Linear Temporal Logic

Lecture #13 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 2, 2008

Overview Lecture #12

- Syntax
- Semantics
- Equivalence

LT properties

- An LT property is a set of infinite traces over AP
- Specifying such sets explicitly is often inconvenient
- Mutual exclusion is specified over $AP = \{ c_1, c_2 \}$ by

 P_{mutex} = set of infinite words $A_0 A_1 A_2 \dots$ with $\{c_1, c_2\} \not\subseteq A_i$ for all $0 \leq i$

• Starvation freedom is specified over $AP = \{c_1, w_1, c_2, w_2\}$ by

 $P_{nostarve} =$ set of infinite words $A_0 A_1 A_2 \dots$ such that:

$$\left(\stackrel{\infty}{\exists} j. w_1 \in A_j\right) \Rightarrow \left(\stackrel{\infty}{\exists} j. c_1 \in A_j\right) \land \left(\stackrel{\infty}{\exists} j. w_2 \in A_j\right) \Rightarrow \left(\stackrel{\infty}{\exists} j. c_2 \in A_j\right)$$

Syntax

modal logic over infinite sequences [Pnueli 1977]

- Propositional logic
 - $a \in AP$
 - $\neg \phi$ and $\phi \land \psi$

atomic proposition negation and conjunction

- Temporal operators
 - $\bigcirc \phi$
 - $\phi U \psi$

neXt state fulfills ϕ ϕ holds Until a ψ -state is reached

linear temporal logic is a logic for describing LT properties

Derived operators

$$\phi \lor \psi \equiv \neg (\neg \phi \land \neg \psi)$$

$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

$$\phi \Leftrightarrow \psi \equiv (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$$

$$\phi \oplus \psi \equiv (\phi \land \neg \psi) \lor (\neg \phi \land \psi)$$

$$true \equiv \phi \lor \neg \phi$$

$$false \equiv \neg true$$

$$\diamond \phi \equiv true \cup \phi \quad \text{"sometimes in the future"}$$

$$\Box \phi \equiv \neg \diamond \neg \phi \quad \text{"from now on for ever"}$$

precedence order: the unary operators bind stronger than the binary ones. \neg and \bigcirc bind equally strong. U takes precedence over \land , \lor , and \rightarrow

Intuitive semantics

Traffic light properties

• Once red, the light cannot become green immediately:

$$\Box (\mathit{red} \ \Rightarrow \ \neg \ \bigcirc \ \mathit{green})$$

- The green light becomes green eventually: \diamond green
- Once red, the light becomes green eventually: \Box (*red* \Rightarrow \diamond *green*)
- Once red, the light always becomes green eventually after being yellow for some time inbetween:

$$\Box(\mathit{red} \to \bigcirc(\mathit{red} \ \mathsf{U} \ (\mathit{yellow} \ \land \ \bigcirc (\mathit{yellow} \ \mathsf{U} \ \mathit{green}))))$$

Practical properties in LTL

- Reachability
 - negated reachability
 - conditional reachability
 - reachability from any state
- Safety
 - simple safety
 - conditional safety
- Liveness
- Fairness

 $\circ \neg \psi$ $\phi \cup \psi$ not expressible

 $\begin{array}{c} \Box \neg \phi \\ (\phi \, \mathsf{U} \, \psi) \ \lor \ \diamondsuit \phi \end{array}$

 $\Box (\phi \Rightarrow \diamond \psi)$ and others

 $\Box \diamondsuit \phi$ and others

Semantics over words

The LT-property induced by LTL formula φ over AP is:

$$\begin{aligned} & \text{Words}(\varphi) = \Big\{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \Big\}, \text{where } \models \text{ is the smallest relation satisfying:} \\ & \sigma \models \text{ true} \\ & \sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a) \\ & \sigma \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2 \\ & \sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi \\ & \sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma \not\models \varphi \\ & \sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma[1..] = A_1 A_2 A_3 \ldots \models \varphi \\ & \sigma \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \ge 0. \ \sigma[j..] \models \varphi_2 \text{ and } \sigma[i..] \models \varphi_1, \ 0 \leqslant i < j \\ & \text{ for } \sigma = A_0 A_1 A_2 \ldots \text{ we have } \sigma[i..] = A_i A_{i+1} A_{i+2} \ldots \text{ is the suffix of } \sigma \text{ from index } i \text{ on} \end{aligned}$$

Semantics of \Box , \diamond , \Box \diamond and \diamond \Box

$$\sigma \models \Diamond \varphi \quad \text{ iff } \exists j \ge 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \varphi \quad \text{ iff } \quad \forall j \ge 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \diamondsuit \varphi \quad \text{iff} \quad \forall j \ge 0. \ \exists i \ge j. \ \sigma[i \dots] \models \varphi$$

$$\sigma \models \Diamond \Box \varphi \quad \text{iff} \quad \exists j \geqslant 0. \forall j \geqslant i. \ \sigma[j \dots] \models \varphi$$

Semantics over paths and states

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and φ be an LTL-formula over AP.

