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1. A lattice-theoretical fixpoint theorem. In this section we formulate and

prove an elementary fixpoint theorem which holds in arbitrary complete lattices.

In the following sections we give various applications (and extensions) of this

result in the theories of simply ordered sets, real functions, Boolean algebras,

as well as in general set theory and topology. *

By a lattice we understand as usual a system 21 = (A 9 < ) formed by a non-

empty set A and a binary relation <; it is assumed that < establishes a partial

order in A and that for any two elements afb E A there is a least upper bound

(join) a u b and a greatest lower bound (meet) an b. The relations >L, <, and

> are defined in the usual way in terms of < .

The lattice 21 = (A, < ) is called complete if every subset B of A has a

least upper bound ΌB and a greatest lower bound Πβ. Such a lattice has in

particular two elements 0 and 1 defined by the formulas

0 = ΓU and 1 = 11,4.

Given any two elements a9b E A with a < b, we denote by [a9b] the interval

with the endpoints a and b, that is, the set of all elements x E A for which

a < x < b; in symbols,

[ a,b] = Ex[x E A and a .< x .< b ] .

The system \ [ α , 6 ] , < ) is clearly a lattice; it is a complete if 21 is complete.

We shall consider functions on A to A and, more generally, on a subset B of

A to another subset C of A. Such a function / is called increasing if, for any

1 For notions and facts concerning lattices, simply ordered systems, and Boolean
algebras consult [ l ] .
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elements x9y G J 8 ? X < y implies f (x) < f (y). By a fixpoint of a function / we

understand, of course, an element x of the domain of / such that / {x) = x.

Throughout the discussion the variables a,b9 ••• » #,y, are assumed to

represent arbitrary elements of a lattice (or another algebraic system involved).

T H E O R E M 1 ( L A T T I C E - T H E O R E T I C A L F I X P O I N T T H E O R E M ) . Let_

( i ) ?I = (^4, < ) 6e α complete lattice,

( i i ) f be an, increasing function on A to A9

(i i i) P be the set of all fixpoints of f.

Then the set P is not empty and the system ( P , < ) is a complete lattice; in

particular we have

UP = UEx[f(χ) > * ] £P

and

Π P - Π E ^ / U ) <x]eP.2

Proof. L e t

( 1 ) u « U E % [ / U ) > x].

We c l e a r l y h a v e x <^ u for e v e r y e l e m e n t x w i th fix) >_ x; h e n c e , t h e funct ion

/ b e i n g i n c r e a s i n g ,

f i x ) < / ( i t ) a n d x < f ( u ) .

By (1) we conclude that

(2) u <f(u).

2 In 1927 Knaster and the author proved a set-theoretical fixpoint theorem by which
every function, on and to the family of all subsets of a set, which is increasing under
set-theoretical inclusion has at least one fixpoint; see [ 3 ] , where some applications
of this result in set theory (a generalization of the Cantor-Bernstein theorem) and
topology are also mentioned. A generalization of this result is the lattice-theoretical
fixpoint theorem stated above as Theorem 1. The theorem in its present form and its
various applications and extensions were found by the author in 1939 and discussed by
him in a few public lectures in 1939-1942. (See, for example, a reference in the Ameri-
can Mathematical Monthly 49(1942), 402.) An essential part of Theorem 1 was included
in [ l , p. 54]; however, the author was informed by Professor Garrett Birkhoff that a
proper historical reference to this result was omitted by mistake.
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Therefore

f ( u ) < f ( f ( u ) ) ,

so that f(u) belongs to the set Ex[f(x) >_ x]; consequently, by (1),

(3) f(u)<u.

Formulas ( 2 ) and ( 3 ) imply that u is a fixpoint of /; hence we conclude by ( 1 )

that u is the join of all fixpoints of /, so that

( 4 ) UP = ΌEx[f(x) > * ] e P .

Consider the dual lattice 2I' = ( A, :>). 21', like 21, is complete, and / i s

again an increasing function in 21'. The join of any elements in 21' obviously

coincides with the meet of these elements in 21. Hence, by applying to 21' the

result established for 21 in (4), we conclude that

(5) ί\P = ΓiExlf(x) <x] eP.

Now let Y be any subset of P. The system

is a complete lattice. For any x £ Y we have x < \JY and hence

therefore UY < / (UY). Consequently, UY < z implies

UY < / ( U Y ) < / ( * ) .

Thus, by restricting the domain of / to the interval [UY, 1], we obtain an in-

creasing function /*' on [UY, l ] to [UY, l ] By applying formula (5) established

above to the lattice B and to the function /', we conclude that the greatest lower

bound v of all fixpoints of / ' is itself a fixpoint of /'. Obviously, v is a fixpoint

of /, and in fact the least fixpoint of / which is an upper bound of all elements

of Y; in other words, v is the least upper bound of Y in the system (P, < ) .

Hence, by passing to the dual lattices 21' and 33', we see that there exists

also a greatest lower bound of Y in [P, <]. Since Y is an arbitrary subset of

P, we finally conclude that

(6) the system ( P, <_ ) is a complete lattice .
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In view of (4) -(6), the proof has been completed.

