
74 communications of the acm | may 2009 | vol. 52 | no. 5

In 1981, Edmund M. Clarke and E. Allen Emerson, working in the
USA, and Joseph Sifakis working independently in France, authored
seminal papers that founded what has become the highly successful
field of model checking. This verification technology provides an
algorithmic means of determining whether an abstract model—
representing, for example, a hardware or software design—satisfies
a formal specification expressed as a temporal logic (TL) formula.
Moreover, if the property does not hold, the method identifies a
counterexample execution that shows the source of the problem.

The progression of model checking to the point where it can be
successfully used for complex systems has required the development
of sophisticated means of coping with what is known as the state
explosion problem. Great strides have been made on this problem
over the past 28 years by what is now a very large international
research community. As a result many major hardware and software
companies are beginning to use model checking in practice.
Examples of its use include the verification of VLSI circuits,
communication protocols, software device drivers, real-time
embedded systems, and security algorithms.

The work of Clarke, Emerson, and Sifakis continues to be central
to the success of this research area. Their work over the years has
led to the creation of new logics for specification, new verification
algorithms, and surprising theoretical results. Model checking tools,
created by both academic and industrial teams, have resulted in an
entirely novel approach to verification and test case generation. This
approach, for example, often enables engineers in the electronics
industry to design complex systems with considerable assurance
regarding the correctness of their initial designs. Model checking
promises to have an even greater impact on the hardware and
software industries in the future.

—Moshe Y. Vardi, Editor-in-Chief

turing lecture
doi:10.1145/1592761.1592781

Turing Lecture from the winners of
the 2007 ACM A.M. Turing Award.

74 communications of the acm | november 2009 | vol. 52 | no. 11

november 2009 | vol. 52 | no. 11 | communications of the acm 75

Model Checking: Algorithmic
Verification and Debugging
By Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis

1. E. Allen Emerson
Model Checking: A Bird’s-Eye View

1.1. Formal Verification
Formal verification of program correctness hinges on the
use of mathematical logic. A program is a mathematical
object with well-defined, although possibly complex and
intuitively unfathomable, behavior. Mathematical logic
can be used to describe precisely what constitutes correct
behavior. This makes it possible to contemplate math-
ematically establishing that the program behavior con-
forms to the correctness specification. In most early work
this involved constructing a formal proof of correctness.
In contradistinction, model checking avoids proofs.

Floyd-Hoare-style deductive verification was the prevail-
ing mode of formal verification going back to the 1960s.
This classic and elegant approach entailed manual proof
construction, typically using axioms and inference rules in
a formal deductive system, often oriented toward sequen-
tial programs. Such proof construction was tedious, diffi-
cult, and required human ingenuity. This field was a great
intellectual success, spawning work on compositional or
modular proof systems, soundness of program proof sys-
tems, and their completeness; see Section 3. Case studies
confirmed that this approach really worked for small pro-
grams, although a short program might require a long proof.
However, manual verification did not scale up well to large
programs. The proofs were just too hard to construct.

1.2. Temporal Logics
In view of the difficulties in trying to construct program
proofs it seemed like there ought to be a better way. The way
was inspired by the use of Temporal Logic (TL), a formalism
for describing change over time. If a program can be speci-
fied in TL, it can be realized as a finite state system. This sug-
gested the idea of model checking—to check if a finite state
graph is a model of a TL specification.

The critical suggestion of using TL for reasoning about
ongoing concurrent programs was made in Pnueli’s land-
mark paper.39 Such systems ideally exhibit nonterminat-
ing behavior so that they do not conform to the Hoare-style
paradigm. They are also typically nondeterministic.
Examples include hardware circuits, microprocessors,
operating systems, banking networks, communication
protocols, automotive electronics, and many modern
medical devices. Pnueli used a TL with basic temporal
operators F (sometime) and G (always). Augmented with X
(next-time) and U (until), this is today known as LTL (Linear
Time Logic).

Another widely used logic is CTL (Computation Tree
Logic)10 (cf. Emerson and Clarke, and Ben-Ari et al.20, 4). Its
basic temporal modalities are A (for all futures) or E (for
some future) followed by one of F (sometime), G (always),
X (next-time), and U (until); compound formulae are built
up from nestings and propositional combinations of CTL
subformulae. CTL is a branching time logic as it can distin-
guish between AFp (along all futures, P eventually holds and

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

76 communications of the acm | november 2009 | vol. 52 | no. 11

turing lecture

is thus inevitable) and EFp (along some future, P eventually
holds and is thus possible). The branching time logic CTL*
subsumes both CTL and LTL. (See Figure 1.)

Temporal logic formulae are interpreted over a given finite
state graph, also called a (Kripke) structure, M comprised of a
set S of states, a total binary transition relation R ⊆ S × S, and
a labelling L of states with atomic facts (propositions such
as P) true there. There may also be a distinguished (start)
state s0. As usual in mathematical logic, to be precise in
defining a logic we use the meta-notation M, s0 |= f as short-
hand for “in structure M at state s0 formula f is true,” for f a
CTL (or CTL*) formula. When s0 is understood, we may write
M |= f. For example, M, s0 |= AFP iff for all paths x = s0, s1, s2, . . .
in M we have ∃i ³ 0, P ∈ L(si).

When doing specification in practice we may write just
AFp to assert that formula p is inevitable. An LTL formula h is
interpreted over a path and then over a structure by implicit
universal path quantification: in practical specification we
write h but mean Ah.

The LTL formula G¬(C1 ∧ C2) captures mutual exclusion
for the critical sections, corresponding to assertions C1
and C2, of processes 1 and 2, respectively. In CTL, we would
write AG¬(C1 ∧ C2) for mutual exclusion, and AG(T1 ⇒ AFC1)
for “whenever process 1 enters its trying region (T1) it
inevitably enters its critical section (C1).” The CTL formula
AGEFstart asserts the system can always be restarted;
this is not expressible in LTL. The CTL* formula EGFsend
asserts the existence of a fair behavior along which the
send condition occurs repeatedly. Such fairness condi-
tions are important in ensuring that goals are fulfilled in
concurrent systems.

The logics LTL, CTL, and CTL* have turned out to be very
influential, spawning industrial extensions and uses, plus
many academic applications as well as theoretical results.
There are prominent industrial logics, tailored for hardware
verification using special “macros,” i.e., compact high-level
operators that expand into longer combinations of basic
operators. These include IBM Sugar based on CTL, Intel For-
Spec based on LTL, and PSL (IEEE-1850 standard), incorpo-
rating features from CTL*.

