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In 1981, Edmund M. Clarke and E. Allen Emerson, working in the 
USA, and Joseph Sifakis working independently in France, authored 
seminal papers that founded what has become the highly successful 
field of model checking. This verification technology provides an 
algorithmic means of determining whether an abstract model—
representing, for example, a hardware or software design—satisfies 
a formal specification expressed as a temporal logic (TL) formula. 
Moreover, if the property does not hold, the method identifies a 
counterexample execution that shows the source of the problem.

The progression of model checking to the point where it can be 
successfully used for complex systems has required the development 
of sophisticated means of coping with what is known as the state 
explosion problem. Great strides have been made on this problem 
over the past 28 years by what is now a very large international 
research community. As a result many major hardware and software 
companies are beginning to use model checking in practice. 
Examples of its use include the verification of VLSI circuits, 
communication protocols, software device drivers, real-time 
embedded systems, and security algorithms.

The work of Clarke, Emerson, and Sifakis continues to be central 
to the success of this research area. Their work over the years has 
led to the creation of new logics for specification, new verification 
algorithms, and surprising theoretical results. Model checking tools, 
created by both academic and industrial teams, have resulted in an 
entirely novel approach to verification and test case generation. This 
approach, for example, often enables engineers in the electronics 
industry to design complex systems with considerable assurance 
regarding the correctness of their initial designs. Model checking 
promises to have an even greater impact on the hardware and 
software industries in the future.  

—Moshe Y. Vardi, Editor-in-Chief
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Model Checking: Algorithmic 
Verification and Debugging
By Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis

1. E. Allen Emerson 
Model Checking: A Bird’s-Eye View

1.1. Formal Verification
Formal verification of program correctness hinges on the 
use of mathematical logic. A program is a mathematical 
object with well-defined, although possibly complex and 
intuitively unfathomable, behavior. Mathematical logic 
can be used to describe precisely what constitutes correct 
behavior. This makes it possible to contemplate math-
ematically establishing that the program behavior con-
forms to the correctness specification. In most early work 
this involved constructing a formal proof of correctness. 
In contradistinction, model checking avoids proofs.

Floyd-Hoare-style deductive verification was the prevail-
ing mode of formal verification going back to the 1960s.
This classic and elegant approach entailed manual proof 
construction, typically using axioms and inference rules in 
a formal deductive system, often oriented toward sequen-
tial programs. Such proof construction was tedious, diffi-
cult, and required human ingenuity. This field was a great 
intellectual success, spawning work on compositional or 
modular proof systems, soundness of program proof sys-
tems, and their completeness; see Section 3. Case studies 
confirmed that this approach really worked for small pro-
grams, although a short program might require a long proof. 
However, manual verification did not scale up well to large 
programs. The proofs were just too hard to construct.

1.2. Temporal Logics
In view of the difficulties in trying to construct program 
proofs it seemed like there ought to be a better way. The way 
was inspired by the use of Temporal Logic (TL), a formalism 
for describing change over time. If a program can be speci-
fied in TL, it can be realized as a finite state system. This sug-
gested the idea of model checking—to check if a finite state 
graph is a model of a TL specification.

The critical suggestion of using TL for reasoning about 
ongoing concurrent programs was made in Pnueli’s land-
mark paper.39 Such systems ideally exhibit nonterminat-
ing behavior so that they do not conform to the Hoare-style 
paradigm. They are also typically nondeterministic. 
Examples include hardware circuits, microprocessors, 
operating systems, banking networks, communication 
protocols, automotive electronics, and many modern 
medical devices. Pnueli used a TL with basic temporal 
operators F (sometime) and G (always). Augmented with X 
(next-time) and U (until), this is today known as LTL (Linear 
Time Logic).

Another widely used logic is CTL (Computation Tree 
Logic)10 (cf. Emerson and Clarke, and Ben-Ari et al.20, 4). Its 
basic temporal modalities are A (for all futures) or E (for 
some future) followed by one of F (sometime), G (always), 
X (next-time), and U (until); compound formulae are built 
up from nestings and propositional combinations of CTL 
subformulae. CTL is a branching time logic as it can distin-
guish between AFp (along all futures, P eventually holds and 
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is thus inevitable) and EFp (along some future, P eventually 
holds and is thus possible). The branching time logic CTL* 
subsumes both CTL and LTL. (See Figure 1.)

Temporal logic formulae are interpreted over a given finite 
state graph, also called a (Kripke) structure, M comprised of a 
set S of states, a total binary transition relation R ⊆ S × S, and 
a labelling L of states with atomic facts (propositions such  
as P) true there. There may also be a distinguished (start) 
state s0. As usual in mathematical logic, to be precise in 
defining a logic we use the meta-notation M, s0 |= f as short-
hand for “in structure M at state s0 formula f is true,” for f a 
CTL (or CTL*) formula. When s0 is understood, we may write 
M |= f. For example, M, s0 |= AFP iff for all paths x = s0, s1, s2, . . . 
in M we have ∃i ³ 0, P ∈ L(si).

When doing specification in practice we may write just 
AFp to assert that formula p is inevitable. An LTL formula h is 
interpreted over a path and then over a structure by implicit 
universal path quantification: in practical specification we 
write h but mean Ah.

