COMPUTATION TREE LOGIC (CTL)

Slides by Alessandro Artale http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Computation Tree logic Vs. LTL

• LTL implicitly quantifies *universally* over paths.

 $\langle \mathcal{KM}, s \rangle \models \phi$ iff for every path π starting at $s \langle \mathcal{KM}, \pi \rangle \models \phi$

- Properties that assert the *existence* of a path cannot be expressed. In particular, properties which *mix* existential and universal path quantifiers cannot be expressed.
- The Computation Tree Logic, CTL, solves these problems!
 - CTL explicitly introduces path quantifiers!
 - CTL is the natural temporal logic interpreted over Branching Time Structures.

CTL at a glance

- CTL is evaluated over branching-time structures (Trees).
- CTL explicitly introduces *path quantifiers*: All Paths: A Exists a Path: E.
- Every temporal operator $-\Box(G)$, $\diamondsuit(F)$, $\bigcirc(X)$, u(U)-preceded by a path quantifier (A or E).
- Universal modalities: AF, AG, AX, AU
 The temporal formula is true in all the paths starting in the current state.
- Existential modalities: EF, EG, EX, EU The temporal formula is true in some path starting in the current state.

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

CTL: Syntax

Countable set Σ of *atomic propositions*: p,q,... the set FORM of formulas is:

 $\phi, \psi \ \rightarrow \ p \mid \top \mid \perp \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid$

 $\textbf{AX}\phi \mid \textbf{AG}\phi \mid \textbf{AF}\phi \mid \phi \textbf{AU}\psi)$

 $\mathbf{E}\mathbf{X}\boldsymbol{\varphi} \mid \mathbf{E}\mathbf{G}\boldsymbol{\varphi} \mid \mathbf{E}\mathbf{F}\boldsymbol{\varphi} \mid \boldsymbol{\varphi}\mathbf{E}\mathbf{U}\boldsymbol{\psi})$

Intuition:

- *E* there Exists a path
- A in All paths
- *F* sometime in the Future

CTL: Semantics

• We interpret our CTL temporal formulas over Kripke Models linearized as trees (e.g. **AF***done*).

- Universal modalities (AF, AG, AX, AU): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (EF, EG, EX, EU): the temporal formula is true in some path starting in the current state.

CTL: Semantics (Cont.)

Let Σ be a set of atomic propositions. We interpret our CTL temporal formulas over Kripke Models:

```
\mathcal{KM} = \langle S, I, R, \Sigma, L \rangle
```

The semantics of a temporal formula is provided by the *satisfaction* relation:

 $\models: (\mathcal{KM} \times S \times FORM) \rightarrow \{\mathbf{true}, \mathbf{false}\}$

CTL Semantics: The Propositional Aspect

We start by defining when an atomic proposition is true at a state/time " s_i "

 $\mathcal{KM}, s_i \models p \quad \text{iff} \quad p \in L(s_i) \qquad (\text{for } p \in \Sigma)$

The semantics for the classical operators is as expected:

$$\begin{array}{lll} \mathcal{K}\mathcal{M}, s_i \models \neg \varphi & \text{iff} & \mathcal{K}\mathcal{M}, s_i \not\models \varphi \\ \mathcal{K}\mathcal{M}, s_i \models \varphi \land \psi & \text{iff} & \mathcal{K}\mathcal{M}, s_i \models \varphi \text{ and } \mathcal{K}\mathcal{M}, s_i \models \psi \\ \mathcal{K}\mathcal{M}, s_i \models \varphi \lor \psi & \text{iff} & \mathcal{K}\mathcal{M}, s_i \models \varphi \text{ or } \mathcal{K}\mathcal{M}, s_i \models \psi \\ \mathcal{K}\mathcal{M}, s_i \models \varphi \Rightarrow \psi & \text{iff} & \text{if } \mathcal{K}\mathcal{M}, s_i \models \varphi \text{ then } \mathcal{K}\mathcal{M}, s_i \models \psi \\ \mathcal{K}\mathcal{M}, s_i \models \top \\ \mathcal{K}\mathcal{M}, s_i \not\models \bot \end{array}$$