Finally, there is also the (propositional) mu-calculus31
(cf. Emerson and Clarke20), a particular but very gen-
eral TL. It permits temporal correctness properties to be

characterized as fixed points or fixpoints of recursive defi-
nitions. For example EFp = p ∨ EX(EFp). The mu-calculus
plays a vital role in model checking. It is very expressive:
CTL, CTL*, as well as LTL, can be encoded in the mu-
calculus. The fixed point characterizations of temporal
correctness properties underlie many conventional and
symbolic model checking algorithms, as well as tools used
in practice.

1.3. Model Checking
In the early 1980s Clarke and Emerson proposed model
checking, a method for automatic (and algorithmic) veri-
fication of finite state concurrent systems10; indepen-
dently Quielle and Sifakis proposed essentially the same
method.41 In model checking, TL is used to specify cor-
rect system behavior. An efficient, flexible search pro-
cedure is used to find correct temporal patterns in the
finite state graph of the concurrent system. The orienta-
tion of the method is to provide a practical verification
method. The technical formulation of the model check-
ing problem is simply: Given a finite structure M, state s,
and a TL formula f, does M, s |= f ? An alternative formu-
lation is, given M and f, calculate {s : M, s |= f}. The main
result of Clarke and Emerson10 is that CTL model checking
can be done in time O(|f| · |M|2); that is, in time polynomial
in the formula and the structure sizes. (The result in Queille
and Sifakis41 was with respect to a slighly weaker TL.)

The algorithm was based on fixpoint characteriza-
tions of basic temporal modalities. For example, let
f (Z) denote p ∨ AXZ. We see that AFp = f (AFp) is a fix-
point of f(Z), since AFp holds iff p holds or AXAFp holds.
In general, there may be multiple fixpoints. It can be
shown that AFp is the least fixpoint, which we shall write
mZ = f (Z), with f (Z) as above. Intuitively, least fixpoints
capture only well-founded or finite behaviors. The fix-
point characterization mZ = f (Z) of a property makes it pos-
sible to calculate iteratively the set of states where AFp is
true. This utilizes the fact that every formula corresponds
to the set of states in which it is true. We compute the
maximum of the ascending chain of increasingly larger
under-approximations to the desired set of states: false ⊆
f (false) ⊆ f 2(false) ⊆ . . . ⊆ f k(false) = f k+1(false), where k is
at most the size of the (finite) state space. More generally,
the Tarski–Knaster Theorem (cf. Tarski44) permits the
ascending iterative calculation  f i(false) of any tempo-
ral property r characterized as a least fixpoint mZ = f (Z),
provided that f (Z) is monotone, which is ensured by Z only
appearing un-negated. For greatest fixpoints, one starts
the calculation at true. Essentially the same algorithm was
given in Queille and Sifakis.41

The following are noteworthy extensions. CTL model
checking can be done in time O(|M| · |f|),11 i.e., linear in the
size of the state graph and linear in the size of the formula.
LTL model checking can be done in time O(|M| · exp(|f|);
since M is usually very large while f is small, the exponen-
tial factor may be tolerable.33 The automata-theoretic
approach to LTL model checking is described in Vardi and
Wolper.46 A succinct fixpoint characterization of fairness
from Emerson and Lei23 is used to make LTL model check-
ing more efficient in practice. Branching time CTL* model

p

EFp: AFp:

pp

pp

p

p

p p

p

p
AGp:

Figure 1. Basic temporal operators.

november 2009 | vol. 52 | no. 11 | communications of the acm 77

turing lecture

checking can be efficiently reduced to linear time LTL model
checking for the same overall bound.24

1.4. Expressiveness
An important criterion for a logic is expressiveness,
reflecting what correctness properties can and cannot
be captured by the logic. Interesting properties include
safety properties (“nothing bad happens,” e.g., G¬bad),
liveness properties (“something good happens,” e.g.,
Fgoal), and fairness properties (“something is recurrent”,
e.g., GFtry). It is arguable that expressiveness in model
checking is the most fundamental characteristic, perhaps
even more critical than efficiency. It is imperative that one
be able to express all the correctness properties that are
needed. If this basic requirement is not met, there is no
point in using the verification method in the first place. In
actual usage, a particular formalism, commonly a system
of TL, provides the needed expressive power. It includes a
few basic temporal operators, which can be combined to
yield virtually limitless assertions. Another benefit of TL
is that it is related to natural language, which can facili-
tate its use.

The ability to describe complex patterns of system
behavior is basic. LTL is naturally suited to the task. Along
paths, it is in a sense expressively complete, equivalent
to the First Order Language of Linear Order,19 e.g. GP =
∀t (t ³ 0 ⇒ P(t) ). A property such as G2P, meaning that P
holds at all even moments 0, 2, 4, . . . is not expressible
in LTL. It can be useful in hardware verification applica-
tions where it is needed to count clock cycles. The (linear
time) mu-calculus as well as PSL can express this property
(cf. Wolper 47).

CTL is well suited to capture correctness over computa-
tion trees. The branching time capability of distinguishing
between necessary and possible behaviors using explicit
path quantifiers (A, E) provides significant expressive power.
The existence of a bad path, EFbad, is not expressible by any
formula Ah where h is in LTL, nor even any universal CTL*
formula where all path quantifiers are A (and only atomic
propositions appear negated). Thus, LTL is not closed
under semantic negation: writing the invariant G¬bad
means AG¬bad whose semantic negation is EFbad which,
as above, is not expressible by any Ah formula.21 There has
been an ongoing debate as to whether LTL or branching
time logic is better for program reasoning. Linear time
offers the advantage of simplicity, but at the cost of sig-
nificantly less expressiveness. Branching time’s potentially
greater expressiveness may incur greater conceptual (and
computational) complexity.

A related criterion is succinctness, reflecting how
compactly a property can be expressed. The CTL* for-
mula E(FP1 ∧ FP2) is not a CTL formula, but is semanti-
cally equivalent to the longer CTL formula EF(P1 ∧ EFP2) ∨
EF(P2 ∧ EFP1). For n conjuncts, the translation is exponen-
tial in n. In practice, the most important is the criterion of
convenience, reflecting how easily and naturally properties
can be expressed. Expressiveness and succinctness may be
partially amenable to mathematical definition and investi-
gation. Succinctness and convenience often correlate but
not always. Convenience, however, is inherently informal.

Yet it is extremely important in actual use. That is why, e.g.,
many person-years were devoted to formulating industrial-
strength logics such as PSL.