The LTL formula G¬(C1 ∧ C2) captures mutual exclusion 
for the critical sections, corresponding to assertions C1 
and C2, of processes 1 and 2, respectively. In CTL, we would 
write AG¬(C1 ∧ C2) for mutual exclusion, and AG(T1 ⇒ AFC1) 
for “whenever process 1 enters its trying region (T1) it 
inevitably enters its critical section (C1).” The CTL formula  
AGEFstart asserts the system can always be restarted; 
this is not expressible in LTL. The CTL* formula EGFsend 
asserts the existence of a fair behavior along which the 
send condition occurs repeatedly. Such fairness condi-
tions are important in ensuring that goals are fulfilled in 
concurrent systems.

The logics LTL, CTL, and CTL* have turned out to be very 
influential, spawning industrial extensions and uses, plus 
many academic applications as well as theoretical results. 
There are prominent industrial logics, tailored for hardware 
verification using special “macros,” i.e., compact high-level 
operators that expand into longer combinations of basic 
operators. These include IBM Sugar based on CTL, Intel For-
Spec based on LTL, and PSL (IEEE-1850 standard), incorpo-
rating features from CTL*.

Finally, there is also the (propositional) mu-calculus31 
(cf. Emerson and Clarke20), a particular but very gen-
eral TL. It permits temporal correctness properties to be 

characterized as fixed points or fixpoints of recursive defi-
nitions. For example EFp = p ∨ EX(EFp). The mu-calculus 
plays a vital role in model checking. It is very expressive: 
CTL, CTL*, as well as LTL, can be encoded in the mu-
calculus. The fixed point characterizations of temporal 
correctness properties underlie many conventional and 
symbolic model checking algorithms, as well as tools used 
in practice.

1.3. Model Checking
In the early 1980s Clarke and Emerson proposed model 
checking, a method for automatic (and algorithmic) veri-
fication of finite state concurrent systems10; indepen-
dently Quielle and Sifakis proposed essentially the same 
method.41 In model checking, TL is used to specify cor-
rect system behavior. An efficient, flexible search pro-
cedure is used to find correct temporal patterns in the 
finite state graph of the concurrent system. The orienta-
tion of the method is to provide a practical verification 
method. The technical formulation of the model check-
ing problem is simply: Given a finite structure M, state s, 
and a TL formula f, does M, s |= f ? An alternative formu-
lation is, given M and f, calculate {s : M, s |= f}. The main  
result of Clarke and Emerson10 is that CTL model checking  
can be done in time O(|f| · |M|2); that is, in time polynomial 
in the formula and the structure sizes. (The result in Queille 
and Sifakis41 was with respect to a slighly weaker TL.)

The algorithm was based on fixpoint characteriza-
tions of basic temporal modalities. For example, let 
f (Z) denote p ∨ AXZ. We see that AFp = f (AFp) is a fix-
point of f(Z), since AFp holds iff p holds or AXAFp holds. 
In general, there may be multiple fixpoints. It can be 
shown that AFp is the least fixpoint, which we shall write  
mZ = f (Z), with f (Z) as above. Intuitively, least fixpoints 
capture only well-founded or finite behaviors. The fix-
point characterization mZ = f (Z) of a property makes it pos-
sible to calculate iteratively the set of states where AFp is  
true. This utilizes the fact that every formula corresponds 
to the set of states in which it is true. We compute the 
maximum of the ascending chain of increasingly larger 
under-approximations to the desired set of states: false ⊆ 
f ( false) ⊆ f 2(false) ⊆ . . . ⊆ f k( false) = f k+1(false), where k is  
at most the size of the (finite) state space. More generally, 
the Tarski–Knaster Theorem (cf. Tarski44) permits the 
ascending iterative calculation  f i(false) of any tempo-
ral property r characterized as a least fixpoint mZ = f (Z), 
provided that f (Z) is monotone, which is ensured by Z only 
appearing un-negated. For greatest fixpoints, one starts 
the calculation at true. Essentially the same algorithm was 
given in Queille and Sifakis.41

The following are noteworthy extensions. CTL model 
checking can be done in time O(|M| · |f|),11 i.e., linear in the 
size of the state graph and linear in the size of the formula. 
LTL model checking can be done in time O(|M| · exp(|f|); 
since M is usually very large while f is small, the exponen-
tial factor may be tolerable.33 The automata-theoretic 
approach to LTL model checking is described in Vardi and 
Wolper.46 A  succinct fixpoint characterization of fairness 
from Emerson and Lei23 is used to make LTL model check-
ing more efficient in practice. Branching time CTL* model 
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checking can be efficiently reduced to linear time LTL model 
checking for the same overall bound.24

1.4. Expressiveness
An important criterion for a logic is expressiveness, 
reflecting what correctness properties can and cannot 
be captured by the logic. Interesting properties include 
safety properties (“nothing bad happens,” e.g., G¬bad), 
liveness properties (“something good happens,” e.g., 
Fgoal), and fairness properties (“something is recurrent”, 
e.g., GFtry). It is arguable that expressiveness in model 
checking is the most fundamental characteristic, perhaps 
even more critical than efficiency. It is imperative that one 
be able to express all the correctness properties that are 
needed. If this basic requirement is not met, there is no 
point in using the verification method in the first place. In 
actual usage, a particular formalism, commonly a system 
of TL, provides the needed expressive power. It includes a 
few basic temporal operators, which can be combined to 
yield virtually limitless assertions. Another benefit of TL 
is that it is related to natural language, which can facili-
tate its use.