CTL Semantics: The Temporal Aspect

Temporal operators have the following semantics where $\pi = (s_i, s_{i+1}, \ldots)$ is a generic path outgoing from state $s_i in \mathcal{KM}$. iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \mathcal{KM}, s_{i+1} \models \varphi$ $\mathcal{KM}, s_i \models \mathbf{AX}\varphi$ iff $\exists \pi = (s_i, s_{i+1}, \ldots) \quad \mathcal{KM}, s_{i+1} \models \varphi$ $\mathcal{KM}, s_i \models \mathbf{EX\phi}$ iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \forall j \ge i. \mathcal{KM}, s_j \models \varphi$ $\mathcal{KM}, s_i \models \mathbf{AG\phi}$ $\mathcal{KM}, s_i \models \mathbf{EG}\varphi$ iff $\exists \pi = (s_i, s_{i+1}, \ldots) \quad \forall j \ge i. \mathcal{KM}, s_j \models \varphi$ iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \varphi$ $\mathcal{KM}, s_i \models \mathbf{AF\phi}$ iff $\exists \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \varphi$ $\mathcal{KM}, s_i \models \mathbf{EF}\varphi$ $\mathcal{KM}, s_i \models (\varphi \mathbf{AU} \psi)$ iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \psi$ and $\forall i \leq k < j : M, s_k \models \varphi$ iff $\exists \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \psi$ and $\mathcal{KM}, s_i \models \varphi \mathbf{EU} \psi$ $\forall i \leq k < j : \mathcal{KM}, s_k \models \varphi$ p. 10/35

CTL Semantics: Intuitions

CTL is given by the standard boolean logic enhanced with temporal operators.

- > "Necessarily Next". $\mathbf{A}\mathbf{X}\varphi$ is true in s_t iff φ is true in every successor state s_{t+1}
- > "Possibly Next". **EX** ϕ is true in s_t iff ϕ is true in one successor state s_{t+1}
- > "Necessarily in the future" (or "Inevitably"). AF ϕ is true in s_t iff ϕ is inevitably true in some $s_{t'}$ with $t' \ge t$
- > "Possibly in the future" (or "Possibly"). EF ϕ is true in s_t iff ϕ may be true in some $s_{t'}$ with $t' \ge t$

CTL Semantics: Intuitions (Cont.)

- > "Globally" (or "always"). AG ϕ is true in s_t iff ϕ is true in all $s_{t'}$ with $t' \ge t$
- > "Possibly henceforth". $\mathbf{E}\mathbf{G}\boldsymbol{\phi}$ is true in s_t iff $\boldsymbol{\phi}$ is possibly true henceforth
- > "Necessarily Until". ($\phi AU\psi$) is true in s_t iff necessarily ϕ holds until ψ holds.
- > "Possibly Until". ($\phi EU\psi$) is true in s_t iff possibly ϕ holds until ψ holds.

CTL Semantics: Intuitions (Cont.)

A Complete Set of CTL Operators

All CTL operators can be expressed via: EX, EG, EU

- $\mathbf{A}\mathbf{X}\boldsymbol{\phi} \equiv \neg \mathbf{E}\mathbf{X}\neg \boldsymbol{\phi}$
- AF $\phi \equiv \neg EG \neg \phi$
- $\mathbf{EF}\phi \equiv (\top \mathbf{EU}\phi)$
- $\mathbf{AG}\phi \equiv \neg \mathbf{EF} \neg \phi \equiv \neg (\top \mathbf{EU} \neg \phi)$
- $(\phi AU\psi) \equiv \neg EG\neg\psi \land \neg (\neg\psi EU(\neg\phi \land \neg\psi))$

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Safety Properties

Safety:

"something bad will not happen"

Typical examples:

$$\begin{split} \mathbf{AG}\neg(reactor_temp > 1000) \\ \mathbf{AG}\neg(one_way \land \mathbf{AX}other_way) \\ \mathbf{AG}\neg((x=0) \land \mathbf{AXAXAX}(y=z/x)) \\ \text{and so on.....} \end{split}$$

Usually: $AG \neg$

Liveness:

"something good will happen"

Typical examples:

AF*rich* **AF**(x > 5) **AG** $(start \Rightarrow \mathbf{AF}terminate)$ and so on.....

Usually: AF...

Fairness Properties

Often only really useful when scheduling processes, responding to messages, etc.

Fairness:

"something is successful/allocated infinitely often"

Typical example:

AG(AFenabled)

Usually: AGAF...

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

The CTL Model Checking Problem

The CTL Model Checking Problem is formulated as:

$\mathcal{KM} \models \phi$

Check if $\mathcal{KM}, s_0 \models \phi$, for **every initial state**, s_0 , of the Kripke structure \mathcal{KM} .

Example 1: Mutual Exclusion (Safety)

p. 21/35

Example 1: Mutual Exclusion (Safety)

Example 2: Liveness


```
n 22/35
```


– p. 22/35

Example 3: Fairness

p. 23/35

Example 3: Fairness

NO: e.g., in the initial state, there is the blue cyclic path in which C_1 never holds! (Same as $\Box \diamondsuit C_1$ in LTL)

Example 4: Non-Blocking

Example 4: Non-Blocking

YES: from each state where N_1 holds there is a path leading to a state where T_1 holds. (No corresponding LTL formulas)

