CTL, LTL and CTL*

Lecture #19 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 7, 2009

Overview Lecture #19

- \Rightarrow Repetition: CTL syntax and semantics
 - CTL equivalence
 - Expressiveness of LTL versus CTL
 - CTL*: extended CTL

© JPK

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

• Statements over states

- $a \in AP$
- $\neg \Phi \text{ and } \Phi \wedge \Psi$
- $\exists \varphi$
- $\forall \varphi$
- Statements over paths
 - $\bigcirc \Phi$
 - $\Phi \cup \Psi$

atomic proposition negation and conjunction there *exists* a path fulfilling φ *all* paths fulfill φ

the next state fulfills Φ Φ holds until a $\Psi\mbox{-state}$ is reached

 \Rightarrow note that \bigcirc and \bigcup *alternate* with \forall and \exists

Derived operators

potentially Φ :	$\exists \diamondsuit \Phi$	=	$\exists (true U \Phi)$
inevitably Φ :	$\forall \diamondsuit \Phi$	—	$\forall (true U \Phi)$
potentially always Φ :	$\exists \Box \Phi$:=	$\neg \forall \diamondsuit \neg \Phi$
invariantly Φ :	$\forall \Box \Phi$	=	$\neg \exists \diamondsuit \neg \Phi$
weak until:	$\exists (\Phi W \Psi)$	=	$\neg \forall \big((\Phi \land \neg \Psi) U (\neg \Phi \land \neg \Psi) \big)$
	$\forall (\Phi W \Psi)$	=	$\neg \exists \big((\Phi \land \neg \Psi) U (\neg \Phi \land \neg \Psi) \big)$

the boolean connectives are derived as usual

Semantics of CTL state-formulas

Defined by a relation \models such that

 $s \models \Phi$ if and only if formula Φ holds in state s

$$\begin{split} s &\models a & \text{iff} \quad a \in L(s) \\ s &\models \neg \Phi & \text{iff} \quad \neg (s \models \Phi) \\ s &\models \Phi \land \Psi & \text{iff} \quad (s \models \Phi) \land (s \models \Psi) \\ s &\models \exists \varphi & \text{iff} \quad \pi \models \varphi \text{ for some path } \pi \text{ that starts in } s \\ s &\models \forall \varphi & \text{iff} \quad \pi \models \varphi \text{ for all paths } \pi \text{ that start in } s \end{split}$$

Semantics of CTL path-formulas

Define a relation \models such that

 $\pi \models \varphi$ if and only if path π satisfies φ

$$\begin{aligned} \pi &\models \bigcirc \Phi & \text{iff } \pi[1] \models \Phi \\ \pi &\models \Phi \cup \Psi & \text{iff } (\exists j \ge 0, \pi[j] \models \Psi \land (\forall 0 \le k < j, \pi[k] \models \Phi)) \end{aligned}$$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

• For CTL-state-formula Φ , the satisfaction set $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models \Phi$

- this is equivalent to $I \subseteq Sat(\Phi)$
- Point of attention: $TS \not\models \Phi$ and $TS \not\models \neg \Phi$ is possible!
 - because of several initial states, e.g. $s_0 \models \exists \Box \Phi$ and $s'_0 \not\models \exists \Box \Phi$

Overview Lecture #19

- Repetition: CTL syntax and semantics
- \Rightarrow CTL equivalence
 - Expressiveness of LTL versus CTL
 - CTL*: extended CTL

CTL equivalence

CTL-formulas Φ and Ψ (over *AP*) are *equivalent*, denoted $\Phi \equiv \Psi$ if and only if $Sat(\Phi) = Sat(\Psi)$ for all transition systems *TS* over *AP*

$$\Phi \equiv \Psi$$
 iff $(TS \models \Phi)$ if and only if $TS \models \Psi$

Duality laws

Expansion laws

Recall in LTL: $\varphi \cup \psi \equiv \psi \lor (\varphi \land \bigcirc (\varphi \cup \psi))$ In CTL: $\forall (\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land \forall \bigcirc \forall (\Phi \cup \Psi))$ $\forall \diamond \Phi \equiv \Phi \lor \forall \bigcirc \forall \diamond \Phi$ $\forall \Box \Phi \equiv \Phi \land \forall \bigcirc \forall \Box \Phi$ $\exists (\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land \exists \bigcirc \exists (\Phi \cup \Psi))$ $\exists \diamond \Phi \equiv \Phi \lor \exists \bigcirc \exists \diamond \Phi$ $\exists \Box \Phi \equiv \Phi \land \exists \bigcirc \exists \Box \Phi$

