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Incomplete information and query answering

Incomplete information in data: missing / unknown / partially specified data

Query answering
I Over usual databases (complete information):

QA by evaluation (or “model checking”)

D |= Q

i.e., D is seen as an interpretation (for simplicity we assume the query to be
boolean, no free variables)

I Over incomplete databases (incomplete information):
QA by logical implication (or “entailment”)

8I.I |= D implies I |= Q
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Incomplete databases

A common form of incomplete databases are the so-called “naive tables”, which include
values and “labelled nulls” (standing for unknown values) [IL84].

Example
Employee

name

Smith
null1

Brown

Manager

mgr mgd

Smith null1

null1 Brown
Brown null2

Const: we have infinite constants, corresponding to domain objects as usual;

Nulls: we have a countably infinite set of nulls, corresponding to variables ranging
over Cons;

Tables are incomplete, i.e., more tuples may belong to them, corresponding to the
so called “open-world-assumption” or OWA. (For example null2 belongs to
Employee though not reported in the table.)
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Incomplete databases: semantics

Semantics of incomplete databases:

A valuation function for nulls is a assignment function � : Nulls ! Const

(essentially nulls are considered as individual variables in logic).

We denote by I,� |= D the fact that for every tuple (t1, . . . , tn) 2 P for each table
P we have I,� |= P(t1, . . . , tn).

We define in logic the set of databases completing D as

Models(D) = {I| there exists a � such that I,� |= D}

Example
Employee

name
Smith
null1
Brown

Manager

mgr mgd
Smith null1
null1 Brown
Brown null2

Employee

name
Smith
White
Brown
Black

Manager

mgr mgd
Smith White
White Brown
Brown Black

Employee

name
Smith
Brown
Black
· · ·

Manager

mgr mgd
Smith Brown
Brown Brown
Brown Brown

· · ·
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Certain answers to a query

An incomplete database acts like a logical theory: it selects models.

Query answering in complete databases

The answer to a query q(~x) over a complete database D, denoted q

D , is the set of tuples
~
c of constants of Const such that the ~

c 2 q

D is to true in D.

Query answering in incomplete databases

The certain answer to a query q(~x) over an incomplete database D, denoted cert(q,D),
is the set of tuples ~c of constants of Const such that ~c 2 q

I , for every model I of D.

Note:

It q is boolean, and D is incomplete: we write D |= q i↵ q evaluates to true in
every model I of D, (otherwise we write D 6|= q.

We use the same notation as for query answering based on evaluation: the
di↵erence is in the incompleteness of the database.
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Query languages for incomplete databases

Which query language to use?

1 Full SQL (or equivalently, first-order logic)

I NO: in the presence of incomplete information, query answering becomes
undecidable (FOL validity).
(Notice this holds already for an empty incomplete database!)

2 Conjunctive queries (or better union of conjunctive queries)

I Conjunctive queries are well behaved wrt containment. Can they be used for
query answering in presence of incomplete information.
YES! See what follows.
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Conjunctive queries and incomplete databases

A conjunctive query (CQ) is a first-order query of the form

q(~x) 9~y .R1(~x , ~y) ^ · · · ^ Rk(~x , ~y)

where each Ri (~x , ~y) is an atom using (some of) the free variables ~x , the existentially
quantified variables ~y , and possibly constants.

We will also use the simpler Datalog notation:

q(~x) R1(~x , ~y), . . . ,Rk(~x , ~y)

Note:

CQs contain no disjunction, no negation, no universal quantification.

Correspond to SQL/relational algebra select-project-join (SPJ) queries – the most
frequently asked queries.

A Boolean CQ is a CQ without free variables ) q() 9~y .R1(~y) ^ · · · ^ Rk(~y).
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Conjunctive queries and incomplete databases

Containment of conjunctive queries q1 ✓ q2 is decidable: and LOGSPACE in q1 and
NP-complete in q2 [ChandraMerlin77].

Given an incomplete database D as above we can construct in linear time a (boolean)
conjunctive query qD that fully captures it.

For each tuple in a table of D becomes an atom in the conjunctive query qD .

For each labelled nulls occurring in D becomes an existentially quantified variable in
qD .

Example
E(mployee)

name
Smith
null1
Brown

M(anager)

mgr mgd
Smith null1
null1 Brown
Brown null2

9x1, x2.E(Smith) ^ E(x1) ^ E(Brown) ^ M(Smith, x1) ^ M(x1, Brown) ^ M(Brown, x2)
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Conjunctive queries and incomplete databases

Theorem ([IL84])

Let D be a database with incomplete information as above (naive tables), qD the

corresponding conjunctive query constructed as above, and q a boolean (union) of

conjunctive query. Then:

D |= q i↵ qD ✓ q

Proof.