The ability to describe complex patterns of system 
behavior is basic. LTL is naturally suited to the task. Along 
paths, it is in a sense expressively complete, equivalent 
to the First Order Language of Linear Order,19 e.g. GP = 
∀t (t ³ 0 ⇒ P(t) ). A property such as G2P, meaning that P 
holds at all even moments 0, 2, 4, . . . is not expressible 
in LTL. It can be useful in hardware verification applica-
tions where it is needed to count clock cycles. The (linear 
time) mu-calculus as well as PSL can express this property  
(cf. Wolper 47).

CTL is well suited to capture correctness over computa-
tion trees. The branching time capability of distinguishing 
between necessary and possible behaviors using explicit 
path quantifiers (A, E) provides significant expressive power.  
The existence of a bad path, EFbad, is not expressible by any 
formula Ah where h is in LTL, nor even any universal CTL* 
formula where all path quantifiers are A (and only atomic 
propositions appear negated). Thus, LTL is not closed 
under semantic negation: writing the invariant G¬bad 
means AG¬bad whose semantic negation is EFbad which, 
as above, is not expressible by any Ah formula.21 There has 
been an ongoing debate as to whether LTL or branching 
time logic is better for program reasoning. Linear time 
offers the advantage of simplicity, but at the cost of sig-
nificantly less expressiveness. Branching time’s potentially 
greater expressiveness may incur greater conceptual (and 
computational) complexity.

A related criterion is succinctness, reflecting how 
compactly a property can be expressed. The CTL* for-
mula E(FP1 ∧ FP2) is not a CTL formula, but is semanti-
cally equivalent to the longer CTL formula EF(P1 ∧ EFP2) ∨ 
EF(P2 ∧ EFP1). For n conjuncts, the translation is exponen-
tial in n. In practice, the most important is the criterion of 
convenience, reflecting how easily and naturally properties 
can be expressed. Expressiveness and succinctness may be 
partially amenable to mathematical definition and investi-
gation. Succinctness and convenience often correlate but 
not always. Convenience, however, is inherently informal. 

Yet it is extremely important in actual use. That is why, e.g., 
many person-years were devoted to formulating industrial-
strength logics such as PSL.

1.5. Efficiency
Another important criterion, efficiency, is related to ques-
tions of the complexity of the model checking problem 
for a logic and the performance of model checking algo-
rithms for the logic. An algorithm that has potentially 
high complexity in theory but is repeatedly observed to 
exhibit significantly lower complexity in actual use is 
likely to be preferred to one with better theoretical com-
plexity but inferior observed performance. Moreover, 
there are trade-offs. For instance, a more expressive logic 
is likely to be less efficient. A more succinct logic is likely 
to be more convenient yet even less efficient. Some experi-
ence is required to reach a good trade-off. For many model 
checking applications, M is sufficiently small that it can 
be explicitly represented in computer memory. Such basic 
enumerative model checking may be adequate for systems 
with 106 states.

However, many more systems M have an astronomically 
or even infinitely large state space. There are some funda-
mental strategies to cope with large state spaces. Foremost, 
is the use of abstraction where the original, large, complex 
system M is simplified, by suppressing inessential detail  
(cf. Clarke and Emerson10), to get a (representation of a) 
smaller and simpler system M—.

Compact representations of the state graph yield another 
important strategy. The advent of symbolic model checking, 
combining CTL, fixpoint computation, and data structures  
for compact representation of large state sets, made it pos-
sible to check many systems with an astronomical number 
of states (cf. Burch et al.8).

If there are many replicated or similar subcomponents, it 
is often possible to factor out the inherent symmetry in the 
original M resulting in an exponentially reduced abstract 
M—43 (cf. Sistla et al. and Clarke et al.43, 9). Most work on sym-
metry has required the use of explicit representation of M. 
Natural attempts to combine symmetry and symbolic rep-
resentation were shown inherently infeasible.14 However, 
a very advantageous combination based on dynamically 
reorganizing the symbolic representation overcomes these 
limitations.25 Finally, one may have an infinite state system 
comprised of, e.g., a (candidate) dining philosophers solu-
tion Mn for all sizes n > 1. In many situations, this parame-
terized correctness problem is reducible to model checking 
a fixed finite-size system Mc (cf. Clarke et al., and Emerson 
and Kahlon9, 22).