1.5. Efficiency
Another important criterion, efficiency, is related to ques-
tions of the complexity of the model checking problem
for a logic and the performance of model checking algo-
rithms for the logic. An algorithm that has potentially
high complexity in theory but is repeatedly observed to
exhibit significantly lower complexity in actual use is
likely to be preferred to one with better theoretical com-
plexity but inferior observed performance. Moreover,
there are trade-offs. For instance, a more expressive logic
is likely to be less efficient. A more succinct logic is likely
to be more convenient yet even less efficient. Some experi-
ence is required to reach a good trade-off. For many model
checking applications, M is sufficiently small that it can
be explicitly represented in computer memory. Such basic
enumerative model checking may be adequate for systems
with 106 states.

However, many more systems M have an astronomically
or even infinitely large state space. There are some funda-
mental strategies to cope with large state spaces. Foremost,
is the use of abstraction where the original, large, complex
system M is simplified, by suppressing inessential detail
(cf. Clarke and Emerson10), to get a (representation of a)
smaller and simpler system M—.

Compact representations of the state graph yield another
important strategy. The advent of symbolic model checking,
combining CTL, fixpoint computation, and data structures
for compact representation of large state sets, made it pos-
sible to check many systems with an astronomical number
of states (cf. Burch et al.8).

If there are many replicated or similar subcomponents, it
is often possible to factor out the inherent symmetry in the
original M resulting in an exponentially reduced abstract
M—43 (cf. Sistla et al. and Clarke et al.43, 9). Most work on sym-
metry has required the use of explicit representation of M.
Natural attempts to combine symmetry and symbolic rep-
resentation were shown inherently infeasible.14 However,
a very advantageous combination based on dynamically
reorganizing the symbolic representation overcomes these
limitations.25 Finally, one may have an infinite state system
comprised of, e.g., a (candidate) dining philosophers solu-
tion Mn for all sizes n > 1. In many situations, this parame-
terized correctness problem is reducible to model checking
a fixed finite-size system Mc (cf. Clarke et al., and Emerson
and Kahlon9, 22).

1.6. Evolution of Model Checking
The early reception of model checking was restrained.
Model checking originated in the theoretical atmosphere of
the early 1980s. There was a field of study known as Logics
of Programs, which dealt with the theory and sometime use
of logic for reasoning about programs. Various modal and
temporal logics played a prominent role. The key technical
issue under investigation for such a logic was satisfiability:
Given any formula f, determine whether there exists some
structure M such that M |= f. Analyzing the decidability and

78 communications of the acm | november 2009 | vol. 52 | no. 11

turing lecture

complexity of satisfiability for these logics was the major
focus. However, model checking refers to the truth under
one given interpretation M of a given formula f. This notion
was implicit in the Tarskian definition of truth but, classi-
cally, was not viewed as an interesting problem. The idea
that model checking should provide for verification of finite
state systems was not appreciated. The early reaction to
model checking then was mostly one of confusion and dis-
interest. It seemed a disconcerting novelty. It was not satis-
fiability. It was not validity. What was it? It was even dubbed
“disorienting.” Many felt it could not possibly work well in
practice. In more recent times, some more favorable com-
ments have been made. Model checking is “an acceptable
crutch”—Edsger W. Dijkstra; it is “a first step toward engi-
neerization of the field”—A. Pnueli.40

What factors contributed to model checking’s success-
ful deployment? First, the initial framework was feasible
and comprehensible. It built on a helpful combination of
TL and algorithms. It provided a “push-button,” i.e., auto-
mated, method for verification. It permitted bug detec-
tion as well as verification of correctness. Since most
programs are wrong, this is enormously important in
practice. Incidently, the limited support for bug detection
in proof-theoretic verification approaches contributes to
their slower adoption rate. Moreover, while a methodol-
ogy of constructing a program hand-in-hand with its proof
certainly has its merits, it is not readily automatable. This
hampers its deployment. With model checking, the separa-
tion of system development from verification and debug-
ging (see Section 2) has undoubtedly facilitated model
checking’s industrial acceptance. The development team
can go ahead and produce various aspects of the system
under design. The team of verifiers or verification engineers
can conduct verification independently. Hopefully, many
subtle bugs will be detected and fixed. As a practical mat-
ter, the system can go into production at whatever level of
“acceptable correctness” prevails at deadline time. Lastly,
Moore’s Law has engendered larger computer main mem-
ory, which enabled the development of ever more powerful
model checking tools.

1.7. Discussion and Summary
What are the key accomplishments of model checking?
The key contribution is that verification using model

checking is now done routinely on a widespread basis
for many large systems, including industrial-strength
systems. Large organizations from hardware vendors to
government agencies depend on model checking to facili-
tate achieving their goals. In contrast to 28 years ago, we
no longer just talk about verification; we do it. The some-
what surprising conceptual finding is that verification can
be done extremely well by automated search rather than
manual proofs.

Model checking realizes in small part the Dream of
Leibniz [1646–1716] (cf. Davis18). This was a proposal for
a universal reasoning system. It was comprised of a lingua
characteristica universalis, a language in which all knowl-
edge could be formally expressed. TL plays a limited
formulation of this role. There was also a calculus ratio-
cinator, a method of calculating the truth value of such
a formalized assertion. Model checking algorithms provide
the means of calculating truth. We hope that, over time,
model checking will realize an increasingly large portion
of Leibniz’ Dream.

2. Edmund M. Clarke
My 28-Year Quest To Conquer
The State Explosion Problem

2.1. Model Checkers and Debugging
Model checkers typically have three main components:
(1) a specification language, based on propositional TL,39
(2) a way of encoding a state machine representing the
system to be verified, and (3) a verification procedure, that
uses an intelligent exhaustive search of the state space to
determine if the specification is true or not. If the speci-
fication is not satisfied, then most model checkers will
produce a counterexample execution trace that shows
why the specification does not hold. It is impossible to
overestimate the importance of this feature. The counter-
examples are invaluable in debugging complex systems.
Some people use model checking just for this feature.
The EMC model checker11 did not give counterexamples
for universal CTL properties that were false or witnesses
for existential properties that were true. Michael C.
Browne added this feature to the MCB model checker in
1984. It has been an important feature of model checkers
ever since. (See Figure 2.)