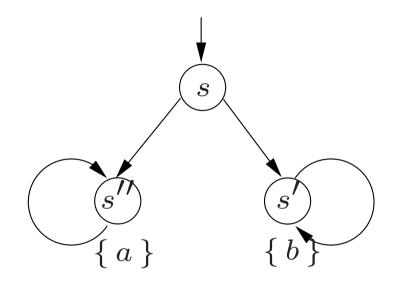
Distributive laws (1)

Recall in LTL: $\Box (\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$ and $\diamond (\varphi \lor \psi) \equiv \diamond \varphi \lor \diamond \psi$ In CTL:

 $\forall \Box (\Phi \land \Psi) \equiv \forall \Box \Phi \land \forall \Box \Psi$

 $\exists \diamondsuit (\Phi \lor \Psi) \ \equiv \ \exists \diamondsuit \Phi \lor \exists \diamondsuit \Psi$

note that $\exists \Box (\Phi \land \Psi) \not\equiv \exists \Box \Phi \land \exists \Box \Psi$ and $\forall \diamond (\Phi \lor \Psi) \not\equiv \forall \diamond \Phi \lor \forall \diamond \Psi$



 $s \models \forall \diamond (a \lor b) \text{ since for all } \pi \in \textit{Paths}(s). \pi \models \diamond (a \lor b)$

 $\mathsf{But:}\ s\ (s'')^{\omega} \models \diamond \ a \ \mathsf{but}\ s\ (s'')^{\omega} \not\models \diamond \ b \ \mathsf{Thus:}\ s \not\models \forall \diamond \ b$

A similar reasoning applied to path $s \ (s')^{\omega}$ yields $s \not\models \forall \diamondsuit a$

Thus, $s \not\models \forall \diamondsuit a \lor \forall \diamondsuit b$

Overview Lecture #19

- Repetition: CTL syntax and semantics
- CTL equivalence
- $\Rightarrow\,$ Expressiveness of LTL versus CTL
 - CTL*: extended CTL

Equivalence of LTL and CTL formulas

• CTL-formula Φ and LTL-formula φ (both over *AP*) are *equivalent*, denoted $\Phi \equiv \varphi$, if for any transition system *TS* (over *AP*):

 $TS \models \Phi$ if and only if $TS \models \varphi$

• Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ . Then: [Clarke & Draghicescu]

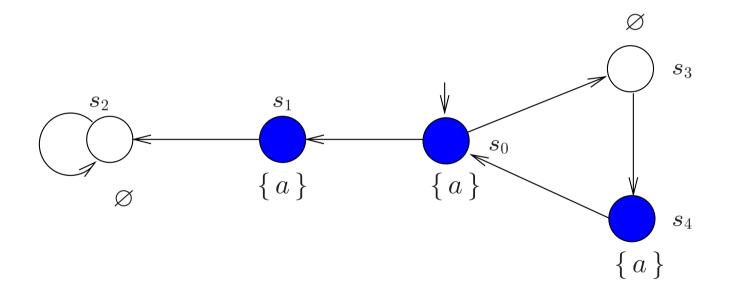
 $\Phi~\equiv~\varphi$ or there does not exist any LTL-formula that is equivalent to Φ

LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - $\diamond \Box a$
 - $\diamond (a \land \bigcirc a)$
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - $\forall \diamondsuit \forall \Box a$
 - $\forall \diamondsuit (a \land \forall \bigcirc a)$
 - $\forall \Box \exists \diamondsuit a$
- \Rightarrow Cannot be expressed = there does not exist an equivalent formula

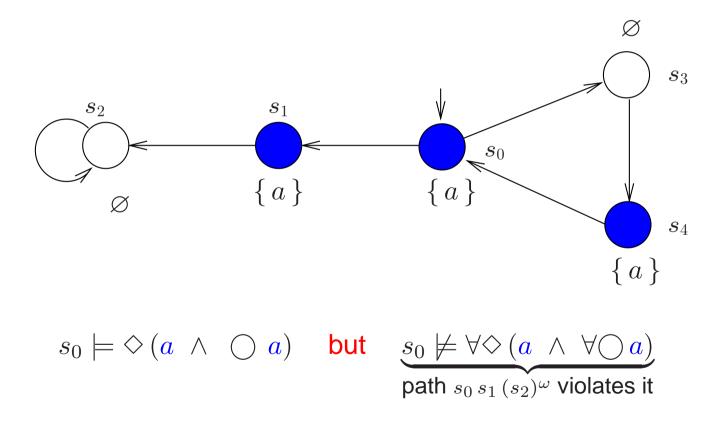
Comparing LTL and CTL (1)