1.6. Evolution of Model Checking
The early reception of model checking was restrained. 
Model checking originated in the theoretical atmosphere of 
the early 1980s. There was a field of study known as Logics 
of Programs, which dealt with the theory and sometime use 
of logic for reasoning about programs. Various modal and 
temporal logics played a prominent role. The key technical 
issue under investigation for such a logic was satisfiability: 
Given any formula f, determine whether there exists some 
structure M such that M |= f. Analyzing the decidability and 
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complexity of satisfiability for these logics was the major 
focus. However, model checking refers to the truth under 
one given interpretation M of a given formula f. This notion 
was implicit in the Tarskian definition of truth but, classi-
cally, was not viewed as an interesting problem. The idea 
that model checking should provide for verification of finite 
state systems was not appreciated. The early reaction to 
model checking then was mostly one of confusion and dis-
interest. It seemed a disconcerting novelty. It was not satis-
fiability. It was not validity. What was it? It was even dubbed 
“disorienting.” Many felt it could not possibly work well in 
practice. In more recent times, some more favorable com-
ments have been made. Model checking is “an acceptable 
crutch”—Edsger W. Dijkstra; it is “a first step toward engi-
neerization of the field”—A. Pnueli.40

What factors contributed to model checking’s success-
ful deployment? First, the initial framework was feasible 
and comprehensible. It built on a helpful combination of 
TL and algorithms. It provided a “push-button,” i.e., auto-
mated, method for verification. It permitted bug detec-
tion as well as verification of correctness. Since most 
programs are wrong, this is enormously important in 
practice. Incidently, the limited support for bug detection 
in proof-theoretic verification approaches contributes to 
their slower adoption rate. Moreover, while a methodol-
ogy of constructing a program hand-in-hand with its proof 
certainly has its merits, it is not readily automatable. This 
hampers its deployment. With model checking, the separa-
tion of system development from verification and debug-
ging (see Section 2) has undoubtedly facilitated model 
checking’s industrial acceptance. The development team 
can go ahead and produce various aspects of the system 
under design. The team of verifiers or verification engineers 
can conduct verification independently. Hopefully, many 
subtle bugs will be detected and fixed. As a practical mat-
ter, the system can go into production at whatever level of 
“acceptable correctness” prevails at deadline time. Lastly, 
Moore’s Law has engendered larger computer main mem-
ory, which enabled the development of ever more powerful 
model checking tools.

1.7. Discussion and Summary
What are the key accomplishments of model checking? 
The key contribution is that verification using model 

checking is now done routinely on a widespread basis 
for many large systems, including industrial-strength 
systems. Large organizations from hardware vendors to 
government agencies depend on model checking to facili-
tate achieving their goals. In contrast to 28 years ago, we 
no longer just talk about verification; we do it. The some-
what surprising conceptual finding is that verification can 
be done extremely well by automated search rather than 
manual proofs.

Model checking realizes in small part the Dream of 
Leibniz [1646–1716] (cf. Davis18). This was a proposal for  
a universal reasoning system. It was comprised of a lingua 
characteristica universalis, a language in which all knowl-
edge could be formally expressed. TL plays a limited 
formulation of this role. There was also a calculus ratio-
cinator, a method of calculating the truth value of such  
a formalized assertion. Model checking algorithms provide 
the means of calculating truth. We hope that, over time, 
model checking will realize an increasingly large portion 
of Leibniz’ Dream.

2. Edmund M. Clarke  
My 28-Year Quest To Conquer  
The State Explosion Problem

2.1. Model Checkers and Debugging
Model checkers typically have three main components:  
(1) a specification language, based on propositional TL,39 
(2) a way of encoding a state machine representing the 
system to be verified, and (3) a verification procedure, that 
uses an intelligent exhaustive search of the state space to 
determine if the specification is true or not. If the speci-
fication is not satisfied, then most model checkers will 
produce a counterexample execution trace that shows 
why the specification does not hold. It is impossible to 
overestimate the importance of this feature. The counter-
examples are invaluable in debugging complex systems. 
Some people use model checking just for this feature. 
The EMC model checker11 did not give counterexamples 
for universal CTL properties that were false or witnesses  
for existential properties that were true. Michael C. 
Browne added this feature to the MCB model checker in 
1984. It has been an important feature of model checkers 
ever since. (See Figure 2.)

Preprocessor

True or counterexampleProgram or circuit

Formula f

Model checker

Figure 2. A model checker with counterexamples.
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2.2. State Explosion Problem
State explosion is the major problem in model checking. 
The number of global states of a concurrent system with 
many processes can be enormous. It is easy to see why this 
is true. The asynchronous composition of n processes, 
each having m states, may have mn states. A similar prob-
lem occurs with data. The state-transition system for an 
n-bit counter will have 2n states. All model checkers suf-
fer from this problem. Complexity-theoretic arguments 
can be used to show that the problem is unavoidable in 
the worst case (assuming P is different than PSPACE). 
Fortunately, steady progress has been made over the past 
28 years for special types of systems that occur frequently 
in practice. In fact, the state explosion problem has been 
the driving force behind much of the research in model 
checking and the development of new model check-
ers. We discuss below key breakthroughs that have been 
made and some of the important cases where additional 
research is needed.

2.3. Major Breakthroughs
2.3.1. Symbolic Model Checking with OBDDs.  In the origi-
nal implementation of the model checking algorithm, tran-
sition relations were represented explicitly by adjacency 
lists.11 For concurrent systems with small numbers of pro-
cesses, the number of states was usually fairly small, and the 
approach was often quite practical. In systems with many 
concurrent parts the number of states in the global state-
transition system was too large to handle. In the fall of 1987, 
McMillan, then a graduate student at Carnegie Mellon, re-
alized that by using a symbolic representation for the state-
transition systems, much larger systems could be verified. 
The new symbolic representation was based on Bryant’s 
ordered binary decision diagrams (OBDDs). OBDDs provide a 
canonical form for Boolean formulas that is often substan-
tially more compact than conjunctive or disjunctive normal 
form, and very efficient algorithms have been developed for 
manipulating them. Because the symbolic representation 
captures some of the regularity in the state space determined 
by circuits and protocols, it is possible to verify systems with 
an extremely large number of states—many orders of mag-
nitude larger than could be handled by the explicit-state al-
gorithms. With the new representation for state-transition 
systems, we could verify some examples that had more than 
1020 states.8, 35 Since then, various refinements of the OBDD-
based techniques have pushed the state count up to more 
than 10120.

