Universita di Roma “La Sapienza”
A.A. 2006-2007

Facolta di Ingegneria
Corso di Laurea in Ingegneria Informatica

Corso di “"PROGETTAZIONE DEL SOFTWARE I"
(Canale A-L & M-Z)
Esercitazione numero 8
LA FASE DI REALIZZAZIONE
Realizzazione di diagrammi degdli stati e delle transizioni

(SOLUZIONE)

Fase di analisi

~)La Sapienza

ST Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 2

Diagramma delle classi e degli use case

ScuolaElementare Provveditorato
appartiene
nome: stringa nome: stringa
0..% 1.1
indirizzo: stringa codiceMinisteriale: stringa
1.1
dipendente
0..*%
LavoratoreScolastico
nome: stringa | _______| vedi diagramma degli
cognome: stringa stati e delle transizioni
annoVincitaConcorso: intero
isInServizio() : booleano
isInFerie() : booleano

effettua

GestionelLavoratori

Ministerolstruzione

)La Sapienza

ST Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 3

Diagramma degli stati e _
delle transizioni classe LavoratoreScolastico

assente

in ferie j ferie

in servizio] ‘
rientro

in malattia

in malattia
malattia

in aspettativ

aspettativa

)La Sapienza

ST Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 4

Specifica classe LavoratoreScolastico

InizioSpecificaClasse LavoratoreScolastico

isInServizio (): booleano
pre: nessuna
post: result & pari a true se e solo se this si trova nello stato

“in_servizio” (cf. diagramma degli stati e transizioni).

isinFerie (): booleano
pre: nessuna
post: result € pari a true se e solo se this si trova nello stato ‘“ferie”

(cf. diagramma degli stati e transizioni).

FineSpecifica

__ ;La Saplenza

sitd degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 5

Specifica dello use-case

InizioSpecificaUseCase GestionelLavoratori

rientroForzatoDaFerie (S: Insieme(LavoratoreScolastico)): boolean
pre: nessuna
post: Definiamo preliminarmente alcuni insiemi.
Scuole = {x | © € Scuola N (3lav lav € SA lav.dipendente = x)}

ScuoleNonOK = {s | s € Scuole A
(Vlav (lav € SA lav.dipendente = s) — lav.isInServizio = false)}

Per ogni s € ScuoleNonOK definiamo:
InFeries = {l | l € SAl.isInFerie = true Nl.dipendente = s)}

e Se ds (s € ScuoleNonOK A InFeries = () allora result & false.

e Altrimenti, per ogni s € ScuoleNonOK sia | un elemento arbitrario
di InFeries; va generato l'evento l.rientro(). Inoltre, result vale
true.

FineSpecifica

__ ;La Saplenza

sitd degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 6

Fase di progetto

)La Sapienza

S0 Universiti degli Studi di Roma

Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 7

Algoritmi per le operazioni dello use case

Per |I'operazione rientroForzatoDaFerie() adottiamo il seguente algorit-
mo:

Insieme (LavoratoreScolastico) daFarRientrare = insieme vuoto;
Insieme(ScuolaElementare) scuoleNonOk = insieme vuoto;
Insieme(ScuolaElementare) scuole0k = insieme vuoto;

per ogni LavoratoreScolastico lav in S {

ScuolaElementare scuola = lav.dipende;

se lav.isInServizio() == true {
aggiungi scuola a scuoleOk;
rimuovi scuola da scuoleNonOk;

};

altrimenti se scuola non & in scuole(Ok
aggiungi scuola a scuoleNon(Ok;

. CONTINUA

)La Sapienza

S0 Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 8

Algoritmi per le operazioni dello use

case (cont.)

per ogni LavoratoreScolastico lav in S {
ScuolaElementare scuola = lav.dipende;
se scuola & in scuoleNonOk
se lav.isInFerie() == true {
aggiungi lav nell’insieme daFarRientrare;
elimina scuola da scuoleNonOk;
}
}
se scuoleNonOk non & 1’insieme vuoto {
result = false;
return result;
%
altrimenti {
per ogni lavoratore lav in daFarRientrare
genera l’evento rientro per lav
result = true;
return result;

}

')La Sapienza

U7 Universiti degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 9

Responsabilita sulle associazioni

Riportiamo la tabella delle responsabilita.