Preprocessor

True or counterexampleProgram or circuit

Formula f

Model checker

Figure 2. A model checker with counterexamples.

november 2009 | vol. 52 | no. 11 | communications of the acm 79

turing lecture

2.2. State Explosion Problem
State explosion is the major problem in model checking.
The number of global states of a concurrent system with
many processes can be enormous. It is easy to see why this
is true. The asynchronous composition of n processes,
each having m states, may have mn states. A similar prob-
lem occurs with data. The state-transition system for an
n-bit counter will have 2n states. All model checkers suf-
fer from this problem. Complexity-theoretic arguments
can be used to show that the problem is unavoidable in
the worst case (assuming P is different than PSPACE).
Fortunately, steady progress has been made over the past
28 years for special types of systems that occur frequently
in practice. In fact, the state explosion problem has been
the driving force behind much of the research in model
checking and the development of new model check-
ers. We discuss below key breakthroughs that have been
made and some of the important cases where additional
research is needed.

2.3. Major Breakthroughs
2.3.1. Symbolic Model Checking with OBDDs.  In the origi-
nal implementation of the model checking algorithm, tran-
sition relations were represented explicitly by adjacency
lists.11 For concurrent systems with small numbers of pro-
cesses, the number of states was usually fairly small, and the
approach was often quite practical. In systems with many
concurrent parts the number of states in the global state-
transition system was too large to handle. In the fall of 1987,
McMillan, then a graduate student at Carnegie Mellon, re-
alized that by using a symbolic representation for the state-
transition systems, much larger systems could be verified.
The new symbolic representation was based on Bryant’s
ordered binary decision diagrams (OBDDs). OBDDs provide a
canonical form for Boolean formulas that is often substan-
tially more compact than conjunctive or disjunctive normal
form, and very efficient algorithms have been developed for
manipulating them. Because the symbolic representation
captures some of the regularity in the state space determined
by circuits and protocols, it is possible to verify systems with
an extremely large number of states—many orders of mag-
nitude larger than could be handled by the explicit-state al-
gorithms. With the new representation for state-transition
systems, we could verify some examples that had more than
1020 states.8, 35 Since then, various refinements of the OBDD-
based techniques have pushed the state count up to more
than 10120.

2.3.2. Partial Order Reduction.  Verifying software poses
significant problems for model checking. Software tends to
be less structured than hardware. In addition, concurrent
software is usually asynchronous, i.e., most of the activities
taken by different processes are performed independently,
without a global synchronizing clock. For these reasons,
the state explosion problem is particularly serious for soft-
ware. Consequently, model checking has been used less
frequently for software verification than for hardware veri-
fication. One of the most successful techniques for dealing
with asynchronous systems is the partial order reduction.
This technique exploits the independence of concurrently

executed events. Intuitively, two events are independent of
each other when executing them in either order results in
the same global state. In this case, it is possible to avoid ex-
ploring certain paths in the state-transition system. Model
checking algorithms that incorporate the partial order
reduction are described in several different papers. The
stubborn sets of Valmari,45 the persistent sets of Godefroid27
and the ample sets of Peled,38 differ on the actual details,
but contain many similar ideas. The SPIN model checker
developed by Holzmann uses the ample-set reduction to
great advantage.

2.3.3. Bounded Model Checking with SAT.  Although sym-
bolic model checking with OBDDs was the first big break-
through on the state explosion problem and is still widely
used, OBDDs have a number of problems that limit the
size of the models that can be checked with this tech-
nique. The ordering of variables on each path from the
root of the OBDD to a leaf has to be the same. Finding an
ordering that results in a small OBDD is quite difficult. In
fact, for some Boolean formulas no space-efficient order-
ing is possible. A simple example is the formula for the
middle output bit of a combinational multiplier for two
n-bit numbers. It is possible to prove that the OBDD for
this formula has size that is exponential in n for all vari-
able orderings.

Propositional satisfiability (SAT) is the problem of deter-
mining whether a propositional formula in conjunctive nor-
mal form (“product of sums form” for Boolean formulas) has
a truth assignment that makes the formula true. The prob-
lem is NP-complete (in fact, it is usually the first example
of this class that students see). Nevertheless, the increase
in power of modern SAT solvers over the past 15 years on
problems that occur in practice has been phenomenal. It
has become the key enabling technology in applications of
model checking to both computer hardware and software.
Bounded Model Checking (BMC) of computer hardware
using a fast SAT solver is now probably the most widely used
model checking technique. The counterexamples that it
finds are just the satisfying instances of the propositional
formula obtained by unwinding to some fixed depth the
state-transition system for the circuit and the negation of its
specification in linear TL.

The basic idea for BMC is quite simple (cf. Biere et al.7).
The extension to full LTL obscures the simplicity so we will
just describe how to check properties of the form FP where
the property P is an atomic proposition (e.g., “Message_
Received”). BMC determines whether there is a counter
example of length k (we assume k ³ 1). In other words,
it checks if there is a path of length k ending in a cycle in
which each state is labeled with ¬ P (see Figure 3). Assume
that the state-transition system M has n states. Each state
can be encoded by a vector v of élog(n)ù Boolean variables.

Figure 3. Counterexample of length at most k.

¬p

s0 s1 s2 sk–2 sk–1 sk

¬p ¬p ¬p ¬p ¬p

80 communications of the acm | november 2009 | vol. 52 | no. 11

turing lecture

The set of initial states can be specified by a propositional
formula I(v) which holds for exactly those assignments to v
that correspond to initial states. Likewise, the transition
relation can be given by a propositional formula R(v, v́).
A path of length k starting in an initial state can be encoded
by means of the following formula:

path (k) = I (v0) Ù R (v0, v1) Ù . . . Ù R (vk−1,, vk).� (1)

The path ends in a cycle if and only if

cycle (k) = R (vk, v0) Ú . . . Ú R (vk, vk−1) Ú R (vk, vk).� (2)

The property P is false in each of the k steps if and only if

property (k) = ¬P (v0) Ù ¬P (v1) Ù . . . Ù ¬P (vk).� (3)

Thus, the liveness property FP has a counterexample of
length k if and only if the conjunction W(k) of Formulas 1, 2,
and 3 is satisfiable.

W (k) = path (k) Ù cycle (k) Ù property (k).� (4)

We start with k = 1. If the formula W(k) is satisfiable, we
know that FP has a counterexample of length k. A counter-
example execution trace can be extracted from the satisfy-
ing assignment to W(k). If the formula W(k) is not satisfiable,
then it could be the case that either the temporal formula
FP holds on all paths starting from an initial state (and our
specification is true) or there is a counterexample that is
longer than k. When W(k) is unsatisfiable, we can do one of
two things: Either increase the value of k and look for lon-
ger counterexamples or stop if time or memory constraints
are exceeded.

We note that the idea of checking safety properties such
as GP by reduction to propositional satisfiability is implicit
in the work of Kautz and Selman.30 However, they do not
consider more general temporal properties such as the live-
ness property that we consider above.