2.3.2. Partial Order Reduction.  Verifying software poses 
significant problems for model checking. Software tends to 
be less structured than hardware. In addition, concurrent 
software is usually asynchronous, i.e., most of the activities 
taken by different processes are performed independently, 
without a global synchronizing clock. For these reasons, 
the state explosion problem is particularly serious for soft-
ware. Consequently, model checking has been used less 
frequently for software verification than for hardware veri-
fication. One of the most successful techniques for dealing 
with asynchronous systems is the partial order reduction. 
This technique exploits the independence of concurrently 

executed events. Intuitively, two events are independent of 
each other when executing them in either order results in 
the same global state. In this case, it is possible to avoid ex-
ploring certain paths in the state-transition system. Model 
checking algorithms that incorporate the partial order 
reduction are described in several different papers. The 
stubborn sets of Valmari,45 the persistent sets of Godefroid27 
and the ample sets of Peled,38 differ on the actual details, 
but contain many similar ideas. The SPIN model checker 
developed by Holzmann uses the ample-set reduction to 
great advantage.

2.3.3. Bounded Model Checking with SAT.  Although sym-
bolic model checking with OBDDs was the first big break-
through on the state explosion problem and is still widely 
used, OBDDs have a number of problems that limit the 
size of the models that can be checked with this tech-
nique. The ordering of variables on each path from the 
root of the OBDD to a leaf has to be the same. Finding an 
ordering that results in a small OBDD is quite difficult. In 
fact, for some Boolean formulas no space-efficient order-
ing is possible. A simple example is the formula for the 
middle output bit of a combinational multiplier for two 
n-bit numbers. It is possible to prove that the OBDD for 
this formula has size that is exponential in n for all vari-
able orderings.

Propositional satisfiability (SAT) is the problem of deter-
mining whether a propositional formula in conjunctive nor-
mal form (“product of sums form” for Boolean formulas) has 
a truth assignment that makes the formula true. The prob-
lem is NP-complete (in fact, it is usually the first example 
of this class that students see). Nevertheless, the increase 
in power of modern SAT solvers over the past 15 years on 
problems that occur in practice has been phenomenal. It 
has become the key enabling technology in applications of 
model checking to both computer hardware and software. 
Bounded Model Checking (BMC) of computer hardware 
using a fast SAT solver is now probably the most widely used 
model checking technique. The counterexamples that it 
finds are just the satisfying instances of the propositional 
formula obtained by unwinding to some fixed depth the 
state-transition system for the circuit and the negation of its 
specification in linear TL.

The basic idea for BMC is quite simple (cf. Biere et al.7). 
The extension to full LTL obscures the simplicity so we will 
just describe how to check properties of the form FP where 
the property P is an atomic proposition (e.g., “Message_
Received”). BMC determines whether there is a counter
example of length k (we assume k ³ 1). In other words, 
it checks if there is a path of length k ending in a cycle in 
which each state is labeled with ¬ P (see Figure 3). Assume 
that the state-transition system M has n states. Each state 
can be encoded by a vector v of élog(n)ù Boolean variables. 

Figure 3. Counterexample of length at most k.
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The set of initial states can be specified by a propositional 
formula I(v) which holds for exactly those assignments to v 
that correspond to initial states. Likewise, the transition 
relation can be given by a propositional formula R(v, v́ ).  
A path of length k starting in an initial state can be encoded 
by means of the following formula:

path (k) = I (v0) Ù R (v0, v1) Ù . . . Ù R (vk−1,, vk).� (1)

The path ends in a cycle if and only if

cycle (k) = R (vk, v0) Ú . . . Ú R (vk, vk−1) Ú R (vk, vk).� (2)

The property P is false in each of the k steps if and only if

property (k) = ¬P (v0) Ù ¬P (v1) Ù . . . Ù  ¬P (vk).� (3)

Thus, the liveness property FP has a counterexample of 
length k if and only if the conjunction W(k) of Formulas 1, 2, 
and 3 is satisfiable.

W (k) = path (k) Ù cycle (k) Ù property (k).� (4)

We start with k = 1. If the formula W(k) is satisfiable, we 
know that FP has a counterexample of length k. A counter-
example execution trace can be extracted from the satisfy-
ing assignment to W(k). If the formula W(k) is not satisfiable, 
then it could be the case that either the temporal formula 
FP holds on all paths starting from an initial state (and our 
specification is true) or there is a counterexample that is 
longer than k. When W(k) is unsatisfiable, we can do one of 
two things: Either increase the value of k and look for lon-
ger counterexamples or stop if time or memory constraints 
are exceeded.

We note that the idea of checking safety properties such 
as GP by reduction to propositional satisfiability is implicit 
in the work of Kautz and Selman.30 However, they do not 
consider more general temporal properties such as the live-
ness property that we consider above.