 \diamond ($a \land \bigcirc a$) is not equivalent to $\forall \diamond$ ($a \land \forall \bigcirc a$)

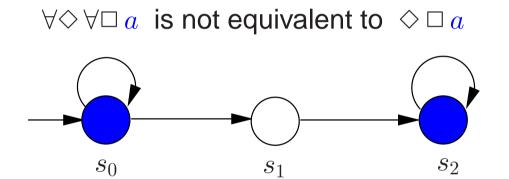


Comparing LTL and CTL (1)

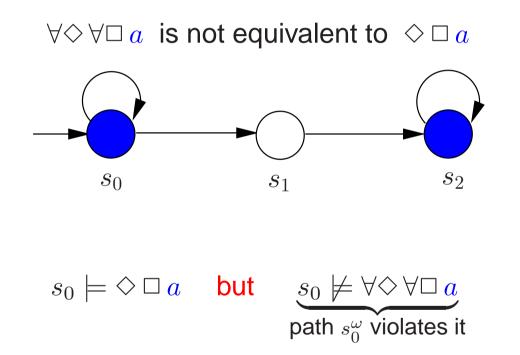
 $\diamond (a \land \bigcirc a)$ is not equivalent to $\forall \diamond (a \land \forall \bigcirc a)$



Comparing LTL and CTL (2)



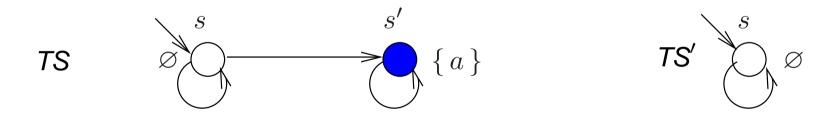
Comparing LTL and CTL (2)



Comparing LTL and CTL (3)

The CTL-formula $\forall \Box \exists \diamond a$ cannot be expressed in LTL

• This is shown by contradiction: assume $\varphi \equiv \forall \Box \exists \diamond a$; let:



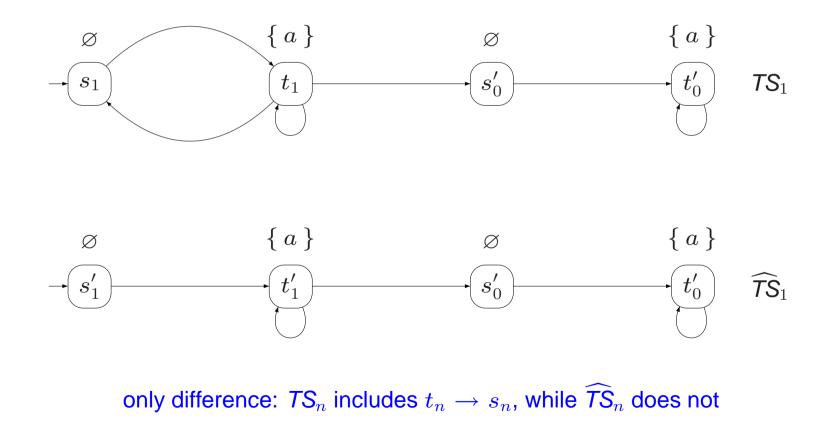
- $TS \models \forall \Box \exists \diamond a$, and thus—by assumption— $TS \models \varphi$
- $Paths(TS') \subseteq Paths(TS)$, thus $TS' \models \varphi$
- But $TS' \not\models \forall \Box \exists \diamond a$ as path $s^{\omega} \not\models \Box \exists \diamond a$

Comparing LTL and CTL (4)

The LTL-formula $\Diamond \Box a$ cannot be expressed in CTL

- Provide two series of transition systems TS_n and \widehat{TS}_n
- Such that $TS_n \not\models \Diamond \Box a$ and $\widehat{TS}_n \models \Diamond \Box a$ (*), and
- for any $\forall \mathsf{CTL}$ -formula Φ with $|\Phi| \leq n : \mathsf{TS}_n \models \Phi$ iff $\widehat{\mathsf{TS}}_n \models \Phi$ (**)
 - proof is by induction on n (omitted here)
- Assume there is a CTL-formula $\Phi \equiv \Diamond \Box a$ with $|\Phi| = n$
 - by (*), it follows $TS_n \not\models \Phi$ and $\widehat{TS}_n \models \Phi$
 - but this contradicts (**): $TS_n \models \Phi$ if and only if $\widehat{TS}_n \models \Phi$

The transition systems TS_n and \widehat{TS}_n (n = 1)



Overview Lecture #19

- Repetition: CTL syntax and semantics
- CTL equivalence
- Expressiveness of LTL versus CTL
- \Rightarrow CTL*: extended CTL

Syntax of CTL*

CTL* *state-formulas* are formed according to:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \wedge \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \exists \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* *path-formulas* are formed according to the grammar:

$$\varphi ::= \Phi \left| \begin{array}{c|c} \varphi_1 \land \varphi_2 \end{array} \right| \neg \varphi \left| \begin{array}{c|c} \bigcirc \varphi \end{array} \right| \begin{array}{c} \varphi_1 \lor \varphi_2 \end{array}$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

in CTL^{*}: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!