In practice, BMC can often find counterexamples in
circuits with thousands of latches and inputs. Armin Biere
recently reported an example in which the circuit had 9510
latches and 9499 inputs. This resulted in a propositional for-
mula with 4 × 106 variables and 1.2 × 107 clauses. The short-
est bug of length 37 was found in 69 seconds! Many others
have reported similar results.

Can BMC ever be used to prove correctness if no coun-
terexamples are found? It is easy to see that for safety and
liveness properties of the form FP and GP where P is a
propositional formula, if there is a counterexample, then
there is one that is less than the diameter (i.e., the longest
shortest path between any two states) of the state-transi-
tion system. So, the diameter could be used to place an
upper bound on how much the transition relation would
need to be unwound. Unfortunately, it appears to be com-
putationally difficult to compute the diameter when the
state-transition system is given implicitly as a circuit or
in terms of propositional formulas for the set of initial
states, the transition relation, and the set of bad states.
Other ways for making BMC complete are based on cube

enlargement,36 circuit co-factoring,26 induction,42 and
Craig interpolants.37 But, the problem remains a topic of
active research. Meanwhile, an efficient way of finding
subtle counterexamples is still quite useful in debugging
circuit designs.

2.3.4. The Abstraction Refinement Loop.  This technique
uses counterexamples to refine an initial abstraction. We be-
gin by defining what it means for one state-transition system
to be an abstraction of another. We write Ma = áSa , s0

a, Ra , La ñ
to denote the abstraction of state-transition system M = áS, s0,
R, Lñ with respect to an abstraction mapping a. (Here we in-
clude the start states s0 and s0

a as parts of the state-transition
systems.) We assume that the states of M are labeled with
atomic propositions from a set A of atomic propositions,
and that Ma is labeled with atomic propositions from a set
Aa that is a subset of A. We call M the concrete system and Ma
the abstract system.

Definition 1. A function a: S ® Sa is an abstraction map-
ping from the concrete system M to the abstract system Ma with
respect to the propositions in Aa if and only if

•  a (s0) = s0
a.

• � If there is a transition from state s to state t in M, then there
is a transition from a (s) to a (t) in Ma.

• � For all states s, L(s)  Aa = La(a (s)).

The three conditions ensure that Ma simulates M. Note that
only identically labeled states of the concrete model (mod-
ulo propositions absent from Aa) will be mapped into the
same state of the abstract model (see Figure 4). The key the-
orem relating concrete and abstract systems is the Property
Preservation Theorem:

Theorem 1 (Clarke, Grumberg, and Long13). If a univer-
sal CTL* property holds on the abstract model, then it holds on
the concrete model.

Here, a universal CTL* property is one that contains no
existential path quantifiers when written in negation-
normal form. For example, AFP is a universal property but
EFP is not.

M

M

Figure 4. A concrete system and its abstraction.

november 2009 | vol. 52 | no. 11 | communications of the acm 81

turing lecture

The converse of the theorem is not true as Figure 5 illus-
trates. A universal property that holds in the concrete sys-
tem may fail to hold in the abstract system. For example, the
property AGF STOP (infinitely often STOP) holds in M, but
not in Ma. Thus, a counterexample to the property in the
abstract system may fail to be a counterexample in the
concrete system. Such counterexamples are said to be spu-
rious counterexamples. This leads to a verification tech-
nique called Counterexample Guided Abstraction Refinement
(CEGAR).12 Universal properties are checked on a series of
increasingly precise abstractions of the original system.
If the property holds, then by the Property Preservation
Theorem, it must hold on the concrete system and we can
stop. If it does not hold and we get a counterexample, then
we must check the counterexample on the concrete system
in order to make sure that it is not spurious. If the coun-
terexample checks on the concrete system, then we have
found an error and can also stop. If the counterexample is

spurious, then we use information in the counterexample
to refine the abstraction mapping and repeat the loop. The
CEGAR Loop in Figure 6 generalizes an earlier abstraction
technique for sequential circuits called the localization
reduction, which was developed by R. Kurshan.32 CEGAR is
used in many software model checkers including the SLAM
Project at Microsoft.1

2.4. State Explosion Challenges for the Future

The state explosion problem is likely to remain the major
challenge in model checking. There are many directions for
future research on this problem, some of which are listed
below.

• � Software model checking, in particular, combining
model checking and static analysis

• � Effective model checking algorithms for real-time and
hybrid systems

• � Compositional model checking of complex systems
•  Symmetry reduction and parameterized model checking
• � Probabilistic and statistical model checking
• � Combining model checking and theorem proving
• � Interpreting long counterexamples
• � Scaling up even more

3. Joseph Sifakis
The Quest for Correctness:
Challenges and Perspectives

3.1. Where Are We Today?
Verification techniques have definitely found important
applications. After the first two decades of intensive research
and development, recent years have been characterized by a
shift in focus and intensity.

Figure 5. Spurious counterexample.

STOP

¬STOP

¬STOP

STOP

¬STOP

MaM

Figure 6. The CEGAR loop.

Program
or

circuit

Initial
abstraction

Simulator

No error
or bug found

Property
holds

Simulation
sucessful

Bug found

Abstraction refinement Refinement

Model
checker

Verification

Spurious counterexample

Counterexample

Abstract
model

82 communications of the acm | november 2009 | vol. 52 | no. 11

turing lecture

Algorithmic verification involves three different tasks:
(1) requirements specification, (2) building executable sys-
tem models, and (3) developing scalable algorithms both for
checking requirements and for providing diagnostics when
requirements are not met. The status for each of these tasks
is discussed below.
3.1.1. Requirements Specification. Requirements char-
acterize the expected behavior of a system. They can be
expressed following two paradigms. State-based require
ments specify a system’s observable behavior by using
transition systems. Property-based requirements use a
declarative style. These requirements are expressed as sets
of formulas in a formalism such as a TL. A combination
of the two paradigms is necessary for enhanced expres-
siveness, such as in the PSL language. The state-based
paradigm is adequate for characterizing causal dependen-
cies between events, e.g., sequences of actions. In con-
trast, the property-based paradigm is more appropriate
for global properties, e.g., liveness and mutual exclusion.
For concurrent systems, an important trend is toward
semantic variations of state-based formalisms such as Live
Sequence Charts.17

Using TLs has certainly been a breakthrough in under-
standing and formalizing requirements for concurrent sys-
tems. Nonetheless, subtle differences in the formulation
of common concepts such as liveness and fairness, which
depend on the underlying time model (e.g., branching or
linear time), show that writing rigorous logic specifications
is not trivial.