In practice, BMC can often find counterexamples in 
circuits with thousands of latches and inputs. Armin Biere 
recently reported an example in which the circuit had 9510 
latches and 9499 inputs. This resulted in a propositional for-
mula with 4 × 106 variables and 1.2 × 107 clauses. The short-
est bug of length 37 was found in 69 seconds! Many others 
have reported similar results.

Can BMC ever be used to prove correctness if no coun-
terexamples are found? It is easy to see that for safety and 
liveness properties of the form FP and GP where P is a 
propositional formula, if there is a counterexample, then 
there is one that is less than the diameter (i.e., the longest 
shortest path between any two states) of the state-transi-
tion system. So, the diameter could be used to place an 
upper bound on how much the transition relation would 
need to be unwound. Unfortunately, it appears to be com-
putationally difficult to compute the diameter when the 
state-transition system is given implicitly as a circuit or 
in terms of propositional formulas for the set of initial 
states, the transition relation, and the set of bad states. 
Other ways for making BMC complete are based on cube 

enlargement,36 circuit co-factoring,26 induction,42 and 
Craig interpolants.37 But, the problem remains a topic of 
active research. Meanwhile, an efficient way of finding 
subtle counterexamples is still quite useful in debugging 
circuit designs.

2.3.4. The Abstraction Refinement Loop.  This technique 
uses counterexamples to refine an initial abstraction. We be-
gin by defining what it means for one state-transition system 
to be an abstraction of another. We write Ma = áSa , s0

a, Ra , La ñ 
to denote the abstraction of state-transition system M = áS, s0, 
R, Lñ with respect to an abstraction mapping a. (Here we in-
clude the start states s0 and s0

a as parts of the state-transition 
systems.) We assume that the states of M are labeled with 
atomic propositions from a set A of atomic propositions, 
and that Ma is labeled with atomic propositions from a set 
Aa that is a subset of A. We call M the concrete system and Ma 
the abstract system.

Definition 1. A function a: S ® Sa is an abstraction map-
ping from the concrete system M to the abstract system Ma with 
respect to the propositions in Aa if and only if

•  a (s0) = s0
a.

• � If there is a transition from state s to state t in M, then there 
is a transition from a (s) to a (t) in Ma.

• � For all states s, L(s)  Aa = La(a (s)).

The three conditions ensure that Ma simulates M. Note that 
only identically labeled states of the concrete model (mod-
ulo propositions absent from Aa) will be mapped into the 
same state of the abstract model (see Figure 4). The key the-
orem relating concrete and abstract systems is the Property 
Preservation Theorem:

Theorem 1 (Clarke, Grumberg, and Long13). If a univer-
sal CTL* property holds on the abstract model, then it holds on 
the concrete model.

Here, a universal CTL* property is one that contains no 
existential path quantifiers when written in negation-
normal form. For example, AFP is a universal property but 
EFP is not.

M

M

Figure 4. A concrete system and its abstraction.
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The converse of the theorem is not true as Figure 5 illus-
trates. A universal property that holds in the concrete sys-
tem may fail to hold in the abstract system. For example, the 
property AGF STOP (infinitely often STOP) holds in M, but  
not in Ma. Thus, a counterexample to the property in the 
abstract system may fail to be a counterexample in the 
concrete system. Such counterexamples are said to be spu-
rious counterexamples. This leads to a verification tech-
nique called Counterexample Guided Abstraction Refinement 
(CEGAR).12 Universal properties are checked on a series of 
increasingly precise abstractions of the original system. 
If the property holds, then by the Property Preservation 
Theorem, it must hold on the concrete system and we can 
stop. If it does not hold and we get a counterexample, then 
we must check the counterexample on the concrete system 
in order to make sure that it is not spurious. If the coun-
terexample checks on the concrete system, then we have 
found an error and can also stop. If the counterexample is 

spurious, then we use information in the counterexample 
to refine the abstraction mapping and repeat the loop. The 
CEGAR Loop in Figure 6 generalizes an earlier abstraction 
technique for sequential circuits called the localization 
reduction, which was developed by R. Kurshan.32 CEGAR is 
used in many software model checkers including the SLAM 
Project at Microsoft.1

2.4. State Explosion Challenges for the Future

The state explosion problem is likely to remain the major 
challenge in model checking. There are many directions for 
future research on this problem, some of which are listed 
below.

• � Software model checking, in particular, combining 
model checking and static analysis

• � Effective model checking algorithms for real-time and 
hybrid systems

• � Compositional model checking of complex systems
•  Symmetry reduction and parameterized model checking
• � Probabilistic and statistical model checking
• � Combining model checking and theorem proving
• � Interpreting long counterexamples
• � Scaling up even more

3. Joseph Sifakis  
The Quest for Correctness:  
Challenges and Perspectives

3.1. Where Are We Today?
Verification techniques have definitely found important 
applications. After the first two decades of intensive research 
and development, recent years have been characterized by a 
shift in focus and intensity.

Figure 5. Spurious counterexample.