For the first “i↵”:

1 Observe that the models of D by construction coincide with that of the formula qD :
that is 8I.I |= D i↵ I |= qD .

2 Moreover, qD ✓ q in the case of boolean queries stands for
8I.I |= qD implies I |= q, or simply qD |= q.

3 Hence, by (1) D |= q i↵ qD |= q.
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Conjunctive queries and incomplete databases
Also by [ChandraMerlin77] we get:

Theorem ([IL84])

Let D be a database with incomplete information as above (naive tables), qD the

corresponding conjunctive query constructed as above, IqD its canonical database, and q

a boolean (union) of conjunctive query. Then:

D |= q i↵ IqD |= q

Note: IqD is exactly D with nulls interpreted as additional constants!
Hence:

Compute certain answers of non boolean CQs over incomplete
databases

Given a non boolean (U)CQ q and an incomplete database D:

1 Evaluate q over D as it was a complete database

2 filter out all answers where null appears (certain answers are constituted by tuples
of constants in Const)
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Conjunctive queries and incomplete databases

As a consequence of the above theorem we have:

Computing certain answers for (union) of conjunctive queries over databases with
incomplete information (naive tables) is:

LOGSPACE in data complexity

NP-complete in query complexity and combined complexity

Note1: Exactly as for the case of complete information!

Note2: Use of CQs is crucial, since for full FOL we get undecidability!
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Examples of CQs over an incomplete database

Example

E(mployee)

name

Smith
null1

Brown

M(anager)

mgr mgd

Smith null1

null1 Brown
Brown null2

Queries: q1(x , y)  M(x , y)
q2(x) 9y .M(x , y)
q3(x) 9y1, y2, y3.M(x , y1) ^M(y1, y2) ^M(y2, y3)
q4(x , y3) 9y1, y2.M(x , y1) ^M(y1, y2) ^M(y2, y3)

Answers: q1: { }
q2: { Smith, Brown }
q3: { Smith }
q4: { }
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UML Class Diagram

An UML class diagram

Captured by a finite set of logical axioms that describe universal properties
(i.e., properties of all objects belonging to classes/associations).

Represents intensional knowledge

Corresponds to schema level information in database terms

Corresponds to a set of constraints on class and association memberships

Describes the semantics of the objects

Corresponds to “TBox” (or the so-called proper “ontology”) in ontological
languages which are often used instead of FOL (e.g., Descripton Logics, see
later)
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(Possibly partial or incomplete) instantiation

A (possibly partial or incomplete) instantiation aka object diagram (i.e., properties
of single objects or relationships between them)

Captured by a finite set of atomic facts in logic

Represents extensional knowledge

Corresponds to instance level information in database terms

Corresponds to (incomplete) database in databases (though under
constraints!)

Describes actual data

Correspond to “ABox” in ontological languages.
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Knowledge Bases

We call knowledge base (KB) or sometime ontology the logical theory obtained by
the union of the set of FOL formulas T and A where:

T is the “TBox” and is formed by the formulas capturing the UML class
diagram

A is the “ABox” and is formed by the facts capturing the (possibly partial or
incomplete) instantiation
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Example of a query over a KB

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

TBox

8x.Professor(x) ! Faculty(x)
8x.AssocProf(x) ! Professor(x)
8x.Dean(x) ! Professor(x)

8x.AssocProf(x) ! ¬Dean(x)

8x.Faculty(x) ! 9y.age(x, y)
8x.9y.age(y, x) ! Integer(x)

8x.9y.worksFor(x, y) ! Faculty(x)
8x.9y.worksFor(y, x) ! College(x)

8x.Faculty(x) ! 9y.worksFor(x, y)
8x.College(x) ! 9y.worksFor(y, x)

· · ·

ABox

· · ·

Query: (note: in the case of incomplete information, we need to focus on (U)CQs because full FOL is undecidable even without intensional knowledge)

q(nf , af , nd)  9f , c, d, ad.
worksFor(f , c) ^ isHeadOf(d, c) ^ name(f , nf ) ^ name(d, nd) ^ age(f , af ) ^ age(d, ad) ^ af = ad
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Query answering under di↵erent assumptions

There are fundamentally di↵erent assumptions when addressing query answering
in presence of a KB:

Traditional database (DB) assumption:
I Studied in mainly in Databases.
I Data are complete (CWA).
I Intensional knowledge/schema not used in query answering.
I Query answering based on evaluation.

Knowledge representation (KR) assumption:
I Studied in mainly in Artificial Intelligence.
I Assumes incompleteness in the data (incomplete databases) (OWA).
I Intensional knowledge/schema must be used in query answering.
I Query answering based on logical implication.

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 20 / 88

Query answering under the DB assumption

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

During query answering the data is assumed to satisfy the schema, and
therefore the schema is not used.

; Query answering amounts to query evaluation, which is computationally easy.
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Query answering under the DB assumption

Reasoning

ResultQuery

Data
Source

Logical

Schema

Schema /

Ontology
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Query answering under the DB assumption: example

 
 

Professor

CollegeworksFor

 

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, paul }

Professor = { john, paul }
College = { collA, collB }
worksFor = { (john,collA), (mary,collB) }

Query: q(x)  9c.Professor(x),College(c),worksFor(x , c)
Answer: { john }

{
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Query answering under the KR assumption

The TBox imposes constraints on the data.

Actual data (ABox) may be incomplete w.r.t. such constraints.

The system has to take into account the constraints during query answering,
and overcome incompleteness.

; Query answering amounts to logical inference, which is computationally much
more costly in general.
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Query answering under the KR assumption

Reasoning

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology
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Query answering under the KR assumption: example

 
 

Professor

CollegeworksFor

 

Faculty

The tables in the database may be incompletely specified, or even missing for
some classes/properties.
DB: Professor ◆ { john, paul }

College ◆ { collA, collB }
worksFor ◆ { (john,collA), (mary,collB) }

Query: q(x)  Faculty(x)

Answer: { john, paul, mary }

{
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Query answering under the KR assumption: another
example

 
Person

 

hasFather
1..* Each person has a father, who is a person.