Furthermore, the declarative and dense style in the
expression of property-based requirements is not always
easy to master and understand. Requirements must be
sound. That is, they must be satisfiable by some model.
In addition, they must be complete. That is, no important
information is omitted about the specified system. In con-
trast to soundness, which is a well-understood property
and can be checked automatically by using decision pro-
cedures, there is no consensus as to what precisely con-
stitutes completeness in requirements specifications, nor
how to go about achieving it. Absolute completeness, which
means that specifications describe the system exactly, has
only a theoretical interest and is probably unattainable for
non-trivial systems.

Existing requirements specification formalisms are
mainly appropriate for expressing functional require-
ments. We lack rigorous formalisms for extra-functional
requirements for security properties (e.g., privacy), recon-
figurability properties (e.g., noninterference of configurable
features), and quality of service (e.g., degree of jitter).
3.1.2. Building Executable Models. Successful applica-
tion of verification methods requires techniques for build-
ing executable models that faithfully represent a system or
an abstraction of it. Faithfulness means that the system to
be verified and its model are related through a checkable
semantics–preserving relation. This will ensure soundness
of the model. In other words, any property that we can verify
for the model will hold for the real system. Furthermore, to
avoid errors in building models and to cope with their com-
plexity, models should be generated automatically from sys-
tem descriptions.

For hardware verification, it is relatively straight-
forward to generate exact logical finite-state models,
expressed as systems of boolean equations, e.g., from
RTL descriptions. This probably explains the strong and
immediate success of model checking in the area. For
software, the problem is more difficult. In contrast to
logical hardware models, we need to define formally the
semantics of the programming language. This may not be
an easy task for languages such as C or Java, as it requires
some clarification of concepts and additional assump-
tions about their semantics. Once the semantics is fixed,
tractable models can be extracted from real software
through abstraction. This allows us to cope with com-
plexity of data and dynamic features. Currently, we do not
know how to build faithful models for systems consisting
of hardware and software, at the same level of detail as
for pure hardware or software. Ideally, for a system con-
sisting of application software running on a platform, the
corresponding model could be obtained as the compo-
sition of models for the software and the platform. The
main difficulty is in understanding and formalizing the
interaction between these two types of models, in partic-
ular by taking into account timing aspects and resources
such as memory and energy. In addition, this should be
done at some adequate level of abstraction, allowing trac-
table models.

Today, we can specify and verify only high-level timed
models with tools such as Uppaal3 for schedulability anal-
ysis. These models take into account hardware timing
aspects and some abstraction of the application software.
The validation of even relatively simple systems such as a
node in a wireless sensor network is carried out by test-
ing physical prototypes or by ad-hoc simulation. We need
theory, methods, and tools for modeling complex hetero-
geneous systems.2 Weaknesses in the state of the art are
also seen in standards and languages for system model-
ing. Efforts for extending UML to cover scheduling and
resource management issues have failed to provide a
rigorous basis for this. At the same time, extensions of
hardware description languages to encompass more asyn-
chronous execution models such as SystemC and TLM can
be used only for simulation, due to a lack of formal seman-
tic foundations.
3.1.3. Scalable Verification Methods. Today we have fairly
efficient verification algorithms. However, all suffer from
well-known inherent complexity limitations when applied
to large systems. To cope with this complexity, I see two
main avenues.

The first avenue is to develop new abstraction tech-
niques, in particular for specific semantic domains
depending on the data handled by the system and on
the properties to be verified. The convergence between
model checking and abstract interpretation16 could
lead to significant breakthroughs. These two main
algorithmic approaches, which have developed rather
independently for almost three decades, have a com-
mon foundation: solving fixpoint equations in specific
semantic domains.

Initially, model checking focused on the verifica-
tion of finite state systems such as hardware or complex

november 2009 | vol. 52 | no. 11 | communications of the acm 83

turing lecture

control-intensive reactive systems such as communication
protocols. Later, research on model checking addressed ver-
ification of infinite state systems by using abstractions.13, 34
The evolution of abstract interpretation is driven by the
concern for finding adequate abstract domains for effi-
cient verification of program properties by computing
approximations of reachability sets. Model checking has
had a broader application scope, including hardware, soft-
ware, and systems. Furthermore, depending on the type of
properties to be checked, model checking algorithms may
involve computation of multiple fixed points. I believe that
the combination of the two algorithmic approaches can
still lead to significant progress in the state of the art, e.g.,
by using libraries of abstract domains in model checking
algorithms.

The second avenue addresses significant long-term
progress in defeating complexity. It involves moving from
monolithic verification to compositional techniques. We
need divide-and-conquer approaches for inferring global
properties of a system from the properties of its com-
ponents. The current state of the art does not meet our
initial expectations. The main approach is by “assume-
guarantee,” where properties are decomposed into two
parts. One is an assumption about the global behavior
of the system within which the component resides; the
other is a property guaranteed by the component when the
assumption about its environment holds. As discussed
in a recent paper,15 many issues make it difficult to apply
assume-guarantee rules, in particular because synthesis of
assumptions (when feasible) may cost as much as mono-
lithic verification.

In my opinion, any general compositional verification
theory will be highly intractable and will be of theoretical
interest only. We need to study compositionality results for
particular classes of properties and/or particular classes of
systems as explained below.

3.2. From a posteriori Verification to Constructivity
A big difference between Computer Engineering and
more mature disciplines based on Physics, e.g., Electrical
Engineering, is the importance of verification for achieving
correctness. These disciplines have developed theory guar-
anteeing by construction the correctness and predictability
of artifacts. For instance, the application of Kirchoff’s laws
allows building circuits that meet given properties.

My vision is to investigate links between compositional
verification for specific properties and results allowing con-
structivity. Currently, there exists in Computer Science an
important body of constructivity results about architectures
and distributed algorithms.

1.  We need theory and methods for building faithful mod-
els of complex systems as the composition of heteroge-
neous components, e.g., mixed software/hardware
systems. This is a central problem for ensuring correct
interoperation, and meaningful refinement and inte-
gration of heterogeneous viewpoints. Heterogeneity
has three fundamental sources which appear when
composing components with different (a) execution
models, e.g., synchronous and asynchronous execu-

tion, (b) interaction mechanisms such as locks, moni-
tors, function calls, and message passing, and (c)
granularity of execution, e.g., hardware and software.29

	 We need to move from composition frameworks
based on the use of a single low-level parallel compo-
sition operator, e.g., automata-based composition,
to a unified composition paradigm encompassing
architectural features such as protocols, schedulers,
and buses.

