
µ-calculus
Metodi Formali per il Software e i Servizi

Giuseppe De Giacomo

Sapienza Università di Roma

Laurea Magistrale in Ingegneria Informatica

µ-calculus intro

The (modal) µ-calculus is basically constituted by three kinds of components:

Propositions to denote properties of the global store in a given configuration.

Modalities to denote the capability of performing certain actions in a given

configuration.

Least and greatest fixpoint constructs to denote “temporal” properties of

the system, typically defined by induction and coinduction.

G. De Giacomo (UNIROMA1) µ-calculus 2 / 19

µ-calculus syntax

Formulae of µ-calculus are formed inductively from action in some fixed set A,

primitive (or atomic) propositions in some fixed set P, and variable symbols in

some fixed set Var, according to the following abstract syntax:

µ-calculus syntax

Φ ::= A | true | false | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | �a�Φ | [a]Φ | µX .Φ | νX .Φ | X

where A is a primitive proposition in P, X is a variable symbol in Var, and a is an

action in A.

The symbols µ and ν can be considered as quantifiers, and we make use of

notions of scope, bound and free occurrences of variables, closed formulas, etc.

The definitions of these notions are the same as in first-order logic, treating µ and

ν as quantifiers.

G. De Giacomo (UNIROMA1) µ-calculus 3 / 19

µ-calculus syntax

For formulae of the form µX .Φ and νX .Φ, we require the syntactic

monotonicity of Φ wrt X :

Syntactic monotonicity of Φ wrt X
Every occurrence of the variable X in Φ must be within the scope of an even

number of negation signs.

Syntactic monotonicity implies monotonicity, guaranteeing, by Tarski-Knaster

theorem the actual existence of least and greatest fixpoints.

Existence of least and greatest fixpoints
In µ-calculus, given the requirement of syntactic monotonicity, the least fixpoint

µX .Φ and the greatest fixpoint νX .Φ always exist.

G. De Giacomo (UNIROMA1) µ-calculus 4 / 19

µ-calculus semantics: transition systems and valuation
The semantics of µ-calculus is based on the notions of transition system (i.e.,

Kripke structure) and variables’ valuation.

Definition
Transition system Given a set P of propositions, and set A of atomic actions, a

transition system is a triple T = (S, {Ra|a ∈ A},Π), with a set of states S, a
family of transition relations Ra ∈ S × S, and a mapping Π from P to subsets of

S.

Definition
Valuation Given a transition system T , a valuation V on T is a mapping from

variables in Var to subsets of the states in T .

Given a valuation V, we denote by V[X ← E], the valuation identical to V except

for V[X ← E](X) = E , i.e. for every variable Y ,

V[X ← E](Y) =

�
E if Y = X

V(Y) if Y �= X

G. De Giacomo (UNIROMA1) µ-calculus 5 / 19

µ-calculus semantics: extension function
Let T = (S, {Rα|α ∈ 2A},Π) be a transition system, and V a valuation on T .

We assign meaning to µ-calculus formulae by associating to T and V an

extension function (·)TV , which maps µ-calculus formulae to subsets of S.

The extension function (·)TV is defined inductively as follows:

µ-calculus semantics

(A)TV = Π(A) ⊆ S
(X)TV = V(X) ⊆ S
(true)TV = S
(false)TV = ∅
(¬Φ)TV = S − (Φ)TV
(Φ1 ∧ Φ2)

T
V = (Φ1)

T
V ∩ (Φ2)

T
V

(Φ1 ∨ Φ2)
T
V = (Φ1)

T
V ∪ (Φ2)

T
V

(�a�Φ)TV = {s ∈ S | ∃s �. (s, s �) ∈ Ra and s � ∈ (Φ)TV }
([a]Φ)TV = {s ∈ S | ∀s �. (s, s �) ∈ Ra implies s � ∈ (Φ)TV }
(µX .Φ)TV =

�
{E ⊆ S | (Φ)TV[X←E] ⊆ E }

(νX .Φ)TV =
�
{E ⊆ S | E ⊆ (Φ)TV[X←E]}

G. De Giacomo (UNIROMA1) µ-calculus 6 / 19

µ-calculus semantics: observations

Note that, the semantics shows that not all µ-calculus constructs are independent.

In particular, we have:

The usual boolean abbreviations: false = A ∧ ¬A; true = ¬false;
Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2); and also Φ1 ⊃ Φ2 = ¬Φ1 ∨ Φ2.

[�]Φ = ¬���¬Φ;
νX .Φ = ¬µX .¬Φ[X/¬X] where Φ[X/¬X] is the formula obtained by

substituting all free occurrences of X by the formula ¬X .

Note also that if Φ is closed (no free variables are present in Φ) then the extension

of (Φ)TV is in fact independent of the valuation V so we could write (Φ)T ,
dropping any reference to V. It is usual to say that a closed Φ is true in a state

s of the transition system T iff s ∈ (Φ)T .

Formally s ∈ (Φ)T stands or s ∈ (Φ)TV for every valuation V (the extension of Φ is in
fact independent of V with Φ closed).