By the theorem just proved, the existence of a fixpoint for every increasing

function is a necessary condition for the completeness of a lattice. The question

naturally arises whether this condition is also sufficient. It has been shown

that the answer to this question is affirmative. G

A set F of functions is called commutative if

( i ) all the functions of F have a common domain, say B, and the ranges of

all functions of F are subsets of B;

( i i ) for any /, g £ F we have fg = gf, that is,

f ( g ( x ) ) = g ( f ( x ) ) fo r e v e r y x E B .

Using this notion we can improve Theorem 1 in the following way:

THEOREM 2 (GENERALIZED LATTICE-THEORETRICAL FIXPOINT THEO-

REM). Let

( i ) W, = \A9 < ) i e α complete lattice?

( i i ) F be any commutative set of increasing functions on A to A9

( i i i ) P be the set of all common fixpoints of all the functions / G F ,

Then the set P is not empty and the system \ P9 < ) is a complete lattice; in

particular, we have

UP = U E J / U ) > x for every f£F]βP

and

ΓiP=ΓiEx[f(x) <x for every feF] eP.

Proof. Let

( 1 ) u = Ό E x [ f ( x ) > x for e v e r y f e F ] .

As in the proof of Theorem 1 we show that

( 2 ) u < f ( u ) f o r e v e r y f e F .

G i v e n any funct ion g 6 F, we h a v e , by ( 2 ) ,

3 This is a result of Anne C. Davis; see her note [2 ] immediately following this
this paper.
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g(u) <g(fU))

and hence, the set F being commutative,

g(u) <f(g(u))

for every / G F. Thus

g(u) E Ex[f (x) >^ x for every f E F].

Therefore, by ( 1 ) ,

g(u) < u;

since g is an arbitrary function of F, we have

(3) f(u) <u for every fβF.

From ( l ) - ( 3 ) we conclude that u is a common fixpoint of all functions f^F,

and, in fact, the least upper bound of all such common fixpoints. In other words,

U P = U E J / U ) > x for every feF]eP.

In its remaining part the proof is entirely analogous to that of Theorem 1.

Since every set consisting of a single function is obviously commutative,

Theorem 2 comprehends Theorem 1 as a particular case. Theorem 2 will not be

involved in our further discussion.

2. Applications and extensions in the theories of simply ordered sets and

real functions. A simply ordered system 21 = \ A} <^), that is, a system formed

by a nonempty set A and a binary relation <_ which establishes a simple order

in A, is obviously a lattice. If it is a complete lattice, it is called a continuous-

ly (or completely) ordered system. The system 21 is said to be a densely ordered

system if, for all x9y G A with x < y9 there is a z G A with x < z < y.

Theorems 1 and 2 obviously apply to every continuously ordered system 21.

Under the additional assumption that 21 is densely ordered we can improve

Theorem 1 by introducing the notions of quasi-increasing and quasi-decreasing

functions.

Given a function f and a subset X of its domain, we denote by f*(X) the

set of all elements fix) correlated with elements x G X. A function / on B to

C, where B and C are any two subsets of A, is called quasi-increasing if it

satisfies the formulas
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f(UX) > Π/*U) and f(ΓlX) <\Jf*{X)

for every nonempty subset X of δ. It is called quasi-decreasing if it satisfies

the formulas

f(ϋX) < U/*U) and /(ΓU) > Πf*U)

for every nonempty subset X of A. A function which is both quasi-increasing

and quasi-decreasing is called continuous.

THEOREM 3. Let

( i ) U = ( A, < ) be a continuously and densely ordered set9

(i i) f be a quasi-increasing function and g a quasi-decreasing function on A

to A such that

f ( 0 ) > g ( 0 ) and / ( I ) < g ( l ) ,

(ii i) P-Ex[f(x)=g(x)].

Then P is not empty and \P, < ) is a continuously ordered system; in particular

we have

UP = U E j / ( x ) > g(x)]eP

and

Proof. Let B be any subset of A such that

(1) f i x ) >.g(x) for x e B .

Assume that

(2) f(ϋB) < g(\JB).

S i n c e , by h y p o t h e s i s , f ( 0 ) >_ g ( 0 ) , we c o n c l u d e t h a t

( 3 ) U S ^ 0 .

T h e s y s t e m 21 b e i n g d e n s e l y o r d e r e d , we a l s o c o n c l u d e from ( 2 ) t h a t t h e r e i s

an e l e m e n t a G A for w h i c h
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(4) /(US) < a < g(ΌB).

Let

(5) D = Ex[χ < ΌB and g(x) < α ] ,

whence

(6) ΌD < ΌB

and

(7) Ug*(Z)) < a.

If ΌD = US, we see from (3) that ΌD ^ 0 and that consequently the set D is

not empty; hence, the function g being by hypothesis quasi-decreasing, we

obtain

and therefore, by (7),

g(ΌB) <a.

Since this formula clearly contradicts (4) we conclude that ΌD £ ΌB and thus,

by (6),

(8) UD < ΌB.

Let

(9) £ = E J U D < x and x E £ L

If the set E were empty, we would have x < ΌD for every x E B and conse-

quently ΌB £ ΌD, in contradiction to (8). Hence E is not empty. We easily

conclude by (9) that ΌE = ΌB. Since, by hypothesis, the function / is quasi-

increasing, we have

f(ΌE) > Π/*(£)

and therefore, by (4),

a > Π / * ( £ ) .

Hence we must have a > f (z ) for some z £'E, for otherwise
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a < Π / * ( £ ) .

