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@ ncomplete information

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 2/88

Incomplete information and query answering

@ Incomplete information in data: missing / unknown / partially specified data

@ Query answering

» Over usual databases (complete information):
QA by evaluation (or “model checking™)

DEQ

i.e., D is seen as an interpretation (for simplicity we assume the query to be
boolean, no free variables)

» Over incomplete databases (incomplete information):
QA by logical implication (or “entailment”)

VI.Z |= D implies Z = Q
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Incomplete databases

A common form of incomplete databases are the so-called “naive tables”, which include
values and “labelled nulls” (standing for unknown values) [IL84].

Example
Employee Manager
name mgr mgd
Smith Smith nullk
nulh nulh Brown
Brown Brown nulb

@ Const: we have infinite constants, corresponding to domain objects as usual,;

@ Nulls: we have a countably infinite set of nulls, corresponding to variables ranging

over Cons:

@ Tables are incomplete, i.e., more tuples may belong to them, corresponding to the
so called “open-world-assumption” or OWA. (For example null, belongs to

Employee though not reported in the table.)
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Incomplete databases: semantics
Semantics of incomplete databases:
@ A valuation function for nulls is a assignment function o : Nulls — Const
(essentially nulls are considered as individual variables in logic).
@ We denote by 7,0 = D the fact that for every tuple (ti,...,t,) € P for each table
P we have Z,0 |= P(t1,..., tn).
@ We define in logic the set of databases completing D as
Models(D) = {Z| there exists a ¢ such that Z,o = D}
Example
Employee Manager
name mgr mgd
Smith Smith nully
nully nully Brown
Brown Brown nully
SRR Manager SnpieEE Manager
g ar.n: mgr mgd g ar.n: mgr mgd
mit Smith | White mit Smith | Brown
White . Brown
White Brown Brown Brown
Brown Black
Brown Black Brown Brown
Black ce
o
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Certain answers to a query

An incomplete database acts like a logical theory: it selects models.

Query answering in complete databases

The answer to a query g(X) over a complete database D, denoted qP, is the set of tuples
¢ of constants of Const such that the & € g° is to true in D.

Query answering in incomplete databases

The certain answer to a query g(Xx) over an incomplete database D, denoted cert(q, D),
is the set of tuples € of constants of Const such that ¢ € g, for every model 7 of D.

Note:

@ It g is boolean, and D is incomplete: we write D = q iff g evaluates to true in
every model Z of D, (otherwise we write D }~= q.

@ We use the same notation as for query answering based on evaluation: the
difference is in the incompleteness of the database.
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Query languages for incomplete databases

Which query language to use?

© Full SQL (or equivalently, first-order logic)

» NO: in the presence of incomplete information, query answering becomes
undecidable (FOL validity).
(Notice this holds already for an empty incomplete database!)

@ Conjunctive queries (or better union of conjunctive queries)

» Conjunctive queries are well behaved wrt containment. Can they be used for

query answering in presence of incomplete information.
YES! See what follows.
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Q Conjunctive queries and incomplete databases
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Conjunctive queries and incomplete databases

A conjunctive query (CQ) is a first-order query of the form
Q()?) <~ 3.)7‘F\)1()_<’7.)7) ARERNA Rk()?)y)

where each R;(X, y) is an atom using (some of) the free variables X, the existentially
quantified variables y, and possibly constants.

We will also use the simpler Datalog notation:
q()?) — Rl()?> )7)’ SRR Rk()_(, }7)

Note:
@ CQs contain no disjunction, no negation, no universal quantification.

@ Correspond to SQL /relational algebra select-project-join (SPJ) queries — the most
frequently asked queries.

@ A Boolean CQ is a CQ without free variables = ¢g() < Jy.Ri(¥) A - -+ A Re(¥).
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Conjunctive queries and incomplete databases

Containment of conjunctive queries g1 C g is decidable: and LOGSPACE in g; and
NP-complete in g» [ChandraMerlin77].

Given an incomplete database D as above we can construct in linear time a (boolean)
conjunctive query gp that fully captures it.

@ For each tuple in a table of D becomes an atom in the conjunctive query gp.

@ For each labelled nulls occurring in D becomes an existentially quantified variable in

qo.
Example
E(mployee) M(anager)

name mgr mgd

Smith Smith nully

nully nully Brown

Brown Brown nully

dxq, xp.E(Smith) A E(xy) A E(Brown) A M(Smith, x1) A M(xq, Brown) A M(Brown, x3)

v
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Conjunctive queries and incomplete databases

Theorem ([IL84])

Let D be a database with incomplete information as above (naive tables), qp the

corresponding conjunctive query constructed as above, and q a boolean (union) of
conjunctive query. Then:

DEgqiffagp Cq

Proof.
For the first “iff":

© Observe that the models of D by construction coincide with that of the formula gp:
that is VZ.Z = D iff T = qp.

@ Moreover, gp C g in the case of boolean queries stands for
VZ.Z = qp implies Z |= q, or simply gp E g.

© Hence,by (1) DEgqiffgp =q. [
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Conjunctive queries and incomplete databases
Also by [ChandraMerlin77] we get:

Theorem ([IL84])

Let D be a database with incomplete information as above (naive tables), qp the
corresponding conjunctive query constructed as above, I, its canonical database, and q
a boolean (union) of conjunctive query. Then:

D qiffTe = q

Note: Zg, is exactly D with nulls interpreted as additional constants!
Hence:

Compute certain answers of non boolean CQs over incomplete
databases

Given a non boolean (U)CQ g and an incomplete database D:
@ Evaluate g over D as it was a complete database

© filter out all answers where null appears (certain answers are constituted by tuples
of constants in Const)
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Conjunctive queries and incomplete databases

As a consequence of the above theorem we have:

Computing certain answers for (union) of conjunctive queries over databases with
incomplete information (naive tables) is:

e LOGSPACE in data complexity

@ NP-complete in query complexity and combined complexity

Notel: Exactly as for the case of complete information!