G. De Giacomo (UNIROMA1) µ-calculus 7 / 19

µ-calculus semantics: intuition

Intuitively, the extension function (·)TV assigns to the various constructs of

µ-calculus the following meanings:

Intuition on (·)TV
The boolean connectives have the expected meaning.

The extension of �a�Φ includes the states s ∈ S such that starting from s,

there is an execution of action a that leads to a successive state s � included
in the extension of Φ.

The extension of [a]Φ includes the states s such that starting from s, each

execution of action a leads to some successive state s � included in the

extension of Φ.

G. De Giacomo (UNIROMA1) µ-calculus 8 / 19

µ-calculus semantics: intuition

For the fixpoint constructs we have:

Intuition on (µX .Φ)TV and (νX .Φ)TV
The extension of µX .Φ is the smallest subset Eµ of S such that, assigning

to X the extension Eµ, the resulting extension of Φ is contained in Eµ. That
is, the extension of µX .Φ is the least fixpoint of the operator λE .(Φ)TV[X←E].

Similarly, the extension of νX .Φ is the greatest subset Eν of S such that,

assigning to X the extension Eν , the resulting extension of Φ contains Eν .
That is, the extension of νX .Φ is the greatest fixpoint of the operator

λE .(Φ)TV[X←E].

The syntactic monotonicity of Φ wrt X guarantees the monotonicity of the

operator λE .(Φ)TV[X←E] and hence, by Tarski-Knaster Theorem, the unique

existence of the least fixpoint.

G. De Giacomo (UNIROMA1) µ-calculus 9 / 19

µ-calculus: examples
Let us consider the case we have a single action next represent generic transitions.

Then:

Example

�next�true

expresses the capability of making a next-transition

Example

[next]false

expresses the inability of executing any next-transition.

Example

�next�true ∧ [next]P

says that next-transitions are allowed and they all reach states where P holds.

G. De Giacomo (UNIROMA1) µ-calculus 10 / 19

µ-calculus: examples

Example

µX .P ∨ �next�X

expresses that there exists an evolution of the system such that P eventually

holds. Indeed, its extension Eµ is the smallest set that includes (1) the states in

the extension of Φ; and (2) the states that can execute a transition leading to a

successive state that is in Eµ. In other words, the extension Eµ includes each state

s such that there exists a run from s leading eventually (i.e. in a finite number of

steps) to a state in the extension of P . Note the inductive nature of this property

which is typical of properties defined by least fixpoint.

G. De Giacomo (UNIROMA1) µ-calculus 11 / 19

µ-calculus: examples

Example

νX .P ∧ [next]X

i.e. ¬(µX .¬P ∨ �next�X) – expresses the invariance of P under all of the

evolutions of the system. Indeed, its extension Eν is the largest set of states in the

extension of P from which every transition leads to a successive state which is still

in Eν . In other words, the extension Eν includes each state s such that every state

along every run from s is in the extension of P . Note the coinductive nature of

this property which is typical of properties defined by greatest fixpoint.

G. De Giacomo (UNIROMA1) µ-calculus 12 / 19

µ-calculus: examples

Example

µX .P ∨ (�next�true ∧ [next]X)

expresses that for all evolutions of the system, P eventually holds. Indeed, its

extension Eµ is the smallest set that includes (1) the states in the extension of P ;

and (2) the states that can make a transition and such that every transition leads

to a state in Eµ. In other words, the extension Eµ includes each state s such that

every run from s leads eventually (i.e. in a finite number of steps) to a state in the

extension of P .

Example

νX .µY .(P ∧ X) ∨ (�next�Y)

expresses a strong fairness of a run: there exists a run where P is true infinitely

often.

In general, µ-calculus allows for expressing very sophisticated properties of

dynamic systems, such as very general forms of liveness, safety, and fairness.

G. De Giacomo (UNIROMA1) µ-calculus 13 / 19

µ-calculus: example (program correctness)
Let us still consider a single action next, which represent the execution of a transition,
and an atomic predicate Final representing states that are final configurations. Moreover
let Tδ be the transition system generated by a program δ.

Example

νX .(Final ∧ Q) ∨ (�next�true ∧ [next]X)

denotes the so-called weakest (liberal) precondition WLP(δ,Q) for Q for the program
δ. We can check Hoare partial correctness {P}δ{Q} by checking

(P)Tδ ⊆ (νX .(Final ∧ Q) ∨ (�next�true ∧ [next]X))Tδ

Example

µX .(Final ∧ Q) ∨ (�next�true ∧ [next]X)

denotes the so-called (proper) weakest precondition WP(δ,Q) for Q for the program δ.
We can check total correctness, i.e., [P]δ[Q] by checking

(P)Tδ ⊆ (µX .(Final ∧ Q) ∨ (�next�true ∧ [next]X))Tδ

G. De Giacomo (UNIROMA1) µ-calculus 14 / 19

µ-calculus: simple properties

Often, we use the notation Φ(X) to indicate that the variable X occurs free in the

formula Φ (other variables could occur free in Φ as well), and the notation Φ(Ψ),

where Ψ is a formula, as a shorthand for the formula obtained by syntactically

substituting all free occurrences of X in Φ(X) by the concept Ψ).