DB: Person ◆ { john, paul, toni }
hasFather ◆ { (john,paul), (paul,toni) }

Queries: q1(x , y)  hasFather(x , y)
q2(x) 9y . hasFather(x , y)
q3(x) 9y1, y2, y3. hasFather(x , y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x , y3) 9y1, y2. hasFather(x , y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,paul), (paul,toni) }

{

to q2: { john, paul, toni }

{

to q3: { john, paul, toni }

{

to q4: { }

{
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QA under the KR assumption: Andrea’s example

 
Faculty

 

 
 

Professor

 
 

AssocProf

 
 

FullProf

isAdvisedBy 

{disjoint, complete}

officeMate Professor ⌘ AssocProf t FullProf

Faculty ◆ { andrea, paul, mary, john }
Professor ◆ { andrea, paul, mary }
AssocProf ◆ { paul }
FullProf ◆ { mary }

isAdvisedBy ◆ { (john,andrea), (john,mary) }
o�ceMate ◆ { (mary,andrea), (andrea,paul) }

john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate
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QA under the KR assumption – Andrea’s example

 
Faculty

 

 
 

Professor

 
 

AssocProf

 
 

FullProf

isAdvisedBy 

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q()  9y , z.
isAdvisedBy(john, y), FullProf(y),
o�ceMate(y , z), AssocProf(z)

Answer: yes!

To determine this answer, we need to resort to reasoning by cases.
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Query answering when accessing data through KBs

We have to face the di�culties of both DB and KB assumptions:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The KB introduces incompleteness of information, and we have to do logical
inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the KB.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.
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Certain answers to a query

Let K = hT ,Ai be an KB (aka an ontology), I an interpretation for K, and q(~x)
a query.

Def.: The answer to q(~x) over I (model of K), denoted q

I

. . . is the set of tuples ~c of constants such that the formula q(~x) evaluates to true
in I.

We are interested in finding those answers that hold in all models of an KB.

Def.: The certain answers to q(~x) over K, denoted cert(q,K)

. . . are the tuples ~c of constants such that ~c 2 q

I , for every model I of K.

Note: when q is boolean, we write K |= q i↵ q evaluates to true in every model I
of K, K 6|= q otherwise.
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Data complexity

Various parameters a↵ect the complexity of query answering over a KB.

Depending on which parameters we consider, we get di↵erent complexity
measures:

Data complexity: only the size of the ABox (i.e., the data) matters.
TBox and query are considered fixed.

Query complexity: only the size of the query matters.
TBox and ABox are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema) matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

Typically the size of the data largely dominates the size of the conceptual layer
(and of the query).
; Data complexity is the relevant complexity measure.
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Complexity of query answering in KBs

QA has been studied extensively for (unions of) CQs in the context of Description
Logic-based ontology languages, which can be though of as specific FOL formalisms for
class-based representation (cf. UML class diagrams or ER):

CQ query answering Combined complexity Data complexity

Complete databases NP-complete in LogSpace

(1)

Incomplete databases (naive tables, OWA) no TBox NP-complete in LogSpace

(1)

UML Class Diagrams or OWL2⇤ TBoxes 2ExpTime-hard coNP-hard (2)

⇤OWL 2 is a W3C standard based on Description Logics (DLs).

(1) This is what we need to scale with the data.
(2) Already for a TBox with a single disjunction (see Andrea’s example).

Questions

Can we find interesting logics for the TBox for which the query answering problem
can be solved e�ciently (i.e., in LogSpace)?

If yes, can we leverage on evaluation and relational database technology for query
answering?
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Compiling inference into evaluation for query answering

cert(q, hT ,Ai)
Logical inference

q

A

T

To be able to deal with data e�ciently, we need to separate the contribution of A
from the contribution of q and T and use evaluation.

; Query answering by query rewriting.
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Query rewriting

rewriting
Perfect

(under OWA)
Query

(under CWA)

evaluation

q

T

A cert(q, hT ,Ai)

rq,T

Query answering can always be thought as done in two phases:
1 Perfect rewriting: produce from q and the TBox T a new query rq,T (called

the perfect rewriting of q w.r.t. T ).
2 Query evaluation: evaluate rq,T over the ABox A seen as a complete

database (and without considering the TBox T ).
; Produces cert(q, hT ,Ai).

Note: The “always” holds if we pose no restriction on the language in which to express
the rewriting rq,T .
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Query rewriting (cont’d)

Reasoning

Rewritten 

Query

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology
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Language of the rewriting

The expressiveness of the KB language a↵ects the query language into which we
are able to rewrite CQs:

When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive Datalog.
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Description Logics

In modeling an application domain we typically need to represent the domain of interest
in terms of:

objects

classes

relations (or associations)

and to reason about the representation

Description Logics (DLs) are logics specifically designed to represent and reason on:

objects

classes – called “concepts” in DLs

(binary) relations – called “roles” in DLs
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Brief history of DLs

Knowledge Representation is a subfield of Artificial Intelligence, see, e.g., [BCM+03].