' Associazione | Classe | ha resp. |
123
12,3
dipendente ScuolaElementare NO
L avoratoreScolastico | SI:3
appartiene ScuolaElementare Sil3
Provveditorato NO

1. dai requisiti
2. dagli algoritmi
3. dai vincoli di molteplicita

') La Sapienza

U7 Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 10

Strutture di dati

Abbiamo la necessita di rappresentare collezioni omogenee di oggetti, a
causa dei parametri dell’'operazione dello use-case e delle variabili locali
necessarie per |I'algoritmo. Per fare cio, utilizzeremo la classe Java HashSet.

')La Sapienza

U7 Universiti degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 11

Corrispondenza fra tipi UML e Java

Possiamo riassumere il risultato delle nostre scelte nella seguente tabella di
corrispondenza dei tipi UML.

| Tipo UML | Rappresentazione in Java |

intero int
stringa String
Insieme HashSet

)La Sapienza

ST Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 12

Tabelle di gestione delle proprieta di classi UML

Riassumiamo tutte le nostre scelte differenti da quelle di default mediante
la tabella delle proprieta immutabili e 1a tabella delle assunzioni sulla nascita
(v. lucidi della terza parte del corso).

| Classe UML | Proprieta immutabile |
Provveditorato nome
LavoratoreScolastico nome
cognome

anno vincita concorso

ScuolaElementare appartiene

Proprieta
Classe UML nota alla nascita | non nota alla nascita

| LavoratoreScolastico | — | dipendente |

)La Sapienza

ST Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 13

Sequenza di nascita degli oggetti

Poiché le responsabilita su dipendente ed appartiene sono singole, e la
molteplicita é per entrambe 1..1, € ragionevole assumere che:

e gquando nasce un oggetto Java corrispondente ad un lavoratore scolas-
tico sia nota la scuola elementare di cui é dipendente;

e quando nasce un oggetto Java corrispondente ad una scuola elementare

sia noto il suo provveditorato di appartenenza.

)La Sapienza

S0 Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 14

Rappresentazione degli stati in Java

Classe UML LavoratoreScolastico.

Rappresentazione in Java del diagramma degli stati e delle transizioni.

Tabella di codifica degli stati mediante una variabile int.

Rappresentazione in Java
tipo var. int
Stato nome var. stato
in servizio valore 1
ferie valore 2
malattia valore 3
aspettativa valore 4
)La Sapienza
ST Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 15
Fase di realizzazione
)La Sapienza

S0 Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 16

Considerazioni

Dalle fasi precedenti traiamo come conseguenza che dobbiamo realizzare:

e tre classi UML, di cui una ha associato un diagramma degli stati e delle
transizioni,

e due associazioni con attributi e a responsabilita singola, entrambe con
vincolo di molteplicita 1..1,

e UNO use case.

')La Sapienza

U7 Universiti degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 17

Struttura dei file e dei package

AppScuole
LavoratoreScolastico. java

Main. java

I

I

| Provveditorato. java

| GestioneLavoratori. java
I

ScuolaElementare. java

)La Sapienza

S0 Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 18

Classe Provveditorato

// File Provveditorato.java

public class Provveditorato {

private final String nome;

private String codMin;

public Provveditorato(String no, String cod) {
nome = no;
codMin = cod;

+;

public String getNome() {
return nome;

+;

public String getCodMin() {
return codMin;

+;

public void setCodMin(String c) {
codMin = c;

};

public String toString() {
return nome + " (" + codMin + ")";

};

