprieta immutabili e 1a tabella delle assunzioni sulla nascita
(v. lucidi della terza parte del corso).

Sequenza di nascita degli oggetti

Poiché le responsabilita su dipendente ed appartiene sono singole, e la
molteplicita & per entrambe 1..1, & ragionevole assumere che:

\ Classe UML | Proprieta immutabile |
Provveditorato nome
[avoratoreScolastico nome e quando nasce un oggetto Java corrispondente ad un lavoratore scolas-
cognome tico sia nota la scuola elementare di cui € dipendente;
anno vincita concorso
ScuolaElementare appartiene]
e quando nasce un oggetto Java corrispondente ad una scuola elementare
Proprieta
Classe UML nota alla nascita | non nota alla nascita Sia noto il suo provveditorato di appartenenza.
LavoratoreScolastico - dipendente \
"")La Sapienza "")La Sapienza
S Universiva deghi Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 13 " Universita degli Studi di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 14
Rappresentazione degli stati in Java
Classe UML LavoratoreScolastico.
Rappresentazione in Java del diagramma degli stati e delle transizioni.
Tabella di codifica degli stati mediante una variabile int.
— Fase di realizzazione
Rappresentazione in Java
tipo var. int
Stato nome var. stato
in servizio valore 1
ferie valore 2
malattia valore 3
aspettativa valore 4
"")La Sapienza "")La Sapienza
S Universiva degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 15 S Universita degli Studi di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 16

Considerazioni

Dalle fasi precedenti traiamo come conseguenza che dobbiamo realizzare:

e tre classi UML, di cui una ha associato un diagramma degli stati e delle
transizioni,

e due associazioni con attributi e a responsabilita singola, entrambe con
vincolo di molteplicita 1..1,

® UNO use case.

~)La Sapienza

A degli St di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 17

Struttura dei file e dei package

AppScuole
LavoratoreScolastico. java
Main. java

|

|

| Provveditorato.java

| GestioneLavoratori. java
|

ScuolaElementare. java

~)La Sapienza

4 degli Studi di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 18

Classe Provveditorato

// File Provveditorato.java

public class Provveditorato {

private final String nome;

private String codMin;

public Provveditorato(String no, String cod) {
nome = no;
codMin = cod;

I

public String getNome() {
return nome;

I

public String getCodMin() {
return codMin;

s

public void setCodMin(String c) {
codMin = c;

I

public String toString() {
return nome + " (" + codMin + ")";

s

s

~)La Sapienza

4 degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 19

Classe ScuolaElementare

// File ScuolaElementare.java

public class ScuolaElementare {
private String nome;
private String indirizzo;
private final Provveditorato provv;

public ScuolaElementare(String no, String ind, Provveditorato p) {
nome = no; indirizzo = ind;
provv = p;

}

public String getNome () { return nome; };
public void setNome(String no) { nome = no; };
public String getIndirizzo() { return indirizzo; };
public void setIndirizzo(String ind) { indirizzo = ind; };

public String toString() {
return nome + " (" + indirizzo + ", " + provv + ")";

};

~/La Sapienza

8 degli Studi di Roma Prog. del Software 1. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 20

Classe LavoratoreScolastico

// File LavoratoreScolastico.java

public class LavoratoreScolastico {
private final String nome, cogn;
private final int annoVinc;
private ScuolaElementare dipendente;
private static final int in_servizio = 1, ferie = 2, malattia = 3, aspettativa =

private int stato_corrente = in_servizio;

public LavoratoreScolastico(String n, String cog, int a, ScuolaElementare dip) {

4;

if (stato_corrente == in_servizio) stato_corrente = ferie;

public void in_malattia() {

if (stato_corrente==in_servizio || stato_corrente==ferie) stato_corrente=malattia;

public void in_aspettativa() {

if (stato_corrente == in_servizio) stato_corrente = aspettativa;

public void rientro() {

};

if (stato_corrente == ferie || stato_corrente == malattia ||
stato_corrente == aspettativa) stato_corrente = in_servizio;

public String toString() {

return nome + " " + cogn + "(" + dipendente + ")";

nome = n; cogn = cog; annoVinc = a; dipendente = dip; };
}; ¥
public String getNome() { return nome; }
public String getCognome() { return cogn; }
public ScuolaElementare getScuolaElementare() { return dipendente; }
public void setScuolaElementare(ScuolaElementare s) { dipendente = s; };
public boolean isInFerie() { return stato_corrente == ferie; };
public boolean isInServizio() { return stato_corrente == in_servizio; };
// Gestione eventi, stati e transizioni
public void in_ferie() {
Classe GestionelL avoratori it = s.iterator();
while(it.hasNext()) {
// File GestioneLavoratori.java LavoratoreScolastico lav = it.next();
ScuolaElementare scuola = lav.getScuolaElementare();
import java.util.*; if (!scuoleNonOk.contains(scuola)) continue;
public final class GestioneLavoratori { if (lav.isInFerie()) {
daFarRientrare.add(lav) ;
private GestioneLavoratori() {}; scuoleNonOk.remove (scuola) ;
};
public static boolean rientroForzatoDaFerie(Set<LavoratoreScolastico> s) { };
HashSet<LavoratoreScolastico> daFarRientrare = if (scuoleNonQOk.size() != 0)
new HashSet<LavoratoreScolastico>(); // Non tutte le scuole hanno un lavoratore che pud rientrare
HashSet<ScuolaElementare> scuoleNonOk = new HashSet<ScuolaElementare>(); return false;
HashSet<ScuolaElementare> scuoleOk = new HashSet<ScuolaElementare>(); it = daFarRientrare.iterator();
Iterator<LavoratoreScolastico> it = s.iterator(); while (it.hasNext()) {
while (it.hasNext()) { LavoratoreScolastico lav = it.next();
LavoratoreScolastico lav = it.next(); lav.rientro();
ScuolaElementare scuola = lav.getScuolaElementare(); };
if (lav.isInServizio()) { return true;
scuoleOk.add(scuola); };
scuoleNonOk.remove(scuola) ; }

}
else if (!scuoleOk.contains(scuola))
scuoleNonOk.add(scuola);