[late ’70s, early ’80s] – early days of KR formalisms

I Semantic Networks: graph-based formalism, used to represent the meaning of
sentences

I Frame Systems: frames used to represent prototypical situations, antecedents
of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

[mid ’80s, ’90s] – Description Logics (a.k.a. Concept Languages, Terminological
Languages) developed starting in the mid ’80s, with the aim of providing semantics
and inference techniques to knowledge representation systems

[Today] DLs are at the base of the whole research on ontology, and formalization of
data conceptual modeling.
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Current applications of DLs

DLs have evolved from being used “just” in KR

Found applications in:

Databases:

I schema design, schema evolution
I query optimization
I integration of heterogeneous data sources, data warehousing

Conceptual modeling

Foundation for the semantic web

Ontology-Based Data Access (OBDA)

· · ·
We will use to do query answering over UML class diagrams, which is related to OBDA
[CDGL+05, CDGL+09, CDGL+13].

Note: To know more on DLs please take the course on Knowledge Representation and

Semantic Technologies by R. Rosati (second semester).
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The DL-Lite family

A family of DLs optimized according to the tradeo↵ between expressive
power and complexity of query answering, with emphasis on data
[CDGL+05, CDGL+09, CDGL+13].

Carefully designed to have nice computational properties for answering UCQs
(i.e., computing certain answers):

I The same complexity as relational databases.
I In fact, query answering can be delegated to a relational DB engine.
I The DLs of the DL-Lite family are essentially the maximally expressive

ontology languages enjoying these nice computational properties.

We present DL-LiteA, an expressive member of the DL-Lite family.

DL-LiteA provides robust foundations for Ontology-Based Data Access.
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DL-LiteA KBs

TBox assertions:

C1 v C2 – class/“concept” inclusion assertions

C1 v ¬C2 – class /“concept” disjointness, aka “concept negative inclusion”

where concepts are formed as: C �! A | 9Q

Q1 v Q2 – property /“role” inclusion assertions

Q1 v ¬Q2 – property /“role” disjointness, aka “role negative inclusion”

where roles are formed as: Q �! P | P

�

(funct Q) – functionality assertions

Proviso: functional properties cannot be specialized.

ABox assertions: A(c), P(c1, c2), with c1, c2 constants

Note: DL-LiteA distinguishes also between object and data properties (ignored here).
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Semantics of DL-LiteA
Construct Syntax Example FOL translation

atomic conc. A Doctor A(x)

atomic role P child P(x , y)

exist. restr. 9P 9child 9y .P(x , y)

9P� 9child� 9y .P(y , x)

conc. incl. C1 v C2 Father v 9child 8x .C1(x) ! C2(x)

role incl. P1 v P2 hasFather v child 8x , y .P1(x , y) ! P2(x , y)

P1 v P�
2 hasFather v child� 8x , y .P1(x , y) ! P2(y , x)

conc. disj. C1 v ¬C2 Kid v ¬9child 8x .C1(x) ! ¬C2(x)

role disj. P1 v ¬P2 (not part of UML) 8x , y .P1(x , y) ! ¬P2(x , y)

P1 v ¬P�
2 8x , y .P1(x , y) ! ¬P2(y , x)

funct. asser. (funct P) (funct succ) 8x , y , y 0.P(x , y) ^ P(x , y 0) ! y = y 0

(funct P�) (funct succ�) 8x , y , y 0.P(y , x) ^ P(y 0, x) ! y = y 0

mem. asser. A(c) Father(bob) A(c)

mem. asser. P(c1, c2) child(bob, ann) P(c1, c2)

Note1: in database terms

inclusion assertions ; inclusion dependencies (a generalization of foreign keys)

disjointness assertions ; disjointness constraints

functionality assertions ; functional dependencies (a generalization of key constrains)

membership assertions ; tuples on an incomplete database

Note2: DL-LiteA adopts the Unique Name Assumption (UNA), i.e., di↵erent individuals denote di↵erent objects.
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Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties 9P v A1 9P� v A2

Mandatory participation (min card = 1) A1 v 9P A2 v 9P�

Functionality of relations (max card = 1) (funct P) (funct P�)

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2

Note without loosing its nice computational features:

DL-LiteA cannot capture completeness of a hierarchy. This would require disjunction (i.e.,
reasoning by cases).

DL-LiteA cannot capture subset constraints on association with max multiplicity di↵erent
from “*”. This may again introduce an hidden form of disjunction (i.e., reasoning by
cases).

DL-LiteA can be extended to capture also min cardinality constraints “A v nQ” and
max cardinality constraints “A v� nQ”.

DL-LiteA can be extended to capture also identification constraints “(idC Q1, . . . ,Qn)”.
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Translating UML Class Diagrams in DL-LiteA KBs:
example

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v 9age
9age� v xsd:integer

(funct age)

9worksFor v Faculty
9worksFor� v College

Faculty v 9worksFor
College v 9worksFor�

9isHeadOf v Dean
9isHeadOf� v College

Dean v 9isHeadOf
College v 9isHeadOf�

isHeadOf v worksFor
(funct isHeadOf)
(funct isHeadOf�)

...
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Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of the ER
Model . . .

. . . except covering constraints in generalizations.

Is the logical underpinning of OWL2 QL, one of the OWL 2 Profiles.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Does not enjoy the finite model property, i.e., reasoning and query answering
di↵er depending on whether we consider or not also infinite models.
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Technical properties of DL-LiteA

Completely symmetric w.r.t. direct and inverse roles: roles are always
navigable in the two directions

TBoxes may contain cyclic dependencies (which typically increase the
computational complexity of reasoning)

Example: A v 9P , 9P� v A

Does not enjoy the finite model property, unless we drop functional assertions.
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Technical properties of DL-Lite: no finite model property

DL-Lite does not enjoy the finite model property.