Thus, by (1) and (9),

U D < z 9 z E β , a n d g ( z ) < a ;

therefore, by (5), z £ Zλ The formulas

ΌD < z and z E D

clearly contradict each other.

We have thus shown that formula (2) cannot hold for any non-empty set B

satisfying (1) . In other words, we have

(10) f ((Jβ ) > g ( Uβ ) for every non-empty subset B of

By applying the result just obtained to the dual system ?I '= ( 4 , i> ), we

conclude that

(11) / ( Π C ) < g(ΠC) for every subset C of

Now let Y be any subset (whether empty or not) of the set

P = E x [ / ( * ) = g ( % ) ] ,

and let

(12) u = U E x [ f ( x ) > g ( x ) a n d x < Π Y ] .

By (10) and (11) we have

(13) f ( u ) > g ( u ) a n d f ( f ) Y ) < g ( Γ i Y ) .

Hence, in case u = ΠY, we obtain at once

(14) f(u)=g(u), that is, u eP.

In case u ^ Π y we see from (12) that u < ΓiY, The system 21 being densely

ordered, we conclude that
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(15) U = ΠEX[U <χ < ny] .

We a l s o s e e from ( 1 2 ) t h a t f (x) < g (x) for every e l e m e n t x of the s e t

Ex[u <x < n y ] .

Hence, by (11) and (15), we obtain

f ( u ) < g ( u ) ,

and this formula, together with (13), implies (14) again. Thus we have shown

that

( 1 6 ) f o r e v e r y s u b s e t Y o f P , i f u = U E x [ f ( x ) >_ g ( x ) a n d x < U Y ] ,

then u 6 P.

Dually we have

(17) f o r e v e r y s u b s e t Y o f P , i f v = Γ i E x [ f ( x < g ( x ) a n d x > _ Π Y ] ,

then v G P.

We see immediately that the element u in (16) is the largest element of P

which is a lower bound of all elements of Y; in other words, u is the greatest

lower bound of Y in the system \P9 < ) . Similarly, the element υ in (17) is the

least upper bound of Y in ( P9 <_/ . Consequently,

(18) ( P , < ) is a continuously ordered system.

Finally, let us take in (16) and (17) the empty set for Y, so that Γ\Y = 1

and Uy = 0. We then easily arrive at formulas

(19) U P = U E % [ / ( % ) >g(x)]eP

and

(20) n p = n E j / U ) <g(x)]ep.

By ( 1 8 ) - ( 2 0 ) the proof is complete.

Every increasing function is clearly quasi-increasing. The identity function,

g(x)z=χ for every x G A9 is continuous, that is, both quasi-increasing and

quasi-decreasing, and the same applies to every constant function, g(x) = c £ A

for every x £ A. Hence we can take in Theorem 3 an arbitrary increasing function
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for / and the identity function for g; we thus obtain Theorem 1 in its application

to continuously and densely ordered systems. On the other hand, by taking for

g a constant function, we arrive at:

THEOREM 4 (GENERALIZED WEIERSTRASS THEOREM). Let

(i) 21 = (A, < ) be a continuously and densely ordered system,

(ii) f be a quasi'increasing function on A to A and c be an element of A

such that

/(0) > c > / ( I ) ,

(iii) P = E j / U ) = cL

Then P is not empty and \P9 .< ) is a continuously ordered system; in particular,

we have

and

ΠP = ΠEx[f(x) < c ] e P .

An analogous theorem for pseudo-decreasing functions can be derived from

Theorem 3 by taking an arbitrary constant function for /.

It can be shown by means of simple examples that Theorems 3 and 4 do not

extend either to arbitrary continuously ordered systems or to arbitrary complete

lattices which satisfy the density condition (that is, in which, for any elements

x and y9 x .< y implies the existence of an element z with x < z < y)

We can generalize Theorem 3 by considering two simply ordered systems,

?I= (A,<) and 8 = ( δ , < ) ,

as well as two functions on A to β, a quasi-increasing function / and a quasi-

decreasing function g. The system ?I is assumed to be continuously and densely

ordered. No such assumptions regarding B are needed, instead, the definitions

of quasi-increasing and quasi-decreasing functions must be slightly modified.

For example, a function f on A to B will be called quasi-increasing if, for

every non-empty subset X of A and for every 6 G β we have

f (ΌX) >_ b whenever fix) >_b for every x G X

and
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f (Γ\X) < b w h e n e v e r f ix) < b for e v e r y x E X.

By repeating with small changes the proof of Theorem 3, we see that under

these assumptions the conclusions of the theorem remain valid. (The only

change which is not obvious is connected with the fact that the system B is

not assumed to be densely ordered; therefore we cannot claim the existence of

an element a E β which satisfies (4), and we have to distinguish two cases,

dependent on whether an element a with this property exists or not.) Theorem

4 can of course be generalized in the same way.

Theorems 3 and 4 thus generalized can be applied in particular to real func-

tions defined on a closed interval [α,6] of real numbers. In application to real

functions Theorem 3 can easily be derived from Theorem 4. In fact, if / is a

quasi-increasing real function and g a quasi-decreasing real function on the

interval [α,6], then the function / ' defined by the formula

is clearly quasi-increasing; by applying Theorem 4 to this function, we obtain

the conclusions of Theorem 3 for / and g. Hence the fixpoint theorem (Theorem

1) for increasing real functions is also a simple consequence of Theorem 4.