Note2: Use of CQs is crucial, since for full FOL we get undecidability!
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Examples of CQs over an incomplete database

Example
E (mployee) M(anager)
name mgr mgd
Smith Smith nully
null null Brown
Brown Brown nulb
4
@ Queries:  qi(x,y) < M(x,y)
q2(x) < Jy.-M(x,y)
q3(x) < 3y, y2, y3.M(x, y1) A M(y1, y2) A M(y2, ys)
qa(x,y3) <= Fy1, y2.M(x, y1) A M(y1, y2) A M(y2, y3)
@ Answers:  qi: { }
q2: { Smith, Brown }
gs: { Smith }
ga: { }
14 / 88
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© Querying data through a UML class diagram
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UML Class Diagram

An UML class diagram

Captured by a finite set of logical axioms that describe universal properties
(i.e., properties of all objects belonging to classes/associations).

Represents intensional knowledge

Corresponds to schema level information in database terms

Corresponds to a set of constraints on class and association memberships
Describes the semantics of the objects

Corresponds to "TBox" (or the so-called proper “ontology”) in ontological
languages which are often used instead of FOL (e.g., Descripton Logics, see
later)
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(Possibly partial or incomplete) instantiation

A (possibly partial or incomplete) instantiation aka object diagram (i.e., properties
of single objects or relationships between them)

Captured by a finite set of atomic facts in logic
Represents extensional knowledge
Corresponds to instance level information in database terms

Corresponds to (incomplete) database in databases (though under
constraints!)

Describes actual data

Correspond to “ABox” in ontological languages.
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Knowledge Bases

We call knowledge base (KB) or sometime ontology the logical theory obtained by
the union of the set of FOL formulas 7 and A where:

@ 7 is the “TBox" and is formed by the formulas capturing the UML class
diagram

o A is the "ABox" and is formed by the facts capturing the (possibly partial or
incomplete) instantiation
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Example of a query over a KB

Faculty *
1.1 name: String 1.
age: Integer
TBox
worksFor 4‘ Vx.Professor(x) — Faculty(x)
isAdvisedBy v Vx.AssocProf(x) — Professor(x)
v N Vx.Dean(x) — Professor(x)
1. Vx.AssocProf(x) — —Dean(x)
Professor CO| ege Vx.Faculty(x) — 3y.age(x, y)
1 paneisting Vx.3y.age(y, x) — Integer(x)
h e — Vx.3y.worksFor(x, y) — Faculty(x)
1.1 Vx.3y.worksFor(y, x) — College(x)
{disjoint} . Vx.Faculty(x) — 3y.worksFor(x, y)
| | IASHeadOf Vx.College(x) — y.worksFor(y, x)
AssocProf Dean 11 o

- ABox

Query: (note: in the case of incomplete information, we need to focus on (U)CQs because full FOL is undecidable even without intensional knowledge)

q(nf, af, nd) <+ 3f,c,d, ad.
worksFor(f, ¢) A isHeadOf(d, c) A name(f, nf) A name(d, nd) A age(f, af) A age(d, ad) A af = ad
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Query answering under different assumptions

There are fundamentally different assumptions when addressing query answering
in presence of a KB:

@ Traditional database (DB) assumption:

v

Studied in mainly in Databases.

» Data are complete (CWA).

> Intensional knowledge/schema not used in query answering.
» Query answering based on evaluation.

@ Knowledge representation (KR) assumption:

Studied in mainly in Artificial Intelligence.

Assumes incompleteness in the data (incomplete databases) (OWA).
Intensional knowledge/schema must be used in query answering.
Query answering based on logical implication.

vV v vy
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Query answering under the DB assumption

@ Data are completely specified (CWA), and typically large.
@ Schema/intensional information used in the design phase.

@ During query answering the data is assumed to satisfy the schema, and
therefore the schema is not used.

~» Query answering amounts to query evaluation, which is computationally easy.
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Query answering under the DB assumption

Schema /
Ontology

>
Data
Source
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Query answering under the DB assumption: example

Faculty worksFor » College
Professor
"

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, paul }

Professor = { john, paul }

College = { collA, collB }

worksFor = { (john,collA), (mary,collB) }

Query: g(x) < dc.Professor(x), College(c), worksFor(x, c)
Answer: { john }
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Query answering under the KR assumption

@ The TBox imposes constraints on the data.
@ Actual data (ABox) may be incomplete w.r.t. such constraints.

@ The system has to take into account the constraints during query answering,
and overcome incompleteness.

~» Query answering amounts to logical inference, which is computationally much
more costly in general.

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 24 / 88

Query answering under the KR assumption

Reasoning

Schema /
Ontology

-
Data
Source
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Query answering under the KR assumption: example

Faculty worksFor » College
—
Professor
—

The tables in the database may be incompletely specified, or even missing for
some classes/properties.
DB:  Professor O { john, paul }

College DO { collA, collB }

worksFor O { (john,collA), (mary,collB) }

Query: g(x) <« Faculty(x)
Answer: { john, paul, mary }
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Query answering under the KR assumption: another
example

hasFather»
> Each person has a father, who is a person.
FREN DB:  Person O { john, paul, toni }
EE hasFather O { (john,paul), (paul,toni) }