STOP

¬STOP

¬STOP

STOP

¬STOP

MaM

Figure 6. The CEGAR loop.
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Algorithmic verification involves three different tasks: 
(1) requirements specification, (2) building executable sys-
tem models, and (3) developing scalable algorithms both for 
checking requirements and for providing diagnostics when 
requirements are not met. The status for each of these tasks 
is discussed below.
3.1.1. Requirements Specification. Requirements char-
acterize the expected behavior of a system. They can be 
expressed following two paradigms. State-based require
ments specify a system’s observable behavior by using 
transition systems. Property-based requirements use a 
declarative style. These requirements are expressed as sets 
of formulas in a formalism such as a TL. A combination 
of the two paradigms is necessary for enhanced expres-
siveness, such as in the PSL language. The state-based 
paradigm is adequate for characterizing causal dependen-
cies between events, e.g., sequences of actions. In con-
trast, the property-based paradigm is more appropriate 
for global properties, e.g., liveness and mutual exclusion. 
For concurrent systems, an important trend is toward 
semantic variations of state-based formalisms such as Live 
Sequence Charts.17

Using TLs has certainly been a breakthrough in under-
standing and formalizing requirements for concurrent sys-
tems. Nonetheless, subtle differences in the formulation 
of common concepts such as liveness and fairness, which 
depend on the underlying time model (e.g., branching or 
linear time), show that writing rigorous logic specifications 
is not trivial.

Furthermore, the declarative and dense style in the 
expression of property-based requirements is not always 
easy to master and understand. Requirements must be 
sound. That is, they must be satisfiable by some model. 
In addition, they must be complete. That is, no important 
information is omitted about the specified system. In con-
trast to soundness, which is a well-understood property 
and can be checked automatically by using decision pro-
cedures, there is no consensus as to what precisely con-
stitutes completeness in requirements specifications, nor 
how to go about achieving it. Absolute completeness, which 
means that specifications describe the system exactly, has 
only a theoretical interest and is probably unattainable for 
non-trivial systems.

Existing requirements specification formalisms are 
mainly appropriate for expressing functional require-
ments. We lack rigorous formalisms for extra-functional 
requirements for security properties (e.g., privacy), recon-
figurability properties (e.g., noninterference of configurable 
features), and quality of service (e.g., degree of jitter).
3.1.2. Building Executable Models. Successful applica-
tion of verification methods requires techniques for build-
ing executable models that faithfully represent a system or 
an abstraction of it. Faithfulness means that the system to 
be verified and its model are related through a checkable 
semantics–preserving relation. This will ensure soundness 
of the model. In other words, any property that we can verify 
for the model will hold for the real system. Furthermore, to 
avoid errors in building models and to cope with their com-
plexity, models should be generated automatically from sys-
tem descriptions.

For hardware verification, it is relatively straight-
forward to generate exact logical finite-state models, 
expressed as systems of boolean equations, e.g., from 
RTL descriptions. This probably explains the strong and 
immediate success of model checking in the area. For 
software, the problem is more difficult. In contrast to 
logical hardware models, we need to define formally the 
semantics of the programming language. This may not be 
an easy task for languages such as C or Java, as it requires 
some clarification of concepts and additional assump-
tions about their semantics. Once the semantics is fixed, 
tractable models can be extracted from real software 
through abstraction. This allows us to cope with com-
plexity of data and dynamic features. Currently, we do not 
know how to build faithful models for systems consisting 
of hardware and software, at the same level of detail as 
for pure hardware or software. Ideally, for a system con-
sisting of application software running on a platform, the 
corresponding model could be obtained as the compo-
sition of models for the software and the platform. The 
main difficulty is in understanding and formalizing the 
interaction between these two types of models, in partic-
ular by taking into account timing aspects and resources 
such as memory and energy. In addition, this should be 
done at some adequate level of abstraction, allowing trac-
table models.

Today, we can specify and verify only high-level timed 
models with tools such as Uppaal3 for schedulability anal-
ysis. These models take into account hardware timing 
aspects and some abstraction of the application software. 
The validation of even relatively simple systems such as a 
node in a wireless sensor network is carried out by test-
ing physical prototypes or by ad-hoc simulation. We need 
theory, methods, and tools for modeling complex hetero-
geneous systems.2 Weaknesses in the state of the art are 
also seen in standards and languages for system model-
ing. Efforts for extending UML to cover scheduling and 
resource management issues have failed to provide a 
rigorous basis for this. At the same time, extensions of 
hardware description languages to encompass more asyn-
chronous execution models such as SystemC and TLM can 
be used only for simulation, due to a lack of formal seman-
tic foundations.
3.1.3. Scalable Verification Methods. Today we have fairly 
efficient verification algorithms. However, all suffer from 
well-known inherent complexity limitations when applied 
to large systems. To cope with this complexity, I see two 
main avenues.

The first avenue is to develop new abstraction tech-
niques, in particular for specific semantic domains 
depending on the data handled by the system and on 
the properties to be verified. The convergence between 
model checking and abstract interpretation16 could 
lead to significant breakthroughs. These two main 
algorithmic approaches, which have developed rather 
independently for almost three decades, have a com-
mon foundation: solving fixpoint equations in specific 
semantic domains.