Finally, since every continuous function is quasi-increasing, and since, in the

real domain, continuous functions in our terminology coincide with continuous

functions in the usual sense, Theorem 4 is a generalization of the well-known

VVeierstrass theorem on continuous real functions. )

Returning to Theorem 3 for simply ordered systems, if we assume that both

functions / and g are continuous, we can strengthen the conclusion of the

theorem; in fact we can show, not only that the system ( P9 < ) is continuously

4Theorem 3 (for both simply ordered systems and real functions) was originally
stated under the assumption that the function / is increasing and the function g is con-
tinuous; see [3] , In 1949 A. P. Morse noticed that this result in the real domain could
be improved; in fact, he obtained Theorem 4 for real functions—under a different, though
equivalent, definition of a quasi-increasing function. By his definition, a real function
/ on an interval ιa,b\ is quasi-increasing if it is upper semicontinuous on the left and
lower semicontinuous on the right, that is, if

( i ) lim f (x) <f(d) < lim fix) for every d E [ α , 6 ] .
x -» d x -» d +

Ry generalizing this observation, the author arrived at the present abstract formulations
of Theorems 3 and 4. According to a recent remark of Morse, the first part of the con-
clusion of Theorem 4, that is, the statement that the set P is not empty, holds in the
real domain for a still more comprehensive class of functions; in fact, for all real func-
tions which satisfy the condition obtained from ( i ) by replacing lim by lim on the right
side of the double inequality (or else by replacing lim by lim on the left side ).
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ordered, but also that, for every nonempty subset X of P9 the least upper bound

of X in \Pf < ) coincides with the least upper bound of X in (A, < ) , and simi-

larly for the greatest lower bound. In application to real functions this means

that the set P of real numbers is, not only continuously ordered, but also closed

in the topological sense. Analogous remarks apply to Theorem 4.

3. Applications to Boolean algebras and the theory of set-theoretical equi-

valence. As is known, a Boolean algebra can be defined as a lattice ?I= \A9 < ) ,

with 0 and 1, in which for every element b £ A there is a uniquely determined

element b G A (called the complement of 6), such that

o u b — 1 and b π b — 0.

Given any two elements a9b G i , we shall denote by a - b their difference, that

is, the element a n b. If 21 = (A9 < ) is a Boolean algebra and a £ A, then

21' = ( [0,α], < ) is also a Boolean algebra, though the complement of an element

b in 21' does not coincide with the complement of b in 21.

By applying the lattice-theoretical fixpoint theorem we obtain:

T H E O R E M 5. Let

( i ) U = (A, <) be a complete Boolean algebra9

( i i) a9b be any elements of A9 f be an increasing function on [0,α] to A9 and

g an increasing function on [0,b] to A.

Then there are elements a'9b'£ A such that

/ ( α - α < ' ) = 6 ' and gib - b')• = a\

Proof. Consider the function h defined by the formula

( 1 ) h{x)=f(a-g(b-x)) for every x eA .

Let x and y be any elements in A such that

χ S. y

We have then

b - x >_ b - y

and since b - x and b —y are in [0,6], and g is an increasing function on [0,6]

to A9 we conclude that
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gib -x) > gib - y )

and

a — g(b — x ) < a - gib - y ) .

Hence, the elements a -gib ~ x) and a - gib - y ) being in [0,α ], and / being

an increasing function on [ θ , α ] to A, we obtain

f{a-gib-x)) <fia-gib~y)),

that is, by (1),

hix) <hiγ).

Thus h is an increasing function on A to A, and consequently, by Theorem 1,

it has a fixpoint b\ Hence, by ( 1 ) ,

( 2 ) fia-gib-b')) = b\

We put

( 3 ) g(b-b') = a'.

From ( 2 ) and ( 3 ) we see at once that the elements a' and b' satisfy the con-

clusion of our theorem.

If in the hypothesis of Theorem 5 we assume in addition that f ia) <b and

gib) <_ a9 we can obviously improve the conclusion by stating that there are

elements a ' 9a "9b \b"' £ A for which

a^a'ua", b^b'ub", α ' n α " = 6 ' n 6 " = 0 ,

fia") = b' and £U")=α' 5

Theorem 5 has interesting applications in the discussion of homogeneous

elements. Given a Boolean algebra ?I = (A9 <c), two elements a,b £ A are called

homogeneous, in symbols a ~ by if the Boolean algebras ( [ 0 , α ] , < ) and

( [ 0 , 6 ] , < ) are isomorphic. In other words, a ~ b if and only if there is a func-

tion f satisfying the following conditions: the domain of / is [ 0 , α ] ; the range

of f is [ 0 , 6 ] ; the formulas x < y and fix) < / ( y ) are equivalent for any

5 In this more special form Theorem 5 is a generalization of a set-theoretical theorem
obtained by Knaster and the author; see [3] ,
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x$y £[0,α] . Various fundamental properties of the homogeneity relation easily

follow from this definition; for example, we have:

THEOREM 6. 21 = ( A, < ) being an arbitrary Boolean algebra,

( i ) a « a for every a £ A;

(i i) if a9b 6 A and a « bf then b « a;

(i i i) if a^b%c E Af α « 6, α/iJ b ~ c$ then a ~ c;

(iv) if aι,a2,bι,b2 £ A, aι n a2 = 0 = bι n b2,

a\ « c>i, β/ifl? CΪ2 ~ &2S ίAeτι α i u 02 « &i u 62?