Queries: g1(x,y) < hasFather(x, y)
g2(x) < Jy. hasFather(x, y)
q3(x) < Jyi, y», y3. hasFather(x, y1 ), hasFather(y1, y»), hasFather(y», y3)
ga(x, y3) < 3y1, y». hasFather(x, y1 ), hasFather(y1, y»), hasFather(y», y3)
Answers:  to gi: { (john,paul), (paul,toni) }
to g2: { john, paul, toni }
to g3: { john, paul, toni }
togs: {}

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 27 / 88



QA under the KR assumption: Andrea’s example

officeMate » Professor = AssocProf LI FullProf
‘ | Faculty O { andrea, paul, mary, john }
T Professor O { andrea, paul, mary }
AssocProf D { paul }

FullProf D { mary }
isAdvisedBy isAdvisedBy D { (john,andrea), (johnmary) }
v officeMate O { (mary,andrea), (andrea,paul) }

Professor

john

isAdviAsy WﬁedBy
{disjoint, complete} officeMate

| | andrea:Professor ———— mary:FullProf

AssocProf FullProf

officeMate

T T
paul:AssocProf
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QA under the KR assumption — Andrea'’s example

officeMate » john

iSAdVW wlj edBy
‘ Faculty
officeMate

andrea:Professor ——— mary:FullProf

isAdvisedBy officeMate
v

Professor paul :AssocProf

T g0) « 3y,z.

disjoint, complete} isAdvised By(john, y), FullProf(y),
| officeMate(y, z), AssocProf(z)

AssocProf FullProf Answer: yes!

To determine this answer, we need to resort to reasoning by cases.
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Query answering when accessing data through KBs

We have to face the difficulties of both DB and KB assumptions:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The KB introduces incompleteness of information, and we have to do logical
inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the KB.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.
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Certain answers to a query

Let L = (T,.A) be an KB (aka an ontology), Z an interpretation for C, and g(x)
a query.

Def.: The answer to g(X) over Z (model of K), denoted g*

. is the set of tuples ¢ of constants such that the formula g(x) evaluates to true
in Z.

We are interested in finding those answers that hold in all models of an KB.

Def.: The certain answers to q(X) over K, denoted cert(q, K) J

. are the tuples ¢ of constants such that ¢ € g%, for every model Z of K.

Note: when g is boolean, we write K |= q iff g evaluates to true in every model Z
of I, K £ q otherwise.
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Data complexity

Various parameters affect the complexity of query answering over a KB.

Depending on which parameters we consider, we get different complexity
measures:

e Data complexity: only the size of the ABox (i.e., the data) matters.
TBox and query are considered fixed.

@ Query complexity: only the size of the query matters.
TBox and ABox are considered fixed.

@ Schema complexity: only the size of the TBox (i.e., the schema) matters.
ABox and query are considered fixed.

@ Combined complexity: no parameter is considered fixed.

Typically the size of the data largely dominates the size of the conceptual layer
(and of the query).

~»  Data complexity is the relevant complexity measure.
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Complexity of query answering in KBs

QA has been studied extensively for (unions of) CQs in the context of Description
Logic-based ontology languages, which can be though of as specific FOL formalisms for
class-based representation (cf. UML class diagrams or ER):

CQ query answering || Combined complexity | Data complexity |
Complete databases NP-complete in LOGSPACE (€
Incomplete databases (naive tables, OWA) no TBox NP-complete in LocSpace (1)
UML Class Diagrams or OWL2* TBoxes 2EXPTIME-hard CcONP-hard @)

* OWL 2 is a W3C standard based on Description Logics (DLs).

() This is what we need to scale with the data.
() Already for a TBox with a single disjunction (see Andrea’s example).

Questions

@ Can we find interesting logics for the TBox for which the query answering problem
can be solved efficiently (i.e., in LOGSPACE)?

@ If yes, can we leverage on evaluation and relational database technology for query
answering?
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@ Compiling inference into evaluation for query answering
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Compiling inference into evaluation for query answering

—— — e

q - ‘:
T i Logical inference |
| :'—> cert(q, (T, A))

To be able to deal with data efficiently, we need to separate the contribution of A
from the contribution of g and 7 and use evaluation.

~» Query answering by query rewriting.
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Query rewriting

—— — e —

p
qg ™ Perfect

\
l L rq, T |
! rewriting :
T = (under OWA) Y .
! Query :
A evaluation

(under CWA) ) |

cert(q, (T, A))

Query answering can always be thought as done in two phases:

© Perfect rewriting: produce from g and the TBox 7 a new query rq 7 (called
the perfect rewriting of g w.r.t. 7).

@ Query evaluation: evaluate ry 7 over the ABox A seen as a complete
database (and without considering the TBox 7).
~>  Produces cert(q, (T, A)).

Note: The “always” holds if we pose no restriction on the language in which to express

the rewriting rq, 7.
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Query rewriting (cont'd)

Schema /
Ontology

-
Data
Source
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Reasoning

v
Rewritten
Query

Query

Query answering over UML class diagrams

36 / 88

37 / 88



Language of the rewriting

The expressiveness of the KB language affects the query language into which we
are able to rewrite CQs:

@ When we can rewrite into FOL/SQL,
~» Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LOGSPACE).

@ When we can rewrite into an NLOGSPACE-hard language.
~> Query evaluation requires (at least) linear recursion.

@ When we can rewrite into a PTIME-hard language.
~> Query evaluation requires full recursion (e.g., Datalog).