2.  In contrast to existing approaches, we should inves-
tigate compositionality techniques for high-level
composition operators and specific classes of prop-
erties. I propose to investigate two independent
directions:

• � One direction is studying techniques for specific
classes of properties. For instance, finding composi-
tional verification rules guaranteeing deadlock-free-
dom or mutual exclusion instead of investigating
rules for safety properties in general. Potential dead-
locks can be found by analysis of dependencies
induced by interactions between components.28 For
proving mutual exclusion, a different type of analysis
is needed.

• � The other direction is studying techniques for par-
ticular architectures. Architectures characterize the
way interaction among a system’s components is
organized. For instance, we might profitably study
compositional verification rules for ring or star
architectures, for real-time systems with preempt-
able tasks and fixed priorities, for time-triggered
architectures, etc. Compositional verification rules
should be applied to high-level coordination mech-
anisms used at the architecture level, without
translating them into a low-level automata-based
composition.

The results thus obtained should allow us to identify “verifi-
ability” conditions (i.e., conditions under which verification
of a particular property and/or class of systems becomes
scalable). This is similar to finding conditions for making
systems testable, adaptable, etc. In this manner, composi-
tionality rules can be turned into correct-by-construction
techniques.

Recent results implemented in the D-Finder tool5, 6 pro-
vide some illustration of these ideas. D-Finder uses heuris-
tics for proving compositionally global deadlock-freedom of
a component-based system, from the deadlock-freedom of
its components. The method is compositional and proceeds
in two steps.

•	 First, it checks that individual components are deadlock-
free. That is, they may block only at states where they are
waiting for synchronization with other components.

•	 Second, it checks if the components’ interaction graph is
acyclic. This is a sufficient condition for establishing
global deadlock-freedom at low cost. It depends only on
the system architecture. Otherwise, D-Finder symbolically

84 communications of the acm | november 2009 | vol. 52 | no. 11

turing lecture

computes increasingly strong global deadlock-free invari-
ants of the system, based on results from the first step.
Deadlock-freedom is established if there exists some
invariant that is satisfied by the system’s initial state.

Benchmarks published in Bensalem et al.6 show that such
a specialization for deadlock-freedom, combined with com-
positionality techniques, leads to significantly better per-
formance than is possible with general-purpose monolithic
verification tools.

A posteriori verification is not the only way to guarantee
correctness. System designers develop complex systems, by
carefully applying architectural principles that are operation-
ally relevant and technically successful. Verification should
advantageously take into account architectures and their
features. There is a large space to be explored, between full
constructivity and a posteriori verification. This vision can
contribute to bridging the gap between Formal Methods and
the body of constructivity results in Computer Science.�

revisited: On branching time versus
linear time. J. ACM 33 (1986),
151–178.

	22.	E merson, E.A., Kahlon, V. Reducing
model checking of the many to the
few. In CADE. D.A. McAllester, ed.
Volume 1831 of Lecture Notes in
Computer Science (Springer, 2000),
236–254.

	23.	E merson, E.A., Lei, C.-L. Efficient
model checking in fragments of the
propositional mu-calculus (extended
abstract). In Proceedings, Symposium
on Logic in Computer Science, 16–18
June 1986, Cambridge, MA, USA,
1986, 267–278.

	24.	E merson, E.A., Lei, C.-L. Modalities for
model checking: Branching time logic
strikes back. Sci. Comput. Progr. 8, 3
(1987), 275–306.

	25.	E merson, E.A., Wahl, T. Dynamic
symmetry reduction. In TACAS.
N. Halbwachs and L.D. Zuck, eds.
Volume 3440 of Lecture Notes in
Computer Science (Springer, 2005),
382–396.

	26.	G anai, M.K., Gupta, A., Ashar, P.
Efficient SAT-based unbounded
symbolic model checking using
circuit cofactoring. In International
Conference on Computer-Aided
Design (ICCAD’04) (2004), 510–517.

	27.	G odefroid, P. Using partial orders
to improve automatic verification
methods. In Computer-Aided
Verification (CAV’90). Volume 531 of
Lecture Notes in Computer Science
(1990). 176–185.

	28.	G ößler, G., Sifakis, J. Composition
for component-based modeling.
Sci. Comput. Progr. 55, 1–3 (2005),
161–183.

	29.	H enzinger, T.A., Sifakis, J. The
discipline of embedded systems
design. IEEE Comp. 40, 10 (2007),
32–40.

	30.	 Kautz, H.A., Selman, B. Planning
as satisfiability. In 10th European
Conference on Artificial Intelligence
(1992), 359–363.

	31.	 Kozen, D. Results on the propositional
mu-calculus. Theor. Comput. Sci. 27
(Dec. 1983), 333–354.

	32.	 Kurshan, R.P. Computer-Aided
Verification of Coordinating Processes.
Princeton University Press, 1994.

	33.	 Lichtenstein, O., Pnueli, A. Checking
that finite state concurrent programs
satisfy their linear specification. In
POPL (1985), 97–107.

	34.	 Loiseaux, C., Graf, S., Sifakis, J.,
Bouajjani, A., Bensalem, S. Property
preserving abstractions for the
verification of concurrent systems.

Formal Methods Sys Design 6, 1
(1995), 11–44.

	35.	 McMillan, K.L. Symbolic Model
Checking: An Approach to the State
Explosion Problem. Kluwer Academic
Publishers, 1993.

	36.	 McMillan, K.L. Applying SAT
methods in unbounded symbolic
model checking. In Computer-Aided
Verification (CAV’02).Volume 2404 of
Lecture Notes in Computer Science
(2002), 250–264.

	37.	 McMillan, K.L. Interpolation and
SAT-based model checking. In
Computer-Aided Verification (CAV’03).
Volume 2725 of Lecture Notes in
Computer Science (2003), 1–13.

	38.	 Peled, D. Combining partial order
reductions with on-the-fly
Model-Checking. In Computer Aided
Verification (CAV’94). Volume 818 of
Lecture Notes in Computer Science
(1994), 377–390.

	39.	 Pnueli, A. The temporal logic of pro
grams. Presented at focs, Oct. 1977.

	40.	 Pnueli, A. Verification engineering:
A future profession (A. M. Turing
Award Lecture). Presented at PODC
(Aug. 1997).

	41.	 Queille, J.P., Sifakis, J. Specification
and verification of concurrent
systems in CESAR. In Proceedings of
the 5th International Symposium on
Programming (1982), 337–350.