Example CTL* formulas

CTL^{*} semantics

$$s \models a \qquad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \text{not} \ s \models \Phi$$

$$s \models \Phi \land \Psi \quad \text{iff} \quad (s \models \Phi) \text{ and } (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for some } \pi \in Paths(s)$$

$$\pi \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2$$

$$\pi \models \neg \varphi \quad \text{iff} \quad \pi \models \varphi$$

$$\pi \models \bigcirc \varphi \quad \text{iff} \quad \pi[1..] \models \varphi$$

$$\pi \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \ge 0. \ (\pi[j..] \models \varphi_2 \land (\forall 0 \le k < j. \pi[k..] \models \varphi_1))$$

Transition system semantics

• For CTL*-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL*-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models \Phi$

this is exactly as for CTL

Embedding of LTL in $\ensuremath{\mathsf{CTL}}^*$

For LTL formula φ and *TS* without terminal states (both over *AP*) and for each $s \in S$:

In particular:

$$TS \models_{LTL} \varphi$$
 if and only if $TS \models_{CTL*} \forall \varphi$

\mathbf{CTL}^* is more expressive than LTL and CTL

For the CTL^{*}-formula over $AP = \{a, b\}$:

$$\Phi = (\forall \diamondsuit \Box a) \lor (\forall \Box \exists \diamondsuit b)$$

there does not exist any equivalent LTL- or CTL formula

This logic is as expressive as CTL

 CTL^+ state-formulas are formed according to:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \wedge \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \exists \varphi \ \left| \begin{array}{c} \forall \varphi \end{array} \right|$$

where $a \in AP$ and φ is a path-formula

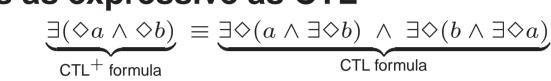
 CTL^+ path-formulas are formed according to the grammar:

$$\varphi ::= \varphi_1 \land \varphi_2 \quad | \quad \neg \varphi \quad | \quad \bigcirc \Phi \quad | \quad \Phi_1 \, \mathsf{U} \, \Phi_2$$

where Φ, Φ_1, Φ_2 are state-formulas, and φ, φ_1 and φ_2 are path-formulas

\mathbf{CTL}^+ is as expressive as \mathbf{CTL}

For example:



Some rules for transforming CTL⁺ formulae into equivalent CTL ones:

$$\begin{array}{rcl} \exists \left(\neg (\Phi_1 \cup \Phi_2) \right) & \equiv & \exists \left((\Phi_1 \wedge \neg \Phi_2) \cup (\neg \Phi_1 \wedge \neg \Phi_2) \right) \lor \exists \Box \neg \Phi_2 \\ \exists \left(\bigcirc \Phi_1 \wedge \bigcirc \Phi_2 \right) & \equiv & \exists \bigcirc (\Phi_1 \wedge \Phi_2) \\ \exists \left(\bigcirc \Phi \wedge (\Phi_1 \cup \Phi_2) \right) & \equiv & \left(\Phi_2 \wedge \exists \bigcirc \Phi \right) \lor \left(\Phi_1 \wedge \exists \bigcirc (\Phi \wedge \exists (\Phi_1 \cup \Phi_2)) \right) \\ \exists \left((\Phi_1 \cup \Phi_2) \land (\Psi_1 \cup \Psi_2) \right) & \equiv & \exists \left((\Phi_1 \wedge \Psi_1) \cup (\Phi_2 \wedge \exists (\Psi_1 \cup \Psi_2) \right) \right) \lor \\ & & \exists \left((\Phi_1 \wedge \Psi_1) \cup (\Psi_2 \wedge \exists (\Phi_1 \cup \Phi_2) \right) \right) \\ \vdots \end{array}$$

adding boolean combinations of path formulae to CTL does not change its expressiveness but CTL⁺ formulae can be much shorter than shortest equivalent CTL formulae

Relationship between LTL, CTL and CTL*