Example

TBox T : Nat v 9succ 9succ� v Nat

Zero v Nat Zero v ¬9succ� (funct succ�)

ABox A: Zero(0)

K = hT ,Ai admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is di↵erent from reasoning w.r.t. finite
models only.
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Query answering in DL-LiteA
We study query answering via query rewriting for UCQs over DL-LiteA
KBs/ontologies.

We focus on query answering over satisfiable KBs, i.e., KBs that admit at least one
model.

We show how to exploit query answering over satisfiable KBs to establish KB
satisfiability itself.

We show how to reduce the other usual intensional reasoning tasks to KB
satisfiability checking.

Remark
we call positive inclusions (PIs) assertions of the form

C1 v C2

Q1 v Q2

whereas we call negative inclusions (NIs) assertions of the form

C1 v ¬C2

Q1 v ¬Q2
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Query answering over satisfiable DL-LiteA KBs

Theorem
Let q be a boolean UCQs and T = T

PI

[ T
NI

[ Tfunct be a TBox s.t.

T
PI

is a set of PIs
T
NI

is a set of NIs
Tfunct is a set of functionalities.

For each ABox A such that hT ,Ai is satisfiable, we have that

hT ,Ai |= q i↵ hT
PI

,Ai |= q.

Proof [intuition]

q is a positive query, i.e., it does not contain atoms with negation nor inequality.
T
NI

and Tfunct only contribute to infer new negative consequences, i.e, sentences
involving negation.

If q is non-boolean, we have that cert(q, hT ,Ai) = cert(q, hT
PI

,Ai).
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Satisfiability of DL-LiteA KBs

hT , ;i is always satisfiable. Indeed, always admits the model where the extension of all
concepts and roles is empty. Hence, inconsistency in DL-LiteA may arise only when
ABox assertions contradict the TBox.

hT
PI

,Ai, where T
PI

contains only PIs, is always satisfiable. Indeed, always admits the
model where extension of concepts and roles being the total relations of arity 1 and 2
over the interpretation domain. Hence, inconsistency in DL-LiteA may arise only when
ABox assertions violate functionalities or NIs.

Only when we have both functionalities and of NIs in the TBox and a non-empty ABox
that satisfiability becomes an issue.
Example: TBox T : Professor v ¬Student

9teaches v Professor
(funct teaches�)

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

Interestingly, violations of functionalities and of NIs can be checked separately!
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Satisfiability of DL-LiteA KBs: checking functs

Theorem
Let T

PI

be a TBox with only PIs, and (funct Q) a functionality assertion. Then, for any
ABox A,
hT

PI

[ {(funct Q)},Ai is sat i↵ A 6|= 9x , y , z.Q(x , y) ^ Q(x , z) ^ y 6= z . Note in the latter A is

considered as a complete database!

Proof [sketch]

hT
PI

[ {(funct Q)},Ai is satisfiable i↵ hT
PI

,Ai 6|= ¬(funct Q). This holds i↵
A 6|= ¬(funct Q) (separability property – sophisticated proof). From separability, the
claim easily follows, by noticing that (funct Q) corresponds to the FOL sentence
8x , y , z.Q(x , y) ^ Q(x , z)! y = z .

For a set of functionalities, we take the union of sentences of the form above (which
corresponds to a boolean FOL query).

Checking satisfiability wrt functionalities therefore amounts to evaluate a FOL query over
the ABox.
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Checking functs: example

TBox T : Professor v ¬Student
9teaches v Professor
(funct teaches�)

The query we associate to the functionality is:

q() teaches(y , x), teaches(z , x), y 6= z

which evaluated over the ABox

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

returns true.
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Satisfiability of DL-LiteA KBs: checking NIs

Theorem
Let T

PI

be a TBox with only PIs, and A1 v ¬A2 a NI. For any ABox A,
hT

PI

[ {A1 v ¬A2},Ai is sat i↵ hTPI,Ai 6|= 9x .A1(x) ^ A2(x).

Proof [sketch]

hT
PI

[ {A1 v ¬A2},Ai is satisfiable i↵ hT
PI

,Ai 6|= ¬(A1 v ¬A2). The claim
follows easily by noticing that A1 v ¬A2 corresponds to the FOL sentence
8x .A1(x)! ¬A2(x).

The property holds for all kinds of NIs (A v 9Q, 9Q1 v 9Q2, etc.)

For a set of NIs, we take the union of sentences of the form above (which
corresponds to a UCQ).