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

LTL Vs. CTL: Expressiveness

- > Many CTL formulas cannot be expressed in LTL (e.g., those containing paths quantified existentially) E.g., $AG(N_1 \Rightarrow EFT_1)$
- > Many LTL formulas cannot be expressed in CTL E.g., $\square \diamondsuit T_1 \Rightarrow \square \diamondsuit C_1$ (Strong Fairness in LTL) i.e, formulas that select a *range* of paths with a property $(\diamondsuit p \Rightarrow \diamondsuit q \text{ Vs. } \mathbf{AG}(p \Rightarrow \mathbf{AF}q))$
- > Some formluas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1) E.g., $\Box \neg (C_1 \land C_2)$, $\diamondsuit C_1$, $\Box (T_1 \Rightarrow \diamondsuit C_1)$, $\Box \diamondsuit C_1$

LTL Vs. CTL: Expressiveness (Cont.)

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the application and the personal preferences.

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

The Computation Tree Logic CTL*

- CTL* is a logic that combines the expressive power of LTL and CTL.
- Temporal operators can be applied without any constraints.
 - $\mathbf{A}(\mathbf{X}\boldsymbol{\varphi} \lor \mathbf{X}\mathbf{X}\boldsymbol{\varphi}).$

Along all paths, ϕ is true in the next state or the next two steps.

• **E**(**GF** ϕ).

There is a path along which ϕ is infinitely often true.

CTL*: Syntax

Countable set Σ of atomic propositions: p, q, ... we distinguish between *States Formulas* (evaluated on states):

$$\begin{aligned} \varphi, \psi &\to p \mid \top \mid \perp \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \\ & \mathbf{A}\alpha \mid \mathbf{E}\alpha \end{aligned}$$

and Path Formulas (evaluated on paths):

$$\begin{array}{rcl} \alpha,\beta & \to & \phi \mid & & \\ & \neg \alpha \mid \alpha \wedge \beta \mid \alpha \lor \beta \mid & \\ & \mathbf{X}\alpha \mid \mathbf{G}\alpha \mid \mathbf{F}\alpha \mid (\alpha \mathbf{U}\beta) \end{array}$$

The set of CTL* formulas FORM is the set of state formulas.

CTL* Semantics: State Formulas

We start by defining when an atomic proposition is true at a state " s_0 "

 $\mathcal{KM}, s_0 \models p \quad \text{iff} \quad p \in L(s_0) \qquad (\text{for } p \in \Sigma)$

The semantics for *State Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 :

$\mathcal{KM}, s_0 \models \neg \varphi$	iff	$\mathcal{KM}, s_0 \not\models \varphi$
$\mathcal{K}\mathcal{M}, s_0 \models \phi \wedge \psi$	iff	$\mathcal{KM}, s_0 \models \varphi \text{ and } \mathcal{KM}, s_0 \models \psi$
$\mathcal{K}\mathcal{M}, s_0 \models \varphi \lor \psi$	iff	$\mathcal{KM}, s_0 \models \varphi \text{ or } \mathcal{KM}, s_0 \models \psi$
$\mathcal{KM}, s_0 \models \mathbf{E\alpha}$	iff	$\exists \pi = (s_0, s_1, \ldots)$ such that $\mathcal{KM}, \pi \models \alpha$
$\mathcal{KM}, s_0 \models \mathbf{A}\alpha$	iff	$orall \pi = (s_0, s_1, \ldots)$ then $\mathcal{KM}, \pi \models lpha$

CTL* Semantics: Path Formulas

The semantics for *Path Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 and π^i denotes the suffix path $(s_i, s_{i+1}, ...)$:

CTLs Vs LTL Vs CTL: Expressiveness

CTL* subsumes both CTL and LTL

- > φ in CTL $\Longrightarrow \varphi$ in CTL* (e.g., $AG(N_1 \Rightarrow EFT_1)$)
- > φ in LTL \Longrightarrow A φ in CTL* (e.g., A(GFT_1 \Rightarrow GFC_1))
- > $\mathsf{LTL} \cup \mathsf{CTL} \subset \mathsf{CTL}^*$ (e.g., $\mathbf{E}(\mathbf{GF}p \Rightarrow \mathbf{GF}q)$)

CTL* Vs LTL Vs CTL: Complexity

The following Table shows the Computational Complexity of checking *Satisbiability*

Logic	Complexity
LTL	PSpace-Complete
CTL	ExpTime-Complete
CTL*	2ExpTime-Complete

The following Table shows the Computational Complexity of *Model Checking* (M.C.)

• Since M.C. has 2 inputs – the model, \mathcal{M} , and the formula, ϕ – we give two complexity measures.

Logic	Complexity w.r.t.	$\mid \phi \mid$ Complexity w.r.t. $\mid \mathcal{M} \mid$
LTL	PSpace-Complete	P (linear)
CTL	P-Complete	P (linear)
CTL*	PSpace-Complete	P (linear)

- p. 35/35