• For infinite path fragment π of *TS*:

$$\pi \models \varphi$$
 iff $trace(\pi) \models \varphi$

• For state $s \in S$:

$$s \models \varphi$$
 iff $\forall \pi \in Paths(s). \pi \models \varphi$

• **TS** satisfies φ , denoted **TS** $\models \varphi$, iff **Traces**(**TS**) \subseteq **Words**(φ)

Semantics for transition systems

 $\mathbf{TS}\models\varphi$

iff (* transition system semantics *)

 $Traces(TS) \subseteq Words(\varphi)$

iff (* definition of \models for LT-properties *)

 $TS \models Words(\varphi)$

iff (* Definition of $\mathit{Words}(\varphi)$ *)

 $\pi \models \varphi$ for all $\pi \in Paths(TS)$

iff (* semantics of \models for states *)

 $s_0 \models \varphi$ for all $s_0 \in I$.

Example

 $TS \models \Box a \quad TS \not\models \bigcirc (a \land b)$ $TS \models \Box (\neg b \Rightarrow \Box (a \land \neg b)) \quad TS \not\models b \cup (a \land \neg b)$

Semantics of negation

For paths, it holds $\pi \models \varphi$ if and only if $\pi \not\models \neg \varphi$ since:

$$Words(\neg \varphi) = (2^{AP})^{\omega} \setminus Words(\varphi)$$

But: $TS \not\models \varphi$ and $TS \models \neg \varphi$ are *not* equivalent in general It holds: $TS \models \neg \varphi$ implies $TS \not\models \varphi$. Not always the reverse! Note that:

$$TS \not\models \varphi \quad \text{iff } Traces(TS) \not\subseteq Words(\varphi)$$
$$\text{iff } Traces(TS) \setminus Words(\varphi) \neq \emptyset$$
$$\text{iff } Traces(TS) \cap Words(\neg \varphi) \neq \emptyset$$
$$TS \text{ neither satisfies } \varphi \text{ nor } \neg \varphi \text{ if there are}$$

paths π_1 and π_2 in *TS* such that $\pi_1 \models \varphi$ and $\pi_2 \models \neg \varphi$

Example

A transition system for which $TS \not\models \Diamond a$ and $TS \not\models \neg \Diamond a$

Specifying properties in LTL

Equivalence

LTL formulas ϕ, ψ are *equivalent*, denoted $\phi \equiv \psi$, if:

 $Words(\phi) = Words(\psi)$

Duality and idempotence laws

Duality:

$$\neg \Box \phi \equiv \Diamond \neg \phi$$

 $\neg \Diamond \phi \equiv \Box \neg \phi$
 $\neg \bigcirc \phi \equiv \bigcirc \neg \phi$

Idempotency:	$\Box \Box \phi$	\equiv	$\Box \phi$
	$\diamond \diamond \phi$	\equiv	$\diamond \phi$
	$\phiU(\phiU\psi)$	\equiv	$\phiU\psi$
	$(\phiU\psi)U\psi$	\equiv	$\phiU\psi$

Absorption and distributive laws

Absorption: $\Diamond \Box \Diamond \phi \equiv \Box \Diamond \phi$ $\Box \Diamond \Box \phi \equiv \Diamond \Box \phi$

Distribution: $\bigcirc (\phi \cup \psi) \equiv (\bigcirc \phi) \cup (\bigcirc \psi)$ $\diamondsuit (\phi \lor \psi) \equiv \diamondsuit \phi \lor \diamondsuit \psi$ $\Box (\phi \land \psi) \equiv \Box \phi \land \Box \psi$

but: $\Diamond(\phi \cup \psi) \not\equiv (\Diamond \phi) \cup (\Diamond \psi)$ $\Diamond(\phi \land \psi) \not\equiv \Diamond \phi \land \Diamond \psi$ $\Box(\phi \lor \psi) \not\equiv \Box \phi \lor \Box \psi$

Distributive laws

$$\Diamond (a \wedge b) \not\equiv \Diamond a \wedge \Diamond b$$
 and $\Box (a \vee b) \not\equiv \Box a \vee \Box b$