Checking satisfiability wrt NIs amounts to answering a UCQ over a KB with only
PIs (this can be reduced to evaluating a UCQ over the ABox – see later).
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Checking NIs: example

TBox T : Professor v ¬Student
9teaches v Professor
(funct teaches�)

The query we associate to the NI is:

q() Student(x),Professor(x)

whose answer over the KB Kpi formed by PIs only and ABox:
Kpi : 9teaches v Professor

teaches(John, databases)
Student(John)
teaches(Mark, databases)

is true.
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Example

Example: PI TP : 9teaches v Professor

NI N: Professor v ¬Student
Query qN : q() Student(x),Professor(x)

Perfect Rewriting rq,TP : q() Student(x),Professor(x)
q() Student(x), teaches(x , y)

ABox A: teaches(John, databases)
Student(John)

It is easy to see that rq,TP evaluates to true over A, and that therefore K is
unsatisfiable.
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Checking satisfiability of DL-LiteA KBs

Checking satisfiability

Satisfiability of a DL-LiteA KB K = hT ,Ai is reduced to evaluation of a first
order query over A, obtained by uniting

(a) the FOL query associated to functionalities in T to

(b) the UCQs produced by a rewriting procedure (depending only on the PIs in
T ) applied to the query associated to NIs in T .

; KB satisfiability in DL-LiteA can be done using RDMBS technology.
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Other intensional tasks of DL-LiteA KBs

All other intensional reasoning tasks,such as class consistency, logical implication, etc., can all be
reduced to KB satisfiability.

Checking intensional tasks

Class consistency: to check T 6|= C1 v false, check satisfiability of

K = hT [ {Anew v C}, {Anew (cnew )}i

Logical implication of PI concept inclusions: to check T |= C1 v C2, check unsatisfiability of

K = hT [ {Anew v C1, Anew v ¬C2}, {Anew (cnew )}i

Logical implication of NI concept inclusions: to check T |= C1 v ¬C2, check unsatisfiability of

K = hT [ {Anew v C1, Anew v C2}, {Anew (cnew )}i

Logical implication of PI role inclusions: to check T |= Q1 v Q2, check unsatisfiability of

K = hT [ {Pnew v Q1, Pnew v ¬Q2}, {Anew (cnew , c0new )}i

Logical implication of NI role inclusions: to check T |= Q1 v ¬Q2, check unsatisfiability of

K = hT [ {Pnew v Q1, Pnew v Q2}, {Anew (cnew , c0new )}i

Logical implication of functional assertions: T |= (funct Q), trivial: always false!!!

(Anew isa a new concept, Pnew a new role, and cnew , c0new new constants.)
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Query answering in DL-LiteA: query rewriting

To the aim of answering queries, from now on we assume that T contains only PIs.

Given a CQ q and a satisfiable KB K = hT ,Ai, we compute cert(q,K) as follows

1 using T , reformulate q as a union rq,T of CQs.
2 Evaluate rq,T directly over A managed in secondary storage via a RDBMS.

Correctness of this procedure shows FOL-rewritability of query answering in
DL-LiteA
; Query answering over DL-LiteA KBs can be done using RDMBS technology.

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 61 / 88



Query answering in DL-LiteA: query rewriting

Expansion step:

when an atom of the query unifies with the right-hand-side of a PI
(with substitution �).

substitute the atom with the left-hand-side of the PI (expressed in FOL, and
to which � is applied).

add the resulting query to the UCQ to return.

The basic case:
q(x)  Professor(x)

AssProfessor v Professor
as a logic rule: Professor(z)  AssProfessor(z)

Towards the computation of the perfect rewriting, we add to the input query
above the following query (� = {z/x})

q(x)  AssProfessor(x)

We say that the PI AssProfessor v Professor applies to the atom Professor(x).
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Query answering in DL-LiteA: query rewriting

Consider now the query
q(x)  teaches(x , y)

Professor v 9teaches
as a logic rule: teaches(z1, z2)  Professor(z1)

We add to the reformulation the query (� = {z1/x , z2/y})

q(x)  Professor(x)
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Query answering in DL-LiteA: query rewriting

Conversely, for the query

q(x)  teaches(x , databases)

Professor v 9teaches
as a logic rule: teaches(z1, z2)  Professor(z1)

teaches(x , databases) does not unify with teaches(z1, z2), since the existentially
quantified variable z2 in the head of the rule does not unify with the constant
databases.

In this case the PI does not apply to the atom teaches(x , databases).

The same holds for the following query, where y is distinguished

q(x , y)  teaches(x , y)

Giuseppe De Giacomo (Sapienza) Query answering over UML class diagrams 64 / 88

Query answering in DL-LiteA: query rewriting

An analogous behavior with join variables

q(x)  teaches(x , y),Course(y)

Professor v 9teaches
as a logic rule: teaches(z1, z2)  Professor(z1)

The PI above does not apply to the atom teaches(x , y).

Conversely, the PI

9teaches� v Course
as a logic rule: Course(z2)  teaches(z1, z2)

applies to the atom Course(y).

We add to the perfect rewriting the query (� = {z2/y})

q(x)  teaches(x , y), teaches(z1, y)
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Query answering in DL-LiteA: query rewriting

Unification Step (aka called “reduce”)

when two atoms of the query unify with substitution �.

unify by applying substitution � to all atoms, and remove duplicate
atoms from the resulting query.

add add the resulting query to the UCQ to return.

Consider the query
q(x)  teaches(x , y), teaches(z , y)

The PI Professor v 9teaches
as a logic rule: teaches(z1, z2)  Professor(z1)

does not apply to teaches(x , y) nor teaches(z , y), since y is a join variable.

However, we can transform the above query by unifying the atoms teaches(x , y),
teaches(z1, y).
The unification step produces (� = {z1/x , z2/y}) the following query

q(x)  teaches(x , y)

We can now apply the PI above and add to the reformulation the query

q(x)  Professor(x)
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Answering by rewriting in DL-LiteA: algorithm

Query Rewriting Algorithm (naive version)

Given the (U)CQ q over a DL-LiteA TBox T generate a UCQ qr by

Include the original query q itself in qr .