Initially, model checking focused on the verifica-
tion of finite state systems such as hardware or complex 
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control-intensive reactive systems such as communication 
protocols. Later, research on model checking addressed ver-
ification of infinite state systems by using abstractions.13, 34  
The evolution of abstract interpretation is driven by the 
concern for finding adequate abstract domains for effi-
cient verification of program properties by computing 
approximations of reachability sets. Model checking has 
had a broader application scope, including hardware, soft-
ware, and systems. Furthermore, depending on the type of 
properties to be checked, model checking algorithms may 
involve computation of multiple fixed points. I believe that 
the combination of the two algorithmic approaches can 
still lead to significant progress in the state of the art, e.g., 
by using libraries of abstract domains in model checking 
algorithms.

The second avenue addresses significant long-term 
progress in defeating complexity. It involves moving from 
monolithic verification to compositional techniques. We 
need divide-and-conquer approaches for inferring global 
properties of a system from the properties of its com-
ponents. The current state of the art does not meet our 
initial expectations. The main approach is by “assume-
guarantee,” where properties are decomposed into two 
parts. One is an assumption about the global behavior 
of the system within which the component resides; the 
other is a property guaranteed by the component when the 
assumption about its environment holds. As discussed 
in a recent paper,15 many issues make it difficult to apply 
assume-guarantee rules, in particular because synthesis of 
assumptions (when feasible) may cost as much as mono-
lithic verification.

In my opinion, any general compositional verification 
theory will be highly intractable and will be of theoretical 
interest only. We need to study compositionality results for 
particular classes of properties and/or particular classes of 
systems as explained below.

3.2. From a posteriori Verification to Constructivity
A big difference between Computer Engineering and 
more mature disciplines based on Physics, e.g., Electrical 
Engineering, is the importance of verification for achieving 
correctness. These disciplines have developed theory guar-
anteeing by construction the correctness and predictability 
of artifacts. For instance, the application of Kirchoff’s laws 
allows building circuits that meet given properties.

My vision is to investigate links between compositional 
verification for specific properties and results allowing con-
structivity. Currently, there exists in Computer Science an 
important body of constructivity results about architectures 
and distributed algorithms.

1.  We need theory and methods for building faithful mod-
els of complex systems as the composition of heteroge-
neous components, e.g., mixed software/hardware 
systems. This is a central problem for ensuring correct 
interoperation, and meaningful refinement and inte-
gration of heterogeneous viewpoints. Heterogeneity 
has three fundamental sources which appear when 
composing components with different (a) execution 
models, e.g., synchronous and asynchronous execu-

tion, (b) interaction mechanisms such as locks, moni-
tors, function calls, and message passing, and (c) 
granularity of execution, e.g., hardware and software.29

	 We need to move from composition frameworks 
based on the use of a single low-level parallel compo-
sition operator, e.g., automata-based composition, 
to a unified composition paradigm encompassing 
architectural features such as protocols, schedulers, 
and buses.

2.  In contrast to existing approaches, we should inves-
tigate compositionality techniques for high-level 
composition operators and specific classes of prop-
erties. I propose to investigate two independent 
directions:

• � One direction is studying techniques for specific 
classes of properties. For instance, finding composi-
tional verification rules guaranteeing deadlock-free-
dom or mutual exclusion instead of investigating 
rules for safety properties in general. Potential dead-
locks can be found by analysis of dependencies 
induced by interactions between components.28 For 
proving mutual exclusion, a different type of analysis 
is needed.

• � The other direction is studying techniques for par-
ticular architectures. Architectures characterize the 
way interaction among a system’s components is 
organized. For instance, we might profitably study 
compositional verification rules for ring or star 
architectures, for real-time systems with preempt-
able tasks and fixed priorities, for time-triggered 
architectures, etc. Compositional verification rules 
should be applied to high-level coordination mech-
anisms used at the architecture level, without 
translating them into a low-level automata-based 
composition.

The results thus obtained should allow us to identify “verifi-
ability” conditions (i.e., conditions under which verification 
of a particular property and/or class of systems becomes 
scalable). This is similar to finding conditions for making 
systems testable, adaptable, etc. In this manner, composi-
tionality rules can be turned into correct-by-construction 
techniques.

Recent results implemented in the D-Finder tool5, 6 pro-
vide some illustration of these ideas. D-Finder uses heuris-
tics for proving compositionally global deadlock-freedom of 
a component-based system, from the deadlock-freedom of 
its components. The method is compositional and proceeds 
in two steps.

•	 First, it checks that individual components are deadlock-
free. That is, they may block only at states where they are 
waiting for synchronization with other components.

•	 Second, it checks if the components’ interaction graph is 
acyclic. This is a sufficient condition for establishing 
global deadlock-freedom at low cost. It depends only on 
the system architecture. Otherwise, D-Finder symbolically 
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computes increasingly strong global deadlock-free invari-
ants of the system, based on results from the first step. 
Deadlock-freedom is established if there exists some 
invariant that is satisfied by the system’s initial state.

Benchmarks published in Bensalem et al.6 show that such 
a specialization for deadlock-freedom, combined with com-
positionality techniques, leads to significantly better per-
formance than is possible with general-purpose monolithic 
verification tools.

A posteriori verification is not the only way to guarantee 
correctness. System designers develop complex systems, by 
carefully applying architectural principles that are operation-
ally relevant and technically successful. Verification should 
advantageously take into account architectures and their 
features. There is a large space to be explored, between full 
constructivity and a posteriori verification. This vision can 
contribute to bridging the gap between Formal Methods and 
the body of constructivity results in Computer Science.�
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