@ When we can rewrite into a CONP-hard language.
~» Query evaluation requires (at least) power of Disjunctive Datalog.
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© DL-Lite4: an ontology language for accessing data

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 39 /88




Description Logics

In modeling an application domain we typically need to represent the domain of interest
in terms of:

@ objects
@ classes
@ relations (or associations)

and to reason about the representation

Description Logics (DLs) are logics specifically designed to represent and reason on:
@ objects
@ classes — called “concepts” in DLs

@ (binary) relations — called “roles” in DLs
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Brief history of DLs

Knowledge Representation is a subfield of Artificial Intelligence, see, e.g., [BCM"03].
@ [late '70s, early '80s] — early days of KR formalisms

» Semantic Networks: graph-based formalism, used to represent the meaning of
sentences

» Frame Systems: frames used to represent prototypical situations, antecedents
of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

@ [mid '80s, '90s| — Description Logics (a.k.a. Concept Languages, Terminological
Languages) developed starting in the mid '80s, with the aim of providing semantics
and inference techniques to knowledge representation systems

@ [Today| DLs are at the base of the whole research on ontology, and formalization of
data conceptual modeling.
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Current applications of DLs

DLs have evolved from being used “just” in KR

Found applications in:
@ Databases:

» schema design, schema evolution
> query optimization
> integration of heterogeneous data sources, data warehousing
@ Conceptual modeling
@ Foundation for the semantic web
@ Ontology-Based Data Access (OBDA)
@ ---

We will use to do query answering over UML class diagrams, which is related to OBDA
[CDGL"05, CDGLT09, CDGL"13].

Note: To know more on DLs please take the course on Knowledge Representation and
Semantic Technologies by R. Rosati (second semester).
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The DL-Lite family

o A family of DLs optimized according to the tradeoff between expressive

power and complexity of query answering, with emphasis on data
[CDGL*05, CDGL™09, CDGL*'13].

o Carefully designed to have nice computational properties for answering UCQs
(i.e., computing certain answers):
» The same complexity as relational databases.
» In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally expressive
ontology languages enjoying these nice computational properties.

v

@ We present DL-Lite 4, an expressive member of the DL-Lite family.

DL-Lite 4 provides robust foundations for Ontology-Based Data Access. )
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DL-Lite 4 KBs

TBox assertions:
@ C; T (G —class/“concept” inclusion assertions
@ (; T —(, —class /"“concept” disjointness, aka “concept negative inclusion”

where concepts are formed as: C— A | JQ

o () Q> — property /“role” inclusion assertions
e 1 C =@, — property /"“role” disjointness, aka “role negative inclusion”

M1

where roles are formed as: Q— P | P

o (funct Q) — functionality assertions
@ Proviso: functional properties cannot be specialized.

ABox assertions:  A(c), P(c, ), with ¢, ¢ constants

Note: DL-Lite 4 distinguishes also between object and data properties (ignored here).
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Semantics of DL-Lite 4

Construct | Syntax | Example FOL translation
atomic conc. A Doctor A(x)
atomic role P child P(x,y)
exist. restr. P Jchild dy.P(x,y)
aP— Jchild™ dy.P(y, x)
conc. incl. GC G Father C Jchild Vx.Ci(x) = Go(x)
role incl. P C P> hasFather C child Vx,y.Pi(x,y) = Pa(x,y)
P1C P, hasFather C child™ Vx,y.P1(x,y) — Pa(y, x)
conc. disj. GC-G Kid C —3child Vx.Ci(x) = ~Ca(x)
role disj. P C =P (not part of UML) Vx,y.Pi(x,y) — —=Pa(x,y)
P C -Py VX, y-Pi(x,y) = =Pa(y, x)
funct. asser.| (funct P) (funct succ) Vx,y,y .P(x,y) ANP(x,y') =y =y’
(funct P7) (funct succ™) Vx,y,y Py, x) ANP(y',x) =y =y’
mem. asser. A(c) Father(bob) A(c)
mem. asser. | P(ci, ) child(bob, ann) P(c1, )

Notel: in database terms
@ inclusion assertions ~ inclusion dependencies (a generalization of foreign keys)

o disjointness assertions ~~  disjointness constraints
o functionality assertions ~~ functional dependencies (a generalization of key constrains)

o membership assertions ~~» tuples on an incomplete database

Note2: DL-Lite 4 adopts the Unique Name Assumption (UNA), i.e., different individuals denote different objects.
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Capturing basic ontology constructs in DL-Lite 4

ISA between classes A C A
Disjointness between classes A C —A
Domain and range of properties dPC A, dPT C A

Mandatory participation (min card = 1) AiC3IP A CdIP™

Functionality of relations (max card = 1) | (funct P) (funct P™)

ISA between properties Q1 E @

Disjointness between properties Q1 C -

Note without loosing its nice computational features:

@ DL-Lite o cannot capture completeness of a hierarchy. This would require disjunction (i.e.,
reasoning by cases).

@ DL-Lite 4 cannot capture subset constraints on association with max multiplicity different
from "*". This may again introduce an hidden form of disjunction (i.e., reasoning by
cases).

@ DL-Lite 4 can be extended to capture also min cardinality constraints “A C< nQ@" and
max cardinality constraints “A C> nQ".

@ DL-Lite 4 can be extended to capture also identification constraints “(id C Q1, ..., Qn)".
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Translating UML Class Diagrams in DL-Lite 4 KBs:
example

Professor [C  Faculty
AssocProf [ Professor
Dean LC Professor
E AssocProf LT —Dean
1.1 |_raculty ], .
age: Integer Faculty E Hage
worksFor <]. Jage™ L xsd:integer
isAdvisedBy v (funct age)
v .
Professor CoII;g;e EIworksFo_r L Faculty
name: String JworksFor ; Col Iege
1.7 Faculty C  dworksFor
{T 1.1 College [C  dworksFor™
disjoint .
| |AsHead0f - disHeadOf [C Dean
AssocProf Dean 11 disHeadOf~™ [C  College
Dean [C disHeadOf
———— —— College E JdisHeadOf ™
isHeadOf [C  worksFor

(funct i;HeadOf)
(funct isHeadOf ™)
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Observations on DL-Lite 4

Captures all the basic constructs of UML Class Diagrams and of the ER
Model ...