(v) i/a,b ί 9 b 2 E .4, 6i n 62 = 0, α̂ c? α « ^ u 62,

ίAezi there are elements aχ9a2 £A such that a± u a2 — a, a\ n α2 = 0, α t « b\t

and a2 « 62

In what follows we shall use parts ( i ) - ( i i i ) of Theorem 6 without referring

to them explicitly. If now we restrict our attention to complete Boolean algebras,

we can establish various deeper properties of the homogeneity relation by apply-

ing Theorem 5. We start with the following:

THEOREM 7. 21 = (Af < ) being a complete Boolean algebra, if

afbι,b2,c,d G A% ^ n ί>2 = 0 , c « d9 a n d α u c « ό i u ό 2 u f l ? ,

then there are elements a\%a2 G A such that

a 1 u a2 = α, aγ π a2 = 0, a\ u c « 61 u of, cmc? 02 u c « 62 u (/.

Proof. By the definition of homogeneity, the formula c « c? implies the ex-

istence of a function / which maps isomorphically the Boolean algebra ( [0,c],

.< ) onto the Boolean algebra ( [0,cΠ, < ); we have in particular

( 1 ) f(c)=d.

Similar ly , the formula o u c « ό i v b2 u d i m p l i e s the e x i s t e n c e of a funct ion

g which m a p s i s o m o r p h i c a l l y ( [ 0 , bι u b2 u d\ < ) onto ( [ 0 , α u c ] , < ) , and

we h a v e

( 2 ) g{b\ \j b2 υ d) = a \JC .
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We can assume for a while that the domain of g has been restricted to the in-

terval [0, b\ u d]. Thus, / is an increasing function on [0,c] to A$ g is an

increasing function on [0, bγ u d] to A, and by applying Theorem 5 we obtain

two elements c\d' such that

(3) f { c ~ c ' ) = d ' a n d g ( ( b ι u d ) - d ' ) = c '.

T h e f u n c t i o n s / a n d g b e i n g i n c r e a s i n g , f o r m u l a s ( l ) - ( 3 ) i m p l y

( 4 ) d' <_d and c ' < a u c .

We now l e t

( 5 ) ai = c ' — c and α 2 — o — o i

By ( 4 ) we h a v e c ' ^ c <̂  a9 and h e n c e , by ( 5 ) ,

F r o m ( 4 ) and ( 5 ) we a l s o o b t a i n

w ) i c - c ) u c = α i u c a n d \c *~ c ) n c = 0 ,

( 8 ) α u L v t i u c ί ) — o? / J = 6 i u c ? a n d d'n V\b\ u c ? ) — c ? / ] = 0 .

S i n c e / m a p s i s o m o r p h i c a l l y ( [ 0 , c ] , < ) o n t o ( [ θ , α ϊ ] , < ) , w e c o n c l u d e from

( 3 ) t h a t i t a l s o m a p s i s o m o r p h i c a l l y \ [ 0 , c — c ' ] , < ) o n t o ( [ 0 , 6 ? ' ] , <̂  ) a n d

t h a t c o n s e q u e n t l y

( 9 ) c~c'~d'.

Analogously, by ( 3 ) ,

(10) c'~(b{ ud)-d\

By T h e o r e m 6 ( i v ) , f o r m u l a s ( 7 ) - ( 1 0 ) imply

( 1 1 ) aγ u c » b\ u d.

F u r t h e r m o r e , from ( 4 ) a n d ( 5 ) w e d e r i v e

( 1 2 ) ( c n c

/ ) u [ ( α u c ) ~ c Ί = α 2 u c a n d ( c n c

/ ) n [ ( α u c ) - c / ] = 0 ,
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(13) ( d - d ' ) v [ ( b 2 - d ) \ 3 d ' ] = b2 u d a n d ( d - d ' ) n [ i b 2 - d ) u </ '] = 0 .

The function f being an isomorphic transformation, we obtain, with the help of

( 1 ) and ( 3 ),

f{ c n c') = / ( c - ( c - c')) = / ( c ) - / ( c - c')= d - d ' ,

and hence, by arguing as above in the proof of ( 9 ) ,

( 1 4 ) e n c' ~d~d'.

Since, by ( 4 ) and the hypothesis,

{ b 2 - d ) υ d ' = ( b ι v b 2 υ d ) - [ ( b ι u d ) - d ' ] ,

w e c o n c l u d e a n a l o g o u s l y , w i t h t h e h e l p of ( 2 ) a n d ( 3 ) , t h a t

— d) v d') =

and therefore

(15) U u c ) - c ' ~ ( b 2 - d ) u d \

From (12)-(15), by applying Theorem 6 (iv) again, we get

(16) a2 u c « 62 u d.

By (6), (11), and (16), the proof is complete.

In deriving the remaining theorems of this section we shall apply exclusively

those properties of the homogeneity relation which have been established in

Theorems 6 and 7; thus the results obtained will apply to every binary relation

(between elements of a complete Boolean algebra) for which these two theorems

hold. It may be noticed in this connection that Theorem 6 (v) restricted to com-

plete Boolean algebras is a simple consequence of Theorems 6 ( i ) and 7.

T H E O R E M 8 ( M E A N - V A L U E T H E O R E M ) . U = (Λ9 <) being a complete

Boolean algebra, if a$b9c,a \c' G A, a <^b < c ? a' <^ c\ a ~ a \and c « c\ then

there is an element b' £ A such that a' <^b' <^ c' and b ~ b'.