Simple properties
Below σ stands for µ or ν

σX .Φ(X) is equivalent to σY .Φ(Y), as long as Y is free for X in Φ(X).

σX .Φ and X does not occur in Φ, then σX .Φ equivalent to Φ.

Φ(σX .Φ(X)) is equivalent to σX .Φ(X), indeed σX .Φ(X) is a fixpoint.

µX .Φ(X) logically implies νX .Φ(X), indeed the least fixpoint is always

smaller/equal to the greatest fixpoint.

G. De Giacomo (UNIROMA1) µ-calculus 15 / 19

µ-calculus: model checking

The reasoning problem we are interested in is model checking:

Definition
Let T = (S, {Ra | a ∈ A},Π) be a transition system, let s ∈ S be one of its

states, and let Φ be a closed (no free variables are present) µ-calculus formula.

The related model checking problem is to verify whether

s ∈ (Φ)
T
V

where V is any valuation, since Φ is closed.

Often we abbreviate s ∈ (Φ)TV by T , s |= Φ or simply by s |= Φ referring to T only

implicitly.

G. De Giacomo (UNIROMA1) µ-calculus 16 / 19

µ-calculus: complexity of reasoning

Theorem
Checking (closed) a µ-calculus formula Φ over a transition system

T = (S, {Ra | a ∈ A},Π) can be done in time

O((|T | · |Φ|)k)

where |T | = |S|+ Σa∈A|Ra|, i.e., the number of states plus the number of

transitions of T , |Φ| is the size of formula Φ (in fact, considering propositional

formulas as atomic), and k is the number of nested fixpoints, i.e., fixpoints whose

variables are one within the scope of the other.

Also, in general model checking is in NP ∩ coNP .

Theorem
Checking satifiability/validity/logical implication in µ-calculus is decidable and

more precisely EXPTIME-complete.

G. De Giacomo (UNIROMA1) µ-calculus 17 / 19

µ-calculus: model checking algorithm
Given a µ-calculus formula Φ over a transition system T = (S, {Ra | a ∈ A},Π)
and a valuation V, the model checking algorithm is based on recursively

labeling the states of the transition systems with the formulas that are true in

them, following closely the semantics.

µ-calculus model checking algorithm

[[A]]TV = Π(A)

[[X]]TV = V(X)

[[true]]TV = S
[[false]]TV = ∅
[[¬Φ]]TV = S − [[Φ]]TV

[[Φ1 ∧ Φ2]]
T
V = [[Φ1]]

T
V ∩ [[Φ2]]

T
V

[[Φ1 ∨ Φ2]]
T
V = [[Φ1]]

T
V ∪ [[Φ2]]

T
V

[[�a�Φ]]TV = PreE(a, [[Φ]]TV)
[[[a]Φ]]TV = PreA(a, [[Φ]]TV)

[[µX .Φ]]TV = lfpX .[[Φ]]TV
[[νX .Φ]]TV = gfpX .[[Φ]]TV

where PreE,PreA,gfp, lfp are defined below.

For the atomic propositions, variables and propositional operator the labeling

works in an obvious way.

G. De Giacomo (UNIROMA1) µ-calculus 18 / 19

µ-calculus: model checking algorithm

Let E ⊆ S be a set of state and a ∈ A an action. Then PreE and PreA label

the existential and universal a-preimage of E respectively.

Existential a-preimage of E
PreE(a, E), i.e., the existential a-preimage of E , is defined as follows:

PreE(a, E) = {s ∈ S | ∃s �. (s, s �) ∈ Ra and s
� ∈ E}

Universal a-preimage of E
PreA(a, E), i.e., the universal a-preimage of E , is defined as follows:

PreA(a, E) = {s ∈ S | ∀s �. (s, s �) ∈ Ra implies s
� ∈ E}

Notice the preimage operators follow the semantics of the �a�· and [a]· very closely.

G. De Giacomo (UNIROMA1) µ-calculus 19 / 19

µ-calculus: model checking algorithm

Procedures lfpX .[[Φ]]TV and gfpX .[[Φ]]TV apply Tarski-Knaster approximates

theorem to compute least fixpoint and greatest fixpoint of operator [[Φ]]TV :

Procedure lfpX .[[Φ]]TV
Xold := [[False]]TV ;
X := [[Φ]]TV[X←Xold]

;

while (X �= Xold) {
Xold := X ;

X := [[Φ]]TV[X←Xold]
;

}
return X ;

Procedure gfpX .[[Φ]]TV
Xold := [[True]]TV ;
X := [[Φ]]TV[X←Xold]

;

while (X �= Xold) {
Xold := X ;

X := [[Φ]]TV[X←Xold]
;

}
return X ;

Notice the number of interations of the while is at most equal to the number of

states S of the transition system T .

G. De Giacomo (UNIROMA1) µ-calculus 20 / 19