@ ... except covering constraints in generalizations.

Is the logical underpinning of OWL2 QL, one of the OWL 2 Profiles.
@ Extends (the DL fragment of) the ontology language RDFS.
@ Is completely symmetric w.r.t. direct and inverse properties.

@ Does not enjoy the finite model property, i.e., reasoning and query answering
differ depending on whether we consider or not also infinite models.
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Technical properties of DL-Lite 4

o Completely symmetric w.r.t. direct and inverse roles: roles are always
navigable in the two directions

@ TBoxes may contain cyclic dependencies (which typically increase the
computational complexity of reasoning)

Example: ACdP, dP CA

@ Does not enjoy the finite model property, unless we drop functional assertions.
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Technical properties of DL-Lite: no finite model property

DL-Lite does not enjoy the finite model property.

Example

TBox 7: Nat C Jsucc Jsucc™ C Nat
Zero C Nat Zero T —3Jsucc™ (funct succ™)

ABox A: Zero(0)

IC = (T,.A) admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning w.r.t. finite
models only.
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Query answering in DL-Lite 4
@ We study query answering via query rewriting for UCQs over DL-Lite 5
KBs/ontologies.

@ We focus on query answering over satisfiable KBs, i.e., KBs that admit at least one
model.

@ We show how to exploit query answering over satisfiable KBs to establish KB
satisfiability itself.

@ We show how to reduce the other usual intensional reasoning tasks to KB
satisfiability checking.

Remark

we call positive inclusions (Pls) assertions of the form

G C G
Qg C @

whereas we call negative inclusions (NIs) assertions of the form

G C G
Qi C -Q
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Query answering over satisfiable DL-Lite 4 KBs

Theorem
Let g be a boolean UCQs and 7 = Tp1 U Tt U Trunct be a TBox s.t.

@ Tpyis a set of Pls
@ 7ni is a set of Nls
@ Tiunct IS a set of functionalities.
For each ABox A such that (7, A) is satisfiable, we have that

(T, A) = qiff (Ter, A) = q.

Proof [intuition]

g is a positive query, i.e., it does not contain atoms with negation nor inequality.
Tnt and Trunet only contribute to infer new negative consequences, i.e, sentences
involving negation.

If g is non-boolean, we have that cert(q, (T,.A)) = cert(q, (Tp1, A)).
52/ 88

Satisfiability of DL-Lite 4 KBs

(T,0) is always satisfiable. Indeed, always admits the model where the extension of all
concepts and roles is empty. Hence, inconsistency in DL-Lite 4 may arise only when
ABox assertions contradict the TBox.

(Te1,.A), where Tpr contains only Pls, is always satisfiable. Indeed, always admits the

model where extension of concepts and roles being the total relations of arity 1 and 2

over the interpretation domain. Hence, inconsistency in DL-Lite 4 may arise only when
ABox assertions violate functionalities or Nls.

Only when we have both functionalities and of Nls in the TBox and a non-empty ABox
that satisfiability becomes an issue.
Example: TBox 7: Professor C —Student

dteaches C Professor

(funct teaches™)

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

Interestingly, violations of functionalities and of Nls can be checked separately!
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Satisfiability of DL-Lite 4 KBs: checking functs

Theorem

Let 7p1 be a TBox with only Pls, and (funct Q) a functionality assertion. Then, for any
ABox A,
(Te1 U {(funct Q)}, A) is sat iff A = 3x,y,z.Q(x,y) A Q(x,2) Ay # Z. Notein the latter A is

considered as a complete database!

Proof [sketch]

(Te1 U {(funct Q)}, A) is satisfiable iff (7p1,.A) = —=(funct Q). This holds iff

A = —(funct Q) (separability property — sophisticated proof). From separability, the
claim easily follows, by noticing that (funct Q) corresponds to the FOL sentence
Vx,y,z.Q(x,¥y) N Q(x,z) » y = z.

For a set of functionalities, we take the union of sentences of the form above (which
corresponds to a boolean FOL query).

Checking satisfiability wrt functionalities therefore amounts to evaluate a FOL query over
the ABox.
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Checking functs: example

TBox 7: Professor C —Student
dteaches C Professor
(funct teaches™)

The query we associate to the functionality is:

q() < teaches(y, x), teaches(z, x),y # z
which evaluated over the ABox

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

returns true.

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 55/ 88



Satisfiability of DL-Lite 4 KBs: checking Nls

Theorem

Let 7p1 be a TBox with only Pls, and A; C —A, a NI. For any ABox A,
<7}>1 U {Al E —|A2},.A> is sat iff <7})1,A> I# E|X.A1(X) N AQ(X).

Proof [sketch]

(Tpr U{A;1 C —=Ay}, A) is satisfiable iff (7pr, A) = (A1 E —Az). The claim
follows easily by noticing that A; C —A, corresponds to the FOL sentence
\V/X.Al(X) — _|A2(X).

The property holds for all kinds of NiIs (A C 3Q, 3Q; C 3@y, etc.)

For a set of Nls, we take the union of sentences of the form above (which
corresponds to a UCQ).