	42.	 Sheeran, M., Singh, S., Stålmarck,
G. Checking safety properties using
induction and a SAT-solver. In Formal
Methods in Computer-Aided Design
(FMCAD’02). Volume 1954 of Lecture
Notes in Computer Science (2000),
108–125.

	43.	 Sistla, A.P., Gyuris, V., Emerson, E.A.
SMC: a symmetry-based model
checker for verification of safety and
liveness properties. ACM Trans. Softw.
Eng. Methodol. 9, 2 (2000), 133–166.

	44.	T arski, A. A lattice-theoretical fixpoint
theorem and its applications. Pacific
J. Math. 5 (1955), 285–309.

	45.	 Valmari, A. A stubborn attack on
the state explosion problem. In
Computer-Aided Verification (CAV’90).
Volume 531 of Lecture Notes in
Computer Science (1990).

	46.	 Vardi, M.Y., Wolper, P. An automata-
theoretic approach to automatic
program verification (preliminary
report). In Proceedings, Symposium
on Logic in Computer Science, 16–18
June 1986, Cambridge, MA, USA,
1986, 332–344.

	47.	 Wolper, P. Temporal logic can be more
expressive. Inform. Control 56 (1983),
72–99.

© 2009 ACM 0001-0782/09/1100 $10.00

	 1.	B all, T., Rajamani, S.K. The SLAM
toolkit. In Computer-Aided
Verification (CAV’01). Volume 2102 of
Lecture Notes in Computer Science
(2001), 260–264.

	 2.	B asu, A., Bozga, M., Sifakis, J. Modeling
heterogeneous real-time components
in BIP. In SEFM (2006), 3–12.

	 3.	B ehrmann, G., Cougnard, A., David,
A., Fleury, E., Larsen, K.G., Lime, D.
Uppaal-tiga: Time for playing games!
In CAV. W. Damm and H. Hermanns,
eds. Volume 4590 of Lecture Notes in
Computer Science (Springer, 2007),
121–125.

	 4.	B en-Ari, M., Pnueli, A., Manna, Z.
The temporal logic of branching
time. Acta Inf. 20 (1983), 207–226.

	 5.	B ensalem, S., Bozga, M., Nguyen,
T.-H., Sifakis, J. D-finder: A tool for
compositional deadlock detection and
verification. In CAV. A. Bouajjani and
O. Maler, eds. Volume 5643 of Lecture
Notes in Computer Science (Springer,
2009), 614–619.

	 6.	B ensalem, S., Bozga, M., Sifakis,
J., Nguyen, T.-H. Compositional
verification for component-based
systems and application. In ATVA.
S.-D. Cha, J.-Y. Choi, M. Kim, I. Lee,
and M. Viswanathan, eds. Volume
5311 of Lecture Notes in Computer
Science (Springer, 2008), 64–79.

	 7.	B iere, A., Cimatti, A., Clarke, E.M., Zhu,
Y. Symbolic model checking without
BDDs. In Proceedings of the 5th
International Conference on Tools
and Algorithms for Construction and
Analysis of Systems (TACAS’99).
R. Cleaveland, ed. Volume 1579 of
Lecture Notes in Computer Science
(Springer-Verlag, Mar. 1999), 193–207.

	 8.	B urch, J.R., Clarke, E.M., McMillan,
K.L., Dill, D.L., Hwang, L.J. Symbolic
Model Checking: 1020 states
and beyond. Inf. Comput. 98, 2
(June 1992), 142–170. Originally
presented at the 1990 Symposium
on Logic in Computer Science
(LICS’90).

	 9.	 Clarke, E., Grumberg, O., Peled, D.
Model Checking. MIT Press, 1999.

	10.	 Clarke, E.M., Emerson, E.A. Design
and synthesis of synchronization
skeletons using branching time
temporal logic. In Logics of
Programs: Workshop, Yorktown
Heights, NY, May 1981. Volume 131

ofLecture Notes in Computer Science
(Springer, 1981). 52–71.

	11.	 Clarke, E.M., Emerson, E.A., Sistla,
A.P. Automatic verification of finite-
state concurrent systems using
temporal logic specifications. ACM
Trans. Prog. Lang. Syst. 8, 2 (1986),
244–263. Originally presented at the
1983 Symposium on Principles of
Programming Languages (POPL’83).

	12.	 Clarke, E.M., Grumberg, O., Jha, S.,
Lu, Y., Veith, H. Counterexample-
guided abstraction refinement for
symbolic Model Checking. J. ACM
50, 5 (2003), 752–794. Originally
presented at the 2000 Conference on
Computer-Aided Verification (CAV’00).

	13.	 Clarke, E.M., Grumberg, O., Long, D.E.
Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16, 5
(1994), 1512–1542.

	14.	 Clarke, E.M., Jha, S., Enders, R.,
Filkorn, T. Exploiting symmetry in
temporal logic model checking.
Formal Methods Sys Design 9, 1/2
(1996), 77–104.

	15.	 Cobleigh, J.M., Avrunin, G.S.,
Clarke, L.A. Breaking up is hard
to do: An evaluation of automated
assume-guarantee reasoning. ACM
Trans. Softw. Eng. Methodol. 17, 2
(2008), 1–52.

	16.	 Cousot, P., Cousot, R. Abstract
interpretation: A unified lattice
model for static analysis of
programs by construction or
approximation of fixpoints. In POPL
(1977), 238–252.

	17.	 Damm, W., Harel, D. LSCs: Breathing
life into message sequence charts.
Formal Methods Sys. Design 19, 1
(2001), 45–80.

	18.	 Davis, M. The Universal Computer:
The Road from Leibniz to Turing.
W. W. Norton & Co., 2000.

	19.	E merson, E.A. Temporal and modal
logic. In Handbook of Theoretical
Computer Science. J. van Leeuwen,
ed. Volume B, chapter 16, Elsevier
Science (1990), 995–1072.

	20.	E merson, E.A., Clarke, E.M.
Characterizing correctness properties
of parallel programs using fixpoints.
In Lecture Notes in Computer Science
85, Automata, Languages and
Programming (July 1980), 169–181.

	21.	E merson, E.A. Halpern, J.Y.
“Sometimes” and “Not Never”

References

Edmund M. Clarke
FORE Systems University Professor
Computer Science Department
Carnegie Mellon University, Pittsburgh, PA.

E. Allen Emerson
Regents Chair and Professor
Department of Computer Science
University of Texas, Austin, TX.

Joseph Sifakis
Schneider-INRIA Chair
Verimag Laboratory Gieres, France.