+;

')La Sapienza

U7 Universiti degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 19

Classe ScuolaElementare

// File ScuolaElementare. java

public class ScuolaElementare {
private String nome;
private String indirizzo;
private final Provveditorato provv;

public ScuolaElementare(String no, String ind, Provveditorato p) {
nome = no; indirizzo = ind;
provv = p;

}

public String getNome() { return nome; };
public void setNome(String no) { nome = no; };

public String getIndirizzo() { return indirizzo; };
public void setIndirizzo(String ind) { indirizzo = ind; 7};

public String toString() {
return nome + " (" + indirizzo + ", " + provv + ")";
};
};

)La Sapienza

S0 Universita degli Studi di Roma Prog. del Software I. Esercitazione: realizzazione diagrammi s&t. A.A. 2006-07 20

Classe LavoratoreScolastico

// File LavoratoreScolastico.java

public class LavoratoreScolastico {
private final String nome, cogn;
private final int annoVinc;
private ScuolaElementare dipendente;

private static final int in_servizio = 1, ferie = 2, malattia = 3, aspettativa = 4;
private int stato_corrente = in_servizio;

public LavoratoreScolastico(String n, String cog, int a, ScuolaElementare dip) {
nome = n; cogn = cog; annoVinc = a; dipendente = dip;

+;

public String getNome() { return nome; }

public String getCognome() { return cogn; }

public ScuolaElementare getScuolaElementare() { return dipendente; }

public void setScuolaElementare(ScuolaElementare s) { dipendente = s; };

public boolean isInFerie() { return stato_corrente == ferie; };

public boolean isInServizio() { return stato_corrente == in_servizio; };

// Gestione eventi, stati e transizioni
public void in_ferie() {

if (stato_corrente == in_servizio) stato_corrente = ferie;
};
public void in_malattia() {
if (stato_corrente==in_servizio || stato_corrente==ferie) stato_corrente=malattia;
};
public void in_aspettativa() {
if (stato_corrente == in_servizio) stato_corrente = aspettativa;
};

public void rientro() {

if (stato_corrente == ferie || stato_corrente == malattia ||
stato_corrente == aspettativa) stato_corrente = in_servizio;
};
public String toString() {
return nome + " " + cogn + "(" + dipendente + ")";
};

Classe GestionelL avoratori

// File GestiomneLavoratori.java

import java.util.x*;
public final class GestioneLavoratori {
private GestioneLavoratori() {};

public static boolean rientroForzatoDaFerie(Set<LavoratoreScolastico> s) {
HashSet<LavoratoreScolastico> daFarRientrare =
new HashSet<LavoratoreScolastico>();
HashSet<ScuolaElementare> scuoleNonOk = new HashSet<ScuolaElementare>();
HashSet<ScuolaElementare> scuoleOk = new HashSet<ScuolaElementare>();
Iterator<LavoratoreScolastico> it = s.iterator();
while (it.hasNext()) {
LavoratoreScolastico lav = it.next();
ScuolaElementare scuola = lav.getScuolaElementare();
if (lav.isInServizio()) {
scuoleOk.add(scuola);
scuoleNonOk.remove(scuola) ;
}
else if (!scuoleOk.contains(scuola))
scuoleNonOk.add (scuola) ;

it = s.iterator();

while(it.hasNext()) {
LavoratoreScolastico lav = it.next();
ScuolaElementare scuola = lav.getScuolaElementare();
if (!scuoleNonOk.contains(scuola)) continue;

if (lav.isInFerie()) {
daFarRientrare.add(lav);
scuoleNonOk.remove(scuola);
};
}s
if (scuoleNonOk.size() '= 0)
// Non tutte le scuole hanno un lavoratore che pud rientrare
return false;
it = daFarRientrare.iterator();
while (it.hasNext()) {
LavoratoreScolastico lav = it.next();
lav.rientro();
}s;

return true;