Checking satisfiability wrt NIs amounts to answering a UCQ over a KB with only
Pls (this can be reduced to evaluating a UCQ over the ABox — see later).
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Checking Nls: example

TBox 7: Professor C —Student
Jteaches C Professor
(funct teaches™)

The query we associate to the NI is:

q() < Student(x), Professor(x)

whose answer over the KB Kp; formed by Pls only and ABox:
Kpi: Jteaches T Professor
teaches(John, databases)
Student(John)

teaches(Mark, databases)
is true.
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Example

Example: Pl 7p: dJteaches C Professor
NI N: Professor C —Student
Query gn: q() < Student(x), Professor(x)

Perfect Rewriting r; 7.: g() < Student(x), Professor(x)
q() < Student(x), teaches(x, y)

ABox A: teaches(John,databases)
Student(John)

It is easy to see that r, 7, evaluates to true over A, and that therefore K is
unsatisfiable.
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Checking satisfiability of DL-Lite 4 KBs

Checking satisfiability

Satisfiability of a DL-Lite4 KB K = (T,.A) is reduced to evaluation of a first
order query over A, obtained by uniting

(a) the FOL query associated to functionalities in 7 to

(b) the UCQs produced by a rewriting procedure (depending only on the Pls in
T) applied to the query associated to Nls in 7T .

~» KB satisfiability in DL-Lite 4 can be done using RDMBS technology.
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Other intensional tasks of DL-Lite 4 KBs

All other intensional reasoning tasks,such as class consistency, logical implication, etc., can all be
reduced to KB satisfiability.

Checking intensional tasks
@ Class consistency: to check T~ W C1 C false, check satisfiability of
K = (T U {Anew C C}, {Anew(cnew)})

o Logical implication of Pl concept inclusions: to check 7~ = C; C Cp, check unsatisfiability of

K= (T J {Anew = C17 Apew T —|C2}, {Anew(cnew)}>

@ Logical implication of NI concept inclusions: to check T~ |= C; & Gy, check unsatisfiability of

K =A(T U{Anew C C1, Anew E Qo }, {Anew(cnew)})
o Logical implication of PI role inclusions: to check 7 = @) T Qj, check unsatisfiability of
K = (T U {Pnew E Q1,Pnew E —=Q2}, {Anew(cnew , C,/,ew)}>
@ Logical implication of NI role inclusions: to check 7 = Q; T —Qo, check unsatisfiability of
K =(T U {Pnrew E Q1,Pnew E @1}, {Anew (cnew C,lqew)}>
@ Logical implication of functional assertions: 7~ = (funct Q), trivial: always false!!!

(Anew isa a new concept, Ppey a new role, and cpew . Crllew

new constants.)
v
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Query answering in DL-Lite 4: query rewriting

To the aim of answering queries, from now on we assume that 7 contains only Pls.

Given a CQ ¢ and a satisfiable KB K = (T, .A), we compute cert(q, K) as follows
© using 7, reformulate g as a union r, 7 of CQs.

@ Evaluate ry 7 directly over A managed in secondary storage via a RDBMS.

Correctness of this procedure shows FOL-rewritability of query answering in
DL-Lite 4
~» Query answering over DL-Lite 4 KBs can be done using RDMBS technology.
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Query answering in DL-Lite 4: query rewriting

Expansion step:

when an atom of the query unifies with the right-hand-side of a Pl
(with substitution o).

substitute the atom with the left-hand-side of the Pl (expressed in FOL, and
to which o is applied).

add the resulting query to the UCQ to return.

The basic case:
q(x) « Professor(x)

AssProfessor T Professor
as a logic rule: Professor(z) < AssProfessor(z)

Towards the computation of the perfect rewriting, we add to the input query
above the following query (o = {z/x})

q(x) < AssProfessor(x)

We say that the Pl AssProfessor C Professor applies to the atom Professor(x).
62 / 88

Query answering in DL-Lite 4: query rewriting

Consider now the query
q(x) « teaches(x,y)

Professor C dteaches
as a logic rule: teaches(z1,z;) < Professor(z)

We add to the reformulation the query (o = {z1/x,22/y})

q(x) < Professor(x)
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Query answering in DL-Lite 4: query rewriting

Conversely, for the query
q(x) < teaches(x,databases)

Professor C dteaches
as a logic rule: teaches(z;,z;) < Professor(z)

teaches(x, databases) does not unify with teaches(z, z,), since the existentially

quantified variable z, in the head of the rule does not unify with the constant
databases.

In this case the Pl does not apply to the atom teaches(x,databases).
The same holds for the following query, where y is distinguished

q(x,y) <« teaches(x,y)
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Query answering in DL-Lite 4: query rewriting
An analogous behavior with join variables

q(x) « teaches(x,y), Course(y)

Professor C dteaches
as a logic rule: teaches(z1,z;) < Professor(z)

The Pl above does not apply to the atom teaches(x, y).

Conversely, the PI

dteaches™ C Course
as a logic rule: Course(z) < teaches(z, z)

applies to the atom Course(y).

We add to the perfect rewriting the query (0 = {z/y})

q(x) < teaches(x,y),teaches(z,y)

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 65 / 88



Query answering in DL-Lite 4: query rewriting
Unification Step (aka called “reduce”)

when two atoms of the query unify with substitution o.

unify by applying substitution o to all atoms, and remove duplicate
atoms from the resulting query.

add add the resulting query to the UCQ to return.

Consider the query
q(x) « teaches(x,y),teaches(z,y)

The PI Professor C dteaches
as a logic rule: teaches(z1,z,) < Professor(z)

does not apply to teaches(x, y) nor teaches(z, y), since y is a join variable.

However, we can transform the above query by unifying the atoms teaches(x, y),
teaches(zi, y).
The unification step produces (0 = {z1/x,22/y}) the following query

q(x) < teaches(x,y)
We can now apply the Pl above and add to the reformulation the query

q(x) < Professor(x)
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Answering by rewriting in DL-Lite 4: algorithm

Query Rewriting Algorithm (naive version)
Given the (U)CQ g over a DL-Lite4 TBox T generate a UCQ g, by

@ Include the original query q itself in g,.