Apply q in all possible ways the expansion steps and unification steps in all
possible way, adding the results which are CQs to qr .

Stop when expansion steps and unification steps do not add new CQs to qr .

Theorem
The UCQ qr resulting from this process is the perfect rewriting of q over T , in the

sense that for every ABox A we have:

cert(q, hT ,Ai) = qr
A

That is: to compute the certain answer of the (U)CQ q over the KB hT ,Ai
evaluate the UCQ rq,T over A seen as a DB.
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Query answering in DL-LiteA: example

TBox: Professor v 9teaches
9teaches� v Course

Query: q(x) teaches(x , y),Course(y)

Perfect Rewriting: q(x) teaches(x , y),Course(y)
q(x) teaches(x , y), teaches(z , y)
q(x) teaches(x , y)
q(x) Professor(x)

ABox: teaches(John, databases)
Professor(Mary)

It is easy to see that the evaluation of rq,T over A in this case produces the set
{John, Mary}.
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Exercise

Express in DL-LiteA the following ontology:

A

B

R

1..*

Considering the following ABox A = {B(c)} compute the answer to the following
query:

q(x)  R(x , y),R(y , z)
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Exercise (solution)

A

B

R

1..*

TBox: B v A

9R. v A

9R�
. v B

A v 9R.
ABox: B(c)

Expansions:

q(x)  R(x , y),R(y , z).
q(x)  R(x , y),A(y). expanded using A v 9R (note: z isolated)

q(x)  R(x , y),B(y). expanded using B v A

q(x)  R(x , y),R(w , y). expanded using 9R� v B

q(x)  R(x , y). unified: w = x

q(x)  A(x). expanded using A v 9R (note: y isolated)

q(x)  B(x). expanded using B v A

=) answer x = c
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Query answering in DL-LiteA: another example

TBox: Person v 9hasFather
9hasFather� v Person

ABox: Person(Mary)

Query: q(x) Person(x), hasFather(x , y1), hasFather(y1, y2), hasFather(y2, y3)

q(x) Person(x), hasFather(x , y1), hasFather(y1, y2), hasFather(y2, )
� Apply Person v 9hasFather to the atom hasFather(y2, )

q(x) Person(x), hasFather(x , y1), hasFather(y1, y2),Person(y2)
� Apply 9hasFather� v Person to the atom Person(y2)

q(x) Person(x), hasFather(x , y1), hasFather(y1, y2), hasFather( , y2)
� Unify atoms hasFather(y1, y2) and hasFather( , y2)

q(x) Person(x), hasFather(x , y1), hasFather(y1, y2)
�
. . .

q(x) Person(x), hasFather(x , )
� Apply Person v 9hasFather to the atom hasFather(x , )

q(x) Person(x)
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Query answering in DL-LiteA: exercise

Consider the following example, seen before. Compute certain answers through rewriting.

 
Person

 

hasFather
1..*

TBox: 9hasFather v Person
9hasFather� v Person
Person v 9hasFather

ABox: Person(john)
Person(paul)
Person(toni)
hasFather(john,paul)
hasFather(paul,toni)

Queries: q1(x , y)  hasFather(x , y)
q2(x) 9y . hasFather(x , y)
q3(x) 9y1, y2, y3. hasFather(x , y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x , y3) 9y1, y2. hasFather(x , y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,paul), (paul,toni) }

{

to q2: { john, paul, toni }

{

to q3: { john, paul, toni }

{

to q4: { }

{
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Exercise 1

Express in DL-LiteA the following ontology:

C

B

D

{subset}

<R 

Q> 
1..1

{disjoint,complete}

1..*A

Considering the following ABox A = {A(a)} compute the answer to the following
queries:

q(x)  Q(x , y),R(y , z).
q

0()  B(x).
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Exercise 1 (solution)

Expansions:

q(x)  Q(x , y),R(y , z).
q(x)  Q(x , y),Q(z , y). Q v R

�

q(x)  Q(x , y). unify: z = x

q(x)  A(x). A v 9Q
=) answer x = a

q

0()  B(x).
q

0()  R(x , y). 9R. v B

q

0()  A(y). A v 9R�

=) answer true (by y = a)
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Exercise 2

Express in DL-LiteA the following ontology:

A

C

B

D

{subset}

R >

Q >

1..1

{disjoint,complete}

0..*

0..*

0..*

Considering the following ABox A = {Q(a, b),R(b, b),C (c)} compute the answer
to the following queries:

q(x)  R(x , y),R(y , z),A(z).
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Exercise 2 (solution)

Expansions:

q(x) :- R(x,y), R(y,z), A(z).
q(x) :- R(x,x), A(x). --- unify
q(x) :- R(x,x), R(x,y). --- Exists R ISA A
q(x) :- R(x,x). --- unify

answer x = b

......
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Exercise 2 (solution)

Expansions:

.....