Proof. We apply Theorem 7, with a9b\$b2$c9d respectively replaced by

c'-a\ b - a9 c - bf a\ α, and we conclude that there are elements aί9a2 £A
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such that

c ' - α ' = o t u α 2 and ( 6 - α ) u α « α i u α ' .

The element 6 ' = ax u α ' clearly satisfies the conclusion of our theorem.

THEOREM 9. 21 = (A9 < ) freircg α complete Boolean algebra, for any ele-

ments a9b £ A the following two conditions are equivalent:

( i ) there is an element a\ G A such that a ~ a\ < b;

( i i) there is an element b± £ A such that a < i i a J.

Proof. To derive ( i i) from ( i ) , we consider an arbitrary element at satisfy-

ing ( i ) , and we apply Theorem 8 with a9c9a\c' respectively replaced by αi,

1, a, 1. The implication in the opposite direction follows immediately from

Theorem 6 (v) (and hence holds in an arbitrary Boolean algebra).

T H E O R E M 10 ( E Q U I V A L E N C E T H E O R E M ) . 21 = (A, < ) being a complete

Boolean algebra, if a9b9c € A9 a < b < c9 and a ~ c, then a ^ b ~ c.

Proof. This follows immediately from Theorem 8 with a' — c' — c.

THEOREM 11. ϊί = (A9 <) being a complete Boolean algebra, for any

elements a\9a2$b £A the formulas

( i ) aιub~a2vb~b and

and

( i i ) a\ u «2 u b w b

are equivalent.

Proof. Obvious ly ,

b < a\ u b < «i u «2 u ^ a n d b < α2 u b < α t u «2 u ^

H e n c e ( i i ) i m p l i e s ( i ) by Theorem 10.

Assume now, c o n v e r s e l y , t h a t ( i ) h o l d s . We c lear ly have

[a2 - ( α i u b)]n (at u 6 ) = [ α 2 - ( α * u ^ ) ) ] n 6 = 0

and

α 2 — ( o i u 6 ) ~ α 2 — ( α i u 6 ) .

By Theorem 6 ( i v ) , t h e s e two formulas t o g e t h e r with ( i ) imply
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( 1 ) α t u o 2 u t = [ o 2 - ( o i u 6 ) ] u ( α 1 u ό ) « [ α 2 ~ ( α ι u 6 ) ] u i .

S i n c e

[a2 ~{a\ u i ) ] u b <LQ>I u b < α^ u α 2 Ό b 9

we derive from (1), by applying Theorem 10,

(2) α 2 u 6 » α ι u α 2 u ί),

Formulas ( i ) and (2) obviously imply ( i i ) , and the proof is complete.

Various properties of the relation of homogeneity can conveniently be ex-

pressed in terms of another, related relation which is denoted by ^< . Thus

^ = \ A9 <) being a Boolean algebra, and a9b being any elements of A, we

write a ^ b if there is an element aγ £/4 such that a « α i < b; in case the

algebra 21 is complete, an equivalent formulation of this condition is given in

Theorem 9 ( i i ) . Theorems 8 and 10 can now be put in a somewhat simpler,

though essentially equivalent, form:

MEAN-VALUE THEOREM. 21 = (A, < ) being a complete Boolean algebra,

if a9b9c G A9 a < c, and a ^< b <̂ c9 then there is an element b'ϊzA such that

a < b' < c and b ~ b'.

EQUIVALENCE THEOREM. 21 = ( 4 , < ) being a complete Boolean algebra,

if a9b £ A9 a ^ b9 and b ^< a9 then a ~ b.

We shall give two further results formulated in terms of ^ .

THEOREM 12. 2I = (/ί, < ) being a complete Boolean algebra9 if

ι$c2 €A9aχ < cχ9a\ ^ c 2 , a2 r< ^i, and a2 < c2,

then there are elements bχ9b2 €A such that a\ < b\ <Lcχ9 a2 < b2 < c29

and bι ~ b2.

Proof. The hypothesis implies the existence of two elements a{9a2' such that

(1) ai « a* < c2 and a2 ~ a'2 < cι.

Since, by (1),
n a

2 <

we conclude from Theorem 9 that there is an element d for which
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( 2 ) G^n α2 ' «fl? < a[.

We have, by ( 1 ) ,

a2 « (« ι n α 2 ' ) u (α 2 ' - αi ) and ( α t n o^) n ( α 2 ~ αi ) = 0;

hence, by Theorem 6 ( v ) , there are elements e\$e2 such that

( 3 ) α 2 = e i u e 2 a n d e i n e 2 = 0 ,

( 4) e i ~ αi n α 2 and e 2 ~ α 2 ~ α i

By ( l ) - ( 4 ) and the hypothesis,

^ < α i " £ C2ί e i < c 2 , G? ~ e l f and c 2 « c 2

hence, by Theorem 8, there is an element / for which

( 5 ) ex <f<c2 and a[ « / .

Since, by ( 4 ) ,

<?2 ""/" 1 e 2 ~ α

2 ~ " α i »

Theorem 9 implies the existence of an element g with

( 6 ) e 2 - / « g < α 2 ' - α l β

We now put

( 7 ) i t = α ! U g and 6 2 = / u ( e 2 - / ) = / u e2 .