@ Apply g in all possible ways the expansion steps and unification steps in all
possible way, adding the results which are CQs to gq,.

@ Stop when expansion steps and unification steps do not add new CQs to q,.

Theorem

The UCQ q, resulting from this process is the perfect rewriting of q over T, in the
sense that for every ABox A we have:

cert(q,(T,A)) = QrA

That is: to compute the certain answer of the (U)CQ g over the KB (T, .A)
evaluate the UCQ r, 7 over A seen as a DB.
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Query answering in DL-Lite 4: example

TBox: Professor [ Jteaches
dteaches™ C Course

Query: q(x) < teaches(x, y), Course(y)

Perfect Rewriting: q(x) < teaches(x, y), Course(y)
q(x) < teaches(x, y), teaches(z, y)
q(x) < teaches(x, y)
q(x) < Professor(x)

ABox: teaches(John,databases)
Professor(Mary)

It is easy to see that the evaluation of ry 7 over A in this case produces the set
{John, Mary}.
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Express in DL-Lite 4 the following ontology:

Considering the following ABox A = {B(c)} compute the answer to the following
query:

q(x) <+ R(x,y),R(y,2)
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Exercise (solution)

A TBox: BLC A
JdR.C A
R dJR—.C B
A C dR.
| B 1.7 ABox: B(c)
Expansions:
q(x) <+ R(x,y),R(y,2).
q(x) — R(X,y), A(y). expanded using A C 3R (note: z isolated)
q(x) — R(X,y), B(y). expanded using B C A
q(x) — R(X,y), R(W,y). expanded using IR~ C B
q(X) < R(X,y). unified: w = x
q(X) — A(X). expanded using A = dR (note: y isolated)
q(x) — B(X). expanded using BC A
— anhswer Xx = C
0/

Query answering in DL-Lite 4. another example

TBox: Person C JhasFather ABox: Person(Mary)
dhasFather™ T Person

Query: q(x) < Person(x), hasFather(x, y1), hasFather(y1, y»), hasFather(y2, y3)

q(x) < Person(x), hasFather(x, y1), hasFather(y1, y»), hasFather(y», )

Il Apply Person C ShasFather to the atom hasFather(y», _)
q(x) < Person(x), hasFather(x, y1), hasFather(y1, y»), Person(y»)

Il Apply JhasFather™ C Person to the atom Person(y»)
q(x) < Person(x), hasFather(x, y1), hasFather(y1, y»), hasFather(_, y»)

Il Unify atoms hasFather(y1, y») and hasFather(_, y»)
q(x) < Person(x), hasFather(x, y1), hasFather(y1, y»)

i

q(x) <« Person(x), hasFather(x, _)
Il Apply Person C JhasFather to the atom hasFather(x, _)
q(x) < Person(x)
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Query answering in DL-Lite 4: exercise

Consider the following example, seen before. Compute certain answers through rewriting.

TBox: dhasFather C Person

hasFather» JhasFather™ C Person
|1 L Person C JhasFather
Person
ABox: Person(john)
S — Person(paul)
Person(toni)
hasFather(john,paul)

hasFather(paul,toni)

Queries: qi(x,y) <« hasFather(x, y)
g2(x) < Jy. hasFather(x, y)
q3(x) < 3y1, y», y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y», y3)
qa(x, y3) < 3y1, y». hasFather(x, y1), hasFather(y1, y»), hasFather(y», y3)
Answers:  to g1: { (john,paul), (paul,toni) }
to g2: { john, paul, toni }
to g3: { john, paul, toni }

to qs: { }
72/ 88
Exercise 1

Express in DL-Lite 4 the following ontology:

A
/
!
/

/
, {subset}

{disjoint,complete}

Considering the following ABox A = {A(a)} compute the answer to the following
queries:

QR(x,y), Ry, 2).
B(x).

<_
<_
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Exercise 1 (solution)

Expansions:
a(x) < Q(x.y),R(y,2).
a(x) < Qlxy), Qz,y). QL R”
a(x) <~ Q(x,y). unify: z = x
q(x) <+ Ax). ALC 3Q
—> answer x = a
q'() < B(x).
() <« R(x,y). JR.C B
q(0) « Aly) AC 3R
—> answer true (by y = a)
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Exercise 2

Express in DL-Lite 4 the following ontology:

{disjoint,complete}

Considering the following ABox A = {Q(a, b), R(b, b), C(c)} compute the answer

to the following queries:

q(x) <+ R(x,y),R(y,z),A(z).
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Exercise 2 (solution)

Expansions:

q(X) i R(X’Y)’ R(y,Z), A(Z).

q(x) :- R(x,x), A(x). --- unify

q(x) :- R(x,x), R(x,y). --- Exists R ISA A
q(x) :- R(x,x). --- unify

answer x = b

oooooo
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Exercise 2 (solution)

Expansions:

.....

q(x) :- R(x,y), R(y,2z), A(z).

q(x) :- R(x,y), R(y,z), C(z). -—— C ISA A

q(x) :- R(x,y), R(y,z), Q(w,z). --- Exists Q- ISA C
q(x) :- R(x,y), Q(y,z), Q(w,z). -——- Q ISA R

q(x) :- R(x,y), Q(y,2z). --- unify

q(x) :- R(x,y), A(y). --— A ISA Exists Q
q(x) :- R(x,y), C(y). --- C ISA A

q(x) :- R(x,y), Q(z,y). --— Exists Q- ISA C
q(x) :- Qx,y), Qz,y). -—— Q ISA R

q(x) - Qx,y). --- unify

answer X = a

q(x) - A(x). --— A ISA Exists Q
q(x) :- C(x). -—- C ISA A

answer X = C
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Exercise 3

Express in DL-Lite 4 the following ontology:

1.*

{disjoint,complete}

Q> 7 1.1
D | ‘ E |

Considering the following ABox A = {C(a)} compute the answer to the following
queries:

q(x) <« R(x,y),B(y)
q(x) <« Ax)

Can we simplify the diagram?
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Exercise 3 (solution)

Expansions:

q(x) :- R(x,y), B(y).

q(x) :- R(x,y), D(y). ---DISAB

q(x) :- R(x,y), Q(z,y). --- Exists Q- ISA D

q(x) :- Qx,y), Q(z,y). -—- Q ISA R

q(x) - Qx,y). --- unify

q(x) :- C(x). --- C ISA Exists Q

answer X = a

q’(x):- A(x).

q’(x):- R(x,y). --- A ISA Exists R
q’(x):- Q(x,y). --—- Q ISA R
qQ’(x):- C(x). --- C ISA Exists Q

answer X = a
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Exercise 4
Express in DL-Lite 4 the following ontology:

<R

{disjoint,complete}

=
-
w
A
o
—F
e

T {subset}

Considering the following ABox .4 = {B(b)} compute the answer to the following
queries:

q(z) <+ R(x,y),R(y,z).
q() < C(x).
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Exercise 4 (solution)

Expansions:

q(z) :- R(x,y), R(y,2z).

q(z) :- A(y), R(y,z). --- A ISA Exists R-
q(z) :- C(y), R(y,z). ---C ISA A

q(z) :- R(y,w), R(y,z). --- Exists R ISA C
q(z) :- R(y,z). --- unify

q(z) :- A(=z). --- A ISA Exists R-
q(z) :- B(2). -—— B ISA A

answer z = b

qQ’() - C(x).

q’() :- R(x,y). -- Exists R ISA C
qQ’ ) - A(y). -- A ISA Exists R-
q’ () :- B(y). -—— B ISAA

answer z = b
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Complexity of reasoning in DL-Lite 4

KB satisfiability and all classical DL reasoning tasks are:

o Efficiently tractable in the size of TBox (i.e., PTIME).

o Very efficiently tractable in the size of the ABox (i.e., LOGSPACE).

In fact, reasoning can be done by constructing suitable FOL/SQL queries and
evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

@ PTIME in the size of TBox.

@ LOGSPACE in the size of the ABox.

e Exponential in the size of the query (NP-complete).

Bad? ...not really, this is exactly as in relational DBs.

Can we go beyond DL-Lite 47

By adding essentially any other DL construct, e.g., union (L), value restriction

(VR.C), etc., without some limitations we lose these nice computational
properties (see later).
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Beyond DL-Lite 4: results on data complexity

lhs ths funct. F_’rop. Data complexi’_cy

incl. of query answering

0 DL-Lite 5 A& A& in LOGSPACE

1 A|3JP.A A — — NLOGSPACE-hard

2 A A|VP.A — — NLoGSPACE-hard

3 A A|dP.A N4 — NLOGSPACE-hard

4 A|JdP.AJ A M A A — — PTIME-hard

5 Al AL M A A|VP.A — — PTIME-hard

6 Al AL M A Al dP.A Vv — PTIME-hard

7 A|3JP.A|IP.A Al 3P — — PTIME-hard

8 A|3P| 3P~ A|3P| 3P~ Va Va PT1ME-hard

9 Al-A A — — CcONP-hard

10 A Al AU A — — cONP-hard

11 A|VP.A A — — cONP-hard

Notes:

@ * with the “proviso” of not specializing functional properties.

@ NLOGSPACE and PTIME hardness holds already for instance checking.

@ For cONP-hardness in line 10, a TBox with a single assertion

A; C At U Afr suffices! ~ No hope of including covering constraints.
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Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

@ No! Answering FOL queries in presence of incomplete information is
undecidable: Consider an empty source (no data), still a (boolean) FOL
query may return true because it is valid! (FOL validity is undecidable)

@ Yes! With some compromises:

Query what the ontology knows about the domain, not what is true in the

domain!

On knowledge we have complete information, so evaluating FOL queries is

LOGSPACE.
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SparSQL
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Full SQL, but with relations in the FROM clause that are UCQs, expressed in

SPARQL, over the ontology.

e SPARQL queries are used to query what is true in the domain.

@ SQL is used to query what the ontology knows about the domain.

Example: negation

Return all known people that are neither known to be male nor known to be
female.

SELECT persons.x

FROM SparqlTable(SELECT ?7x
WHERE {?x rdf:type ’Person’}
) persons

EXCEPT (

SELECT males.x

FROM SparqlTable(SELECT 7x
WHERE {?x rdf:type ’Male’}
) males

UNION

SELECT females.x

FROM SparqlTable(SELECT 7x
WHERE {7x rdf:type ’Female’}
) females

Example: aggregates

Return the people and the number of their known spouses, but
only if they are known to be married to at least two people.

SELECT marriage.x, count(marriage.y)

FROM SparqlTable(SELECT ?7x 7y
WHERE {7x :MarriedTo 7y}
) marriage

GROUP BY marriage.x

HAVING count(marriage.y) >= 2
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SparSQL in DL-Lite 4

Answering of SparSQL queries in DL-Lite 4:

@ Expand and unfold the UCQs (in the SparglTables) as usual in DL-Lite 4 ~
an SQL query over the ABox (seen as a database) for each SparqlTable in the
FROM clauses.

@ Substitute SparqlTables with the new SQL queries. ~+ the result is again an
SQL query over the ABox (seen as a database)!

@ Evaluate the resulting SQL query over the ABox (seen as a database)
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