q(x) :- R(x,y), R(y,z), A(z).
q(x) :- R(x,y), R(y,z), C(z). --- C ISA A
q(x) :- R(x,y), R(y,z), Q(w,z). --- Exists Q- ISA C
q(x) :- R(x,y), Q(y,z), Q(w,z). --- Q ISA R
q(x) :- R(x,y), Q(y,z). --- unify
q(x) :- R(x,y), A(y). --- A ISA Exists Q
q(x) :- R(x,y), C(y). --- C ISA A
q(x) :- R(x,y), Q(z,y). --- Exists Q- ISA C
q(x) :- Q(x,y), Q(z,y). --- Q ISA R
q(x) :- Q(x,y). --- unify

answer x = a

q(x) :- A(x). --- A ISA Exists Q
q(x) :- C(x). --- C ISA A

answer x = c
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Exercise 3
Express in DL-LiteA the following ontology:

A

D

B

E

{subset}

R >

Q > 1..1

{disjoint,complete}

0..*

1..*

1..*

C

Considering the following ABox A = {C (a)} compute the answer to the following
queries:

q(x)  R(x , y),B(y).
q

0(x)  A(x).

Can we simplify the diagram?
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Exercise 3 (solution)

Expansions:

q(x) :- R(x,y), B(y).
q(x) :- R(x,y), D(y). --- D ISA B
q(x) :- R(x,y), Q(z,y). --- Exists Q- ISA D
q(x) :- Q(x,y), Q(z,y). --- Q ISA R
q(x) :- Q(x,y). --- unify
q(x) :- C(x). --- C ISA Exists Q

answer x = a

q’(x):- A(x).
q’(x):- R(x,y). --- A ISA Exists R
q’(x):- Q(x,y). --- Q ISA R
q’(x):- C(x). --- C ISA Exists Q

answer x = a
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Exercise 4
Express in DL-LiteA the following ontology:

B

A

C

{subset}

<R 

<Q 
1..1

{disjoint,complete}

1..*

Considering the following ABox A = {B(b)} compute the answer to the following
queries:

q(z)  R(x , y),R(y , z).
q

0()  C (x).
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Exercise 4 (solution)

Expansions:

q(z) :- R(x,y), R(y,z).
q(z) :- A(y), R(y,z). --- A ISA Exists R-
q(z) :- C(y), R(y,z). --- C ISA A
q(z) :- R(y,w), R(y,z). --- Exists R ISA C
q(z) :- R(y,z). --- unify
q(z) :- A(z). --- A ISA Exists R-
q(z) :- B(z). --- B ISA A

answer z = b

q’() :- C(x).
q’() :- R(x,y). -- Exists R ISA C
q’() :- A(y). -- A ISA Exists R-
q’() :- B(y). -- B ISA A

answer z = b
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Complexity of reasoning in DL-LiteA
KB satisfiability and all classical DL reasoning tasks are:

E�ciently tractable in the size of TBox (i.e., PTime).

Very e�ciently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL queries and
evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

By adding essentially any other DL construct, e.g., union (t), value restriction
(8R.C ), etc., without some limitations we lose these nice computational
properties (see later).
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Beyond DL-LiteA: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA
p
*

p
* in LogSpace

1 A | 9P.A A � � NLogSpace-hard
2 A A | 8P.A � � NLogSpace-hard
3 A A | 9P.A

p
� NLogSpace-hard

4 A | 9P.A | A1 u A2 A � � PTime-hard
5 A | A1 u A2 A | 8P.A � � PTime-hard
6 A | A1 u A2 A | 9P.A

p
� PTime-hard

7 A | 9P.A | 9P�
.A A | 9P � � PTime-hard

8 A | 9P | 9P� A | 9P | 9P� p p
PTime-hard

9 A | ¬A A � � coNP-hard
10 A A | A1 t A2 � � coNP-hard
11 A | 8P.A A � � coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT t AF su�ces! ; No hope of including covering constraints.
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Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information is
undecidable: Consider an empty source (no data), still a (boolean) FOL
query may return true because it is valid! (FOL validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is true in the
domain!
On knowledge we have complete information, so evaluating FOL queries is
LogSpace.
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SparSQL

Full SQL, but with relations in the FROM clause that are UCQs, expressed in
SPARQL, over the ontology.

SPARQL queries are used to query what is true in the domain.

SQL is used to query what the ontology knows about the domain.

Example: negation
Return all known people that are neither known to be male nor known to be
female.

SELECT persons.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Person’}
) persons

EXCEPT (
SELECT males.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Male’}
) males

UNION
SELECT females.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Female’}
) females

)

Example: aggregates
Return the people and the number of their known spouses, but
only if they are known to be married to at least two people.

SELECT marriage.x, count(marriage.y)
FROM SparqlTable(SELECT ?x ?y

WHERE {?x :MarriedTo ?y}
) marriage

GROUP BY marriage.x
HAVING count(marriage.y) >= 2
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SparSQL in DL-LiteA

Answering of SparSQL queries in DL-LiteA:
1 Expand and unfold the UCQs (in the SparqlTables) as usual in DL-LiteA ;

an SQL query over the ABox (seen as a database) for each SparqlTable in the
FROM clauses.

2 Substitute SparqlTables with the new SQL queries. ; the result is again an
SQL query over the ABox (seen as a database)!

3 Evaluate the resulting SQL query over the ABox (seen as a database)
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Outline

1 Incomplete information

2 Conjunctive queries and incomplete databases

3 Querying data through a UML class diagram

4 Compiling inference into evaluation for query answering

5
DL-LiteA: an ontology language for accessing data

6 References
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