By ( 1 ) , ( 3 ) , ( 5 ) , ( 6 ) , ( 7 ) , and the hypothesis, we obtain

( 8 ) ai < bι < cι and α 2 < b2 < c2 .

By ( 5 ) and ( 6 ) we have

ax n pr = /n ( e 2 - / ) = 0 , o i « f , g « e 2 - / ;

hence, by ( 7 ) and Theorem 6 ( i v ) , we get

( 9 ) δ i « 6 2 .

From ( 8 ) and ( 9 ) we see that the elements bι and b2 satisfy the conclusion of

our theorem.
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From the theorem just proved, by letting α t = cχ9 we derive as an immediate

consequence the mean-value theorem; if we put a\ =Ci and a2 = c2, we obtain

the equivalence theorem. A further consequence of Theorem 12 is :

T H E O R E M 13 ( I N T E R P O L A T I O N T H E O R E M ) . 21 = (A, < ) being a com-

plete Boolean algebra, if a\9a29cχ9c2 G A and aι ^< Cj for i9j = 1,2, then there

is an element b G A such that aι •< b ^< CJ for i9j = 1,2.

Proof. The hypothesis implies the existence of two elements a^ and a^ for

which

( 1 ) ai « α ' <_ ci and a2 « a' < c2 .

Hence, as is easily seen,

aι S cι> aχ Z^L
 C2i a

2 ~ ci» °2 — C2 •

Consequently, by Theorem 12, there are elements bχ,b2 such that

( 2 ) aι ^L ^ι ^i cis a

2 — ^2 S C2$ a n ( l bi ~ b2 *

From ( 1 ) and ( 2 ) , with the help of Theorem 9, we obtain

ai nί ^l ϋl C7 ^ 0 Γ *>/ = -̂ >̂

Thus the element b = b[ satisfies the conclusion of our theorem.

From Theorems 7 and 11-13 we obtain by induction more general results in

which the couples (aί9a2), (^1,^2) ( c i * c 2 ) a r e replaced by finite sequences

(«i , , α π ) , (61, , bn) , ( c i , , c π )

with an arbitrary number n of terms; in Theorem 13 the couples (al9a2) and

(cχ9c2 ) can be replaced by two finite sequences with different numbers of

terms. The results discussed can be further extended to infinite sequences;

however, these extensions seem to require a different method of proof, and we

see no way of deriving them by means of elementary arguments from the fix-

point theorem of § 1. 6

6Theorems 6-13 concerning the relation of homogeneity and their applications to
cardinal products of Boolean algebras and to the theory of set-theoretical equivalence
are not essentially new. (Theorem 12 is new, but it can be regarded simply as a new
formulation of the interpolation theorem 13.) All these results are stated explicitly or
implicitly in [7, >v 11, 12, 15-17], where historical references to earlier publications
can also be found. However, the method applied in [7] is different from that in the
present paper and is not directly related to any fixpoint theorem. Also, the axiom of
choice is not involved at all in the present discussion, while the situation in [7] is in
this respect more complicated (compare, for instance, the remarks starting on page 239).
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All the results of this section, except Theorem 5, remain valid if the Boolean

algebra 21 = (A9 <C ) is assumed to be not necessarily complete, but only count-

ably-complete (σ-complete). This can be seen in the following way. To prove

Theorem 5 we have constructed, in terms of two given increasing functions / and

g, a new function h, and we have shown that this function h is increasing and

hence has a fixpoint. In the subsequent discussion, Theorem 5 has been applied

only once, namely in the proof of Theorem 7. The functions / and g involved in

this application not only are increasing, but have much stronger properties, in

fact, the distributive properties under countable joins and meets; that is, for

every infinite sequence (αi , , an , ) we have

/ (α i u « «« u αn u « « ) = / ( α i ) u u / (αΛ ) u ,

/ (α i n . . . n αΛ n . . . ) = / ( α ι ) n . . n / ( α r a ) n . . . ,

and similarly for g. It can be shown that the function h constructed from f and

g in the way indicated in the proof of Theorem 5 also has these distributive

properties. It is also easily seen that, in any countably-complete Boolean

algebra (and, more generally, in any countably-complete lattice with 0), every

function h which is distributive under countable joins has at least one fixpoint

a; in fact,

α = 0 u λ ( 0 ) u Λ ( λ ( 0 ) ) u . . . .

The results obtained in this section have interesting consequences con-

cerning isomorphism of cardinal (direct) products of Boolean algebras. To

obtain these consequences it suffices to notice that every system of Boolean

algebras ( 21 j ) can be represented by means of a system of disjoint elements

(a/ ) of a single Boolean algebra 21 (in fact, of the cardinal product of all

algebras 21 { ) in such a way that ( i ) each algebra 2It is isomorphic to the sub-

algebra \[θ,αj], < ) of 21; hence (i i) two algebras 211 and 21; are isomorphic

(2Ij ^2I ; ) if and only if the elements α; and αy are homogeneous ( α j « α ; ) ;

(iii) for i£j, we have 211 x 2Iy = 21̂ . if and only if α/ u αy ~ α^; (iv) 211 is

isomorphic to a factor of 21 £ if and only if aι^±a^ Keeping this in mind, we

derive, for example, the following corollary from Theorem 11:

21 j , 2I2, B being three complete Boolean algebras, we have

if and only if

811 χ 2 I 2 x B ~
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Results of this type can again be extended to countably-complete Boolean

algebras.

Any given sets A9 B9 C, . can be regarded as elements of a complete

Boolean algebra; in fact, of the algebra formed by all subsets of the union

i u δ u C u , with set-theoretical inclusion as the fundamental relation. As

is easily seen, two sets A and B treated this way are homogeneous in the

Boo lean-algebraic sense if and only if they are set-theoretically equivalent,

that is, have the same power. Hence, as particular cases of theorems on homo-

geneous elements, we obtain various results concerning set-theoretical equiva-

lence; for instance, Theorem 10 yields the well-known Cantor-Bernstein theo-

rem. *

4. Applications to topology.8 By a derivative algebra we understand a

system 21 = \A3 <, D ) in which (A9 < ) is a Boolean algebra and D is a unary

operation (function) on A to A assumed to satisfy certain simple postulates;

the main consequence of these postulates which is involved in our further dis-

cussion is the fact that D is increasing. The element Dχ (for any given x € A)

is referred to as the derivative of x. The derivative algebra 21 is called complete

if the Boolean algebra (A9 < ) is complete.

In topology the notion of the derivative of a set is either treated as a funda-

mental notion in terms of which the notion of a topological space is character-

ized, or else it is defined in terms of other fundamental notions (for example,

the derivative of a point set X is defined as the set of all limit points of X).

At any rate, all point sets of a topological space form a complete derivative

algebra under the set-theoretical relation of inclusion and the topological opera*

tion of derivative. Hence the theorems on complete derivative algebras can be

applied to arbitrary topological spaces.

^ - {A$ <, D) being a derivative algebra, an element α E A is called closed

if Dα < α; it is called dense-in-itself if Dα > α, and perfect if Dα = a; it is

called scattered if there is no element x <_a different from 0 which is dense-in-

itself.

As a consequence of the fixpoint theorem we obtain:

T H E O R E M 14 ( G E N E R A L I Z E D C A N T O R - B E N D I X O N T H E O R E M ) .

7 These extensions can be found in [ 7 ] . The proof of Theorems 12 and 13 extended
to infinite sequences requires an application of the axiom of choice (to denumerable
families of sets ). Compare the preceding footnote.

8 In connection with this section see [4, pp. 182 f. ]; compare also [ 5 ] , in particular
pp. 38 f. and 44.
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being a complete derivative algebra, every closed element a EA has a decom-

position

a = b u c , i n c = 0 ,

where the element b € A is perfect and the element c £ A is scattered.

Proof. We put

(1) b = UE % [αn Όx > x] and c =a - b.

Hence obviously

(2) a = b u c and b n c = 0.

D being an increasing function on A to A, the same clearly applies to the func-

tion Dα defined by the formula

Όax = a n Όx for every x £ A .

Hence, by Theorem 1, we conclude from (1) that b is a fixpoint of Dα that is,

(3) 6 = D α ό = α n D ό .

Consequently b <. a a n ( l D& <. Dα; since the element a is closed, we have

Όa < a? Ώb < a and therefore, by (3), b = D&; that is, the element b is perfect.

If an element x <^ c is dense-in-itself, that is, D% > x9 we have, by (1),

a n DJC >_ Λ; ,

and hence Λ; < b; therefore, by (2), x = 0. Thus the element c is scattered.

This completes the proof.

It should be mentioned that the operation D in a derivative algebra

21= (A,<,Ό)

is assumed to be not only increasing, but distributive under finite joins, that is,

D (x u y) = Όx u Dy for any x$γ 6 A .

Under this assumption we can improve Theorem 14 by showing that every closed
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element a £A has a unique decomposition

α = & u c, 5π c = 0 ,

where b is perfect and c is scattered. In fact, let

α = i ' u c', i ' n c ^ O

be another decomposition of this kind. We then have

Hence

b-b' < Ό(b-b');

that is, b — b' is dense-in-itself. Since, moreover, b — b' < c\ and c ' is scat-

tered, we conclude that o - 6 ' = 0 . Similarly we get 6 ' - 6 = 0 . Consequently

b -b\ and hence also c - c\

If, instead of Theorem 1, we apply Theorem 5, we obtain the following result

(of Λvhich, however, no interesting topological consequences are known):

THEOREM 15. 21= (A9 <, D ) being a complete derivative algebra, every

closed element a GA has two decompositions

where b9 c, b\ c' are elements of A such that

Όb'=b and D c ' = c .

Proof. From Theorem 5 (with a = b) we conclude that there are two elements

c,b' G A such that

(1) D ( α - c ) = 6 / and D ( α - 6 ' ) = c.

By putting

(2) b -a - c and c ' — a - b'

we obtain, from (1),

(3) D& = 6 ' and D c ' = c .
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Since the function D is increasing and the element a is closed, ( 1 ) implies

c < Όa < a and b' < Όa < a

hence, by (2),

(4) a=buc=b'uc' and έn c = έ ' n c

/ = 0 ,

By (3) and (4) the proof has been completed.

Theorems 1 and 5 can be applied not only to the operation D, but also to

other topological operations which are defined in terms of D and, like the

latter, are increasing; for instance, to the operation I defined by the formula

Iχ = x — Όx

Iχ referred to as the interior of the element χ% Theorem 5 can of course be

applied to two different topological operations, provided both are increasing.
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